Quantitative Risk Management under the Interplay of Insurance and Financial Risks
| dc.contributor.advisor | Tang, Qihe | spa |
| dc.contributor.advisor | Londoño Londoño, Jaime Alberto | spa |
| dc.contributor.author | Gómez De Los Ríos, Fabio Andrés | spa |
| dc.date.accessioned | 2020-02-25T20:20:05Z | spa |
| dc.date.available | 2020-02-25T20:20:05Z | spa |
| dc.date.issued | 2020-02 | spa |
| dc.description.abstract | En esta tesis, abordamos algunos problemas relacionados con la interacción de los riesgos de seguros y financieros. Primero, consideramos una compañía de seguros o financiera con la intención de asignar el capital de riesgo retenido para su cartera de inversión general entre sus constituyentes. Brevemente, suponemos que la compañía calcula el capital de riesgo a través de la medida de riesgo Haezendonck - Goovaerts, y establecemos la regla de asignación de capital única consistente con un enfoque RORAR (retorno sobre capital ajustado al riesgo). Además, presentamos algunas asintóticas y proponemos un estimador consistente para la regla de asignación de capital. Finalmente, realizamos algunos estudios numéricos. Luego, resolvemos el problema de valorar algunos derivados vinculados a la mortalidad empleando el enfoque de precios de indiferencia de utilidad. De manera sucinta, suponemos que el riesgo de mortalidad emana de una cartera de asegurados de vida, cuyas vidas restantes se modelan como tiempos aleatorios condicionalmente independientes. Al adaptar algunos resultados de la teoría del riesgo de crédito, calculamos una expresión explícita para el precio de indiferencia de la utilidad cuando el derivado es una combinación lineal de dotaciones puras. Al considerar una reclamación contingente más general, utilizamos técnicas de ecuaciones diferenciales estocásticas hacia atrás (BSDE) para caracterizar el precio de indiferencia en términos de una solución a un BSDE no lineal con un generador no Lipschitz. Finalmente, consideramos a un individuo con el objetivo de elegir de manera óptima sus estrategias de inversión, consumo y compra de seguros de vida en un mercado financiero completo. Al suponer que el criterio de optimización es la maximización de la utilidad esperada del individuo, la cual depende del estado de la economía, resolvemos el problema de elección óptima en una configuración general, que incluye varias funciones de utilidad empleadas en la literatura. | spa |
| dc.description.abstract | In this thesis, we tackle some problems concerning the interplay of insurance and financial risks. First, we consider an insurance or financial company intending to allocate the risk capital withheld for its overall investment portfolio among its constituents. Shortly, we assume that the company computes the risk capital through the Haezendonck--Goovaerts risk measure, and we establish the unique capital allocation rule consistent with a RORAR (return on risk-adjusted capital) approach. Besides, we present some asymptotics and propose a consistent estimator for the capital allocation rule. Finally, we conduct some numerical studies. Then, we solve the problem of valuing some mortality-linked derivatives by employing the utility indifference pricing approach. Succinctly, we suppose that the mortality risk emanates from a portfolio of life insurance policyholders, whose remaining lifetimes are modeled as conditionally independent random times. By adapting some results from credit risk theory, we compute an explicit expression for the utility indifference price when the derivative is a linear combination of pure endowments. By considering a more general contingent claim, we use techniques of backward stochastic differential equations (BSDE) to characterize the indifference price in terms of a solution to a non-linear BSDE with a non-Lipschitz generator. Finally, we consider an individual aiming to optimally choose its investment, consumption, and life insurance purchase strategies in a complete financial market. By assuming that the optimality criterion is the maximization of the individual's expected state-dependent utility, we solve the optimal choice problem in a general setup, which includes several utility functions employed in the literature. | spa |
| dc.description.additional | Doctor en Ciencia | spa |
| dc.description.degreelevel | Doctorado | spa |
| dc.format.extent | 107 | spa |
| dc.format.mimetype | application/pdf | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/75741 | |
| dc.language.iso | eng | spa |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
| dc.publisher.department | Departamento de Matemáticas | spa |
| dc.relation.references | [1] Acerbi, C. and Tasche, D., 2002. On the coherence of expected shortfall. Journal of Banking & Finance, 26(7), pp.1487-1503. [2] Ahn, J.Y. and Shyamalkumar, N.D., 2014. Asymptotic theory for the empirical Haezendonck–Goovaerts risk measure. Insurance: Mathematics and Economics, 55, pp.78-90. [3] Aksamit, A. and Jeanblanc, M., 2017. Enlargement of Filtration with Finance in View. Switzerland: Springer. [4] Albanese, C. and Lawi, S., 2007. Laplace transforms for integrals of Markov processes. arXiv preprint arXiv:0710.1599. [5] Arnold, B.C., 2015. Pareto Distributions. Chapman and Hall/CRC. [6] Artzner, P., Delbaen, F., Eber, J.M. and Heath, D., 1997. Thinking coherently. Risk, 10(11), pp.68-71. [7] Artzner, P., Delbaen, F., Eber, J.M. and Heath, D., 1999. Coherent measures of risk. Mathematical Finance, 9(3), pp.203-228. [8] Asimit, A.V., Furman, E., Tang, Q. and Vernic, R., 2011. Asymptotics for risk capital allocations based on conditional tail expectation. Insurance: Mathematics and Economics, 49(3), pp.310-324. [9] Bauer, D., Börger, M. and Ruß, J., 2010. On the pricing of longevity-linked securities. Insurance: Mathematics and Economics, 46(1), pp.139-149. [10] Bauer, D. and Kramer, F., 2016. The risk of a mortality catastrophe. Journal of Business & Economic Statistics, 34(3), pp.391-405. [11] Bauer, D. and Zanjani, G., 2015. The marginal cost of risk, risk measures, and capital allocation. Management Science, 62(5), pp.1431-1457. [12] Bayraktar, E., Milevsky, M.A., Promislow, S.D. and Young, V.R., 2009. Valuation of mortality risk via the instantaneous Sharpe ratio: applications to life annuities. Journal of Economic Dynamics and Control, 33(3), pp.676-691. [13] Becherer, D., 2006. Bounded solutions to backward SDEs with jumps for utility optimization and indifference hedging. The Annals of Applied Probability, 16(4), pp.2027-2054. [14] Bellini, F. and Rosazza Gianin, E., 2008a. On Haezendonck risk measures. Journal of Banking & Finance, 32(6), pp.986-994. [15] Bellini, F. and Rosazza Gianin, E., 2008b. Optimal portfolios with Haezendonck risk measures. Statistics & Decisions, 26(2), pp.89-108. [16] Bellini, F. and Rosazza Gianin, E., 2012. Haezendonck–Goovaerts risk measures and Orlicz quantiles. Insurance: Mathematics and Economics, 51(1), pp.107-114. [17] Belomestny, D. and Krätschmer, V., 2012. Central limit theorems for law-invariant coherent risk measures. Journal of Applied Probability, 49(1), pp.1-21. [18] Ben–Tal, A. and Teboulle, M., 2007. An old-new concept of convex risk measures: the optimized certainty equivalent. Mathematical Finance, 17(3), pp.449-476. [19] Biagini, F., Botero, C. and Schreiber, I., 2017. Risk-minimization for life insurance liabilities with dependent mortality risk. Mathematical Finance, 27(2), pp.505-533. [20] Biagini, F., Fouque, J.P., Frittelli, M. and Meyer-Brandis, T., 2019. A unified approach to systemic risk measures via acceptance sets. Mathematical Finance, 29(1), pp.329-367. [21] Biffis, E., 2005. Affine processes for dynamic mortality and actuarial valuations.Insurance: Mathematics and Economics, 37(3), pp.443-468. [22] Blackburn, C. and Sherris, M., 2013. Consistent dynamic affine mortality models for longevity risk applications. Insurance: Mathematics and Economics, 53(1), pp.64-73. [23] Blake, D., Cairns, A. and Dowd, K., 2008. The birth of the life market. Asia-Pacific Journal of Risk and Insurance, 3(1). [24] Blanchet-Scalliet, C., El Karoui, N. and Martellini, L., 2005. Dynamic asset pricing theory with uncertain time-horizon. Journal of Economic Dynamics and Control, 29(10), pp.1737-1764. [25] Buccola, S.T., 1982. Portfolio selection under exponential and quadratic utility. Western Journal of Agricultural Economics, pp.43-51. [26] Buch, A. Dorfleitner, G. and Wimmer, M., 2011. Risk capital allocation for RORAC optimization. Journal of Banking & Finance, 35(11), pp.3001-3009. [27] Cairns, A., Blake, D. and Dowd, K., 2006. Pricing death: frameworks for the valuation and securitization of mortality risk. ASTIN Bulletin, 36(1), pp.79-120. [28] Cairns, A., Blake, D. and Dowd, K., 2008. Modelling and management of mortality risk: a review. Scandinavian Actuarial Journal, 2008(2-3), pp.79-113. [29] Carmona, R. ed., 2009. Indifference Pricing: Theory and Applications. Princeton University Press. [30] Chen, H. and Cox, S.H., 2009. Modeling mortality with jumps: applications to mortality securitization. Journal of Risk and Insurance, 76(3), pp.727-751. [31] Chiragiev, A. and Landsman, Z., 2007. Multivariate Pareto portfolios: TCE-based capital allocation and divided differences. Scandinavian Actuarial Journal, 2007(4),pp.261-280. [32] Cox, J.C. and Huang, C.F., 1989. Optimal consumption and portfolio policies when asset prices follow a diffusion process. Journal of Economic Theory, 49(1), pp.33-83. [33] Cox, J.C. and Huang, C.F., 1991. A variational problem arising in financial economics. Journal of mathematical Economics, 20(5), pp.465-487. [34] Csóka, P. and Herings, P.J.J., 2014. Risk allocation under liquidity constraints. Journal of Banking & Finance, 49, pp.1-9. [35] Dahl, M., 2004. Stochastic mortality in life insurance: market reserves and mortality-linked insurance contracts. Insurance: Mathematics and Economics, 35(1), pp.113-136. [36] Dahl, M., Melchior, M. and Møller, T., 2008. On systematic mortality risk and risk-minimization with survivor swaps. Scandinavian Actuarial Journal, 2008(2-3),pp.114-146. [37] Dahl, M. and Møller, T., 2006. Valuation and hedging of life insurance liabilities with systematic mortality risk. Insurance: Mathematics and Economics, 39(2),pp.193-217. [38] Davis, M.H., Panas, V.G. and Zariphopoulou, T., 1993. European option pricing with transaction costs. SIAM Journal on Control and Optimization, 31(2), pp.470-493. [39] Delbaen, F., Grandits, P., Rheinländer, T., Samperi, D., Schweizer, M. and Stricker, C., 2002. Exponential hedging and entropic penalties. Mathematical Finance, 12(2), pp.99-123. [40] Denault, M., 2001. Coherent allocation of risk capital. Journal of Risk, 4, pp.1-34. [41] Dentcheva, D., Penev, S. and Ruszczyński, A., 2017. Statistical estimation of composite risk functionals and risk optimization problems. Annals of the Institute of Statistical Mathematics, 69(4), pp.737-760. [42] Dhaene, J., Goovaerts, M.J. and Kaas, R., 2003. Economic capital allocation derived from risk measures. North American Actuarial Journal, 7(2), pp.44-56. [43] Dhaene, J., Henrard, L., Landsman, Z., Vandendorpe, A. and Vanduffel, S., 2008. Some results on the CTE-based capital allocation rule. Insurance: Mathematics and Economics, 42(2), pp.855-863. [44] Dhaene, J., Tsanakas, A., Valdez, E.A. and Vanduffel, S., 2012. Optimal capital allocation principles. Journal of Risk and Insurance, 79(1), pp.1-28. [45] Duarte, I., Pinheiro, D., Pinto, A.A. and Pliska, S.R., 2011. An overview of optimal life insurance purchase, consumption and investment problems. In Dynamics, Games and Science I (pp. 271-286). Springer, Berlin, Heidelberg. [46] Duarte, I., Pinheiro, D., Pinto, A.A. and Pliska, S.R., 2014. Optimal life insurance purchase, consumption and investment on a financial market with multidimensional diffusive terms. Optimization, 63(11), pp.1737-1760. [47] Duffie, D., Pan, J. and Singleton, K., 2000. Transform analysis and asset pricing for affine jump-diffusions. Econometrica, 68(6), pp.1343-1376. [48] Elliott, R.J., Jeanblanc, M. and Yor, M., 2000. On models of default risk. Mathematical Finance, 10(2), pp.179-195. [49] Feng, R., 2014. A comparative study of risk measures for guaranteed mínimum maturity benefits by a PDE method. North American Actuarial Journal, 18(4), pp.445-461. [50] Frittelli, M., 2000a. Introduction to a theory of value coherent with the no-arbitrage principle. Finance and Stochastics, 4(3), pp.275-297. [51] Frittelli, M., 2000b. The minimal entropy martingale measure and the valuation problem in incomplete markets. Mathematical Finance, 10(1), pp.39-52. [52] Furman, E. and Zitikis, R., 2008a. Weighted premium calculation principles. Insurance: Mathematics and Economics, 42(1), pp.459-465. [53] Furman, E. and Zitikis, R., 2008b. Weighted risk capital allocations. Insurance: Mathematics and Economics, 43(2), pp.263-269. [54] Furman, E., Wang, R. and Zitikis, R., 2017. Gini-type measures of risk and variability: Gini shortfall, capital allocations, and heavy-tailed risks. Journal of Banking & Finance, 83, pp.70-84. [55] Gobet, E., Lemor, J.P. and Warin, X., 2005. A regression-based Monte Carlo method to solve backward stochastic differential equations. The Annals of Applied Probability, 15(3), pp.2172-2202. [56] Goovaerts, M.J., Kaas, R., Dhaene, J. and Tang, Q., 2003. A unified approach togenerate risk measures. ASTIN Bulletin, 33(2), pp.173-191. [57] Goovaerts, M., Kaas, R., Dhaene, J. and Tang, Q., 2004. Some new classes of consistent risk measures. Insurance: Mathematics and Economics, 34(3), pp.505-516. [58] Guambe, C. and Kufakunesu, R., 2015. A note on optimal investment-consumptioninsurance in a Lévy market. Insurance: Mathematics and Economics, 65, pp.30-36. [59] Haezendonck, J. and Goovaerts, M., 1982. A new premium calculation principle based on Orlicz norms. Insurance: Mathematics and Economics, 1(1), pp.41-53. [60] Hainaut, D. and Devolder, P., 2008. Mortality modelling with Lévy processes. Insurance: Mathematics and Economics, 42(1), pp.409-418. [61] Hodges, S., and Neuberger , A., 1989. Optimal replication of contingent claims under transaction costs. Review Futures Market, 8(2), pp.222-239. 62] Hong, L.J. and Liu, G., 2009. Simulating sensitivities of conditional value at risk. Management Science, 55(2), pp.281-293. [63] Hu, Y., Imkeller, P. and Müller, M., 2005. Utility maximization in incomplete markets. The Annals of Applied Probability, 15(3), pp.1691-1712. [64] Huang, H., Milevsky, M.A. and Wang, J., 2008. Portfolio choice and life insurance: the CRRA case. Journal of Risk and Insurance, 75(4), pp.847-872. [65] Iacus, S.M., 2009. Simulation and Inference for Stochastic Differential Equations: with R Examples. Springer Science & Business Media. [66] Ignatieva, K. and Landsman, Z., 2019. Conditional tail risk measures for the skewed generalised hyperbolic family. Insurance: Mathematics and Economics, 86, pp.98-114. [67] Jackwerth, J.C., 2000. Recovering risk aversion from option prices and realized returns. The Review of Financial Studies, 13(2), pp.433-451. [68] Jaimungal, S. and Young, V.R., 2005. Pricing equity-linked pure endowments with risky assets that follow Lévy processes. Insurance: Mathematics and Economics, 36(3), pp.329-346. [69] Jeanblanc, M. and Rutkowski, M., 2002. Default risk and hazard process. In Mathematical Finance-Bachelier Congress 2000 (pp. 281-312). Springer, Berlin, Heidelberg. [70] Jiao, Y., Kharroubi, I. and Pham, H., 2013. Optimal investment under multiple defaults risk: a BSDE-decomposition approach. The Annals of Applied Probability, 23(2), pp.455-491. [71] Jones, B.L. and Zitikis, R., 2003. Empirical estimation of risk measures and related quantities. North American Actuarial Journal, 7(4), pp.44-54. [72] Kaas, R., Goovaerts, M., Dhaene, J. and Denuit, M., 2008. Modern Actuarial Risk Theory: Using R (Vol. 128). Springer Science & Business Media. [73] Kalkbrener, M., Lotter, H. and Overbeck, L., 2004. Sensible and efficient capital allocation for credit portfolios. Risk, 17(1), pp.S19-S24. [74] Kalkbrener, M., 2005. An axiomatic approach to capital allocation. Mathematical Finance, 15(3), pp.425-437. [75] Karatzas, I., Lehoczky, J.P. and Shreve, S.E., 1987. Optimal portfolio and consumption decisions for a “small investor” on a finite horizon. SIAM journal on control and optimization, 25(6), pp.1557-1586. [76] Karatzas, I. and Shreve, S.E., 1998. Methods of Mathematical Finance (Vol. 39). New York: Springer. [77] Karatzas, I. and Shreve, S., 2012. Brownian Motion and Stochastic Calculus (Vol.113). Springer Science & Business Media. [78] Kazamaki, N., 2006. Continuous Exponential Martingales and BMO. Springer. [79] Kharroubi, I. and Lim, T., 2014. Progressive enlargement of filtrations and backward stochastic differential equations with jumps. Journal of Theoretical Probability, 27(3), pp.683-724. [80] Kharroubi, I. and Lim, T., 2015. A decomposition approach for the discretetime approximation of FBSDEs with a jump. Random Operators and Stochastic Equations, 23(2), pp.81-109. [81] Kim, J.H. and Kim, S.Y., 2019. Tail risk measures and risk allocation for the class of multivariate normal mean-variance mixture distributions. Insurance: Mathematics and Economics, 86, pp.145-157. [82] Krokhmal, P.A., 2007. Higher moment coherent risk measures. Quantitative Finance, 7(4), pp.373–387. [83] Kronborg, M.T. and Steffensen, M., 2015. Optimal consumption, investment and life insurance with surrender option guarantee. Scandinavian Actuarial Journal, 2015(1), pp.59-87. [84] Kwak, M. and Lim, B.H., 2014. Optimal portfolio selection with life insurance under inflation risk. Journal of Banking & Finance, 46, pp.59-71. [85] Lando, D., 2009. Credit Risk Modeling: Theory and Applications. Princeton University Press. [86] Lin, Y. and Cox, S.H., 2005. Securitization of mortality risks in life annuities. Journal of risk and Insurance, 72(2), pp.227-252. [87] Lin, Y. and Cox, S.H., 2008. Securitization of catastrophe mortality risks. Insurance: Mathematics and Economics, 42(2), pp.628-637. [88] Londoño, J.A., 2008. A more general valuation and arbitrage theory for Itô processes. Stochastic Analysis and Applications, 26(4), pp.809-831. [89] Londoño, J.A., 2009. State-dependent utility. Journal of Applied Probability, 46(1), pp.55-70. [90] Ludkovski, M. and Young, V.R., 2008. Indifference pricing of pure endowments and life annuities under stochastic hazard and interest rates. Insurance: Mathematics and Economics, 42(1), pp.14-30. [91] Mania, M. and Schweizer, M., 2005. Dynamic exponential utility indifference valuation. The Annals of Applied Probability, 15(3), pp.2113-2143. [92] Mao, T. and Hu, T., 2012. Second-order properties of the Haezendonck–Goovaerts risk measure for extreme risks. Insurance: Mathematics and Economics, 51(2), pp.333-343. [93] Matmoura, Y. and Penev, S., 2013. Multistage optimization of option portfolio using higher order coherent risk measures. European Journal of Operational Research, 227(1), pp.190-198. 94] McCord, M. and De Neufville, R., 1986. “Lottery equivalents”: reduction of the certainty effect problem in utility assessment. Management Science, 32(1), pp.56-60. [95] Mehra, R. and Prescott, E.C., 1985. The equity premium: a puzzle. Journal of Monetary Economics, 15(2), pp.145-161. [96] Merton, R.C., 1969. Lifetime portfolio selection under uncertainty: the continuoustime case. The Review of Economics and Statistics, pp.247-257. [97] Merton, R.C., 1971. Optimum consumption and portfolio rules in a continuous-time model. Journal of Economic Theory, 3(4), pp.373-413. [98] Milevsky, M.A. and Promislow, S.D., 2001. Mortality derivatives and the option to annuitise. Insurance: Mathematics and Economics, 29(3), pp.299-318. [99] Moore, K.S. and Young, V.R., 2003. Pricing equity-linked pure endowments via the principle of equivalent utility. Insurance: Mathematics and Economics, 33(3), pp.497-516. [100] Morlais, M.A., 2009. Utility maximization in a jump market model. Stochastics, 81(1), pp.1-27. [101] Niculescu, C. and Persson, L.E., 2006. Convex Functions and Their Applications. New York: Springer. [102] Nielsen, P.H. and Steffensen, M., 2008. Optimal investment and life insurance strategies under minimum and maximum constraints. Insurance: Mathematics and Economics, 43(1), pp.15-28. [103] Peng, L., Wang, X. and Zheng, Y., 2015. Empirical likelihood inference for Haezendonck–Goovaerts risk measure. European Actuarial Journal, 5(2), pp.427- 445. [104] Pirvu, T.A. and Zhang, H., 2012. Optimal investment, consumption and life insurance under mean-reverting returns: the complete market solution. Insurance: Mathematics and Economics, 51(2), pp.303-309. [105] Pliska, S.R., 1986. A stochastic calculus model of continuous trading: optimal portfolios. Mathematics of Operations Research, 11(2), pp.371-382. [106] Pliska, S.R. and Ye, J., 2007. Optimal life insurance purchase and consumption/investment under uncertain lifetime. Journal of Banking & Finance, 31(5), pp.1307-1319. [107] Rao, M.M. and Ren, Z.D., 1991. Theory of Orlicz Spaces. New York: M. Dekker. [108] Resnick, S.I., 2007. Heavy-Tail Phenomena: Probabilistic and Statistical Modeling. Springer Science & Business Media. [109] Richard, S.F., 1975. Optimal consumption, portfolio and life insurance rules for an uncertain lived individual in a continuous time model. Journal of Financial Economics, 2(2), pp.187-203. [110] Rockafellar, R.T. and Uryasev, S., 2000. Optimization of conditional value-at-risk. Journal of Risk, 2, pp.21-42. [111] Rockafellar, R.T. and Uryasev, S., 2002. Conditional value-at-risk for general loss distributions. Journal of Banking & Finance, 26(7), pp.1443-1471. [112] Rouge, R. and El Karoui, N., 2000. Pricing via utility maximization and entropy. Mathematical Finance, 10(2), pp.259-276. [113] Scaillet, O., 2004. Nonparametric estimation and sensitivity analysis of expected shortfall. Mathematical Finance, 14(1), pp.115-129. [114] Schmeidler, D., 1969. The nucleolus of a characteristic function game. SIAM Journal on Applied Mathematics, 17(6), pp.1163-1170. [115] Schrager, D.F., 2006. Affine stochastic mortality. Insurance: Mathematics and Economics, 38(1), pp.81-97. [116] Shapley, L.S., 1953. A value for n-person games. In Contributions to the Theory of Games, 2(28), pp.307-317. Princeton University Press, Princeton. [117] Shen, Y. and Wei, J., 2016. Optimal investment-consumption-insurance with random parameters. Scandinavian Actuarial Journal, 2016(1), pp.37-62. [118] Shi, X., Tang, Q. and Yuan, Z., 2017. A limit distribution of credit portfolio losses with low default probabilities. Insurance: Mathematics and Economics, 73, pp.156-167. [119] Tang, Q. and Yang, F., 2012. On the Haezendonck–Goovaerts risk measure for extreme risks. Insurance: Mathematics and Economics, 50(1), pp.217-227. [120] Tang, Q. and Yang, F., 2014. Extreme value analysis of the Haezendonck–Goovaerts risk measure with a general Young function. Insurance: Mathematics and Economics, 59, pp.311-320. [121] Tasche, D., 2002. Expected shortfall and beyond. Journal of Banking & Finance, 26(7), pp.1519-1533. [122] Tasche, D., 2004. Allocating portfolio economic capital to sub-portfolios. In Economic Capital: A Practitioner Guide (pp.275-302). Risk Books. [123] Tijs, S.H. and Driessen, T.S., 1986. Game theory and cost allocation problems. Management Science, 32(8), pp.1015-1028. [124] Weil, P., 1989. The equity premium puzzle and the risk-free rate puzzle. Journal of Monetary Economics, 24(3), pp.401-421. [125] Wills, S. and Sherris, M., 2010. Securitization, structuring and pricing of longevity risk. Insurance: Mathematics and Economics, 46(1), pp.173-185. [126] Wilson, R., 1979. Auctions of shares. The Quarterly Journal of Economics, pp.675-689. [127] Zanjani, G., 2010. An economic approach to capital allocation. Journal of Risk and Insurance, 77(3), pp.523-549. | spa |
| dc.rights | Derechos reservados - Universidad Nacional de Colombia | spa |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
| dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
| dc.rights.spa | Acceso abierto | spa |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
| dc.subject.ddc | Matemáticas::Probabilidades y matemáticas aplicadas | spa |
| dc.subject.proposal | financial risks | spa |
| dc.subject.proposal | variables | spa |
| dc.subject.proposal | Quantitative | spa |
| dc.subject.proposal | Insurance | spa |
| dc.title | Quantitative Risk Management under the Interplay of Insurance and Financial Risks | spa |
| dc.title.alternative | Quantitative Risk Management under the Interplay of Insurance and Financial Risks | spa |
| dc.type | Trabajo de grado - Doctorado | spa |
| dc.type.coar | http://purl.org/coar/resource_type/c_db06 | spa |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
| dc.type.content | Text | spa |
| dc.type.driver | info:eu-repo/semantics/doctoralThesis | spa |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |

