Diseño de un modelo para simulación computacional de curvas isotérmicas de adsorción de agua en semillas de tomate

dc.contributor.advisorTorres Osorio, Javier Ignacio
dc.contributor.advisorRestrepo-Parra, Elisabeth
dc.contributor.authorBuitrago Torres, Iván David
dc.contributor.researchgroupPcm Computational Applicationsspa
dc.date.accessioned2021-11-08T22:40:54Z
dc.date.available2021-11-08T22:40:54Z
dc.date.issued2021
dc.descriptionFotografías, ilustracionesspa
dc.description.abstractLos estudios computacionales de fenómenos de adsorción han sido desarrollados principalmente para los procesos de adsorción de metales pesados o agua en derivados del carbón con propósito principalmente en almacenamiento o purificación, dada la falta de modelos que busquen recrear la adsorción en sistemas biológicos, en este trabajo se desarrolló un estudio experimental y se planteó una hipótesis que se corroboró mediante el desarrollo de un modelo de simulación computacional para la recreación de fenómenos de adsorción en semillas de tomate. Para lograr esto se obtuvieron, modelaron y analizaron las curvas isotérmicas de adsorción de agua en semillas de tomate a diferentes temperaturas y se determinaron los parámetros termodinámicos involucrados en el proceso de adsorción. Se planteó y desarrolló una hipótesis para la recreación computacional del proceso de adsorción mediante el método de Monte Carlo Gran Canónico. Los resultados obtenidos experimentalmente señalan un proceso de adsorción espontáneo y guiado por la entalpía, sin embargo, el modelo computacional demostró no ser el adecuado para la recreación de las isotermas de agua en semillas de tomate, pero sí para el proceso de adsorción en superficies de carbón activado. (Texto tomado de la fuente)spa
dc.description.abstractComputational studies of adsorption phenomena have been developed mainly for the adsorption processes of heavy metals or water in carbon derivatives mainly for storage or purification purposes, given the lack of models that seek to recreate adsorption in biological systems an experimental study was developed and a hypothesis was raised that was corroborated by developing a computational simulation model for the recreation of adsorption phenomena in tomato seeds. To achieve this, the isothermal water adsorption curves in tomato seeds were obtained, modeled and analyzed at different temperatures and the thermodynamic parameters involved in the adsorption process were determined. A hypothesis was proposed and developed for the computational recreation of the adsorption process using the Grand Canonical Monte Carlo method. The results obtained experimentally indicate a spontaneous adsorption driven by enthalpy, however, the computational model proved not to be adequate for the recreation of water isotherms in tomato seeds, but for the adsorption process on surfaces of activated carbon.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Ciencias - Físicaspa
dc.description.researchareaBiofísicaspa
dc.format.extent100 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80663
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.departmentDepartamento de Física y Químicaspa
dc.publisher.facultyFacultad de Ciencias Exactas y Naturalesspa
dc.publisher.placeManizales, Colombiaspa
dc.publisher.programManizales - Ciencias Exactas y Naturales - Maestría en Ciencias - Físicaspa
dc.relation.referencesT. P. Labuza, “The Effect of Water Activity on Reaction Kinetics of Food Deterioration,” Food Technol., 1980spa
dc.relation.referencesI. Langmuir, “The adsorption of gases on plane surfaces of glass, mica and platinum,” J. Am. Chem. Soc., vol. 40, no. 9, pp. 1361–1403, 1918, doi: 10.1021/ja02242a004.spa
dc.relation.referencesA. L. D. Goneli, P. C. Corrêa, G. H. H. de Oliveira, C. F. Gomes, and F. M. Botelho, “Water sorption isotherms and thermodynamic properties of pearl millet grain,” Int. J. Food Sci. Technol., vol. 45, no. 4, pp. 828–838, 2010, doi: 10.1111/j.1365-2621.2010.02208.x.spa
dc.relation.referencesC. J. Lomauro, A. S. Bakshi, and T. P. Labuza, “Evaluation of food moisture sorption isotherm equations part I: Fruit, vegetable and meat products,” LWT - Food Sci. Technol., vol. 18, no. 2, pp. 111–117, 1985.spa
dc.relation.referencesN. Arslan and H. Toǧrul, “Moisture sorption isotherms for crushed chillies,” Biosyst. Eng., vol. 90, no. 1, pp. 47–61, 2005, doi: 10.1016/j.biosystemseng.2004.10.008.spa
dc.relation.referencesL. Mayor, R. Moreira, F. Chenlo, and A. M. Sereno, “Water sorption isotherms of fresh and partially osmotic dehydrated pumpkin parenchyma and seeds at several temperatures,” Eur. Food Res. Technol., vol. 220, no. 2, pp. 163–167, Feb. 2005, doi: 10.1007/s00217-004-1065-4.spa
dc.relation.referencesC. Chawla, D. Kaur, D. P. S. Oberoi, and D. S. Sogi, “Drying characteristics, sorption isotherms, and lycopene retention of tomato pulp,” Dry. Technol., vol. 26, no. 10, pp. 1257–1264, 2008, doi: 10.1080/07373930802307225.spa
dc.relation.referencesN. A. Aviara and O. O. Ajibola, “Thermodynamics of moisture sorption in melon seed and cassava,” J. Food Eng., vol. 55, no. 2, pp. 107–113, Nov. 2002, doi: 10.1016/S0260-8774(02)00023-7.spa
dc.relation.referencesS. Kaya and T. Kahyaoglu, “Influence of dehulling and roasting process on the thermodynamics of moisture adsorption in sesame seed,” J. Food Eng., vol. 76, no. 2, pp. 139–147, 2006, doi: 10.1016/j.jfoodeng.2005.04.042.spa
dc.relation.referencesA. A. Wani, D. S. Sogi, U. S. Shivhare, I. Ahmed, and D. Kaur, “Moisture adsorption isotherms of watermelon seed and kernels,” Dry. Technol., vol. 24, no. 1, pp. 99–104, 2006, doi: 10.1080/07373930500538881.spa
dc.relation.referencesS. N. Sahu, A. Tiwari, J. K. Sahu, S. N. Naik, I. Baitharu, and E. Kariali, “Moisture sorption isotherms and thermodynamic properties of sorbed water of chironji (Buchanania lanzan Spreng.) kernels at different storage conditions,” J. Food Meas. Charact., vol. 12, no. 4, pp. 2626–2635, 2018, doi: 10.1007/s11694-018-9880-7.spa
dc.relation.referencesR. C. S. Thys, C. P. Z. Noreña, L. D. F. Marczak, A. G. Aires, and F. Cladera-Olivera, “Adsorption isotherms of pinhão (Araucaria angustifolia seeds) starch and thermodynamic analysis,” J. Food Eng., vol. 100, no. 3, pp. 468–473, 2010, doi: 10.1016/j.jfoodeng.2010.04.033.spa
dc.relation.referencesJ. D. Hoyos-Leyva, L. A. Bello-Pérez, and J. Alvarez-Ramirez, “Thermodynamic criteria analysis for the use of taro starch spherical aggregates as microencapsulant matrix,” Food Chem., vol. 259, pp. 175–180, 2018, doi: 10.1016/j.foodchem.2018.03.130.spa
dc.relation.referencesD. S. Sogi, U. S. Shivhare, S. K. Garg, and A. S. Bawa, “Water sorption isotherm and drying characteristics of tomato seeds,” Biosyst. Eng., vol. 84, no. 3, pp. 297–301, 2003, doi: 10.1016/S1537-5110(02)00275-1.spa
dc.relation.referencesS. Nagarajan, V. K. Pandita, D. K. Joshi, J. P. Sinha, and B. S. Modi, “Characterization of water status in primed seeds of tomato (Lycopersicon esculentum Mill.) by sorption properties and NMR relaxation times,” Seed Sci. Res., vol. 15, no. 2, pp. 99–111, Jun. 2005, doi: 10.1079/ssr2005200.spa
dc.relation.referencesS. Furmaniak, A. P. Terzyk, and P. A. Gauden, “The general mechanism of water sorption on foodstuffs - Importance of the multitemperature fitting of data and the hierarchy of models,” J. Food Eng., vol. 82, no. 4, pp. 528–535, 2007, doi: 10.1016/j.jfoodeng.2007.03.012.spa
dc.relation.referencesN. Arslan and H. Toǧrul, “The fitting of various models to water sorption isotherms of tea stored in a chamber under controlled temperature and humidity,” J. Stored Prod. Res., vol. 42, no. 2, pp. 112–135, 2006, doi: 10.1016/j.jspr.2005.01.001.spa
dc.relation.referencesH. Toǧrul and N. Arslan, “Moisture sorption isotherms and thermodynamic properties of walnut kernels,” J. Stored Prod. Res., vol. 43, no. 3, pp. 252–264, Jan. 2007, doi: 10.1016/j.jspr.2006.06.006.spa
dc.relation.referencesK. C. Rodrigues, H. W. da Silva, I. L. Silva, S. G. F. Dos Santos, D. P. da Silva, and R. S. Rodovalho, “Isotherms and thermodynamic properties of water adsorption in ‘cumari-do-pará’ pepper seeds,” Rev. Bras. Eng. Agric. e Ambient., vol. 24, no. 4, pp. 280–285, 2020, doi: 10.1590/1807-1929/agriambi.v24n4p280-285.spa
dc.relation.referencesI. Lynch and K. A. Dawson, “Protein-nanoparticle interactions,” Nano Today, vol. 3, no. 1–2, pp. 40–47, Feb. 2008, doi: 10.1016/S1748-0132(08)70014-8.spa
dc.relation.referencesJ. Puibasset and R. J. M. Pellenq, “Water adsorption in disordered mesoporous silica (Vycor) at 300 K and 650 K: A Grand Canonical Monte Carlo simulation study of hysteresis,” J. Chem. Phys., vol. 122, no. 9, 2005, doi: 10.1063/1.1854129.spa
dc.relation.referencesJ. Puibasset and R. J.-M. Pellenq, “Grand canonical monte carlo simulation study of water adsorption in silicalite at 300 K.,” J. Phys. Chem. B, vol. 112, no. 20, pp. 6390–6397, 2008, doi: 10.1021/jp7097153.spa
dc.relation.referencesN. Desbiens, A. Boutin, and I. Demachy, “Water Condensation in Hydrophobic Silicalite-1 Zeolite : A Molecular Simulation Study Water Condensation in Hydrophobic Silicalite-1 Zeolite : A Molecular Simulation Study,” J. Phys. Chem. B, vol. 5, pp. 24071–24076, 2005, doi: 10.1021/jp054168o.spa
dc.relation.referencesS. Ban, “Computer Simulation of Zeolites : Adsorption , Diffusion and Dealumination Computer Simulaties van Zeolieten : Adsorptie , Diffusie en Proefschrift door,” Zeolites, no. november, 2009.spa
dc.relation.referencesJ. K. Brennan, K. T. Thomson, and K. E. Gubbins, “Adsorption of Water in Activated Carbons:  Effects of Pore Blocking and Connectivity,” Langmuir, vol. 18, no. 14, pp. 5438–5447, 2002, doi: doi:10.1021/la0118560.spa
dc.relation.referencesA. Striolo, K. E. Gubbins, A. A. Chialvo, and P. T. Cummings, “Simulated water adsorption isotherms in carbon nanopores,” Mol. Phys., vol. 102, no. 3 PART II, pp. 243–251, 2004, doi: 10.1080/00268970410001668507.spa
dc.relation.referencesA. Striolo, A. A. Chialvo, K. E. Gubbins, and P. T. Cummings, “Water in carbon nanotubes: Adsorption isotherms and thermodynamic properties from molecular simulation,” J. Chem. Phys., vol. 122, no. 23, 2005, doi: 10.1063/1.1924697.spa
dc.relation.referencesA. Striolo, A. A. Chialvo, P. T. Cummings, and K. E. Gubbins, “Water Adsorption in Carbon-Slip Nanopores,” Langmuir, vol. 19, no. 11, pp. 8583–8591, 2003.spa
dc.relation.referencesJ.-C. Liu and P. A. Monson, “Monte Carlo Simulation Study of Water Adsorption in Activated Carbon,” Ind. Eng. Chem. Res., vol. 45, no. 16, pp. 5649–5656, 2006, doi: 10.1021/ie060162p.spa
dc.relation.referencesR. S. Neves, A. J. Motheo, R. P. S. Fartaria, and F. M. S. Silva Fernandes, “Modelling water adsorption on Au(210) surfaces: II. Monte Carlo simulations,” J. Electroanal. Chem., vol. 612, no. 2, pp. 179–185, Jan. 2008, doi: 10.1016/j.jelechem.2007.09.032.spa
dc.relation.referencesJ. Tóbik, A. Dal Corso, S. Scandolo, and E. Tosatti, “Organic molecular crystals in electric fields,” Surf. Sci., vol. 566–568, no. 1-3 PART 1, pp. 644–649, 2004, doi: 10.1016/j.susc.2004.06.116.spa
dc.relation.referencesB. Chen and J. I. Siepmann, “Transferable Potentials for Phase Equilibria. 3. Explicit-Hydrogen Description of Normal Alkanes,” J. Phys. Chem. B, vol. 103, no. 25, pp. 5370–5379, 1999, doi: 10.1021/jp990822m.spa
dc.relation.referencesH. J. C. Berendsen, J. P. M. Postma, W. F. Van Gunsteren, and J. Hermans, “Interaction models for water in relation to protein hydration,” Intermol. Forces, pp. 331–342, 1981, doi: 10.1007/978-94-015-7658-1_21.spa
dc.relation.referencesS. Konduiri, H. M. Tong, S. Chempath, and S. Nair, “Water in single-walled aluminosilicate nanotubes: Diffusion and adsorption properties,” J. Phys. Chem. C, vol. 112, no. 39, pp. 15367–15374, 2008, doi: 10.1021/jp8025144.spa
dc.relation.referencesG. Hummer, J. C. Rasaiah, and J. P. Noworyta, “Water conduction through the hydrophobic channel of a carbon nanotube,” Nature, vol. 414, no. 6860, pp. 188–190, 2001, doi: 10.1038/35102535.spa
dc.relation.referencesK. E. Brennan, J. K.; Bandosz, T. J.; Thomson, K. T.; Gubbins, “Water in porous carbons. Colloids and surfaces,” Physico- Chem. Eng. Asp., vol. 187, pp. 187–188, 539–568, 2001.spa
dc.relation.referencesM. M. Mohanty and B. K. Pal, “Sorption behavior of coal for implication in coal bed methane an overview,” Int. J. Min. Sci. Technol., vol. 27, no. 2, pp. 307–314, 2017, doi: 10.1016/j.ijmst.2017.01.014.spa
dc.relation.referencesI. A. W. Tan, A. L. Ahmad, and B. H. Hameed, “Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: Equilibrium, kinetic and thermodynamic studies,” J. Hazard. Mater., vol. 154, no. 1–3, pp. 337–346, 2008, doi: 10.1016/j.jhazmat.2007.10.031.spa
dc.relation.referencesD. Mohan and C. U. Pittman, “Arsenic removal from water/wastewater using adsorbents-A critical review,” J. Hazard. Mater., vol. 142, no. 1–2, pp. 1–53, 2007, doi: 10.1016/j.jhazmat.2007.01.006.spa
dc.relation.referencesA. E. Raftery, N. Li, H. Sevcikova, P. Gerland, and G. K. Heilig, “Bayesian probabilistic population projections for all countries,” Proc. Natl. Acad. Sci., vol. 109, no. 35, pp. 13915–13921, Aug. 2012, doi: 10.1073/pnas.1211452109.spa
dc.relation.referencesS. Vijayavenkataraman, S. Iniyan, and R. Goic, “A review of climate change, mitigation and adaptation,” Renew. Sustain. Energy Rev., vol. 16, no. 1, pp. 878–897, 2012, doi: 10.1016/j.rser.2011.09.009.spa
dc.relation.referencesA. Orozco-Segovia, J. Márquez-Guzmán, M. E. Sánchez-Coronado, A. Gamboa De Buen, J. M. Baskin, and C. C. Baskin, “Seed anatomy and water uptake in relation to seed dormancy in Opuntia tomentosa (Cactaceae, Opuntioideae),” Ann. Bot., vol. 99, no. 4, pp. 581–592, 2007, doi: 10.1093/aob/mcm001.spa
dc.relation.referencesK. Kikuzawa and H. Koyama, “Scaling of soil water absorption by seeds: an experiment using seed analogues,” Seed Sci. Res., vol. 9, no. 2, pp. 171–178, 1999, doi: 10.1017/S0960258599000197.spa
dc.relation.referencesE. J. Park et al., “Genetic engineering of glycinebetaine synthesis in tomato protects seeds, plants, and flowers from chilling damage,” Plant J., vol. 40, no. 4, pp. 474–487, 2004, doi: 10.1111/j.1365-313X.2004.02237.x.spa
dc.relation.referencesY. Oladosu et al., “Principle and application of plant mutagenesis in crop improvement: A review,” Biotechnol. Biotechnol. Equip., vol. 30, no. 1, pp. 1–16, 2016, doi: 10.1080/13102818.2015.1087333.spa
dc.relation.referencesM. V. Busi et al., “MADS-box genes expressed during tomato seed and fruit development,” Plant Mol. Biol., vol. 52, no. 4, pp. 801–815, 2003, doi: 10.1023/A:1025001402838.spa
dc.relation.referencesS. Yanniotis and J. Blahovec, “Model analysis of sorption isotherms,” LWT - Food Sci. Technol., vol. 42, no. 10, pp. 1688–1695, 2009, doi: 10.1016/j.lwt.2009.05.010.spa
dc.relation.referencesM. Iqbal, N. Iqbal, I. A. Bhatti, N. Ahmad, and M. Zahid, “Response surface methodology application in optimization of cadmium adsorption by shoe waste: A good option of waste mitigation by waste,” Ecol. Eng., vol. 88, no. January 2018, pp. 265–275, 2016, doi: 10.1016/j.ecoleng.2015.12.041.spa
dc.relation.referencesK. G. Bhattacharyya and S. Sen Gupta, “Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: A review,” Adv. Colloid Interface Sci., vol. 140, no. 2, pp. 114–131, 2008, doi: 10.1016/j.cis.2007.12.008.spa
dc.relation.referencesA. Özcan, E. M. Öncü, and A. S. Özcan, “Kinetics, isotherm and thermodynamic studies of adsorption of Acid Blue 193 from aqueous solutions onto natural sepiolite,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 277, no. 1–3, pp. 90–97, 2006, doi: 10.1016/j.colsurfa.2005.11.017.spa
dc.relation.referencesS. Furmaniak, P. A. Gauden, A. P. Terzyk, G. Rychlicki, R. P. Wesołowski, and P. Kowalczyk, “Heterogeneous Do-Do model of water adsorption on carbons,” J. Colloid Interface Sci., vol. 290, no. 1, pp. 1–13, 2005, doi: 10.1016/j.jcis.2005.07.043.spa
dc.relation.referencesA. Di Lella et al., “Molecular simulation studies of water physisorption in zeolites,” Phys. Chem. Chem. Phys., vol. 8, no. 46, p. 5396, 2006, doi: 10.1039/b610621h.spa
dc.relation.referencesM. Trzpit et al., “The effect of local defects on water adsorption in silicalite-1 zeolite: A joint experimental and molecular simulation study,” Langmuir, vol. 23, no. 20, pp. 10131–10139, 2007, doi: 10.1021/la7011205.spa
dc.relation.referencesS. Source, “Solanaceae Source A global taxonomic resource for the nightshade family,” 2020. .spa
dc.relation.referencesA. A. Ferrari, E. A. De Nadai Fernandes, F. S. Tagliaferro, M. A. Bacchi, and T. C. G. Martins, “Chemical composition of tomato seeds affected by conventional and organic production systems,” J. Radioanal. Nucl. Chem., vol. 278, no. 2, pp. 399–402, 2008, doi: 10.1007/s10967-008-0808-2.spa
dc.relation.referencesF. Chen, “Plant development,” 2014. [Online]. Available: https://www.slideserve.com/nelia/plant-development.spa
dc.relation.referencesB. Ahmed, A. Rizvi, A. Zaidi, M. S. Khan, and J. Musarrat, “Understanding the phyto-interaction of heavy metal oxide bulk and nanoparticles: evaluation of seed germination, growth, bioaccumulation, and metallothionein production,” RSC Adv., vol. 9, no. 8, pp. 4210–4225, 2019, doi: 10.1039/C8RA09305A.spa
dc.relation.referencesL. C. Toscano, A. L. Boiça Júnior, J. M. Santos, and J. B. S. A. Almeida, “Tipos de tricomas em genótipos de Lycopersicon,” Hortic. Bras., vol. 19, no. 3, pp. 336–338, 2001, doi: 10.1590/s0102-05362001000300009.spa
dc.relation.referencesY. Zhang et al., “The Roles of Different Types of Trichomes in Tomato Resistance to Cold, Drought, Whiteflies, and Botrytis,” Agronomy, vol. 10, no. 3, p. 411, Mar. 2020, doi: 10.3390/agronomy10030411.spa
dc.relation.referencesG. Clemente, “Efecto de la contraccion en la cinetica de secado de musculos de jamon.,” p. 323, 2003.spa
dc.relation.referencesM. Dorais, D. L. Ehret, and A. P. Papadopoulos, “Tomato (Solanum lycopersicum) health components: From the seed to the consumer,” Phytochem. Rev., vol. 7, no. 2, pp. 231–250, 2008, doi: 10.1007/s11101-007-9085-x.spa
dc.relation.referencesSeader, Separation process principles, vol. 36, no. 09. 1999.spa
dc.relation.referencesR. H. Perry, D. W. Green, and J. O. Maloney, Perry’s chemical engineers’ handbook. New York: McGraw-Hill, 1997.spa
dc.relation.referencesA. Casp and J. Abril, Procesos de conservación de alimentos Tecnología de alimentos. Mundi Prensa, 2003.spa
dc.relation.referencesS. P. Cauvain and L. S. Young, Bakery Food Manufacture and Quality. Oxford, UK: Blackwell Science Ltd, 2000.spa
dc.relation.referencesR. L. D’Arcy and I. C. Watt, “Analysis of sorption isotherms of non-homogeneous sorbents,” Trans. Faraday Soc., vol. 66, pp. 1236–1245, 1970, doi: 10.1039/tf9706601236.spa
dc.relation.referencesS. Brunauer, P. H. Emmett, and E. Teller, “Gases in Multimolecular Layers,” J. Am. Chem. Soc., vol. 60, no. 1, pp. 309–319, 1938, doi: citeulike-article-id:4074706.spa
dc.relation.referencesIUPAC, “REPORTING PHYSISORPTION DATA FOR GAS/SOLID SYSTEMS,” vol. 54, no. 11, 1982.spa
dc.relation.referencesC. R. Oswin, “The kinetics of package life. III. The isotherm,” J. Soc. Chem. Ind., vol. 65, no. 12, pp. 419–421, Dec. 1946, doi: 10.1002/jctb.5000651216.spa
dc.relation.referencesG. Halsey, “Physical adsorption on non-uniform surfaces,” J. Chem. Phys., vol. 16, no. 10, pp. 931–937, Oct. 1948, doi: 10.1063/1.1746689.spa
dc.relation.referencesE. A. Guggenheim, Application of statistical mechanics. Oxford Press, 1966.spa
dc.relation.referencesR. B. Anderson, “Modifications of the Brunuaer, Emmet and Teller equations,” Am. Chem. Soc., vol. 68, no. 7, pp. 686–691, 1946.spa
dc.relation.referencesA. International, AOAC: Official Methods of Analysis, 2016, vol. 552, no. c. 2016.spa
dc.relation.referencesJ. M. de Boer, The dynamical character of adsorption, Clarendon. Michigan: Oxford Press, 1953.spa
dc.relation.referencesC. van den Berg and S. Bruin, “Water Activity and Its Estimation in Food Systems: Theoretical Aspects,” in Water Activity: Influences on Food Quality, New York : Academic Press, 1981, pp. 1–61.spa
dc.relation.referencesW. A. M. McMinn and T. R. A. Magee, “Thermodynamic properties of moisture sorption of potato,” J. Food Eng., vol. 60, no. 2, pp. 157–165, 2003, doi: 10.1016/S0260-8774(03)00036-0.spa
dc.relation.referencesS. Lahsasni, M. Kouhila, and M. Mahrouz, “Adsorption-desorption isotherms and heat of sorption of prickly pear fruit (Opuntia ficus indica),” Energy Convers. Manag., vol. 45, no. 2, pp. 249–261, Jan. 2004, doi: 10.1016/S0196-8904(03)00133-X.spa
dc.relation.referencesL. Hassini, E. Bettaieb, H. Desmorieux, S. S. Torres, and A. Touil, “Desorption isotherms and thermodynamic properties of prickly pear seeds,” Ind. Crops Prod., vol. 67, no. 1, pp. 457–465, 2015, doi: 10.1016/j.indcrop.2015.01.078.spa
dc.relation.referencesA. M. Pagano and R. H. Mascheroni, “Sorption isotherms for amaranth grains,” J. Food Eng., vol. 67, no. 4, pp. 441–450, 2005, doi: 10.1016/j.jfoodeng.2004.05.012.spa
dc.relation.referencesM. Venkatachalan and S. K. Sathe, “Chemical composition of selected edible nut seeds,” J. Agric. Food Chem., vol. 54, no. 13, pp. 4705–4714, 2006, doi: 10.1021/jf0606959.spa
dc.relation.referencesS. Kaya and T. Kahyaoglu, “Moisture sorption and thermodynamic properties of safflower petals and tarragon,” J. Food Eng., vol. 78, no. 2, pp. 413–421, 2007, doi: 10.1016/j.jfoodeng.2005.10.009.spa
dc.relation.referencesR. Moreira, F. Chenlo, M. D. Torres, and N. Vallejo, “Thermodynamic analysis of experimental sorption isotherms of loquat and quince fruits,” J. Food Eng., vol. 88, no. 4, pp. 514–521, 2008, doi: 10.1016/j.jfoodeng.2008.03.011.spa
dc.relation.referencesR. Moreira, F. Chenlo, M. D. Torres, and N. Vallejo, “Thermodynamic analysis of experimental sorption isotherms of loquat and quince fruits,” J. Food Eng., vol. 88, no. 4, pp. 514–521, 2008, doi: 10.1016/j.jfoodeng.2008.03.011.spa
dc.relation.referencesR. Bahar, S. Azzouz, R. Remond, S. Ouertani, M. T. Elaieb, and M. A. El Cafci, “Moisture sorption isotherms and thermodynamic properties of Oak wood (Quercus robur and Quercus canariensis): optimization of the processing parameters,” Heat Mass Transf. und Stoffuebertragung, vol. 53, no. 5, pp. 1541–1552, 2017, doi: 10.1007/s00231-016-1916-0.spa
dc.relation.referencesE. Alpizar-Reyes, H. Carrillo-Navas, R. Romero-Romero, V. Varela-Guerrero, J. Alvarez-Ramírez, and C. Pérez-Alonso, “Thermodynamic sorption properties and glass transition temperature of tamarind seed mucilage (Tamarindus indica L.),” Food Bioprod. Process., vol. 101, pp. 166–176, 2017, doi: 10.1016/j.fbp.2016.11.006.spa
dc.relation.referencesS. Sahin and S. Sumnu, Physical Properties of Foods. New York, NY: Springer New York, 2006.spa
dc.relation.referencesE. O. Timmermann, “A B. E. T.-like three sorption stage isotherm,” J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases, vol. 85, no. 7, p. 1631, 1989, doi: 10.1039/f19898501631.spa
dc.relation.referencesJ. Blahovec and S. Yanniotis, “Modified classification of sorption isotherms,” J. Food Eng., vol. 91, no. 1, pp. 72–77, Mar. 2009, doi: 10.1016/j.jfoodeng.2008.08.007.spa
dc.relation.referencesM. C. Ngono Mbarga, D. Bup Nde, A. Mohagir, C. Kapseu, and G. Elambo Nkeng, “Moisture Sorption Isotherms and Properties of Sorbed Water of Neem (Azadirichta indica A. Juss) Kernels,” J. Eng. Phys. Thermophys., vol. 90, no. 1, pp. 35–42, 2017, doi: 10.1007/s10891-017-1536-7.spa
dc.relation.referencesJ. S. Zeymer, P. C. Corrêa, G. H. H. De Oliveira, and F. M. Baptestini, “Thermodynamic properties of water desorption in lettuce seeds,” Semin. Agrar., vol. 39, no. 3, pp. 921–931, 2018, doi: 10.5433/1679-0359.2018v39n3p921.spa
dc.relation.referencesH. W. da Silva, R. S. Rodovalho, and I. L. Silva, “Hysteresis and thermodynamic properties of water sorption in ‘Malagueta’ pepper seeds,” Rev. Bras. Eng. Agric. e Ambient., vol. 22, no. 9, pp. 658–663, 2018, doi: 10.1590/1807-1929/agriambi.v22n9p658-663.spa
dc.relation.referencesX. Li, Z. Cao, Z. Wei, Q. Feng, and J. Wang, “Equilibrium moisture content and sorption isosteric heats of five wheat varieties in China,” J. Stored Prod. Res., vol. 47, no. 1, pp. 39–47, 2011, doi: 10.1016/j.jspr.2010.10.001.spa
dc.relation.referencesS. M. Henderson, “A basic concept of equilibrium moisture,” Agric. Eng., vol. 33, no. 33, pp. 29–32, 1952.spa
dc.relation.referencesJ. Stencl and P. Homola, “Water sorption isotherms of leaves and stems of Trifolium pratense L.,” Grass Forage Sci., vol. 55, no. 2, pp. 159–165, 2000, doi: 10.1046/j.1365-2494.2000.00209.x.spa
dc.relation.referencesM. Erbaş, M. F. Ertugay, and M. Certel, “Moisture adsorption behaviour of semolina and farina,” J. Food Eng., vol. 69, no. 2, pp. 191–198, 2005, doi: 10.1016/j.jfoodeng.2004.07.017.spa
dc.relation.referencesC. Van den Berg, “Food-water relations: Progress and integration, comments and thoughts,” in Advances in Experimental Medicine and Biology, vol. 302, New York, United States: Plenum Press, 1991, pp. 21–28.spa
dc.relation.referencesG. H. Crapiste and E. Rotstein, “Prediction of Sorptional Equilibrium Data for Starch‐Containing Foodstuffs,” J. Food Sci., vol. 47, no. 5, pp. 1501–1507, 1982, doi: 10.1111/j.1365-2621.1982.tb04970.x.spa
dc.relation.referencesH. A. Iglesias and J. Chirife, “Prediction of the effect of temperature on water sorption isotherms of food material,” Int. J. Food Sci. Technol., vol. 11, no. 2, pp. 109–116, 1976, doi: 10.1111/j.1365-2621.1976.tb00707.x.spa
dc.relation.referencesS. Furmaniak, A. P. Terzyk, R. Gołembiewski, P. A. Gauden, and L. Czepirski, “Searching the most optimal model of water sorption on foodstuffs in the whole range of relative humidity,” Food Res. Int., vol. 42, no. 8, pp. 1203–1214, 2009, doi: 10.1016/j.foodres.2009.06.004.spa
dc.relation.referencesC. W. Vertucci and A. C. Leopold, “Water binding in legume seeds.,” Plant Physiol., vol. 85, pp. 224–231, 1987, doi: 10.1104/pp.85.1.224.spa
dc.relation.referencesS. Furmaniak and P. A. Gauden, “Improving the fundamental ideas of Dubinin, Serpinsky and Barton–further insights into theoretical description of water adsorption on carbons,” Ann. Univ. Mariae Curie-Skłodowska, vol. LX, no. 11, pp. 151–182, 2005, [Online]. Available: http://oskar.chem.umk.pl/web_page/pdf/2005_05.pdf.spa
dc.relation.referencesM. Ginzburg, “Measurements of ion concentrations and fluxes in Dunaliella parva,” J. Exp. Bot., vol. 32, no. 2, pp. 321–332, 1981, doi: 10.1093/jxb/32.2.321.spa
dc.relation.referencesM. Peleg, “Assessment of a semi-empirical four parameter general model for sigmoid moisture sorption isotherms,” J. Food Process Eng., vol. 16, no. 1, pp. 21–37, 1993, doi: 10.1111/j.1745-4530.1993.tb00160.x.spa
dc.relation.referencesS. E. Smith and S. E. Smith, “The Sorption of Water Vapor by High Polymers,” J. Am. Chem. Soc., vol. 69, no. 3, pp. 646–651, 1947, doi: 10.1021/ja01195a053.spa
dc.relation.referencesE. Tsami, “Net isosteric heat of sorption in dried fruits,” J. Food Eng., vol. 14, no. 4, pp. 327–335, 1991, doi: 10.1016/0260-8774(91)90022-K.spa
dc.relation.referencesJ. Chirife, R. Boquet, C. F. Fontan, and H. A. Iglesias, “A New Model for Describing the Water Sorption Isotherm of Foods,” J. Food Sci., vol. 48, no. 4, pp. 1382–1383, 1983, doi: 10.1111/j.1365-2621.1983.tb09245.x.spa
dc.relation.referencesE. Sancho, “Analysis of a Model for Water Sorption Phenomena in Foods,” vol. 47, 1982, doi: 10.1111/j.1365-2621.1982.tb04989.spa
dc.relation.referencesD. P. Landau and K. Binder, A Guide to Monte-Carlo Simulations in Statatistical Physics, vol. 369, no. 1. .spa
dc.relation.referencesI. O. Bohachevsky, M. E. Johnson, Myron L. Stein, and M. L. Stein, “Generalized Simulated Annealing for Function Optimization,” Technometrics, vol. 28, no. 3, pp. 209–217, 1986, doi: 10.2307/1269076.spa
dc.relation.referencesC. Tsallis and D. A. Stariolo, “Generalized Simulated Annealing,” vol. 233, pp. 395–406, 1995, doi: 10.1016/S0378-4371(96)00271-3.spa
dc.relation.referencesD. Nicholson and N. G. Parsonage, “Computer Simulation and the Statistical Mechanics of Adsorption,” p. 398, 1982.spa
dc.relation.referencesD. Frenkel and B. Smit, “Understanding Molecular Simulation,” Understanding Molecular Simulation (Second Edition). pp. 23–61, 2002, doi: http://dx.doi.org/10.1016/B978-012267351-1/50025-0.spa
dc.relation.referencesP. A. Bonnaud, B. Coasne, and R. J. M. M. Pellenq, “Molecular simulation of water confined in nanoporous silica,” J. Phys. Condens. Matter, vol. 22, no. 28, 2010, doi: 10.1088/0953-8984/22/28/284110.spa
dc.relation.referencesC. Fan, D. D. Do, and D. Nicholson, “New Monte Carlo simulation of adsorption of gases on surfaces and in pores: A concept of multibins,” J. Phys. Chem. B, vol. 115, no. 35, pp. 10509–10517, 2011, doi: 10.1021/jp205497s.spa
dc.relation.referencesD. Shen, M. Bülow, F. Siperstein, M. Engelhard, and A. L. Myers, “Comparison of experimental techniques for measuring isosteric heat of adsorption,” Adsorption, vol. 6, no. 4, pp. 275–286, 2000, doi: 10.1023/A:1026551213604.spa
dc.relation.referencesB. Smit and J. I. Siepmann, “Simulating the adsorption of alkanes in zeolites,” Science (80-. )., vol. 264, no. 5162, pp. 1118–1120, 1994, doi: 10.1126/science.264.5162.1118.spa
dc.relation.referencesT. J. H. Vlugt, R. Krishna, and B. Smit, “Molecular simulations of adsorption isotherms for linear and branched alkanes and their mixtures in silicalite,” J. Phys. Chem. B, vol. 103, no. 7, pp. 1102–1118, 1999, doi: 10.1021/jp982736c.spa
dc.relation.referencesL. Greenspan, “Humidity Fixed Points of Binary Saturated Aqueous Solutions.,” J Res Natl Bur Stand Sect A Phys Chem, vol. 81 A, no. 1, pp. 89–96, Jan. 1977, doi: 10.6028/jres.081A.011.spa
dc.relation.referencesA. Vashisth and S. Nagarajan, “Characterization of water binding and germination traits of magnetically exposed maize (Zea mays L.) seeds equilibrated at different relative humidities at two temperatures,” Indian J. Biochem. Biophys., vol. 46, no. 2, pp. 184–191, 2009.spa
dc.relation.referencesW. Wolf, W. E. L. Spiess, and G. Jung, “Standardization of Isotherm Measurements (Cost-Project 90 and 90 BIS),” Prop. Water Foods, pp. 661–679, 1985, doi: 10.1007/978-94-009-5103-7_40.spa
dc.relation.referencesD. G. Hyams, “CurveExpertBasic.” Hyams Development, p. 213, 2020, [Online]. Available: https://www.curveexpert.net/support/documentation/.spa
dc.relation.referencesA. M. Slavutsky and M. A. Bertuzzi, “Thermodynamic study of water sorption and water barrier properties of nanocomposite films based on brea gum,” Appl. Clay Sci., vol. 108, pp. 144–148, 2015, doi: 10.1016/j.clay.2015.02.011.spa
dc.relation.referencesA. H. Al-Muhtaseb, W. A. M. McMinn, and T. R. A. Magee, “Water sorption isotherms of starch powders. Part 2: Thermodynamic characteristics,” J. Food Eng., vol. 62, no. 2, pp. 135–142, 2004, doi: 10.1016/S0260-8774(03)00202-4.spa
dc.relation.referencesE. Grunwald and J. E. Leffler, Rates and Equilibria of Organic Reactions: As Treated by Statistical, Thermodynamic, and Extrathermodynamic Methods. Wiley, 1963.spa
dc.relation.referencesD. Apostolopoulos and S. G. Gilbert, “Water Sorption of Coffee Solubles by Frontal Inverse Gas Chromatography: Thermodynamic Considerations,” J. Food Sci., vol. 55, no. 2, pp. 475–487, 1990, doi: 10.1111/j.1365-2621.1990.tb06790.x.spa
dc.relation.referencesR. R. Krug, W. G. Hunter, and R. A. Grieger, “Enthalpy-entropy compensation. 2. Separation of the chemical from the statistical effect,” J. Phys. Chem., vol. 80, no. 21, pp. 2341–2351, 1976, doi: 10.1021/j100562a007.spa
dc.relation.referencesC. Beristain, H. Garcia, and E. Azuara, “Enthalpy-Entropy compensation in food vapor adsorption,” J. Food Eng., vol. 30, no. 3–4, pp. 405–415, Nov. 1996, doi: 10.1016/S0260-8774(96)00011-8.spa
dc.relation.referencesNIST, “SPC/E Water Reference Calculations,” 2016. https://www.nist.gov/mml/csd/chemical-informatics-research-group/spce-water-reference-calculations-10a-cutoff (accessed Dec. 18, 2020).spa
dc.relation.referencesG. R. Birkett and D. D. Do, “Simulation study of water adsorption on carbon black: The effect of graphite water interaction strength,” J. Phys. Chem. C, vol. 111, no. 15, pp. 5735–5742, 2007, doi: 10.1021/jp068479q.spa
dc.relation.referencesJ. C. Liu and P. A. Monson, “Does water condense in carbon pores?,” Langmuir, vol. 21, no. 22, pp. 10219–10225, 2005, doi: 10.1021/la0508902.spa
dc.relation.referencesW. A. Steele, “The interaction of rare gas atoms with graphitized carbon black,” J. Phys. Chem., vol. 82, no. 7, pp. 817–821, 1978, doi: 10.1021/j100496a011.spa
dc.relation.referencesB. Coasne, Adsorption and Structure of Argon in Activated Porous Carbons, vol. 01. 2011.spa
dc.relation.referencesD. D. Do and H. D. Do, “Modeling of adsorption on nongraphitized carbon surface: GCMC simulation studies and comparison with experimental data,” J. Phys. Chem. B, vol. 110, no. 35, pp. 17531–17538, 2006, doi: 10.1021/jp062386r.spa
dc.relation.referencesC. L. Mccallum et al., “A Molecular Model for Adsorption of Water on Activated Carbon : Comparison of Simulation and Experiment,” Langmuir, vol. 15, no. 6, pp. 533–544, 1999, doi: 10.1021/la9805950.spa
dc.relation.referencesF. P. Schmidt, “Optimizing Adsorbents for Heat Storage Applications : Estimation of Thermodynamic Limits and Monte Carlo Simulations of Water Adsorption in Nanopores,” no. January 2004, 2014.spa
dc.relation.referencesA. Ozgur Yazaydin, “Molecular simulation of the adsorption of organics from water,” WORCESTER POLYTECHNIC INSTITUTE, 2007.spa
dc.relation.referencesJ. Lan, D. Cheng, D. Cao, and W. Wang, “Silicon nanotube as a promising candidate for hydrogen storage: From the first principle calculations to grand canonical monte carlo simulations,” J. Phys. Chem. C, vol. 112, no. 14, pp. 5598–5604, 2008, doi: 10.1021/jp711754h.spa
dc.relation.referencesK. Aparecida-De-Sousa, O. Resende, A. L. Duarte-Goneli, T. A. De Souza Smaniotto, and D. E. Cabral De Oliveira, “Propriedades termodinâmicas de dessorção de água das sementes de nabo forrageiro,” Acta Sci. - Agron., vol. 37, no. 1, pp. 11–19, 2015, doi: 10.4025/actasciagron.v37i1.19333.spa
dc.relation.referencesO. O. Ajibola, “Thin-layer drying of melon seed,” J. Food Eng., vol. 9, no. 4, pp. 305–320, 1989, doi: 10.1016/0260-8774(89)90037-X.spa
dc.relation.referencesS. S. H. Rizvi, Thermodynamic Properties of Foods in Dehydration, 3rd ed. CRC Press, 2005.spa
dc.relation.referencesM. Kruk and M. Jaroniec, “Gas adsorption characterization of ordered organic-inorganic nanocomposite materials,” Chem. Mater., vol. 13, no. 10, pp. 3169–3183, 2001, doi: 10.1021/cm0101069.spa
dc.relation.referencesJ. A. Teixeira da Silva and J. Dobránszki, “Magnetic fields: how is plant growth and development impacted?,” Protoplasma, vol. 253, no. 2, pp. 231–248, 2016, doi: 10.1007/s00709-015-0820-7.spa
dc.relation.referencesJ. Torres, A. Socorro, and E. Hincapié, “Effect of homogeneous static magnetic treatment on the adsorption capacity in maize seeds (Zea mays L.),” Bioelectromagnetics, vol. 39, no. 5, pp. 343–351, 2018, doi: 10.1002/bem.22120.spa
dc.relation.referencesM. R. Cruz, A. M. D. Canteli, F. A. P. Voll, L. C. B. Zuge, and A. de P. Scheer, “Statistical evaluation of models for sorption and desorption isotherms for barleys,” Acta Sci. - Technol., vol. 40, no. 1, Sep. 2018, doi: 10.4025/actascitechnol.v40i1.37689.spa
dc.relation.referencesC. Igathinathane, A. R. Womac, S. Sokhansanj, and L. O. Pordesimo, “Moisture sorption thermodynamic properties of corn stover fractions,” Trans. ASABE, vol. 50, no. 6, pp. 2151–2160, 2007, doi: 10.13031/2013.24075.spa
dc.relation.referencesF. Cladera-Olivera, L. D. F. Marczak, C. P. Z. Noreña, and A. C. Pettermann, “Modeling water adsorption isotherms of pinhão (Araucaria angustifolia seeds) flour and thermodynamic analysis of the adsorption process,” J. Food Process Eng., vol. 34, no. 3, pp. 826–843, Jun. 2011, doi: 10.1111/j.1745-4530.2009.00437.x.spa
dc.relation.referencesF. A. Adekola and I. A. Oba, “Biosorption of formic and acetic acids from aqueous solution using activated carbon from shea butter seed shells,” Appl. Water Sci., vol. 7, no. 6, pp. 2727–2736, 2017, doi: 10.1007/s13201-016-0491-3.spa
dc.relation.referencesA. Striolo, A. A. Chialvo, P. T. Cummings, and K. E. Gubbins, “Simulated water adsorption in chemically heterogeneous carbon nanotubes,” J. Chem. Phys., vol. 124, no. 7, 2006, doi: 10.1063/1.2171349.spa
dc.relation.referencesN. Arslan and H. Toǧrul, “The fitting of various models to water sorption isotherms of tea stored in a chamber under controlled temperature and humidity,” J. Stored Prod. Res., vol. 42, no. 2, pp. 112–135, 2006, doi: 10.1016/j.jspr.2005.01.001.spa
dc.relation.referencesD. D. Do and H. D. Do, “Model for water adsorption in activated carbon,” Carbon N. Y., vol. 38, no. 5, pp. 767–773, 2000, doi: 10.1016/S0008-6223(99)00159-1.spa
dc.relation.referencesY. He and N. A. Seaton, “Monte Carlo Simulation and Pore-Size Distribution Analysis of the Isosteric Heat of Adsorption of Methane in Activated Carbon,” no. 12, pp. 8297–8301, 2005.spa
dc.relation.referencesP. Pendleton, S. H. Wu, and A. Badalyan, “Activated carbon oxygen content influence on water and surfactant adsorption,” J. Colloid Interface Sci., vol. 246, no. 2, pp. 235–240, 2002, doi: 10.1006/jcis.2001.8052.spa
dc.relation.referencesK. Kaneko, T. Katori, K. Shimizu, N. Shindo, and T. Maeda, “Changes in the molecular adsorption properties of pitch-based activated carbon fibres by air oxidation,” J. Chem. Soc. Faraday Trans., vol. 88, no. 9, pp. 1305–1309, 1992, doi: 10.1039/FT9928801305.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc630 - Agricultura y tecnologías relacionadasspa
dc.subject.lembSimulación por computadores
dc.subject.proposalAdsorciónspa
dc.subject.proposalIsotermasspa
dc.subject.proposalMonte Carlo Gran Canónicospa
dc.subject.proposalTomatespa
dc.subject.proposalExperimentospa
dc.subject.proposalMétodo Computacionalspa
dc.subject.proposalAdsorptioneng
dc.subject.proposalIsothermseng
dc.subject.proposalGrand Canonical Monte Carloeng
dc.subject.proposalTomatoeng
dc.subject.proposalExperimenteng
dc.subject.proposalComputational Methodeng
dc.subject.unescoExperimental methods
dc.titleDiseño de un modelo para simulación computacional de curvas isotérmicas de adsorción de agua en semillas de tomatespa
dc.title.translatedDesign of a model for computational simulation of water adsorption isotherms in tomato seedseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentImagespa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1053832001.2021.pdf
Tamaño:
2.39 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Física

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: