Explotación de la diversidad alélica natural relacionada con el uso eficiente del Nitrógeno en papa

dc.contributor.advisorMosquera Vásquez, Teresa de Jesús
dc.contributor.advisorMagnitskiy, Stanislav Valeryevich
dc.contributor.authorJiménez Medrano, Aura Natalia
dc.contributor.cvlacJiménez-Medrano, A [0001597032]
dc.contributor.googlescholarAura Natalia Jiménez-Medrano [EjMX8VYAAAAJ]
dc.contributor.orcidJiménez Medrano, Aura Natalia [0000000272669411]
dc.contributor.researchgateJiménez Medrano, Aura Natalia [2314110063]
dc.contributor.researchgroupGenética de Rasgos de Interés Agronómico
dc.date.accessioned2025-09-30T16:05:20Z
dc.date.available2025-09-30T16:05:20Z
dc.date.issued2025
dc.descriptionilustraciones a color, diagramasspa
dc.description.abstractLa eficiencia en el uso del nitrógeno (NUE) es un rasgo estratégico para reducir la dependencia de fertilizantes sintéticos y promover sistemas agrícolas sostenibles. Este estudio tuvo como objetivo identificar variantes alélicas vinculadas al NUE en una población diploide de papa del grupo Phureja, mediante un análisis de asociación con enfoque de genes candidatos. Para ello, se caracterizó un panel de genotipos mediante la medición de variables morfológicas, fisiológicas y bioquímicas relacionadas con la absorción (NUpE) y la asimilación (NUtE) de nitrógeno, bajo condiciones contrastantes de fertilización nitrogenada. Los resultados evidenciaron una disminución del NUE con el incremento en la dosis de nitrógeno, lo que sugiere un punto de saturación en la capacidad del cultivo para utilizar eficientemente este nutriente. Se observó una amplia variabilidad fenotípica entre genotipos en biomasa, número de tubérculos, contenido de clorofila (SPAD) y contenido de nitrógeno y carbono en tejidos, lo que confirma la existencia de una base genética sólida para seleccionar materiales con mejor desempeño en escenarios de limitada disponibilidad de nitrógeno. El análisis permitió identificar polimorfismos de un solo nucleótido (SNP) en genes clave AMT1.1, 2-OGD y PPR, relacionados con el transportador de amonio 1.1, la dioxigenasa dependiente de 2-oxoglutarato y las proteínas con repeticiones de pentatricopéptidos, respectivamente. Estos hallazgos constituyen un insumo valioso para programas de fitomejoramiento orientados a incrementar el NUE en papa, optimizar el uso de fertilizantes y contribuir a la sostenibilidad de los sistemas de producción agrícola (Texto tomado de la fuente).spa
dc.description.abstractNitrogen use efficiency (NUE) is a strategic trait to reduce dependence on synthetic fertilizers and promote sustainable agricultural systems. This study aimed to identify allelic variants linked to NUE in a diploid potato population of the Phureja group, using a candidate gene-based association analysis. For this purpose, a panel of genotypes was characterized by measuring morphological, physiological, and biochemical variables related to nitrogen uptake (NUpE) and nitrogen utilization (NUtE) under contrasting nitrogen fertilization conditions. Results showed a decrease in NUE with increasing nitrogen supply, suggesting a saturation point in the capacity of the crop to efficiently use this nutrient. A broad phenotypic variability was observed among genotypes in biomass, tuber number, chlorophyll content (SPAD), and nitrogen and carbon content in tissues, confirming the existence of a strong genetic basis for selecting genotypes with better performance under limited nitrogen availability. The analysis allowed the identification of single nucleotide polymorphisms (SNPs) key genes AMT1.1, 2-OGD, and PPR, related to ammonium transport, 2-oxoglutarate-dependent dioxygenase activity, and pentatricopeptide repeat proteins, respectively. These findings provide valuable insights for breeding programs aimed at improving NUE in potato, optimizing fertilizer use, and contributing to the sustainability of agricultural production systems.eng
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias Agrarias
dc.description.researchareaGenética y Fitomejoramiento
dc.description.technicalinfoCaracterización fenotípica y análisis de asociación genética en una población diploide de papa del grupo Phureja para identificar variantes alélicas relacionadas con la eficiencia en el uso del nitrógeno. Incluye medición de variables morfológicas, fisiológicas y bioquímicas bajo condiciones contrastantes de fertilización nitrogenada, y análisis estadístico mediante modelos lineales, mixtos y de predicción insesgada BLUP para la detección de SNPs en genes candidatos.spa
dc.description.technicalinfoPhenotypic characterization and genetic association analysis were conducted in a diploid potato population of the Phureja group to identify allelic variants related to nitrogen use efficiency (NUE). The study included the measurement of morphological, physiological, and biochemical variables under contrasting nitrogen fertilization conditions, as well as statistical analyses using linear models, mixed models, and best linear unbiased prediction (BLUP) approaches for the detection of SNPs in candidate genes.eng
dc.format.extent136 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88986
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.publisher.facultyFacultad de Ciencias Agrarias
dc.publisher.placeBogotá, Colombia
dc.publisher.programBogotá - Ciencias Agrarias - Maestría en Ciencias Agrarias
dc.relation.indexedAgrosavia
dc.relation.indexedAgrovoc
dc.relation.referencesAbdurakhmonov, I. Y., & Abdukarimov, A. (2008). Application of Association Mapping to Understanding the Genetic Diversity of Plant Germplasm Resources. International Journal Of Plant Genomics, 2008, 1-18. https://doi.org/10.1155/2008/574927
dc.relation.referencesÁlvarez, M. F., Angarita, M., Delgado, M. C., García, C., Jiménez-Gomez, J., Gebhardt, C., & Mosquera, T. (2017). Identification of Novel Associations of Candidate Genes with Resistance to Late Blight in Solanum tuberosum Group Phureja. Frontiers In Plant Science, 8. https://doi.org/10.3389/fpls.2017.01040
dc.relation.referencesÁlvarez, M. F., Mosquera, T., & Blair, M. W. (2014). The Use of Association Genetics Approaches in Plant Breeding. Plant Breeding Reviews, 38, 17-68. https://doi.org/10.1002/9781118916865.ch02
dc.relation.referencesAstorkia, M., Hernandez, M., Bocs, S., De Armentia, E. L., Herran, A., Ponce, K., León, O., Morales, S., Quezada, N., Orellana, F., Wendra, F., Sembiring, Z., Asmono, D., & Ritter, E. (2019). Association Mapping between Candidate Gene SNP and Production and Oil Quality Traits in Interspecific Oil Palm Hybrids. Plants, 8(10), 377. https://doi.org/10.3390/plants8100377
dc.relation.referencesAraújo, W. L., Nunes-Nesi, A., Trenkamp, S., Bunik, V. I., & Fernie, A. R. (2008). Inhibition of 2-Oxoglutarate Dehydrogenase in Potato Tuber Suggests the Enzyme Is Limiting for Respiration and Confirms Its Importance in Nitrogen Assimilation. PLANT PHYSIOLOGY, 148(4), 1782-1796. https://doi.org/10.1104/pp.108.126219
dc.relation.referencesBadr, M., El-Tohamy, W., & Zaghloul, A. (2012). Yield and water use efficiency of potato grown under different irrigation and nitrogen levels in an arid region. Agricultural Water Management, 110, 9-15. https://doi.org/10.1016/j.agwat.2012.03.008
dc.relation.referencesBarkan, A., & Small, I. (2014). Pentatricopeptide Repeat Proteins in Plants. Annual Review Of Plant Biology, 65(1), 415-442. https://doi.org/10.1146/annurev-arplant-050213-040159
dc.relation.referencesBelow, F. E. (2001). Nitrogen Metabolism and Crop Productivity. En CRC Press eBooks (pp. 407-428). https://doi.org/10.1201/9780203908426-21
dc.relation.referencesBenjamini, Y., & Hochberg, Y. (1995). Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal Of The Royal Statistical Society Series B (Statistical Methodology), 57(1), 289-300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
dc.relation.referencesBodirsky, B. L., Popp, A., Lotze-Campen, H., Dietrich, J. P., Rolinski, S., Weindl, I., Schmitz, C., Müller, C., Bonsch, M., Humpenöder, F., Biewald, A., & Stevanovic, M. (2014). Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution. Nature Communications, 5(1). https://doi.org/10.1038/ncomms4858
dc.relation.referencesBrauer, E. K., Rochon, A., Bi, Y., Bozzo, G. G., Rothstein, S. J., & Shelp, B. J. (2011). Reappraisal of nitrogen use efficiency in rice overexpressing glutamine synthetase1. Physiologia Plantarum, 141(4), 361-372. https://doi.org/10.1111/j.1399-3054.2011.01443.x
dc.relation.referencesBradbury, P. J., Zhang, Z., Kroon, D. E., Casstevens, T. M., Ramdoss, Y., & Buckler, E. S. (2007). TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 23(19), 2633-2635. https://doi.org/10.1093/bioinformatics/btm308
dc.relation.referencesBush, W. S., & Moore, J. H. (2012). Chapter 11: Genome-Wide Association Studies. PLoS Computational Biology, 8(12), e1002822. https://doi.org/10.1371/journal.pcbi.1002822
dc.relation.referencesCao, J., Yang, L., Pang, S., Yang, J., Hu, Y., Li, Y., Li, L., & Wang, Q. (2021). Convergent nitrogen uptake patterns and divergent nitrogen acquisition strategies of coexisting plant species in response to long-term nitrogen enrichment in a temperate grassland. Environmental And Experimental Botany, 185, 104412. https://doi.org/10.1016/j.envexpbot.2021.104412
dc.relation.referencesChalla, S., & Neelapu, N. R. (2018). Genome-Wide Association Studies (GWAS) for Abiotic Stress Tolerance in Plants. En Elsevier eBooks (pp. 135-150). https://doi.org/10.1016/b978-0-12-813066-7.00009-7
dc.relation.referencesChauhan, H., Aiana, & Singh, K. (2023). Genome-wide identification of 2-oxoglutarate and Fe (II)-dependent dioxygenase family genes and their expression profiling under drought and salt stress in potato. PeerJ, 11, e16449. https://doi.org/10.7717/peerj.16449
dc.relation.referencesCongreves, K. A., Otchere, O., Ferland, D., Farzadfar, S., Williams, S., & Arcand, M. M. (2021). Nitrogen Use Efficiency Definitions of Today and Tomorrow. Frontiers In Plant Science, 12. https://doi.org/10.3389/fpls.2021.637108
dc.relation.referencesCormier, F., Gouis, J. L., Dubreuil, P., Lafarge, S., & Praud, S. (2014). A genome-wide identification of chromosomal regions determining nitrogen use efficiency components in wheat (Triticum aestivum L.). Theoretical And Applied Genetics, 127(12), 2679-2693. https://doi.org/10.1007/s00122-014-2407-7
dc.relation.referencesDevaux, A., Goffart, J., Petsakos, A., Kromann, P., Gatto, M., Okello, J., Suarez, V., & Hareau, G. (2019). Global Food Security, Contributions from Sustainable Potato Agri-Food Systems. En Springer eBooks (pp. 3-35). https://doi.org/10.1007/978-3-030-28683-5_1
dc.relation.referencesDimkpa, C. O., Fugice, J., Singh, U., & Lewis, T. D. (2020). Development of fertilizers for enhanced nitrogen use efficiency – Trends and perspectives. The Science Of The Total Environment, 731, 139113. https://doi.org/10.1016/j.scitotenv.2020.139113
dc.relation.referencesDocimo, T., Paesano, A., D’Agostino, N., D’Amelia, V., Garramone, R., Carputo, D., & Aversano, R. (2024). Exploring CDF gene family in wild potato under salinity stress unveils promising candidates for developing climate-resilient crops. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-75412-2
dc.relation.referencesDuarte‐Delgado, D., Ñústez‐López, C., Narváez‐Cuenca, C., Restrepo‐Sánchez, L., Melo, S. E., Sarmiento, F., Kushalappa, A. C., & Mosquera‐Vásquez, T. (2016). Natural variation of sucrose, glucose and fructose contents in Colombian genotypes of Solanum tuberosum Group Phureja at harvest. Journal Of The Science Of Food And Agriculture, 96(12), 4288-4294. https://doi.org/10.1002/jsfa.7783
dc.relation.referencesDuarte-Delgado, D., Juyó, D., Gebhardt, C., Sarmiento, F., & Mosquera-Vásquez, T. (2017). Novel SNP markers in InvGE and SssI genes are associated with natural variation of sugar contents and frying color in Solanum tuberosum Group Phureja. BMC Genomic Data, 18(1). https://doi.org/10.1186/s12863-017-0489-3
dc.relation.referencesDwivedi, S. L., Quiroz, L. F., Reddy, A. S., Spillane, C., & Ortiz, R. (2023). Alternative Splicing Variation: Accessing and Exploiting in Crop Improvement Programs. International Journal of Molecular Sciences, 24(20), 15205.
dc.relation.referencesElrys, A. S., Raza, S., Abdo, A. I., Liu, Z., Chen, Z., & Zhou, J. (2019). Budgeting nitrogen flows and the food nitrogen footprint of Egypt during the past half century: Challenges and opportunities. Environment International, 130, 104895. https://doi.org/10.1016/j.envint.2019.06.005
dc.relation.referencesEndelman, J. B. (2011). Ridge Regression and Other Kernels for Genomic Selection with R Package rrBLUP. The Plant Genome, 4(3), 250-255. https://doi.org/10.3835/plantgenome2011.08.0024
dc.relation.referencesFan, X., Feng, H., Tan, Y., Xu, Y., Miao, Q., & Xu, G. (2015). A putative 6‐transmembrane nitrate transporter OsNRT1.1b plays a key role in rice under low nitrogen. Journal Of Integrative Plant Biology, 58(6), 590-599. https://doi.org/10.1111/jipb.12382
dc.relation.referencesFan, X., Tang, Z., Tan, Y., Zhang, Y., Luo, B., Yang, M., Lian, X., Shen, Q., Miller, A. J., & Xu, G. (2016). Overexpression of a pH-sensitive nitrate transporter in rice increases crop yields. Proceedings Of The National Academy Of Sciences, 113(26), 7118-7123. https://doi.org/10.1073/pnas.1525184113
dc.relation.referencesFang, Z., Xia, K., Yang, X., Grotemeyer, M. S., Meier, S., Rentsch, D., Xu, X., & Zhang, M. (2012). Altered expression of the PTR/NRT1 homologue OsPTR9 affects nitrogen utilization efficiency, growth and grain yield in rice. Plant Biotechnology Journal, 11(4), 446-458. https://doi.org/10.1111/pbi.12031
dc.relation.referencesFofana, B., Soto-Cerda, B., Zaidi, M., Main, D., & Fillmore, S. (2024). Genome-wide genetic architecture for plant maturity and drought tolerance in diploid potatoes. Frontiers In Genetics, 14. https://doi.org/10.3389/fgene.2023.1306519
dc.relation.referencesFederación Colombiana de Productores de Papa [FEDEPAPA], Departamento de Sistemas de información y Estudios Económicos, & Fondo Nacional de Fomento de la Papa [FAFP]. (2020). Boletín Regional Nacional: numero 5 - 2020: Volumen 4. En Repositorio Institucional FEDEPAPA (20.500.14460/59). https://repositorio.fedepapa.com
dc.relation.referencesFood and Agriculture Organization [FAO]. (2017). World fertilizer trends and outlook to 2020. En http://www.fao.org/documents/card/en/c/cfa19fbc-0008-466b-8cc6-0db6c6686f78 (N.o I6895E; p. 38). https://openknowledge.fao.org/handle/20.500.14283/i6895e
dc.relation.referencesFriendly, M. (2002). Corrgrams: Exploratory Displays for Correlation Matrices. The American Statistician, 56(2), 316-324. http://www.jstor.org/stable/3087354
dc.relation.referencesGaneteg, U., Ahmad, I., Jämtgård, S., Aguetoni‐Cambui, C., Inselsbacher, E., Svennerstam, H., Schmidt, S., & Näsholm, T. (2016). Amino acid transporter mutants of Arabidopsis provides evidence that a non‐mycorrhizal plant acquires organic nitrogen from agricultural soil. Plant Cell & Environment, 40(3), 413-423. https://doi.org/10.1111/pce.12881
dc.relation.referencesGetahun, B. B., Kassie, M. M., Visser, R. G. F., & Van Der Linden, C. G. (2019). Genetic Diversity of Potato Cultivars for Nitrogen Use Efficiency Under Contrasting Nitrogen Regimes. Potato Research, 63(2), 267-290. https://doi.org/10.1007/s11540-019-09439-8
dc.relation.referencesGetahun, B. B., Visser, R. G. F., & Van Der Linden, C. G. (2020). Identification of QTLs Associated with Nitrogen Use Efficiency and Related Traits in a Diploid Potato Population. American Journal Of Potato Research, 97(2), 185-201. https://doi.org/10.1007/s12230-020-09766-4
dc.relation.referencesGetahun, B. B., Tiruneh, M. A., Aliche, E., Malossetti, M., Visser, R. G., & Van Der Linden, C. G. (2022). Genotype-by-Environment Interaction for Quantitative Trait Loci Affecting Nitrogen Use Efficiency and Associated Traits in Potato. Potato Research, 65(4), 777-807. https://doi.org/10.1007/s11540-022-09548-x
dc.relation.referencesGeneious Prime 2023.2.1 | Bioinformatics Software for Sequence Data Analysis (2023.2.1). (2023). [Software]. https://www.geneious.com
dc.relation.referencesGhanem, M. E., Hichri, I., Smigocki, A. C., Albacete, A., Fauconnier, M., Diatloff, E., Martinez-Andujar, C., Lutts, S., Dodd, I. C., & Pérez-Alfocea, F. (2011). Root-targeted biotechnology to mediate hormonal signalling and improve crop stress tolerance. Plant Cell Reports, 30(5), 807-823. https://doi.org/10.1007/s00299-011-1005-2
dc.relation.referencesGómez, M. I., Magnitskiy, S., & Rodríguez, L. E. (2019). Nitrogen, phosphorus and potassium accumulation and partitioning by the potato group Andigenum in Colombia. Nutrient Cycling In Agroecosystems, 113(3), 349-363. https://doi.org/10.1007/s10705-019-09986-z
dc.relation.referencesGupta, P. K., Kulwal, P. L., & Jaiswal, V. (2019). Association mapping in plants in the post-GWAS genomics era. Advances In Genetics, 75-154. https://doi.org/10.1016/bs.adgen.2018.12.001
dc.relation.referencesHaverkort, A. J., & MacKerron, D. K. L. (2000). Management of nitrogen and water in potato production. https://doi.org/10.3920/978-90-8686-503-1
dc.relation.referencesHenderson, C. R. (1975). Best Linear Unbiased Estimation and Prediction under a Selection Model. Biometrics, 31(2), 423. https://doi.org/10.2307/2529430
dc.relation.referencesHorváth, M. K., Hoffmann, B., Cernák, I., Baráth, S., Polgár, Z., & Taller, J. (2019). Nitrogen utilization of potato genotypes and expression analysis of genes controlling nitrogen assimilation. Biologia Futura, 70(1), 25-37. https://doi.org/10.1556/019.70.2019.04
dc.relation.referencesHu, C., He, Y., Zhang, W., & He, J. (2023). Potato proteins for technical applications: Nutrition, isolation, modification and functional properties - A review. Innovative Food Science & Emerging Technologies, 91, 103533. https://doi.org/10.1016/j.ifset.2023.103533
dc.relation.referencesHuang, F., Lu, Y., Li, Z., Zhang, L., Xie, M., Ren, B., Lu, L., Li, L., & Yang, C. (2024). Overexpression of CBL-Interacting Protein Kinases 23 Improves Tolerance to Low-Nitrogen Stress in Potato Plants. Horticulturae, 10(5), 526. https://doi.org/10.3390/horticulturae10050526
dc.relation.referencesIbn, R. A., Ghosh, U. K., Hossain, M. S., Mahmud, A., Saha, A. K., Rahman, M. M., Rahman, M. A., Siddiqui, M. N., & Khan, M. A. R. (2024). Enhancing nitrogen use efficiency in cereal crops: from agronomy to genomic perspectives. Cereal Research Communications, 53(1), 1-16. https://doi.org/10.1007/s42976-024-00515-5
dc.relation.referencesJagadhesan, B., Meena, H. S., Jha, S. K., Krishna, K. G., Kumar, S., Elangovan, A., Chinnusamy, V., Kumar, A., & Sathee, L. (2024). Association of nitrogen utilisation efficiency with sustenance of reproductive stage nitrogen assimilation, transcript abundance and sequence variation of nitrogen metabolism genes in rice (Oryza sativa L.) sub-species. Plant Physiology Reports. https://doi.org/10.1007/s40502-024-00827-y
dc.relation.referencesJia, Z., & Von Wirén, N. (2020). Signaling pathways underlying nitrogen-dependent changes in root system architecture: from model to crop species. Journal Of Experimental Botany, 71(15), 4393-4404. https://doi.org/10.1093/jxb/eraa033
dc.relation.referencesJiang, W., Liu, Y., Zhang, C., Pan, L., Wang, W., Zhao, C., Zhao, T., & Li, Y. (2024). Identification of major QTLs for drought tolerance in soybean, together with a novel candidate gene, GmUAA6. Journal Of Experimental Botany, 75(7), 1852-1871. https://doi.org/10.1093/jxb/erad483
dc.relation.referencesJiménez-Medrano, A., Mendoza-Bustamante, M., Rueda-Carvajal, N., Magnitskiy, S., & Mosquera-Vásquez, T. (2025). Nitrogen use efficiency in diploid potato of the Phureja group: a novel insight. Potato Research. Advance online publication. https://doi.org/10.1007/s11540-025-09932-3
dc.relation.referencesJozefowicz, A. M., Hartmann, A., Matros, A., Schum, A., & Mock, H. (2017). Nitrogen Deficiency Induced Alterations in the Root Proteome of a Pair of Potato (Solanum tuberosum L.) Varieties Contrasting for their Response to Low N. PROTEOMICS, 17(23-24). https://doi.org/10.1002/pmic.201700231
dc.relation.referencesJuyó, D., Sarmiento, F., Álvarez, M., Brochero, H., Gebhardt, C., & Mosquera, T. (2015). Genetic Diversity and Population Structure in Diploid Potatoes ofSolanum tuberosumGroup Phureja. Crop Science, 55(2), 760-769. https://doi.org/10.2135/cropsci2014.07.0524
dc.relation.referencesJuyó Rojas, D. K. J., Sedano, J. C. S., Ballvora, A., Léon, J., & Vásquez, T. M. (2019). Novel organ-specific genetic factors for quantitative resistance to late blight in potato. PLoS ONE, 14(7), e0213818. https://doi.org/10.1371/journal.pone.0213818
dc.relation.referencesKaler, A. S., Gillman, J. D., Beissinger, T., & Purcell, L. C. (2020). Comparing Different Statistical Models and Multiple Testing Corrections for Association Mapping in Soybean and Maize. Frontiers In Plant Science, 10. https://doi.org/10.3389/fpls.2019.01794
dc.relation.referencesKarunarathne, S. D., Han, Y., Zhang, X., & Li, C. (2022). CRISPR/Cas9 gene editing and natural variation analysis demonstrate the potential for HvARE1 in improvement of nitrogen use efficiency in barley. Journal Of Integrative Plant Biology, 64(3), 756-770. https://doi.org/10.1111/jipb.13214
dc.relation.referencesKawai, Y., Ono, E., & Mizutani, M. (2014). Evolution and diversity of the 2–oxoglutarate‐dependent dioxygenase superfamily in plants. The Plant Journal, 78(2), 328-343. https://doi.org/10.1111/tpj.12479
dc.relation.referencesKlaassen, M. T., Dees, D. C. T., Garrido, R. M., Báez, J. A., Schrijen, M., Mendoza, P. G. B., & Trindade, L. M. (2020). Overexpression of a putative nitrate transporter (StNPF1.11) increases plant height, leaf chlorophyll content and tuber protein content of young potato plants. Functional Plant Biology, 47(5), 464. https://doi.org/10.1071/fp19342
dc.relation.referencesKoch, M., Naumann, M., Pawelzik, E., Gransee, A., & Thiel, H. (2019). The Importance of Nutrient Management for Potato Production Part I: Plant Nutrition and Yield. Potato Research, 63(1), 97-119. https://doi.org/10.1007/s11540-019-09431-2
dc.relation.referencesKoepke, T., Schaeffer, S., Krishnan, V., Jiwan, D., Harper, A., Whiting, M., Oraguzie, N., & Dhingra, A. (2012). Rapid gene-based SNP and haplotype marker development in non-model eukaryotes using 3’UTR sequencing. BMC Genomics, 13(1). https://doi.org/10.1186/1471-2164-13-18
dc.relation.referencesKumar, R., Das, S. P., Choudhury, B. U., Kumar, A., Prakash, N. R., Verma, R., Chakraborti, M., Devi, A. G., Bhattacharjee, B., Das, R., Das, B., Devi, H. L., Das, B., Rawat, S., & Mishra, V. K. (2024). Advances in genomic tools for plant breeding: harnessing DNA molecular markers, genomic selection, and genome editing. Biological Research, 57(1). https://doi.org/10.1186/s40659-024-00562-6
dc.relation.referencesLê, S., Josse, J., & Husson, F. (2008). FactoMineR: AnRPackage for Multivariate Analysis. Journal Of Statistical Software, 25(1). https://doi.org/10.18637/jss.v025.i01
dc.relation.referencesLemey, P., Salemi, M., & Vandamme, A. (2009). The Phylogenetic Handbook: A Practical Approach to Phylogenetic Analysis and Hypothesis Testing. En Cambridge University Press eBooks. http://ci.nii.ac.jp/ncid/BA90421950
dc.relation.referencesLi, H., Hu, B., & Chu, C. (2017). Nitrogen use efficiency in crops: lessons from Arabidopsis and rice. Journal Of Experimental Botany, 68(10), 2477-2488. https://doi.org/10.1093/jxb/erx101
dc.relation.referencesLi, W., Xiong, B., Wang, S., Deng, X., Yin, L., & Li, H. (2016). Regulation Effects of Water and Nitrogen on the Source-Sink Relationship in Potato during the Tuber Bulking Stage. PLoS ONE, 11(1), e0146877. https://doi.org/10.1371/journal.pone.0146877
dc.relation.referencesLi, Q., Lu, X., Wang, C., Shen, L., Dai, L., He, J., Yang, L., Li, P., Hong, Y., Zhang, Q., Dong, G., Hu, J., Zhang, G., Ren, D., Gao, Z., Guo, L., Qian, Q., Zhu, L., & Zeng, D. (2022). Genome-wide association study and transcriptome analysis reveal new QTL and candidate genes for nitrogen‐deficiency tolerance in rice. The Crop Journal, 10(4), 942-951. https://doi.org/10.1016/j.cj.2021.12.006
dc.relation.referencesLiu, C., Wang, Y., Yao, J., Yang, X., Wu, K., Teng, G., Gong, B., & Xu, Y. (2022). Genome–Wide Investigation of the CBL–CIPK Gene Family in Oil Persimmon: Evolution, Function and Expression Analysis during Development and Stress. Horticulturae, 9(1), 30. https://doi.org/10.3390/horticulturae9010030
dc.relation.referencesLuo, L., Yu, L., Yang, J., & Wang, E. (2024). Peptide Signals Regulate Nitrogen Deficiency Adaptation of Dicotyledonous Model Plants. Plant Cell & Environment. https://doi.org/10.1111/pce.15203
dc.relation.referencesLv, Y., Ma, J., Wang, Y., Wang, Q., Lu, X., Hu, H., Qian, Q., Guo, L., & Shang, L. (2021). Loci and Natural Alleles for Low-Nitrogen-Induced Growth Response Revealed by the Genome-Wide Association Study Analysis in Rice (Oryza sativa L.). Frontiers In Plant Science, 12. https://doi.org/10.3389/fpls.2021.770736
dc.relation.referencesMartínez-Dalmau, J., Berbel, J., & Ordóñez-Fernández, R. (2021). Nitrogen Fertilization. A Review of the Risks Associated with the Inefficiency of Its Use and Policy Responses. Sustainability, 13(10), 5625. https://doi.org/10.3390/su13105625
dc.relation.referencesMartre, P., Dueri, S., Guarin, J. R., Ewert, F., Webber, H., Calderini, D., Molero, G., Reynolds, M., Miralles, D., Garcia, G., Brown, H., George, M., Craigie, R., Cohan, J., Deswarte, J., Slafer, G., Giunta, F., Cammarano, D., Ferrise, R., . . . Asseng, S. (2024). Global needs for nitrogen fertilizer to improve wheat yield under climate change. Nature Plants, 10(7), 1081-1090. https://doi.org/10.1038/s41477-024-01739-3
dc.relation.referencesMasclaux-Daubresse, C., Daniel-Vedele, F., Dechorgnat, J., Chardon, F., Gaufichon, L., & Suzuki, A. (2010). Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. Annals of Botany, 105(7), 1141–1157. https://doi.org/10.1093/aob/mcq028
dc.relation.referencesMauromicale, G., Ierna, A., & Marchese, M. (2006). Chlorophyll fluorescence and chlorophyll content in field-grown potato as affected by nitrogen supply, genotype, and plant age. Photosynthetica, 44(1). https://doi.org/10.1007/s11099-005-0161-4
dc.relation.referencesMeise, P., Jozefowicz, A. M., Uptmoor, R., Mock, H., Ordon, F., & Schum, A. (2017). Comparative shoot proteome analysis of two potato ( Solanum tuberosum L.) genotypes contrasting in nitrogen deficiency responses in vitro. Journal Of Proteomics, 166, 68-82. https://doi.org/10.1016/j.jprot.2017.07.010
dc.relation.referencesMeise, P., Seddig, S., Uptmoor, R., Ordon, F., & Schum, A. (2019). Assessment of Yield and Yield Components of Starch Potato Cultivars (Solanum tuberosum L.) Under Nitrogen Deficiency and Drought Stress Conditions. Potato Research, 62(2), 193-220. https://doi.org/10.1007/s11540-018-9407-y
dc.relation.referencesMendoza-Bustamante, M. A., Jiménez-Medrano, A. N., Soto-Sedano, J. C., Delgado-Niño, M. C., Magnitskiy, S., Ligarreto-Moreno, G. A., & Vásquez, T. M. (2025). Exploring the genetic factors of nitrogen use efficiency in potato. bioRxiv (Cold Spring Harbor Laboratory). https://doi.org/10.1101/2025.05.18.654744
dc.relation.referencesM’hamdi, M., Abid, G., Chikh-Rouhou, H., Razgallah, N., & Hassen, A. (2016). Effect of genotype and growing season on nitrate accumulation and expression patterns of nitrate transporter genes in potato (Solanum tuberosumL.). Archives Of Agronomy And Soil Science, 62(11), 1508-1520. https://doi.org/10.1080/03650340.2016.1154544
dc.relation.referencesMosquera, T., Alvarez, M. F., Jiménez-Gómez, J. M., Muktar, M. S., Paulo, M. J., Steinemann, S., Li, J., Draffehn, A., Hofmann, A., Lübeck, J., Strahwald, J., Tacke, E., Hofferbert, H., Walkemeier, B., & Gebhardt, C. (2016). Targeted and Untargeted Approaches Unravel Novel Candidate Genes and Diagnostic SNPs for Quantitative Resistance of the Potato (Solanum tuberosum L.) to Phytophthora infestans Causing the Late Blight Disease. PLoS ONE, 11(6), e0156254. https://doi.org/10.1371/journal.pone.0156254
dc.relation.referencesMuleta, H. D., & Aga, M. C. (2019). Role of Nitrogen on Potato Production: A Review. Journal Of Plant Sciences, 7(2), 36. https://doi.org/10.11648/j.jps.20190702.11
dc.relation.referencesMurdoch, D. J., & Chow, E. D. (1996). A Graphical Display of Large Correlation Matrices. The American Statistician, 50(2), 178-180. https://doi.org/10.1080/00031305.1996.10474371
dc.relation.referencesMuttucumaru, N., Powers, S. J., Elmore, J. S., Mottram, D. S., & Halford, N. G. (2013). Effects of Nitrogen and Sulfur Fertilization on Free Amino Acids, Sugars, and Acrylamide-Forming Potential in Potato. Journal Of Agricultural And Food Chemistry, 61(27), 6734-6742. https://doi.org/10.1021/jf401570x
dc.relation.referencesNarváez-Cuenca, C., Peña, C., Restrepo-Sánchez, L., Kushalappa, A., & Mosquera, T. (2017). Macronutrient contents of potato genotype collections in the Solanum tuberosum Group Phureja. Journal Of Food Composition And Analysis, 66, 179-184. https://doi.org/10.1016/j.jfca.2017.12.019
dc.relation.referencesNascimento, C. S., Nascimento, C. S., De Jesus Pereira, B., Silva, P. H. S., Da Cruz, M. C. P., & Filho, A. B. C. (2024). Enhancing Sustainability in Potato Crop Production: Mitigating Greenhouse Gas Emissions and Nitrate Accumulation in Potato Tubers through Optimized Nitrogen Fertilization. Nitrogen, 5(1), 163-176. https://doi.org/10.3390/nitrogen5010011
dc.relation.referencesNaumann, M., Koch, M., Thiel, H., Gransee, A., & Pawelzik, E. (2019). The Importance of Nutrient Management for Potato Production Part II: Plant Nutrition and Tuber Quality. Potato Research, 63(1), 121-137. https://doi.org/10.1007/s11540-019-09430-3
dc.relation.referencesNunes-Nesi, A., Fernie, A. R., & Stitt, M. (2010). Metabolic and Signaling Aspects Underpinning the Regulation of Plant Carbon Nitrogen Interactions. Molecular Plant, 3(6), 973-996. https://doi.org/10.1093/mp/ssq049
dc.relation.referencesOspina, C. A., Van Bueren, E. T. L., Allefs, J. J. H. M., Engel, B., Van Der Putten, P. E. L., Van Der Linden, C. G., & Struik, P. C. (2014). Diversity of crop development traits and nitrogen use efficiency among potato cultivars grown under contrasting nitrogen regimes. Euphytica, 199(1-2), 13-29. https://doi.org/10.1007/s10681-014-1203-4
dc.relation.referencesOspina Nieto, C. A. O., Van Bueren, E. T. L., Allefs, S., Vos, P. G., Van Der Linden, G., Maliepaard, C. A., & Struik, P. C. (2021). Association Mapping of Physiological and Morphological Traits Related to Crop Development under Contrasting Nitrogen Inputs in a Diverse Set of Potato Cultivars. Plants, 10(8), 1727. https://doi.org/10.3390/plants10081727
dc.relation.referencesParra-Galindo, M., Piñeros-Niño, C., Soto-Sedano, J. C., & Mosquera-Vasquez, T. (2019). Chromosomes I and X Harbor Consistent Genetic Factors Associated with the Anthocyanin Variation in Potato. Agronomy, 9(7), 366. https://doi.org/10.3390/agronomy9070366
dc.relation.referencesParra-Galindo, M. A., Soto-Sedano, J. C., Mosquera-Vásquez, T., & Roda, F. (2021). Pathway-based analysis of anthocyanin diversity in diploid potato. PLoS ONE, 16(4), e0250861. https://doi.org/10.1371/journal.pone.0250861
dc.relation.referencesPeña, C., Restrepo-Sánchez, L., Kushalappa, A., Rodríguez-Molano, L., Mosquera, T., & Narváez-Cuenca, C. (2015). Nutritional contents of advanced breeding clones of Solanum tuberosum group Phureja. LWT, 62(1), 76-82. https://doi.org/10.1016/j.lwt.2015.01.038
dc.relation.referencesPérez, L. C., Rodríguez, L. E., & Gómez, M., I. (2008). Efecto del fraccionamiento de la fertilización con N, P, K y mg y la aplicación de los micronutrientes B, mn y zn en el rendimiento y calidad de papa criolla (Solanum phureja) variedad Criolla Colombia. Agronomía Colombiana, 26(3). https://revistas.unal.edu.co/index.php/agrocol/article/view/11487/12136
dc.relation.referencesPflieger, S., Lefebvre, V., & Causse, M. (2001). The candidate gene approach in plant genetics: a review. Molecular Breeding, 7(4), 275-291. https://doi.org/10.1023/a:1011605013259
dc.relation.referencesPham, G. M., Hamilton, J. P., Wood, J. C., Burke, J. T., Zhao, H., Vaillancourt, B., Ou, S., Jiang, J., & Buell, C. R. (2020). Construction of a chromosome-scale long-read reference genome assembly for potato. GigaScience, 9(9). https://doi.org/10.1093/gigascience/giaa100
dc.relation.referencesRabante-Hane, L., Skrabule, I., & Alsina, I. (2022). Parameters used for the evaluation of potato (Solanum tuberosum L.) nitrogen use efficiency: A review. https://agris.fao.org/search/en/providers/122652/records/6474af92bc45d9ecdbbfde30
dc.relation.referencesRahmat, Z., Sohail, M. N., Perrine-Walker, F., & Kaiser, B. N. (2023). Balancing nitrate acquisition strategies in symbiotic legumes. Planta, 258(1). https://doi.org/10.1007/s00425-023-04175-3
dc.relation.referencesRakotoson, T., Dusserre, J., Letourmy, P., Frouin, J., Ratsimiala, I. R., Rakotoarisoa, N. V., Cao, T., Brocke, K. V., Ramanantsoanirina, A., Ahmadi, N., & Raboin, L. (2021). Genome-Wide Association Study of Nitrogen Use Efficiency and Agronomic Traits in Upland Rice. Rice Science, 28(4), 379-390. https://doi.org/10.1016/j.rsci.2021.05.008
dc.relation.referencesRanathunge, K., El-Kereamy, A., Gidda, S., Bi, Y., & Rothstein, S. J. (2014). AMT1;1 transgenic rice plants with enhanced NH4+ permeability show superior growth and higher yield under optimal and suboptimal NH4+ conditions. Journal Of Experimental Botany, 65(4), 965-979. https://doi.org/10.1093/jxb/ert458
dc.relation.referencesRhys, H. I. (2020). Machine Learning with R, the tidyverse, and mlr. Manning.
dc.relation.referencesSahito, J. H., Zhang, H., Gishkori, Z. G. N., Ma, C., Wang, Z., Ding, D., Zhang, X., & Tang, J. (2024). Advancements and Prospects of Genome-Wide Association Studies (GWAS) in Maize. International Journal Of Molecular Sciences, 25(3), 1918. https://doi.org/10.3390/ijms25031918
dc.relation.referencesSalaria, N., Siddappa, S., Thakur, K., Tomar, M., Goutam, U., Sharma, N., Sood, S., Bhardwaj, V., & Singh, B. (2020). Solanum tuberosum (CYCLING DOF FACTOR) CDF1.2 allele: A candidate gene for developing earliness in potato. South African Journal Of Botany, 132, 242-248. https://doi.org/10.1016/j.sajb.2020.05.008
dc.relation.referencesSanchez, D. L., Santana, A. S., Morais, P. I. C., Peterlini, E., De la Fuente, G., Castellano, M. J., Blanco, M., & Lübberstedt, T. (2023). Phenotypic and genome-wide association analyses for nitrogen use efficiency related traits in maize (Zea mays L.) exotic introgression lines. Frontiers In Plant Science, 14. https://doi.org/10.3389/fpls.2023.1270166
dc.relation.referencesSandaña, P., Lizana, C. X., Pinochet, D., & Soratto, R. P. (2024). The nitrogen nutrition index as a tool to assess nitrogen use efficiency in potato genotypes. European Journal Of Agronomy, 162, 127397. https://doi.org/10.1016/j.eja.2024.127397
dc.relation.referencesSaravia, D., Farfán-Vignolo, E. R., Gutiérrez, R., De Mendiburu, F., Schafleitner, R., Bonierbale, M., & Khan, M. A. (2016). Yield and Physiological Response of Potatoes Indicate Different Strategies to Cope with Drought Stress and Nitrogen Fertilization. American Journal Of Potato Research, 93(3), 288-295. https://doi.org/10.1007/s12230-016-9505-9
dc.relation.referencesSchreiber, L., Nader-Nieto, A. C., Schönhals, E. M., Walkemeier, B., & Gebhardt, C. (2014). SNPs in Genes Functional in Starch-Sugar Interconversion Associate with Natural Variation of Tuber Starch and Sugar Content of Potato (Solanum tuberosumL.). G3 Genes Genomes Genetics, 4(10), 1797-1811. https://doi.org/10.1534/g3.114.012377
dc.relation.referencesSchum, A., Meise, P., Jansen, G., Seddig, S., & Ordon, F. (2017). Evaluation of nitrogen efficiency associated traits of starch potato cultivars under in vitro conditions. Plant Cell Tissue And Organ Culture (PCTOC), 130(3), 651-665. https://doi.org/10.1007/s11240-017-1254-z
dc.relation.referencesSchumacher, C., Thümecke, S., Schilling, F., Köhl, K., Kopka, J., Sprenger, H., Hincha, D. K., Walther, D., Seddig, S., Peters, R., Zuther, E., Haas, M., & Horn, R. (2021). Genome-Wide Approach to Identify Quantitative Trait Loci for Drought Tolerance in Tetraploid Potato (Solanum tuberosum L.). International Journal Of Molecular Sciences, 22(11), 6123. https://doi.org/10.3390/ijms22116123
dc.relation.referencesSharma, M., & Khadda, B. S. (2023). Evaluation of Biozyme Granule and Liquid Formulation Application on Tuber Yield and Related Characters in Potato. Journal Of Krishi Vigyan, 11(2), 145-149. https://doi.org/10.5958/2349-4433.2023.00026.0
dc.relation.referencesShelden, M. C., Dong, B., De Bruxelles, G. L., Trevaskis, B., Whelan, J., Ryan, P. R., Howitt, S. M., & Udvardi, M. K. (2001). Arabidopsis ammonium transporters, atAMT1;1 and atAMT1;2, have different biochemical properties and functional roles. Plant And Soil, 231(1), 151-160. https://doi.org/10.1023/a:1010303813181
dc.relation.referencesShiade, S. R. G., Fathi, A., Kardoni, F., Pandey, R., & Pessarakli, M. (2023). Nitrogen contribution in plants: recent agronomic approaches to improve nitrogen use efficiency. Journal Of Plant Nutrition, 47(2), 314-331. https://doi.org/10.1080/01904167.2023.2278656
dc.relation.referencesSiddiqui, M. N., Pandey, K., Bhadhury, S. K., Sadeqi, B., Schneider, M., Sanchez‐Garcia, M., Stich, B., Schaaf, G., Léon, J., & Ballvora, A. (2023). Convergently selected NPF2.12 coordinates root growth and nitrogen use efficiency in wheat and barley. New Phytologist, 238(5), 2175-2193. https://doi.org/10.1111/nph.18820
dc.relation.referencesSonoda, Y., Ikeda, A., Saiki, S., Yamaya, T., & Yamaguchi, J. (2003). Feedback Regulation of the Ammonium Transporter Gene Family AMT1 by Glutamine in Rice. Plant And Cell Physiology, 44(12), 1396-1402. https://doi.org/10.1093/pcp/pcg169
dc.relation.referencesStahl, A., Vollrath, P., Samans, B., Frisch, M., Wittkop, B., & Snowdon, R. J. (2019). Effect of breeding on nitrogen use efficiency-associated traits in oilseed rape. Journal Of Experimental Botany, 70(6), 1969-1986. https://doi.org/10.1093/jxb/erz044
dc.relation.referencesStaszek, P., & Gniazdowska, A. (2020). Peroxynitrite induced signaling pathways in plant response to non-proteinogenic amino acids. Planta, 252(1). https://doi.org/10.1007/s00425-020-03411-4
dc.relation.referencesSu, D., Zhang, H., Teng, A., Zhang, C., Lei, L., Ba, Y., Zhou, C., Li, F., Chen, X., & Wang, Z. (2024). Potato growth, nitrogen balance, quality, and productivity response to water-nitrogen regulation in a cold and arid environment. Frontiers In Plant Science, 15. https://doi.org/10.3389/fpls.2024.1451350
dc.relation.referencesSuenaga, A., Moriya, K., Sonoda, Y., Ikeda, A., Von Wirén, N., Hayakawa, T., Yamaguchi, J., & Yamaya, T. (2003). Constitutive Expression of a Novel-Type Ammonium Transporter OsAMT2 in Rice Plants. Plant And Cell Physiology, 44(2), 206-211. https://doi.org/10.1093/pcp/pcg017
dc.relation.referencesTang, Y., Liu, X., Wang, J., Li, M., Wang, Q., Tian, F., Su, Z., Pan, Y., Liu, D., Lipka, A. E., Buckler, E. S., & Zhang, Z. (2016). GAPIT Version 2: An Enhanced Integrated Tool for Genomic Association and Prediction. The Plant Genome, 9(2). https://doi.org/10.3835/plantgenome2015.11.0120
dc.relation.referencesThe Potato Genome Sequencing Consortium, X, X., S, P., S, C., B, Z., D, M., P, N., G, Z., S, Y., R, L., J, W., G, O., F, G., M, T., R, L., O, P., D, M., La Cruz G, D., Sk, C., . . . Rg, V. (2011). Genome sequence and analysis of the tuber crop potato. Nature, 475(7355), 189-195. https://doi.org/10.1038/nature10158
dc.relation.referencesTiwari, J. K., Buckseth, T., Zinta, R., Saraswati, A., Singh, R. K., Rawat, S., Dua, V. K., & Chakrabarti, S. K. (2020a). Transcriptome analysis of potato shoots, roots and stolons under nitrogen stress. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-58167-4
dc.relation.referencesTiwari, J. K., Devi, S., Buckseth, T., Ali, N., Singh, R. K., Zinta, R., Dua, V. K., & Chakrabarti, S. K. (2020b). Precision phenotyping of contrasting potato (Solanum tuberosum L.) varieties in a novel aeroponics system for improving nitrogen use efficiency: In search of key traits and genes. Journal Of Integrative Agriculture, 19(1), 51-61. https://doi.org/10.1016/s2095-3119(19)62625-0
dc.relation.referencesTiwari, J. K., Plett, D., Garnett, T., Chakrabarti, S. K., & Singh, R. K. (2018). Integrated genomics, physiology and breeding approaches for improving nitrogen use efficiency in potato: translating knowledge from other crops. Functional Plant Biology, 45(6), 587. https://doi.org/10.1071/fp17303
dc.relation.referencesUllah, H., Santiago-Arenas, R., Ferdous, Z., Attia, A., & Datta, A. (2019). Improving water use efficiency, nitrogen use efficiency, and radiation use efficiency in field crops under drought stress: A review. Advances In Agronomy, 109-157. https://doi.org/10.1016/bs.agron.2019.02.002
dc.relation.referencesValenzuela, H. (2024). Optimizing the Nitrogen Use Efficiency in Vegetable Crops. Nitrogen, 5(1), 106-143. https://doi.org/10.3390/nitrogen5010008
dc.relation.referencesVan Dingenen, J., Hanzalova, K., Salem, M. A. A., Abel, C., Seibert, T., Giavalisco, P., & Wahl, V. (2019). Limited nitrogen availability has cultivar-dependent effects on potato tuber yield and tuber quality traits. Food Chemistry, 288, 170-177. https://doi.org/10.1016/j.foodchem.2019.02.113
dc.relation.referencesVon Wirén, N., Lauter, F., Ninnemann, O., Gillissen, B., Walch‐Liu, P., Engels, C., Jost, W., & Frommer, W. B. (2000). Differential regulation of three functional ammonium transporter genes by nitrogen in root hairs and by light in leaves of tomato. The Plant Journal, 21(2), 167-175. https://doi.org/10.1046/j.1365-313x.2000.00665.x
dc.relation.referencesWang, R., Xing, X., & Crawford, N. (2007). Nitrite Acts as a Transcriptome Signal at Micromolar Concentrations in Arabidopsis Roots. PLANT PHYSIOLOGY, 145(4), 1735-1745. https://doi.org/10.1104/pp.107.108944
dc.relation.referencesWang, C., Zang, H., Liu, J., Shi, X., Li, S., Chen, F., & Chu, Q. (2020). Optimum nitrogen rate to maintain sustainable potato production and improve nitrogen use efficiency at a regional scale in China. A meta-analysis. Agronomy For Sustainable Development, 40(5). https://doi.org/10.1007/s13593-020-00640-5
dc.relation.referencesWang, Y., & Tan, B. (2024). Pentatricopeptide repeat proteins in plants: Cellular functions, action mechanisms and potential applications. Plant Communications, 101203. https://doi.org/10.1016/j.xplc.2024.101203
dc.relation.referencesWani, S. H., Vijayan, R., Choudhary, M., Kumar, A., Zaid, A., Singh, V., Kumar, P., & Yasin, J. K. (2021). Nitrogen use efficiency (NUE): elucidated mechanisms, mapped genes and gene networks in maize (Zea mays L.). Physiology And Molecular Biology Of Plants, 27(12), 2875-2891. https://doi.org/10.1007/s12298-021-01113-z
dc.relation.referencesWszelaczyńska, E., Pobereżny, J., Keutgen, A., Keutgen, N., Gościnna, K., Milczarek, D., Tatarowska, B., & Flis, B. (2022). Antinutritional Nitrogen Compounds Content in Potato (Solanum tuberosum L.) Tubers Depending on the Genotype and Production System. Agronomy, 12(10), 2415. https://doi.org/10.3390/agronomy12102415
dc.relation.referencesWu, H., Huang, C., Zhang, Y., Yang, X., Peng, L., & Li, W. (2024). The 3′UTR Polymorphisms in the NLRP3 Gene Associated with the Risk of COPD and Their Putative Effects on the microRNA Mechanism. Genetic Testing And Molecular Biomarkers, 28(6), 233-242. https://doi.org/10.1089/gtmb.2023.0229
dc.relation.referencesXie, R., Jin, X., Fang, J., Wei, S., Ma, J., Liu, Y., Cheng, Y., Chen, L., Liu, J., Liu, Y., Han, Z., Guo, B., Guo, J., Zhao, X., Zhang, X., & Lu, Z. (2024). Exploring the Molecular Landscape of Nitrogen Use Efficiency in Potato (Solanum tuberosum L.) under Low Nitrogen Stress: A Transcriptomic and Metabolomic Approach. Agronomy, 14(9), 2000. https://doi.org/10.3390/agronomy14092000
dc.relation.referencesXu, G., Fan, X., & Miller, A. J. (2012). Plant Nitrogen Assimilation and Use Efficiency. Annual Review Of Plant Biology, 63(1), 153-182. https://doi.org/10.1146/annurev-arplant-042811-105532
dc.relation.referencesXu, Y., Li, P., Yang, Z., & Xu, C. (2016). Genetic mapping of quantitative trait loci in crops. The Crop Journal, 5(2), 175-184. https://doi.org/10.1016/j.cj.2016.06.003
dc.relation.referencesYan, W., Qin, J., Jian, Y., Liu, J., Bian, C., Jin, L., & Li, G. (2023). Analysis of Potato Physiological and Molecular Adaptation in Response to Different Water and Nitrogen Combined Regimes. Plants, 12(8), 1671. https://doi.org/10.3390/plants12081671
dc.relation.referencesYu, J., & Buckler, E. S. (2006). Genetic association mapping and genome organization of maize. Current Opinion In Biotechnology, 17(2), 155-160. https://doi.org/10.1016/j.copbio.2006.02.003
dc.relation.referencesZebarth, B. J., & Milburn, P. H. (2003). Spatial and temporal distribution of soil inorganic nitrogen concentration in potato hills. Canadian Journal Of Soil Science, 83(2), 183-195. https://doi.org/10.4141/s02-061
dc.relation.referencesZebarth, B. J., Tai, G., Tarn, R., De Jong, H., & Milburn, P. H. (2004). Nitrogen use efficiency characteristics of commercial potato cultivars. Canadian Journal Of Plant Science, 84(2), 589-598. https://doi.org/10.4141/p03-050
dc.relation.referencesZebarth, B. J., Tarn, T. R., De Jong, H., & Murphy, A. (2008). Nitrogen Use Efficiency Characteristics of Andigena and Diploid Potato Selections. American Journal Of Potato Research, 85(3), 210-218. https://doi.org/10.1007/s12230-008-9014-6
dc.relation.referencesZebarth, B. J., Tai, H., Luo, S., Millard, P., De Koeyer, D., Li, X., & Xiong, X. (2012). Effect of Nitrogen Form on Gene Expression in Leaf Tissue of Greenhouse Grown Potatoes During Three Stages of Growth. American Journal Of Potato Research, 89(4), 315-327. https://doi.org/10.1007/s12230-012-9255-2
dc.relation.referencesZhang, Z., Ersoz, E., Lai, C., Todhunter, R. J., Tiwari, H. K., Gore, M. A., Bradbury, P. J., Yu, J., Arnett, D. K., Ordovas, J. M., & Buckler, E. S. (2010). Mixed linear model approach adapted for genome-wide association studies. Nature Genetics, 42(4), 355-360. https://doi.org/10.1038/ng.546
dc.relation.referencesZhu, M., & Zhao, S. (2007). Candidate Gene Identification Approach: Progress and Challenges. International Journal of Biological Sciences, 420-427. https://doi.org/10.7150/ijbs.3.420
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc630 - Agricultura y tecnologías relacionadas
dc.subject.ddc570 - Biología::576 - Genética y evolución
dc.subject.ddc570 - Biología::571 - Fisiología y temas relacionados
dc.subject.lembCULTIVO DE LA TIERRAspa
dc.subject.lembCropseng
dc.subject.lembTECNICAS DE CULTIVOspa
dc.subject.lembCultivation techniqueseng
dc.subject.lembINDUSTRIA DE LA PAPAspa
dc.subject.lembPotato industryeng
dc.subject.lembABONOS NITROGENADOSspa
dc.subject.lembNitrogen fertilizerseng
dc.subject.lembCULTIVOS Y NITROGENOspa
dc.subject.lembCrops and nitrogeneng
dc.subject.proposalVariabilidad fenotípicaspa
dc.subject.proposalAsimilación de nitrógenospa
dc.subject.proposalAbsorción de nitrógenospa
dc.subject.proposalPapa diploidespa
dc.subject.proposalTransportador de amoniospa
dc.subject.proposalDioxigenasa dependiente de 2-oxoglutaratospa
dc.subject.proposalProteína con repeticiones de pentatricopéptidosspa
dc.subject.proposalPhenotypic Variabilityspa
dc.subject.proposalCandidate Geneeng
dc.subject.proposalNitrogen Uptakeeng
dc.subject.proposalDiploid Potatoeng
dc.subject.proposalPhenotypic Variabilityeng
dc.subject.proposalNitrogen Assimilationeng
dc.subject.proposalGen candidatospa
dc.titleExplotación de la diversidad alélica natural relacionada con el uso eficiente del Nitrógeno en papaspa
dc.title.translatedExploitation of natural allelic diversity related to Nitrogen use efficiency in potatoeng
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentPúblico general
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.awardtitle“Aprovechamiento de la biodiversidad en agraz y papa para el desarrollo de cultivos promisorios en el departamento de Santander” SIGP No. 67851- BPIN 2020000100075
oaire.fundernameMinciencias
oaire.fundernameSistema General de Regalías

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Explotación de la diversidad alélica natural relacionada con el NUE en papa ANJM.pdf
Tamaño:
8.06 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias Agrarias

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: