Estimación de la anisotropía sísmica en Colombia y su relación con rasgos tectónicos regionales

dc.contributor.advisorVargas Jiménez, Carlos Alberto
dc.contributor.authorAranguren Canal, Daniel Alfonso
dc.contributor.orcidDaniel Aranguren Canal [https://orcid.org/0000-0001-8257-5497]spa
dc.coverage.countryColombia
dc.date.accessioned2023-12-06T14:44:23Z
dc.date.available2023-12-06T14:44:23Z
dc.date.issued2023-12-05
dc.descriptionilustraciones, diagramas, mapas, planosspa
dc.description.abstractEsta tesis consiste en la estimación de los parámetros de anisotropía sísmica (φ, δt) para las distintas estaciones sísmicas en Colombia, relacionando los resultados obtenidos con los distintos aspectos tectónicos regionales de la esquina noroccidental de Suramérica. Para ello, se estudia la polarización de las ondas correspondientes a las fases S de eventos locales (asociados con los procesos de subducción Nazca-Suramérica y Caribe-Suramérica), al igual que la polarización de las ondas correspondientes a las fases SKS de eventos telesísmicos. Los eventos locales tienen una profundidad mayor a los 70 km, al igual que magnitudes mayores o iguales a 4.5, mientras que los eventos telesísmicos tienen distancias hipocentrales entre los 90°-130°, y magnitudes mayores o iguales a 6.5. La obtención de los parámetros de anisotropía sísmica (φ, δt) se realiza para cada una de las estaciones sísmicas pertenecientes a la Red Sismológica Nacional de Colombia, comprendiendo un periodo de registro de seis años consecutivos (2016-2021). Esta se lleva a cabo mediante los paquetes de libre acceso de Python llamados ObsPy y SplitWavePy. Como resultado, se establece un control mixto de la anisotropía en la corteza donde predomina la polarización de las ondas S al interior de las fallas sobre la polarización por acción de esfuerzos; se observan patrones erráticos de φ por la presencia de fluidos en la corteza; y se obtienen las orientaciones del flujo astenosférico bajo las losas que subducen con una convergencia generalizada orientada SW-NE bajo la esquina noroccidental de Suramérica. (Texto tomado de la fuente)
dc.description.abstractThis thesis consists of the estimation of seismic anisotropy parameters (φ, δt) for the different seismic stations in Colombia, relating the obtained results with the different regional tectonic features of the northwestern corner of South America. To achieve it, the polarization of S phases of local events (associated with Nazca-South America and Caribbean-South America subduction processes) and SKS phases of teleseismic events is studied. The local events have a depth below 70 km, as well as magnitudes above or equal to 4.5, while the teleseismic events have hypocentral distances between 90°-130°, and magnitudes above or equal to 6.5. The obtention of seismic anisotropy parameters (φ, δt) is done for each one of the seismic stations which belong to the Colombian National Seismological Network, comprising a record time of six consecutive years (2016-2021). This is done by free-access Python software known as ObsPy and SplitWavePy. As a result, a mixed control of the anisotropy in the crust is established, where it prevails a S wave polarization inside the faults rather than a polarization due to stresses; erratic patterns of φ due to the presence of fluids in the crust are observed; and orientations of astenospheric flow under the subducting slabs are obtained with a generalized convergence oriented SW-NE under the NW corner of South America.eng
dc.description.degreelevelMaestríaspa
dc.description.researchareaSismología y Tectónicaspa
dc.format.extent124 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85037
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Geologíaspa
dc.relation.referencesAcevedo, J., Fernández-Viejo, G., Llana-Fúnez, S., López-Fernández, C., Olona, J. (2020). Upper-Crustal Seismic Anisotropy in the Cantabrian Mountains (North Spain) from Shear-Wave Splitting and Ambient Noise Interferometry Analysis, Seismol. Res. Lett. XX, 1–16.spa
dc.relation.referencesAkazawa, T. (2004), A technique for automatic detection of onset time of P-and S-Phases in strong motion records, 13th World Conference on Earthquake Engineering.spa
dc.relation.referencesBacon, C.A., Johnson, J.H., White, R.S., Rawlinson, N. (2022). On the origin of seismic anisotropy in the shallow crust of the Northern Volcanic Zone, Iceland. Journal of Geophysical Research: Solid Earth, 127, e2021JB022655.spa
dc.relation.referencesBarruol, G., Wustefeld, A., Bokelmann, G. (2009). SKS-Splitting-database. Université de Montpellier, Laboratoire Géosciences. Disponible en línea: http://splitting.gm.univ-montp2.fr/DB/index.htmlspa
dc.relation.referencesBoness, N., Zoback, M. (2006). Mapping stress and structurally controlled crustal shear velocity anisotropy in California. Geological Society of America. Geology; October 2006; v. 34; no. 10; p. 825–828.spa
dc.relation.referencesCornthwaite, J., Bezada, M. J., Miao, W., Schmitz, M., Prieto, G. A., Dionicio, V., et al. (2021). Caribbean slab segmentation beneath northwest South America revealed by 3-D finite frequency teleseismic P-wave tomography. Geochemistry, Geophysics, Geosystems, 22(4), e2020GC009431. https://doi.org/10.1029/2020GC009431.spa
dc.relation.referencesCrampin, S., Peacock, S. (2008). A review of the current understanding of seismic shear-wave splitting in the Earth’s crust and common fallacies in interpretation. Elsevier, Wave Motion 45 (2008) 675–722.spa
dc.relation.referencesCrotwell, H.P., Owens, T.J., Ritsema, J. (1999). The TauP Toolkit: Flexible seismic travel-time and ray-path utilities, Seismological Research Letters, 70 (2), 154-160.spa
dc.relation.referencesDavis, J.C. (2002). Statistics and Data Analysis in Geology. Third Edition. John Wiley & Sons, Inc. Chapter 5, p. 316-330.spa
dc.relation.referencesDemouchy, S. (2021). Defects in Olivine. European Journal of Mineralogy. 33, 249–282, 2021.spa
dc.relation.referencesGeoRose 0.5.1. (2022). Yong Technology – Geotechnical Engineering Software Solutions. Disponible en línea: https://www.yongtechnology.com/download/spa
dc.relation.referencesGEOFON Program (2022). GFZ-Helmholtz Centre Potsdam. Disponible en línea: https://geofon.gfz-potsdam.de/spa
dc.relation.referencesGomez Alba, S., Vargas, C.A., Zang, A. (2020). Evidencing the relationship between injected volume of water and maximum expected magnitude during the Puerto Gaitán (Colombia) earthquake sequence from 2013 to 2015. Geophysical Journal International, 220(1), 335-344. https://doi. org/10.1093/gji/ggz433spa
dc.relation.referencesHeidbach, O., Ziegler, M. (2018). Smoothed global stress maps based on the World Stress Map database release 2016. GFZ Data Services. http://doi.org/10.5880/WSM.2018.002spa
dc.relation.referencesIdárraga, J., Kendall, J.M., Vargas, C.A. (2016). Shear Wave Anisotropy in Northwestern South America and Its Link to the Caribbean and Nazca Subduction Geodynamics. American Geophysical Union: Geochemistry, Geophysics, Geosystems 17 (2016).spa
dc.relation.referencesIRIS (2021). Shear Wave Splitting Product Query. Disponible en línea: http://ds.iris.edu/spud/swsmeasurementspa
dc.relation.referencesJung, H. (2017). Crystal preferred orientations of olivine, orthopyroxene, serpentine, chlorite, and amphibole, and implications for seismic anisotropy in subduction zones: a review. Geosciences Journal. Vol. 21, No. 6, p. 985−1011, December 2017. http://dx.doi.org/10.1007/s12303-017-0045-1spa
dc.relation.referencesKarato, S., Jung, H., Katayama, I., Skemer, P. (2008). Geodynamic Significance of Seismic Anisotropy of the Upper Mantle: New Insights from Laboratory Studies. Annu. Rev. Earth Planet. Sci. 2008. 36:59–95.spa
dc.relation.referencesKatayama, I., Hirauchi, K., Michibayashi, K., Ando, J. (2009). Trench-parallel anisotropy produced by serpentine deformation in the hydrated mantle wedge. Nature Letters. Vol 461, 22 October 2009, doi:10.1038/nature08513spa
dc.relation.referencesKIT (Karlsruhe Institute of Technology) Lehre und Wissen. (2019) Basic Geophysics: Shear Wave Splitting. Disponible en línea: https://www.youtube.com/watch?v=T2zh wg8kgpM.spa
dc.relation.referencesMardia, K. V. (2000). Statistics of Directional Data. Academic Press, Inc. Chapter 1-2.spa
dc.relation.referencesMasy, J., Niu, F., Levander, A., Schmitz, M. (2011). Mantle flow beneath northwestern Venezuela: Seismic evidence for a deep origin of the Mérida Andes. Earth and Planetary Science Letters, 305 (2011), 396–404.spa
dc.relation.referencesMojica Boada, M.J., Poveda, E., Tary, J.B. (2022). Lithospheric and slab configurations from receiver function imaging in northwestern South America, Colombia. Journal of Geophysical Research: Solid Earth,127, e2022JB024475. https://doi.org/10.1029/2022JB024475.spa
dc.relation.referencesMolina I., Velásquez, J.S., Rubinstein, J.L., Garcia-Aristizabal, A., Dionicio, V. (2020) Seismicity induced by massive wastewater injection near Puerto Gaitán. Colombia Geophys J Int 223(2):777–791. https://doi.org/10.1093/gji/ggaa326spa
dc.relation.referencesNagaya, T. et al. (2016). Seismic evidence for flow in the hydrated mantle wedge of the Ryukyu subduction zone. Sci. Rep. 6, 29981.spa
dc.relation.referencesPiñero-Feliciangeli, L.T., Kendall, J.M. (2008). Sub-Slab mantle flow parallel to the Caribbean plate boundaries: Inferences from SKS Splitting. Tectonophysics, 462 (2008), 22–34.spa
dc.relation.referencesPorritt, R.W., Becker, T.W., Monsalve, G. (2014). Seismic anisotropy and slab dynamics from SKS splitting recorded in Colombia. Geophys. Res. Lett., 41, 8775–8783.spa
dc.relation.referencesRed Sismológica Nacional de Colombia (2021). Catálogo de sismicidad. Disponible en línea: http://bdrsnc.sgc.gov.co/paginas1/catalogo/index.phpspa
dc.relation.referencesRusso, R.M. Silver, P.G. (1994). Trench-Parallel Flow Beneath the Nazca Plate from Seismic Anisotropy. Science. Vol. 263. 25 February 1994.spa
dc.relation.referencesShearer, P.M. (2009). Introduction to Seismology. Second Edition. Cambridge University Press.spa
dc.relation.referencesShih, X., Schneider, J.F., Meyer, R.P. (1991). Polarities of P and S waves, and Shear Wave Splitting Observed from the Bucaramanga Nest, Colombia. Journal Of Geophysical Research, Vol. 96, NO. B7, Pg. 12,069-12,082, July 10, 1991.spa
dc.relation.referencesSilver, P.G., Chan, W.W. (1991). Shear Wave Splitting and Subcontinental Mantle Deformation. Journal of Geophysical Research, Vol. 96, No. B10, p. 16,429 - 16,454. September 10, 1991.spa
dc.relation.referencesSun, M., Bezada, M.J., Cornthwaite, J., Prieto, G.A., Niu, F., Levander, A. (2022). Overlapping slabs: Untangling subduction in NW South America through finite-frequency teleseismic tomography. Earth and Planetary Science Letters, 577, 117253. https://doi.org/10.1016/jepsl.2021.117253.spa
dc.relation.referencesUchida, N., Nakajima, J., Wang, K. (2020). Stagnant forearc mantle wedge inferred from mapping of shear-wave anisotropy using S-net seafloor seismometers. Nat Commun 11, 5676.spa
dc.relation.referencesVargas, C.A., Mann, P. (2013). Tearing and breaking off of subducted slabs as the result of collision of the Panama arc indenter with northwestern South America. Bulletin of the Seismological Society of America, 103(3), 2025–2046. https://doi.org/10.1785/0120120328spa
dc.relation.referencesVargas, C.A. (2020). Subduction geometries in northwestern South America. In: Gómez, J. & Pinilla–Pachon, A.O. (editors), The Geology of Colombia, Volume 4 Quaternary. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 38, p. 397–422. Bogotá. https://doi.org/10.32685/pub.esp.38.2019.11spa
dc.relation.referencesWalpole, J. (2017). SplitWavePy: Splitting made easy in Python. Disponible en línea: https://splitwavepy.readthedocs.io/en/latest/ y https://github.com/JackWalpole/splitwavepy.spa
dc.relation.referencesWüstefeld, A., Bokelmann, G., Zaroli, C., Barruol, G. (2008). SplitLab: A shear-wave splitting environment in Matlab. Computers & Geosciences, 34(5), 515–528.spa
dc.relation.referencesYarce, J., Monsalve, G., Becker, T. W., Cardona, A., Poveda, E., Alvira, D., & Ordoñez-Carmona, O. (2014). Seismological observations in Northwestern South America: Evidence for two subduction segments, contrasting crustal thicknesses and upper mantle flow. Tectonophysics,637, 57–67. https://doi.org/10.1016/j.tecto.2014.09.006.spa
dc.relation.referencesZal, H. (2020). Seismic anisotropy and velocity structure in the North Island, New Zealand. PhD. Thesis. Victoria University of Wellington. New Zealand.spa
dc.relation.referencesZhao, L. Xue, M. (2015). An observation related to directional attenuation of SKS waves propagating in anisotropic media. Geophysical Journal International, Volume 201, Issue 1, April 2015, Pages 276–290, https://doi.org/10.1093/gji/ggv019.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc550 - Ciencias de la tierraspa
dc.subject.lembMovimientos tectónicosspa
dc.subject.lembEarth movementseng
dc.subject.lembSismologíaspa
dc.subject.lembSeismologyeng
dc.subject.proposalTectónicaspa
dc.subject.proposalSismologíaspa
dc.subject.proposalShear Wave Splittingeng
dc.subject.proposalAnisotropía Sísmicaspa
dc.subject.proposalEsquina Noroccidental de Suraméricaspa
dc.titleEstimación de la anisotropía sísmica en Colombia y su relación con rasgos tectónicos regionalesspa
dc.title.translatedEstimation of seismic anisotropy in Colombia and its relationship with regional tectonic featureseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentDataPaperspa
dc.type.contentImagespa
dc.type.contentModelspa
dc.type.contentTextspa
dc.type.contentWorkflowspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032480570.2023.pdf
Tamaño:
13.98 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Geología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: