Event-triggered control of multi-robot systems applied to seeding in rice crops

dc.contributor.advisorMojica Nava, Eduardo Alirio
dc.contributor.authorPabón Arias, Juan David
dc.contributor.researchgroupPROGRAMA DE INVESTIGACION SOBRE ADQUISICION Y ANALISIS DE SEÑALES PAAS-UNspa
dc.date.accessioned2021-08-12T21:44:01Z
dc.date.available2021-08-12T21:44:01Z
dc.date.issued2021
dc.descriptionilustraciones, gráficas, tablasspa
dc.description.abstractThis work presents the results of developing two event-triggered control laws for the navigation task of multi-robot systems. It is expected to apply the control laws in the seeding task of rice crops, where guaranteeing the correct navigation of multi-robot systems allows the precise seeding of the crops. The event-triggered control approach is implemented to guarantee that the control laws can operate on real robots where it is impossible to perform continuous-time communication. In addition to this, robots perform asynchronous communication caused by event-trigger functions that determine the times in which robots communicate among them. Depending on the velocity of robots and the characteristics of the desired trajectories, the event-trigger functions modify the times in which robots interchange information. It allows reducing energy consumption and the processing load in the sections of the trajectories where the speed of the robots is low. When the reference trajectories determine that robots need to have a higher velocity, the same functions allow robots to increase the information exchange. Thus, the control laws allow the systems to decrease the energy consumption of communication devices. To design the control laws, first, a Lyapunov function approach is used to find a function that ensures the stability of the first control law. It imposes the restriction that the control can only operate on undirected communication networks. The second control law is designed using a differential equations approach. With this, the restriction imposed by the first control law is removed. With the second control law, one of the most difficult issues in the field of event-triggered control is solved, the event-triggered control of weight-unbalanced directed networks. Finally, the control laws are tested in simulation and real robots. With this, the correct operation of multi-robot systems is proved and the design process of the control laws is completed. (Text taken from source)eng
dc.description.abstractEste trabajo presenta los resultados del desarrollo de dos leyes de control activadas por eventos para la tarea de navegación de sistemas de múltiples robots. Se espera aplicar las leyes de control en la tarea de siembra de cultivos de arroz, donde garantizar la correcta navegación de los sistemas multi-robot permite la siembra precisa de los cultivos. El enfoque de control activado por eventos se implementa para garantizar que las leyes de control puedan operar en robots reales donde es imposible realizar comunicación de tiempo continuo. Además de esto, los robots realizan una comunicación asincrónica causada por funciones de activación de eventos que determinan los tiempos en que los robots se comunican entre ellos. Dependiendo de la velocidad de los robots y las características de las trayectorias deseadas, las funciones de activación de eventos modifican los tiempos en los que los robots intercambian información. Esto permite reducir el consumo de energía y la carga de procesamiento en los tramos de las trayectorias donde la velocidad de los robots es baja. Cuando las trayectorias de referencia determinan que los robots necesitan tener una velocidad más alta, las mismas funciones permiten a los robots aumentar el intercambio de información. Por lo tanto, las leyes de control permiten que los sistemas disminuyan el consumo de energía de los dispositivos de comunicación. Para diseñar las leyes de control, primero, se utiliza un enfoque de funciónes de Lyapunov para encontrar una función que asegure la estabilidad de la primera ley de control. Esto impone la restricción de que el control solo puede operar en redes de comunicación no dirigidas. La segunda ley de control se diseña utilizando un enfoque de ecuaciónes diferenciales. Con esto, se elimina la restricción impuesta por la primera ley de control. Con la segunda ley de control, se resuelve uno de los problemas más difíciles en el campo del control activado por eventos, el control activado por eventos de redes dirigidas no balanceadas. Finalmente, las leyes de control se prueban en simulación y robots reales. Con esto, se demuestra el correcto funcionamiento de los sistemas multi-robot y se completa el proceso de diseño de las leyes de control. (Texto tomado de la fuente)spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Automatización Industrialspa
dc.description.researchareaControl y Robóticaspa
dc.format.extent133 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79937
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ingeniería Eléctrica y Electrónicaspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Automatización Industrialspa
dc.relation.referencesDepartamento Administrativo Nacional de Estadística (DANE), Producto Interno Bruto, Principales Resultados Año 2019 y IV Trismestre. DANE, 2020.spa
dc.relation.referencesMinisterio de Agricultura y Desarrollo Rural, Informe de Gestión Institucional, Vigencia 2019. Ministerio de Agricultura y Desarrollo Rural, 2020.spa
dc.relation.referencesDepartamento Administrativo Nacional de Estad ́ıstica (DANE), Encuesta Nacional de Arroz Mecanizado, segundo Semestre 2018. DANE, 2019.spa
dc.relation.referencesFederación Nacional de Arroceros (Fedearroz), IV Censo Nacional Arrocero 2016. Fondo Nacional del Arroz, División de Investigaciones Económicas, 2017.spa
dc.relation.referencesFederación Nacional de Arroceros (Fedearroz), “Estadísticas Arroceras.” http://www. fedearroz.com.co/new/apr_public.php. March 2019.spa
dc.relation.referencesUnited States Department of Agriculture, “Historical Cost and Returns: Rice.” https://www.ers.usda.gov/data-products/commodity-costs-and-returns/. March 2019spa
dc.relation.referencesGrupo Técnico Fedearroz and Fondo Nacional del Arroz, Adopción Masiva de Tecnología (AMTEC) – Guía de trabajo. Fedearroz, 2015.spa
dc.relation.referencesT. Blender, T. Buchner, B. Fernandez, B. Pichlmaier, and C. Schlegel, “Mobile agricul- tural robot swarm for a seeding task,” University of Applied Sciences Ulm, Germany, 2016.spa
dc.relation.referencesSwarm Farm, “Swarm Farm Robots.” http://www.swarmfarm.com. May, 2019.spa
dc.relation.referencesJ. Roldán, P. Garcia-Aunon, M. Garzón, J. de León, J. del Cerro, and A. Barrientos, “Heterogeneous multi-robot system for mapping environmental variables of green- houses,” Sensors, 2016.spa
dc.relation.referencesD. Albani, J. IJsselmuiden, R. Haken, and V. Trianni, “Monitoring and mapping with robot swarms for agricultural applications,” in Proc. 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 1–6, 2017.spa
dc.relation.referencesJ. Kim and H. I. Son, “A voronoi diagram-based workspace partition for weak cooper- ation of multi-robot system in orchard,” IEEE Access, vol. 8, pp. 20676–20686, 2020.spa
dc.relation.referencesC. Wu, R. Zeng, J. Pan, C. C. L. Wang, and Y. Liu, “Plant phenotyping by deep- learning-based planner for multi-robots,” IEEE Robotics and Automation Letters, vol. 4, no. 4, pp. 3113–3120, 2019.spa
dc.relation.referencesP. Singh, R. Tiwari, and M. Bhattacharya, “Navigation in multi robot system using co- operative learning: A survey,” in Proc. 2016 International Conference on Computational Techniques in Information and Communication Technologies (ICCTICT), pp. 145–150, 2016.spa
dc.relation.referencesF. J. Mendiburu, M. R. A. Morais, and A. M. N. Lima, “Behavior coordination in multi-robot systems,” in Proc. 2016 IEEE International Conference on Automatica (ICA-ACCA), pp. 1–7, 2016.spa
dc.relation.referencesD. Chandrasekhar Rao and M. Ranjan Kabat, “A trust based navigation control for multi-robot to avoid deadlock in a static environment using improved krill herd,” in Proc. 2018 International Conference on Inventive Research in Computing Applications (ICIRCA), pp. 810–817, 2018.spa
dc.relation.referencesY. Zhou, H. Hu, Y. Liu, S.-W. Lin, and Z. Ding, “A distributed approach to robust control of multi-robot systems,” Automatica, vol. 98, pp. 1 – 13, 2018.spa
dc.relation.referencesG. S. Seyboth, D. V. Dimarogonas, and K. H. Johansson, “Event-based broadcasting for multi-agent average consensus,” Automatica, vol. 49, pp. 245–252, jan 2013spa
dc.relation.referencesJ. P. L. S. de Almeida, R. T. Nakashima, F. Neves-Jr, and L. V. R. de Arruda, “Bio- inspired on-line path planner for cooperative exploration of unknown environment by a multi-robot system,” Robotics and Autonomous Systems, vol. 112, pp. 32 – 48, 2019.spa
dc.relation.referencesW. Heemels, K. H. Johansson, and P. Tabuada, “An introduction to event-triggered and self-triggered control,” in Proc. 51 st IEEE Conference on Decision and Control (CDC), pp. 3270–3285, 2012.spa
dc.relation.referencesL. Hetel, C. Fiter, H. Omran, A. Seuret, E. Fridman, J.-P. Richard, and S. I. Niculescu, “Recent developments on the stability of systems with aperiodic sampling: An overview,” Automatica, vol. 76, pp. 309–335, 2017.spa
dc.relation.referencesD. V. Dimarogonas, E. Frazzoli, and K. H. Johansson, “Distributed Event-Triggered Control for Multi-Agent Systems,” IEEE Transactions on Automatic Control, vol. 57, pp. 1291–1297, may 2012.spa
dc.relation.referencesM. Cao, F. Xiao, and L. Wang, “Event-based second-order consensus control for multi- agent systems via synchronous periodic event detection,” IEEE Transactions on Auto- matic Control, vol. 60, no. 9, pp. 2452–2457, 2015.spa
dc.relation.referencesN. T. Hung, F. C. Rego, and A. M. Pascoal, “Event-triggered communications for the synchronization of nonlinear multi agent systems on weight-balanced digraphs,” in Proc. 2019 18th European Control Conference (ECC), pp. 2713–2718, 2019.spa
dc.relation.referencesP. Tallapragada, M. Franceschetti, and J. Cort ́es, “Event-triggered control under time- varying rates and channel blackouts,” IFAC Journal of Systems and Control, vol. 9, p. 100064, 2019.spa
dc.relation.referencesW. Hu, C. Yang, T. Huang, and W. Gui, “A distributed dynamic event-triggered control approach to consensus of linear multiagent systems with directed networks,” IEEE Transactions on Cybernetics, vol. 50, no. 2, pp. 869–874, 2020.spa
dc.relation.referencesMehran Mesbahi and Magnus Egerstedt, Graph Theoretic Methods in Multiagent Net-works. Princeton University Press, 2010.spa
dc.relation.referencesDimitri P. Bertsekas, Network Optimization: Continuous and Discrete Models. Athena Scientific, 1998.spa
dc.relation.referencesJ. Banasiak, “Logarithmic norms and regular perturbations of differential equations,” Annales Universitatis Mariae Curie-Sklodowska, vol. 73, no. 2, pp. 245 – 252, 2019.spa
dc.relation.referencesG. S ̈oderling, The Logarithmic Norm. History and Modern Theory. Lund University, 2006.spa
dc.relation.referencesJ. Cort ́es and M. Egerstedt, “Coordinated control of multi-robot systems: A survey,” SICE Journal of Control, Measurement, and System Integration, vol. 10, pp. 495–503, 2017.spa
dc.relation.referencesKHUN, “ Ficha T ́ecnica Sembradoras Neum ́aticas Monograno – MAXIMA 3.” https: //zoom.kuhn.com/event/demoagro/_pdf/leaflets/MAXIMA_3_ES.pdf. March 2019.spa
dc.relation.referencesMASSEY FERGUSON, “ Sembradora Abonadora Versi ́on M.” http://mayfer.com. uy/web/wp-content/themes/mayfer/fichas-tecnicas/MF-300.pdf. April 2019.spa
dc.relation.referencesWINTERSTEIGER, “Sembradoras Monograno.” https://www.wintersteiger.com/ download/?file=8395. April 2019.spa
dc.relation.referencesPrograma Cooperativo para el Desarrollo Tecnológico Agroalimentario del Cono Sur, Agricultura de Precisi ́on: Integrando Conocimientos para una Agricultura Moderna y Sustentable. Instituto Interamericano de Cooperación para la Agricultura, 2015.spa
dc.relation.referencesPrograma Cooperativo para el Desarrollo Tecnol ́ogico Agroalimentario del Cono Sur, Manual de Agricultura de Precisión. Instituto Interamericano de Cooperación para la Agricultura, 2014.spa
dc.relation.referencesLeiva, Fabio, “La Agricultura de precisi ́on: una producci ́on m ́as sostenible y competitiva con visi ́on futurista,” VIII Congreso de la Sociedad Colombiana de Fitomejoramiento y Producción de Cultivos. Bogotá, 2003.spa
dc.relation.referencesX. Gao, J. Li, L. Fan, Q. Zhou, K. Yin, J. Wang, C. Song, L. Huang, and Z. Wang, “Review of wheeled mobile robots’ navigation problems and application prospects in agriculture,” IEEE Access, vol. 6, pp. 49248–49268, 2018.spa
dc.relation.referencesP. M. Blok, K. van Boheemen, F. K. van Evert, J. IJsselmuiden, and G. H. Kim, “Robot navigation in orchards with localization based on Particle filter and Kalman filter,” Computers and Electronics in Agriculture, vol. 157, pp. 261–269, 2019.spa
dc.relation.referencesH. Yu, P. Shi, C.-C. Lim, and D. Wang, “Formation control for multi-robot systems with collision avoidance,” International Journal of Control, vol. 92, no. 10, pp. 2223–2234, 2019.spa
dc.relation.referencesR. Lal, A. Sharda, and P. Prabhakar, “Optimal multi-robot path planning for pesticide spraying in agricultural fields,” in Proc. 56 th IEEE Annual Conference on Decision and Control (CDC), pp. 5815–5820, 2017.spa
dc.relation.referencesA. G. Millard, R. Ravikanna, R. Groß, and D. Chesmore, “Towards a swarm robotic system for autonomous cereal harvesting,” in Proc. Annual Conference Towards Au- tonomous Robotic Systems, pp. 458–461, Springer, 2019.spa
dc.relation.referencesC. Zhang and N. Noguchi, “Development of a multi-robot tractor system for agriculture field work,” Computers and Electronics in Agriculture, vol. 142, pp. 79 – 90, 2017.spa
dc.relation.referencesL. Monostori, “Cyber-physical production systems: Roots, expectations and r&d chal- lenges,” Procedia Cirp, vol. 17, pp. 9–13, 2014.spa
dc.relation.referencesC. Wang, H. Tnunay, Z. Zuo, B. Lennox, and Z. Ding, “Fixed-time formation con- trol of multirobot systems: Design and experiments,” IEEE Transactions on Industrial Electronics, vol. 66, no. 8, pp. 6292–6301, 2019.spa
dc.relation.referencesC. Nowzari and J. Cort ́es, “Distributed event-triggered coordination for average con- sensus on weight-balanced digraphs,” Automatica, vol. 68, pp. 237 – 244, 2016.spa
dc.relation.referencesF. Bullo, J. Cortes, and S. Martinez, Distributed control of robotic networks: a mathe- matical approach to motion coordination algorithms, vol. 27. Princeton University Press, 2009.spa
dc.relation.referencesA. Rahmani, J. Meng, M. Mehran, and E. Magnus, “Controllability of multi-agent sys- tems from a graph-theoretic perspective,” SIAM Journal on Control and Optimization, vol. 48, pp. 162–186, 2009.spa
dc.relation.referencesHassan K. Khalil, Nonlinear Systems. Prentice Hall, 3 ed., 2002.spa
dc.relation.referencesS. Wilson, P. Glotfelter, L. Wang, S. Mayya, G. Notomista, M. Mote, and M. Egersted, “The robotarium: Globally impactful opportunities, challenges, and lessons learned in remote-access, distributed control of multirobot systems,” IEEE Control Systems Magazine, vol. 40, pp. 26–44, 2020.spa
dc.relation.referencesFederación Nacional de Arroceros (Fedearroz) and Fondo Nacional del Arroz, Informe de Gestión. Fondo Nacional del Arroz, División de Investigaciones Económicas, 2017.spa
dc.relation.referencesC. Nowzari and J. Cortés, “Zeno-free, distributed event-triggered communication and control for multi-agent average consensus,” in Proc. 2014 American Control Conference, pp. 2148–2153, 2014.spa
dc.relation.referencesS. S. Kia, J. Cortés, and S. Martínez, “Dynamic average consensus under limited control authority and privacy requirements,” International Journal of Robust and Nonlinear Control, vol. 25, pp. 1941–1966, sep 2015.spa
dc.relation.referencesC. Nowzari, E. Garcia, and J. Cortés, “Event-triggered communication and control of networked systems for multi-agent consensus,” Automatica, vol. 105, pp. 1–27, 2019.spa
dc.rightsDerechos reservados al autor, 2021spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.proposalControlspa
dc.subject.proposalRoboticseng
dc.subject.proposalRobóticaspa
dc.subject.proposalEvent-Based Controleng
dc.subject.proposalEvent-Triggered Controleng
dc.subject.proposalControl basado en eventosspa
dc.subject.proposalControl desencadenado por eventosspa
dc.subject.proposalSistemas multi-robotspa
dc.subject.proposalMulti-Robot Systemseng
dc.subject.proposalMulti-Agent Systemseng
dc.subject.proposalSistemas multi-agentespa
dc.subject.proposalControleng
dc.subject.unescoAutomatización
dc.subject.unescoAutomation
dc.subject.unescoControl automático
dc.subject.unescoAutomatic control
dc.titleEvent-triggered control of multi-robot systems applied to seeding in rice cropseng
dc.title.translatedControl desencadenado por eventos de sistemas multi-robot aplicado a la siembra en cultivos de arrozspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audienceEspecializadaspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1015457117.2021.pdf
Tamaño:
5.8 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Automatización Industrial

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: