Metodología para la detección de cocaína en matrices poliméricas mediante técnicas electroquímicas

dc.contributor.advisorRestrepo-Parra, Elisabeth
dc.contributor.advisorDiaz Vargas, Carlos Andrés
dc.contributor.authorPineda Hernández, Daniel Alejandro
dc.contributor.researchgroupLaboratorio de física del plasmaspa
dc.date.accessioned2022-09-13T22:19:18Z
dc.date.available2022-09-13T22:19:18Z
dc.date.issued2021-01-12
dc.descriptiongráficos, ilustraciones, tablasspa
dc.description.abstractEn el presente trabajo se desarrolló una novedosa metodología para la detección preliminar de cocaína en matrices poliméricas por medio de espectroscopia de impedancia electroquímica (EIS). Para esto, se realizó un análisis sistemático de polímeros con y sin cocaína incrustada a fin de determinar la respuesta eléctrica de estas matrices e identificar una señal característica que indique la presencia del alcaloide. Con el fin de soportar este estudio, se realizaron caracterizaciones fisicoquímicas y composicionales que validaran los resultados obtenidos por medio de EIS. Los datos obtenidos por EIS fueron analizados mediante circuitos equivalentes a fin de realizar una descripción detallada del comportamiento eléctrico de los polímeros, mediante este análisis se encontró que los polímeros sin dopaje presentan un circuito equivalente compuesto de una resistencia y un elemento de fase constante demostrando el carácter dieléctrico de estas muestras, mientras que los polímeros dopados presentan una capacitancia adicional que sugiere una doble polarización debido a la presencia de cocaína en la matriz . Adicionalmente, se validó que existe una relación entre la presencia de la cocaína incrustada en las matrices poliméricas con la resistencia eléctrica del material. La presencia del alcaloide disminuye significativamente la resistencia eléctrica del material debido a un aumento en la conductividad de la muestra producto de la estructura del dopaje. (Texto tomado de la fuente)spa
dc.description.abstractIn the present work, a novel methodology was developed for the preliminary detection of cocaine of cocaine embedded in polymeric matrices by electrochemical impedance spectroscopy (EIS). A systematic analysis of polymers with and without embedded cocaine was carried out to determine the electrical response of these matrices and identify a characteristic signal that indicates the presence of the alkaloid. To support this study, physicochemical and compositional characterizations were carried out to validate the results obtained through EIS. The data obtained by EIS were analyzed by means of equivalent circuits in order to carry out a detailed description of the electrical behavior of the polymers, through this analysis it was found that the polymers without doping present an equivalent circuit composed of a resistance and a constant phase element, demonstrating the dielectric character of these samples, while the doped polymers present an additional capacitance that suggests a double polarization due to the presence of cocaine in the matrix. Additionally, it was validated that there is a relationship between the presence of cocaine embedded in the polymeric matrices with the electrical resistance of the material. The presence of the alkaloid significantly decreases the electrical resistance of the material due to an increase in the conductivity of the sample because of the doping structure.eng
dc.description.curricularareaCiencias Naturalesspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Físicaspa
dc.format.extent54 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82288
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.departmentDepartamento de Física y Químicaspa
dc.publisher.facultyFacultad de Ciencias Exactas y Naturalesspa
dc.publisher.placeManizales, Colombiaspa
dc.publisher.programManizales - Ciencias Exactas y Naturales - Maestría en Ciencias - Físicaspa
dc.relation.referencesUnited Nations, World Drug Report 2019: Executive Summary. 2019.spa
dc.relation.referencesUnited Nations, World Drug Report 2019: Global overview of drug demand and supply. 2019.spa
dc.relation.referencesE. M. A. Ali, H. G. M. Edwards, M. D. Hargreaves, and I. J. Scowen, “In situ detection of cocaine hydrochloride in clothing impregnated with the drug using benchtop and portable Raman spectroscopy,” J. Raman Spectrosc., vol. 41, no. 9, pp. 938–943, 2010, doi: 10.1002/jrs.2518.eng
dc.relation.referencesT. M. Bedward, L. Xiao, and S. Fu, “Application of Raman spectroscopy in the detection of cocaine in food matrices,” Aust. J. Forensic Sci., vol. 51, no. 2, pp. 209–219, 2019, doi: 10.1080/00450618.2017.1356867.eng
dc.relation.referencesS. Grabherr et al., “Detection of smuggled cocaine in cargo using MDCT,” Am. J. Roentgenol., vol. 190, no. 5, pp. 1390–1395, 2008, doi: 10.2214/AJR.07.3048.eng
dc.relation.referencesV. K. Wankhade and B. G. Chikhalkar, “Body packing and intra-vaginal body pushing of cocaine: A case report,” Leg. Med., vol. 31, no. November 2017, pp. 10–13, 2018, doi: 10.1016/j.legalmed.2017.12.004.eng
dc.relation.referencesA. Elkbuli, J. D. Ehrhardt, S. Hai, M. McKenney, and D. Boneva, “Surgical care for ingested cocaine packets: Case report and literature review,” Int. J. Surg. Case Rep., vol. 55, pp. 84–87, 2019, doi: 10.1016/j.ijscr.2019.01.013.eng
dc.relation.referencesS. Stinson, “Cocaine smuggled as ingredient in plastic,” Chem. Eng. News, vol. 69, no. 27, p. 58, 1991.eng
dc.relation.referencesP. Gruter and D. Van De Mheen, “Dutch cocaine trade: The perspective of Rotterdam cocaine retail dealers,” Crime, Law Soc. Chang., vol. 44, no. 1, pp. 19–33, 2006, doi: 10.1007/s10611-005-9001-5.eng
dc.relation.referencesS. George, “Has the cocaine epidemic arrived in the UK?,” Forensic Sci. Int., vol. 143, no. 2–3, pp. 187–190, 2004, doi: 10.1016/j.forsciint.2004.03.028.eng
dc.relation.referencesA. L. N. Van Nuijs et al., “Dancing on Coke: Smuggling Cocaine Dispersed in Polyvinyl Alcohol,” J. Forensic Sci., vol. 57, no. 1, pp. 234–238, 2012, doi: 10.1111/j.1556-4029.2011.01947.x.eng
dc.relation.referencesK. Rodríguez, “Las tácticas de los carteles para camuflar la cocaína,” El Espectador, 2018.eng
dc.relation.referencesT. Gostič and S. Klemenc, “Evidence on unusual way of cocaine smuggling: Cocaine-polymethyl methacrylate (PMMA) solid solution-study of clandestine laboratory samples,” Forensic Sci. Int., vol. 169, no. 2–3, pp. 210–219, 2007, doi: 10.1016/j.forsciint.2006.02.048.eng
dc.relation.referencesUNODC, “Recommended methods for the Identification and Analysis of Cocaine in Seized Materials.,” 2012. [Online]. Available: http://www.unodc.org/documents/scientific/Cocaine_Manual_Rev_1.pdf.eng
dc.relation.referencesY. Tsumura, T. Mitome, and S. Kimoto, “False positives and false negatives with a cocaine-specific field test and modification of test protocol to reduce false decision,” Forensic Sci. Int., vol. 155, no. 2–3, pp. 158–164, 2005, doi: 10.1016/j.forsciint.2004.11.011.eng
dc.relation.referencesUnited Nations, DRUG MARKET TRENDS : COCAINE AMPHETAMINE- TYPE STIMULANTS. 2021.eng
dc.relation.referencesONU, “Executive sumary World drug report,” 2019.eng
dc.relation.referencesUnited Nations, World Drug Report 2019: Stimulants. 2019.eng
dc.relation.referencesNaciones Unidas, Global Overview: Drug Demand Drug Supply. 2021.eng
dc.relation.referencesUNODC, Drug Market Trends : Cannabis. 2021.eng
dc.relation.referencesUnited Nations, Analysis of drug markets. 2018.eng
dc.relation.referencesA. Schaper, R. Hofmann, M. Ebbecke, H. Desel, and C. Langer, “Kokain-body-packingCocaine-body-packing. Infrequent indication for laparotomy,” Der Chir., vol. 74, no. 7, pp. 626–631, 2003, doi: 10.1007/s00104-002-0603-5.eng
dc.relation.referencesT. Gostič, S. Klemenc, and B. Štefane, “A study of the thermal decomposition of adulterated cocaine samples under optimized aerobic pyrolytic conditions,” Forensic Sci. Int., vol. 187, no. 1–3, pp. 19–28, 2009, doi: 10.1016/j.forsciint.2009.02.009.eng
dc.relation.referencesS. Armenta and M. de la Guardia, “Analytical methods to determine cocaine contamination of banknotes from around the world,” TrAC - Trends Anal. Chem., vol. 27, no. 4, pp. 344–351, 2008, doi: 10.1016/j.trac.2008.01.012.eng
dc.relation.referencesUnited Nations International Drugs Control Programma Vienna, Rapid testing methods of drugs of abuse. 1994.eng
dc.relation.referencesUNODC, Rapid testing methods of drugs of abuse. 1994.eng
dc.relation.referencesF. W. GRANT, W. C. MARTIN, and R. W. QUACKENBUSH, “A simple sensitive specific field test for cocaine based on the recognition of the odour of methyl benzoate as a test product,” 1975. [Online]. Available: https://www.unodc.org/unodc/en/data-and-analysis/bulletin/bulletin_1975-01-01_2_page005.html.eng
dc.relation.referencesJ. Swiatko, P. R. De Forest, and M. S. Zedeck, “Further studies on spot tests and microcrystal tests for identification of cocaine.,” J. Forensic Sci., vol. 48, no. 3, pp. 581–585, 2003.eng
dc.relation.referencesZ. P. GUMUS, V. U. Celenk, E. Guler, B. Demir, H. Coskunol, and S. Timur, “Determination of Cocaine and Benzoylecgonine in Biological Matrices By Hplc and Lc-Ms/Ms.,” J. Turkish Chem. Soc. Sect. A Chem., vol. 3, no. 3, p. 535, 2016, doi: 10.18596/jotcsa.82665.eng
dc.relation.referencesS. Suzen and S. A. Ozkan, “Combination of Electrochemical, Spectrometric and Other Analytical Techniques for High Throughput Screening of Pharmaceutically Active Compounds,” Comb. Chem. High Throughput Screen., vol. 13, no. 7, pp. 658–664, 2012, doi: 10.2174/1386207311004070658.eng
dc.relation.referencesR. Bujak et al., “Selective determination of cocaine and its metabolite benzoylecgonine in environmental samples by newly developed sorbent materials,” Talanta, vol. 146, pp. 401–409, 2016, doi: 10.1016/j.talanta.2015.08.066.eng
dc.relation.referencesE. Al-Hetlani, “Forensic drug analysis and microfluidics,” Electrophoresis, vol. 34, no. 9–10, pp. 1262–1272, 2013, doi: 10.1002/elps.201200637.eng
dc.relation.referencesC. Pérez-Alfonso, N. Galipienso, S. Garrigues, and M. de la Guardia, “Preliminary results on direct quantitative determination of cocaine in impregnated materials by infrared spectroscopy,” Microchem. J., vol. 143, no. May, pp. 110–117, 2018, doi: 10.1016/j.microc.2018.07.026.eng
dc.relation.referencesE. M. A. Ali, H. G. M. Edwards, M. D. Hargreaves, and I. J. Scowen, “In-situ detection of drugs-of-abuse on clothing using confocal Raman microscopy,” Anal. Chim. Acta, vol. 615, no. 1, pp. 63–72, 2008, doi: 10.1016/j.aca.2008.03.051.eng
dc.relation.referencesE. M. A. Ali, H. G. M. Edwards, M. D. Hargreaves, and I. J. Scowen, “In situ detection of cocaine hydrochloride in clothing impregnated with the drug using benchtop and portable Raman spectroscopy,” J. Raman Spectrosc., vol. 41, no. 9, pp. 938–943, 2010, doi: 10.1002/jrs.2518.eng
dc.relation.referencesC. A. Diaz V., W. F. Garzon M., J. C. H. V, and E. Restrepo-Parra, “Characterization by TGA, SEM, and EDX of Polymeric Matrices Used as Cocaine Camouflages,” Mod. Appl. Sci., vol. 12, no. 12, p. 119, Nov. 2018, doi: 10.5539/mas.v12n12p119.eng
dc.relation.referencesE. Barsoukov and J. R. Macdonald, Impedance spectroscopy: theory, experiment, and applications, vol. 20, no. 3. 2005.eng
dc.relation.referencesM. Roushani and F. Shahdost-Fard, “Impedimetric detection of cocaine by using an aptamer attached to a screen printed electrode modified with a dendrimer/silver nanoparticle nanocomposite,” Mikrochim. Acta, vol. 185, no. 4, p. 214, 2018, doi: 10.1007/s00604-018-2709-6.eng
dc.relation.referencesS. A. Indians, “The Role of Coca in the History , Religion , and Medicine of South American Indians,” Econ. Bot., pp. 422–438, 1884.eng
dc.relation.referencesV. B. Stolberg, “The use of coca: Prehistory, history, and ethnography,” J. Ethn. Subst. Abuse, vol. 10, no. 2, pp. 126–146, 2011, doi: 10.1080/15332640.2011.573310.eng
dc.relation.referencesR. A. Goldstein, C. DesLauriers, A. Burda, and K. Johnson-Arbor, “Cocaine: history, social implications, and toxicity: a review,” Semin. Diagn. Pathol., vol. 26, no. 1, pp. 10–17, 2009, doi: 10.1053/j.semdp.2008.12.001.eng
dc.relation.referencesJ. de Acosta, Historia Natural y Moral de las Indias. España, 1589.eng
dc.relation.referencesP. J. de Arriaga, La Extirpación de la idolatría en el Perú. 1621.spa
dc.relation.referencesJ. A. Duke, D. Aulick, and T. Plowman, “Nutritional Value of Coca,” Bot. Mus. Lealf. Harv. Univ., vol. 24, no. 6, pp. 113–119, 1975, [Online]. Available: https://www.jstor.org/stable/41762296?seq=1#page_scan_tab_contents.eng
dc.relation.referencesR. De La Peña Bengué, “El uso de la coca entre los incas,” Rev. Española Antropol. Am., vol. 7, no. 1, p. 277, 1977.spa
dc.relation.references“Freepng.” https://www.freepng.es/png-dqrhtp/.eng
dc.relation.referencesA. Escohatado, Historia General de las drogras. 1989.spa
dc.relation.referencesJ. del Centro Mexicano de Estudios en Salud Mental. et al., “La cocaína: consumo y consecuencias,” Salud Ment., vol. 37, no. 5, pp. 381–389, 2014, [Online]. Available: http://www.scielo.org.mx/scielo.php?pid=S0185-33252014000500004&script=sci_arttext&tlng=en.spa
dc.relation.referencesF. F. Russo, “Cocaine: The complementarity between legal and illegal trade,” World Econ., vol. 37, no. 9, pp. 1290–1314, 2014, doi: 10.1111/twec.12107.eng
dc.relation.referencesN. C. L. Oliveira et al., “A holographic sensor based on a biomimetic affinity ligand for the detection of cocaine,” Sensors Actuators, B Chem., vol. 270, pp. 216–222, 2018, doi: 10.1016/j.snb.2018.05.009.eng
dc.relation.referencesD. R. Cordero, C. Medina, and A. Helfgott, “Cocaine Body Packing in Pregnancy,” Ann. Emerg. Med., vol. 48, no. 3, pp. 323–325, 2006, doi: 10.1016/j.annemergmed.2006.02.019.eng
dc.relation.referencesN. Drug and A. Laboratories, Guidelines on Representative Drug Sampling.eng
dc.relation.referencesS. W. G. F. T. A. O. S. D. (SWGDRUG), “SWGDRUG Recomendations - version 7.1,” p. 79, 2016.eng
dc.relation.referencesH. Throughput et al., “Trease and Ev PHMCOGO.”eng
dc.relation.referencesJ. Moros, S. Garrigues, and M. de la Guardia, “Vibrational spectroscopy provides a green tool for multi-component analysis,” TrAC - Trends Anal. Chem., vol. 29, no. 7, pp. 578–591, 2010, doi: 10.1016/j.trac.2009.12.012.eng
dc.relation.referencesT. Yilmaz Sengel et al., “‘Biomimetic-electrochemical-sensory-platform’ for biomolecule free cocaine testing,” Mater. Sci. Eng. C, vol. 90, pp. 211–218, 2018, doi: 10.1016/j.msec.2018.04.043.eng
dc.relation.referencesF. R. Simões and M. G. Xavier, “Electrochemical Sensors,” Nanosci. its Appl., pp. 155–178, 2017, doi: 10.1016/B978-0-323-49780-0.00006-5.eng
dc.relation.referencesM. Sluyters-Rehbach, J. H. O. J. Wijenberg, E. Bosco, and J. H. Sluyters, “The theory of chronoamperometry for the investigation of electrocrystallization,” J. Electroanal. Chem. Interfacial Electrochem., vol. 236, pp. 1–20, 1987, doi: 10.1016/0022-0728(87)88014-2.eng
dc.relation.referencesG. Denuault, “Electrochemical techniques and sensors for ocean research,” Ocean Sci., vol. 5, no. 4, pp. 697–710, 2009, doi: 10.5194/os-5-697-2009.eng
dc.relation.referencesS. Grimnes and O. G. Martinsen, Bioimpedance and Bioelectricity Basics (Biomedical Engineering). 2000.eng
dc.relation.referencesS. Koltzenburg, M. Maskos, and O. Nuyken, Polymer Chemistry. 2017.eng
dc.relation.referencesS. Demirezen and S. A. Yerişkin, “Frequency and voltage-dependent dielectric spectroscopy characterization of Al/(Coumarin-PVA)/p-Si structures,” J. Mater. Sci. Mater. Electron., vol. 32, no. 20, pp. 25339–25349, 2021, doi: 10.1007/s10854-021-06993-1.eng
dc.relation.referencesA. F. da Silva, T. S. Grobério, J. J. Zacca, A. O. Maldaner, and J. W. B. Braga, “Cocaine and adulterants analysis in seized drug samples by infrared spectroscopy and MCR-ALS,” Forensic Sci. Int., vol. 290, pp. 169–177, 2018, doi: 10.1016/j.forsciint.2018.07.006.eng
dc.relation.referencesM. Ferus et al., “Thermal Decomposition of Cocaine and Methamphetamine Investigated by Infrared Spectroscopy and Quantum Chemical Simulations,” ACS Omega, vol. 6, no. 22, pp. 14447–14457, 2021, doi: 10.1021/acsomega.1c01325.eng
dc.relation.referencesT. S. Grobério, J. J. Zacca, M. Talhavini, and J. W. B. Braga, “Quantification of cocaine hydrochloride in seized drug samples by infrared spectroscopy and PLSR,” J. Braz. Chem. Soc., vol. 25, no. 9, pp. 1696–1703, 2014, doi: 10.5935/0103-5053.20140164.eng
dc.relation.referencesBruker, “OPUS Package: Database.” https://www.bruker.com/en/products-and-solutions/infrared-and-raman/opus-spectroscopy-software/database.html.eng
dc.relation.referencesD. Lieblein, M. E. McMahon, P. E. Leary, P. Massey, and B. W. Kammrath, “A comparison of portable infrared spectrometers, portable Raman spectrometers, and color-based field tests for the on-scene analysis of cocaine,” Spectrosc. (Santa Monica), vol. 33, no. 12, pp. 5–11, 2018.eng
dc.relation.referencesS. Materazzi, A. Gregori, L. Ripani, A. Apriceno, and R. Risoluti, “Cocaine profiling: Implementation of a predictive model by ATR-FTIR coupled with chemometrics in forensic chemistry,” Talanta, vol. 166, pp. 328–335, 2017, doi: 10.1016/j.talanta.2017.01.045.eng
dc.relation.referencesNaciones Unidas, “Métodos recomendados para la identificación y el análisis de cocaína en materiales incautados,” Nac. Unidas, 2012, [Online]. Available: https://www.unodc.org/documents/scientific/Cocaine_S.pdf.spa
dc.relation.referencesY. Altin and A. Celik Bedeloglu, “Polyacrylonitrile/polyvinyl alcohol-based porous carbon nanofiber electrodes for supercapacitor applications,” Int. J. Energy Res., vol. 45, no. 11, pp. 16497–16510, 2021, doi: 10.1002/er.6896.eng
dc.relation.referencesE. L. G. Denardin, D. Samios, P. R. Janissek, and G. P. De Souza, “Thermal degradation of aged chloroprene rubber studied by thermogravimetric analysis,” Rubber Chem. Technol., vol. 74, no. 4, pp. 622–629, 2001, doi: 10.5254/1.3544962.eng
dc.relation.referencesJ. R. M. Barsoukov, Evgenij, Impedance Spectroscopy Theory, Experiment, and Applications. 2010.spa
dc.relation.referencesL. Eberson, “Electron-Transfer Reactions in Organic Chemistry,” vol. 5, no. 1.eng
dc.relation.referencesM. J. West and M. J. Went, “Detection of drugs of abuse by Raman spectroscopy,” Drug Test. Anal., vol. 3, no. 9, pp. 532–538, 2011, doi: 10.1002/dta.217.eng
dc.relation.referencesA. M. Abdullah, S. B. Aziz, and S. R. Saeed, “Structural and electrical properties of polyvinyl alcohol (PVA):Methyl cellulose (MC) based solid polymer blend electrolytes inserted with sodium iodide (NaI) salt,” Arab. J. Chem., vol. 14, no. 11, p. 103388, Nov. 2021, doi: 10.1016/j.arabjc.2021.103388.eng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::621 - Física aplicadaspa
dc.subject.proposalEISspa
dc.subject.proposalCocaínaspa
dc.subject.proposalDetecciónspa
dc.subject.proposalCamuflaje de cocaínaspa
dc.subject.proposalMatrices poliméricasspa
dc.subject.proposalCocaineeng
dc.subject.proposalDetectioneng
dc.subject.proposalCocaine smugglingeng
dc.subject.proposalPolymeric matriceseng
dc.subject.unescoEstupefacientespa
dc.subject.unescoNarcotic drugseng
dc.titleMetodología para la detección de cocaína en matrices poliméricas mediante técnicas electroquímicasspa
dc.title.translatedMethodology for the detection of cocaine in polymeric matrices using electrochemical techniqueseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentImagespa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleMetodología para la detección de cocaína en matrices poliméricas mediante técnicas electroquímicasspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1053842719.2021.pdf
Tamaño:
3.96 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Física

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
4.57 KB
Formato:
Item-specific license agreed upon to submission
Descripción: