Aproximación transcriptómica y fisiológica para el estudio de los mecanismos moleculares involucrados en la interacción clavel (Dianthus caryophyllus L.) – Fusarium oxysporum f. sp. dianthi
dc.contributor.advisor | Ardila Barrantes, Harold Duban | |
dc.contributor.advisor | Pinzon Velasco, Andrés Mauricio | |
dc.contributor.author | Bustos Caro, Eliana | |
dc.contributor.orcid | Bustos Caro, Eliana [0009-0005-1248-6655] | spa |
dc.contributor.researchgroup | Estudio de Actividades Metabolicas Vegetales | spa |
dc.date.accessioned | 2024-07-03T18:09:06Z | |
dc.date.available | 2024-07-03T18:09:06Z | |
dc.date.issued | 2022-10-07 | |
dc.description | ilustraciones (principalmente a color), diagramas, fotografías | spa |
dc.description.abstract | Vascular wilting caused by Fusarium oxysporum f. sp. dianthi (Fod) in carnations is undoubtedly one of the diseases with the greatest impact on the world flower sector. The molecular study of this plant-pathogen interaction will make it possible to propose new strategies for its early diagnosis and control in crops, and provide tools for the genetic design of varieties resistant to the pathogen. This study presents the first joint study of physiological parameters and comparative transcriptomics using RNAseq in this pathosystem. From the physiological approach, it was found that the mechanisms displayed by the plants of the resistant variety under study included stomatal closure without affecting the production of total chlorophyll, photochemical efficiency of photosystem II, or biomass production. Likewise, it was found that, at least in the varieties studied, leaf temperature can be postulated as an indicator for early diagnosis of the disease. On the other hand, the molecular mechanisms associated with resistance against Fod and displayed by the roots at early times include the activation of genes that code for potential RGA resistance proteins, oxidative burst, cell wall biogenesis, biosynthesis of specialized metabolites, chloroplast metabolism, and, in general, the transcriptional regulation related to stress response genes, defense response, and, to a lesser extent, some genes that participate in the response to osmotic stress, as well as some genes of hormonal pathways. In general, the transcriptional response, which was partially validated by RT-qPCR, is complex and shows components that are reported for the first time in the carnation response to the causal pathogen of vascular wilting. | eng |
dc.description.abstract | El marchitamiento vascular causado por Fusarium oxysporum f. sp. dianthi (Fod) en clavel, es sin duda, una de las enfermedades con mayor impacto en el sector floricultor mundial. El estudio molecular de esta interacción planta-patógeno permitirá plantear nuevas estrategias para su diagnóstico temprano, control en los cultivos y brindar herramientas para el diseño genético de variedades resistentes al patógeno. En esta investigación se presenta el primer estudio conjunto de parámetros fisiológicos y de transcriptómica comparativa usando RNAseq en este patosistema. Desde el abordaje fisiológico, se encontró que los mecanismos desplegados por las plantas de la variedad resistente en estudio, incluyeron cierre estomático sin afectación en la producción de clorofilas totales, ni en la eficiencia fotoquímica del fotosistema II o la producción de biomasa. Igualmente, se encontró que, al menos en las variedades estudiadas, la temperatura foliar puede postularse como un indicador de diagnóstico temprano de la enfermedad. Por otra parte, los mecanismos moleculares asociados a resistencia contra Fod y desplegados por las raíces a tiempos tempranos, incluyen entre otros, la activación de genes que codifican para potenciales proteínas de resistencia RGA, estallido oxidativo, biogénesis de pared celular, biosíntesis de metabolitos especializados y metabolismo del cloroplasto, así como en general, la regulación transcripcional relacionada con genes de respuesta a estrés, respuesta de defensa y en menor medida algunos genes que participan de la respuesta a estrés osmótico, así como algunos genes de las rutas hormonales. En general la respuesta transcripcional, que fue parcialmente validada por RT-qPCR, es compleja y evidencia componentes que son reportados por primera vez en la respuesta del clavel al patógeno causal del marchitamiento vascular (Texto tomado de la fuente). | spa |
dc.description.degreelevel | Doctorado | spa |
dc.description.degreename | Doctor en Ciencias - Bioquímica | spa |
dc.description.methods | En esta investigación se presenta el primer estudio conjunto de parámetros fisiológicos y de transcriptómica comparativa usando RNAseq en este patosistema. Desde el abordaje fisiológico, se encontró que los mecanismos desplegados por las plantas de la variedad resistente en estudio, incluyeron cierre estomático sin afectación en la producción de clorofilas totales, ni en la eficiencia fotoquímica del fotosistema II o la producción de biomasa. Igualmente, se encontró que, al menos en las variedades estudiadas, la temperatura foliar puede postularse como un indicador de diagnóstico temprano de la enfermedad. Por otra parte, los mecanismos moleculares asociados a resistencia contra Fod y desplegados por las raíces a tiempos tempranos, incluyen entre otros, Los análisis con RNAseq permitieron encontrar la activación de genes que codifican para potenciales proteínas de resistencia RGA, estallido oxidativo, biogénesis de pared celular, biosíntesis de metabolitos especializados y metabolismo del cloroplasto, así como en general, la regulación transcripcional relacionada con genes de respuesta a estrés, respuesta de defensa y en menor medida algunos genes que participan de la respuesta a estrés osmótico, así como algunos genes de las rutas hormonales. En general la respuesta transcripcional, que fue parcialmente validada por RT-qPCR, es compleja y evidencia componentes que son reportados por primera vez en la respuesta del clavel al patógeno causal del marchitamiento vascular. | spa |
dc.description.researcharea | Bioquímica de las interacciones Hospedero - Patógeno | spa |
dc.description.sponsorship | Convocatoria Doctorados Nacionales, número 757 – 2016 de Colciencias. Ahora Min-Ciencias | spa |
dc.description.sponsorship | Florval sede QFC S.A.S, Gachancipá, Cundinamarca- Colombia | spa |
dc.format.extent | xiv, 211 páginas, + anexos | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/86376 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Doctorado en Ciencias - Bioquímica | spa |
dc.relation.references | Abd-Elsalam, K. A., Aly, I. N., Abdel-Satar, M. A., Khalil, M. S., & Verreet, J. A. (2003). PCR identification of Fusarium genus based on nuclear ribosomal-DNA sequence data. African Journal of Biotechnology, 2(4), 82–85. https://doi.org/10.4314/ajb.v2i4.14830 | spa |
dc.relation.references | AbuQamar, S., Chen, X., Dhawan, R., Bluhm, B., Salmeron, J., Lam, S., Dietrich, R. A., & Mengiste, T. (2006). Expression profiling and mutant analysis reveals complex regulatory networks involved in Arabidopsis response to Botrytis infection. The Plant Journal, 48(1), 28–44. https://doi.org/10.1111/j.1365-313X.2006.02849.x | spa |
dc.relation.references | Adie, B. A. T., Pérez-Pérez, J., Pérez-Pérez, M. M., Godoy, M., Sánchez-Serrano, J.-J., Schmelz, E. A., & Solano, R. (2007). ABA Is an Essential Signal for Plant Resistance to Pathogens Affecting JA Biosynthesis and the Activation of Defenses in Arabidopsis. The Plant Cell, 19, 1665–1681. https://doi.org/10.1105/tpc.106.048041 | spa |
dc.relation.references | Afzal, A. J., Kim, J. H., & Mackey, D. (2013). The role of NOI-domain containing proteins in plant immune signaling. https://doi.org/10.1186/1471-2164-14-327 | spa |
dc.relation.references | Agrawal, S. (2018). Arabidopsis thaliana as a model organism to study plant-pathogen interactions. Molecular Aspects of Plant-Pathogen Interaction, 1–20. https://doi.org/10.1007/978-981-10-7371-7_1 | spa |
dc.relation.references | Agrios, G. (2005). Fitopatología (Limusa (ed.)). | spa |
dc.relation.references | Aguilar-Bultet, L., & Falquet, L. (2015). Secuenciación y ensamblaje de novo de genomas bacterianos: una alternativa para el estudio de nuevos patógenos. Rev salud Anima., 37(2). http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0253-570X2015000200008 | spa |
dc.relation.references | Aguilar Cruz, M., Hoyos Carvajal, L., & Melgarejo, L. M. (2012). Respuesta fisiologica de la gulupa (Passiflora edulis Sims) frente al ataque por Fusarium spp. En Ecofisiología de la gulupa- (Passiflora edulis Sims) (pp. 91–113). | spa |
dc.relation.references | Ali, S., Ganai, B. A., Kamili, A. N., Bhat, A. A., Mir, Z. A., Bhat, J. A., Tyagi, A., Islam, S. T., Mushtaq, M., Yadav, P., Rawat, S., & Grover, A. (2018). Pathogenesis-related proteins and peptides as promising tools for engineering plants with multiple stress tolerance. Microbiological Research, 212–213, 29–37. https://doi.org/10.1016/j.micres.2018.04.008 | spa |
dc.relation.references | Álvarez, S., Navarro, A., Bañon, S., & Sánchez, M. (2009). Regulated deficit irrigation in potted Dianthus plants: Effect of severe and moderate water stress on growth and physiological response. Scientia horticulturae, 122, 579–585. | spa |
dc.relation.references | Anderson, J. P., Badruzsaufari, E., Schenk, P. M., Manners, J. M., Desmond, O. J., Ehlert, C., Maclean, D. J., Ebert, P. R., & Kazan, K. (2004). Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. The Plant cell, 16(12), 3460–3479. https://doi.org/10.1105/tpc.104.025833 | spa |
dc.relation.references | Andrews, S. (2010). FastQC: a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc | spa |
dc.relation.references | Andrews, Simon. (2016). Babraham Bioinformatics - FastQC A Quality Control tool for High Throughput Sequence Data. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ | spa |
dc.relation.references | Arbeláez-Torres, G. (1987). Enfermedades fungosas y bacteriales del clavel en Colombia. Agronomía Colombiana, IV, 3–8. https://revistas.unal.edu.co/index.php/agrocol/article/viewFile/20913/21822 | spa |
dc.relation.references | Arbelaez, G., Calderon, O. L., Cevallos, F., & Gonzalez, D. (1993). Determinación de las razas fisiologicas de Fusarium oxysporum f.sp. dianthi en clavel en la sabana de Bogotá. Agronomia Colombiana, 10(1), 19–27. https://revistas.unal.edu.co/index.php/agrocol/article/view/21227 | spa |
dc.relation.references | Ardila-Barrantes, H., Baquero, B., & Martínez-Peralta, S. T. (2007). Inducción de la actividad de la enzima fenilalanina amonio liasa en clavel (Dianthus caryophyllus L) por elicitores del hongo Fusarium oxysporum f.sp. Dianthi raza 2. Revista Colombiana de Química, 36(2), 151–167. | spa |
dc.relation.references | Ardila B, H. D., & Higuera, B. L. (2005). Inducción diferencial de polifenoloxidasa y B-1,3-glucanasa en clavel (Dianthus caryophyllus) durante la infección por Fusarium oxysporum f.sp. dianthi raza 2. Acta Biológica Colombiana, 10(2), 61–74. | spa |
dc.relation.references | Ardila, H. D. (2013). CONTRIBUCIÓN AL ESTUDIO DE ALGUNOS COMPONENTES BIOQUÍMICOS Y MOLECULARES DE LA RESISTENCIA DEL CLAVEL (Dianthus caryophyllus L) AL PATÓGENO Fusarium oxysporum f. sp. dianthi (Bogotá D.C). | spa |
dc.relation.references | Ardila, H. D., Martínez, S. T., & Higuera, B. L. (2013). Levels of constitutive flavonoid biosynthetic enzymes in carnation (Dianthus caryophyllus L.) cultivars with differential response to Fusarium oxysporum f. sp. dianthi. Acta Physiologiae Plantarum, 35(4), 1233–1245. https://doi.org/10.1007/s11738-012-1162-0 | spa |
dc.relation.references | Ardila, H. D., Torres, A. M., Martínez, S. T., & Higuera, B. L. (2014). Biochemical and molecular evidence for the role of class III peroxidases in the resistance of carnation (Dianthus caryophyllus L) to Fusarium oxysporum f. sp. dianthi. Physiological and Molecular Plant Pathology, 85, 42–52. https://doi.org/10.1016/j.pmpp.2014.01.003 | spa |
dc.relation.references | Asai, S., Ohta, K., & Yoshioka, H. (2008). MAPK Signaling Regulates Nitric Oxide and NADPH Oxidase-Dependent Oxidative Bursts in Nicotiana benthamiana. THE PLANT CELL ONLINE, 20(5), 1390–1406. https://doi.org/10.1105/tpc.107.055855 | spa |
dc.relation.references | Asai, T., Tena, G., Plotnikova, J., Willmann, M. R., Chiu, W.-L., Gomez-Gomez, L., Boller, T., Ausubel, F. M., & Sheen, J. (2002). MAP kinase signalling cascade in Arabidopsis innate immunity. Nature, 415(6875), 977–983. https://doi.org/10.1038/415977a | spa |
dc.relation.references | Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., Davis, A. P., Dolinski, K., Dwight, S. S., Eppig, J. T., Harris, M. A., Hill, D. P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J. C., Richardson, J. E., Ringwald, M., Rubin, G. M., & Sherlock, G. (2000). Gene Ontology: tool for the unification of biology. Nature Genetics, 25(1), 25–29. https://doi.org/10.1038/75556 | spa |
dc.relation.references | Asmann, Y. W., Klee, E. W., Thompson, E. A., Perez, E. A., Middha, S., Oberg, A. L., Therneau, T. M., Smith, D. I., Poland, G. A., Wieben, E. D., & Kocher, J.-P. A. (2009). 3’ tag digital gene expression profiling of human brain and universal reference RNA using Illumina Genome Analyzer. BMC Genomics, 10(1), 531. https://doi.org/10.1186/1471-2164-10-531 | spa |
dc.relation.references | Asselbergh, B., Achuo, A. E., Höfte, M., & Van Gijsegem, F. (2007). Abscisic acid deficiency leads to rapid activation of tomato defence responses upon infection with Erwinia chrysanthemi. Molecular Plant Pathology, 0(0), 070925014357003-??? https://doi.org/10.1111/j.1364-3703.2007.00437.x | spa |
dc.relation.references | Axtell, M. J., McNellis, T. W., Mudgett, M. B., Hsu, C. S., & Staskawicz, B. J. (2001). Mutational analysis of the Arabidopsis RPS2 disease resistance gene and the corresponding Pseudomonas syringae avrRpt2 avirulence gene. Molecular Plant-Microbe Interactions, 14(2), 181–188. https://doi.org/10.1094/MPMI.2001.14.2.181 | spa |
dc.relation.references | Azcón-Bieto, J., & Talón, M. (2000). Fundamentos de Fisiología Vegetal (McGraw-Hill Interamericana (ed.)). | spa |
dc.relation.references | Baayen, R. P., & Elgersma, D. M. (1985). Colonization and histopathology of susceptible and resistant carnation cultivars infected with Fusarium oxysporum f. sp. dianthi. Netherlands Journal of Plant Pathology, 91(3), 119–135. https://doi.org/10.1007/BF01976386 | spa |
dc.relation.references | Baayen, R. P., Elgersma, D. M., Demmink, J. F., & Sparnaaij, L. D. (1988). Differences in pathogenesis observed among susceptible interactions of carnation with four races of Fusarium oxysporum f.sp. dianthi. Netherlands Journal of Plant Pathology, 94(2), 81–94. https://doi.org/10.1007/BF01998398 | spa |
dc.relation.references | Baayen, R. P., Sparnaaij, L. D., Jansen, J., & Niemann, G. J. (1991). Inheritance of resistance in carnation against Fusarium oxysporum f.sp. dianthi races 1 and 2, in relation to resistance components. Netherlands Journal of Plant Pathology, 97(2), 73–86. https://doi.org/10.1007/BF01974271 | spa |
dc.relation.references | Baayen, R. P., Ouellette, G. B., & Rioux, D. (1996). Compartmentalization of decay in carnations resistant to Fusarium oxysporum f.sp. dianth. Phytopathology , 86 (10). http://agris.fao.org/agris-search/search.do?recordID=US1997049782 | spa |
dc.relation.references | Babu C. V., S., & Gassmann, M. (2016). Assessing integrity of plant RNA with the Agilent 2100 Bioanalyzer System. Agilent Application Note, 5990-8850E. https://www.agilent.com/cs/library/applications/5990-8850EN.pdf | spa |
dc.relation.references | Bacete, L., Schulz, J., Engelsdorf, T., Bartosova, Z., Vaahtera, L., Yan, G., Gerhold, J. M., Ticha, T., Øvstebø, C., Gigli-Bisceglia, N., Johannessen-Starheim, S., Margueritat, J., Kollist, H., Dehoux, T., McAdam, S. A. M., & Hamann, T. (2022). THESEUS1 modulates cell wall stiffness and abscisic acid production in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 119(1). https://doi.org/10.1073/pnas.2119258119 | spa |
dc.relation.references | Baker, N. R. (2008). Chlorophyll Fluorescence: A Probe of Photosynthesis In Vivo. Annual Review of Plant Biology, 59(1), 89–113. https://doi.org/10.1146/annurev.arplant.59.032607.092759 | spa |
dc.relation.references | Bao, F., Azhakanandam, S., & Franks, R. G. (2010). SEUSS and SEUSS-LIKE transcriptional adaptors regulate floral and embryonic development in arabidopsis. Plant Physiology, 152(2), 821–836. https://doi.org/10.1104/pp.109.146183 | spa |
dc.relation.references | Bao, Y., Aggarwal, P., Robbins, N. E., Sturrock, C. J., Thompson, M. C., Tan, H. Q., Tham, C., Duan, L., Rodriguez, P. L., Vernoux, T., Mooney, S. J., Bennett, M. J., & Dinneny, J. R. (2014). Plant roots use a patterning mechanism to position lateral root branches toward available water. Proceedings of the National Academy of Sciences of the United States of America, 111(25), 9319–9324. https://doi.org/10.1073/pnas.1400966111 | spa |
dc.relation.references | Basu, D., Shoots, J. M., & Haswell, E. S. (2020). Interactions between the N- And C-termini of the mechanosensitive ion channel AtMSL10 are consistent with a three-step mechanism for activation. Journal of Experimental Botany, 71(14), 4020–4032. https://doi.org/10.1093/jxb/eraa192 | spa |
dc.relation.references | Beckers, G. J. M., Jaskiewicz, M., Liu, Y., Underwood, W. R., He, S. Y., Zhang, S., & Conrath, U. (2009). Mitogen-activated protein kinases 3 and 6 are required for full priming of stress responses in Arabidopsis thaliana. The Plant cell, 21(3), 944–953. https://doi.org/10.1105/tpc.108.062158 | spa |
dc.relation.references | Belenghi, B., Acconcia, F., Trovato, M., Perazzolli, M., Bocedi, A., Polticelli, F., Ascenzi, P., & Delledonne, M. (2003). AtCYS1, a cystatin from Arabidopsis thaliana, suppresses hypersensitive cell death. Eur.J.Biochem, 270, 2593–2604. https://doi.org/10.1046/j.1432-1033.2003.03630.x | spa |
dc.relation.references | Ben-Yephet, Y., Reuven, M., & Shtienberg, D. (1997). Complete Resistance by Carnation Cultivars to Fusarium Wilt Induced by Fusarium oxysporum f . sp . dianthi Race 2. Plant Disease, 81(7), 777–780. | spa |
dc.relation.references | Ben-Yephet, Y., Reuven, M., Zveibil, A., & Shtienberg, D. (1996). Effects of abiotic variables on the response of carnation cultivars to Fusarium oxysporum f.sp. dianthi. Plant Pathology, 45(1), 98–105. https://doi.org/10.1046/j.1365-3059.1996.d01-102.x | spa |
dc.relation.references | Ben-Yephet, Y., & Shtienberg, D. (1994). Effects of solar radiation and temperature on fusarium wilt in carnation. En Phytopathology (Vol. 84, Número 12, pp. 1416–1421). https://doi.org/10.1094/phyto-84-1416 | spa |
dc.relation.references | Ben-Yephet, Y., Shtienberg, D., Reuven, M., & Mor, Y. (1993). Response of carnation cultivars to Fusarium oxysporum f.sp. dianthi in the field. Netherlands Journal of Plant Pathology, 99(1), 3–12. https://doi.org/10.1007/BF01974780 | spa |
dc.relation.references | Benes, V., Blake, J., & Doyle, K. (2011). Ribo-Zero Gold Kit: improved RNA-seq results after removal of cytoplasmic and mitochondrial ribosomal RNA. Nature methods, 8(11), iii–iv. https://doi.org/10.1038/nmeth.f.352 | spa |
dc.relation.references | Benjamini, Y., & Hochberg, Y. (1995). Controlling The False Discovery Rate - A Practical And Powerful Approach To Multiple Testing. Journal of the Royal Statistical Society, 57, 1(November 1995), 289–300. https://doi.org/10.2307/2346101 | spa |
dc.relation.references | Bensch, K. (2016). Mycobank. International Mycological Association (IMA). http://www.mycobank.org/BioloMICS.aspx?TableKey=14682616000000063&Rec=18372&Fields=All | spa |
dc.relation.references | Berger, S., Sinha, A. K., & Roitsch, T. (2007). Plant physiology meets phytopathology: plant primary metabolism and plant pathogen interactions. Journal of Experimental Botany, 58(15–16), 4019–4026. https://doi.org/10.1093/jxb/erm298 | spa |
dc.relation.references | Berger, Susanne, Papadopoulos, M., Schreiber, U., Kaiser, W., & Roitsch, T. (2004). Complex regulation of gene expression, photosynthesis and sugar levels by pathogen infection in tomato. Physiologia Plantarum, 122(4), 419–428. https://doi.org/10.1111/j.1399-3054.2004.00433.x | spa |
dc.relation.references | Berrocal-Lobo, M., & Molina, A. (2008). Arabidopsis defense response against Fusarium oxysporum. Trends in Plant Science, 13(3), 145–150. https://doi.org/10.1016/j.tplants.2007.12.004 | spa |
dc.relation.references | Bhanu A, N., Singh, M., K, S., & A, H. (2016). Molecular Mapping and Breeding of Physiological Traits. Advances in Plants & Agriculture Research, 3(6), 193–206. https://doi.org/10.15406/apar.2016.03.00120 | spa |
dc.relation.references | Bharath, P., Gahir, S., & Raghavendra, A. S. (2021). Abscisic Acid-Induced Stomatal Closure: An Important Component of Plant Defense Against Abiotic and Biotic Stress. https://doi.org/10.3389/fpls.2021.615114 | spa |
dc.relation.references | Bhattacharyya, D., & Chakraborty, S. (2018). Chloroplast: the Trojan horse in plant–virus interaction. Molecular Plant Pathology, 19(2), 504–518. https://doi.org/10.1111/mpp.12533 | spa |
dc.relation.references | Bigeard, J., Colcombet, J., & Hir, H. (2015). Signaling Mechanisms in Pattern-Triggered Immunity (PTI). Molecular Plant, 8(4), 521–539. https://doi.org/10.1016/J.MOLP.2014.12.022 | spa |
dc.relation.references | Biniaz, Y., Tahmasebi, A., Tahmasebi, A., Riber-Albrectsen, B., Poczai, P., & and Afsharifar, A. (2022). Transcriptome Meta-Analysis Identifies Candidate Hub Genes and Pathways of Pathogen Stress Responses in Arabidopsis thaliana. Biology, 11, 1155. https://doi.org/https://doi.org/10.3390/biology11081155 | spa |
dc.relation.references | Blechert, S., Brodschelm, W., HÖlder, S., Kammerer, L., Kutchan, T.-M., Mueller, M.-J., Xia, Z.-Q., & Zank, M.-H. (1995). The octadecanoic pathway: Signal molecules for the regulation of secondary pathways (phytoalexins/jasmonic acid/12-oxophytodienoic acid/oxylipid cascade/signal transduction). Proc. Natl. Acad. Sci. USA, 92, 4099–4105. https://doi.org/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC41893/pdf/pnas01486-0035.pdf | spa |
dc.relation.references | Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114–2120. https://doi.org/10.1093/bioinformatics/btu170 | spa |
dc.relation.references | Boller, T., & Felix, G. (2009). A Renaissance of Elicitors : Perception of Microbe-Associated Molecular Patterns and Danger Signals by Pattern-Recognition Receptors. https://doi.org/10.1146/annurev.arplant.57.032905.105346 | spa |
dc.relation.references | Bollina, V., Kumaraswamy, G. K., Khushalappa, A., Choo, T. M., Dion, Y., Rioux, S., Faubert, D., & Hamzehzarghani, H. (2010). Mass spectrometry-based metabolomics application to identify quantitative resistance-related metabolites in barley against Fusarium head blight. Molecular Plant Pathology, 11(6), no-no. https://doi.org/10.1111/j.1364-3703.2010.00643.x | spa |
dc.relation.references | Bonfig, K. B., Schreiber, U., Gabler, A., Roitsch, T., & Berger, S. (2006). Infection with virulent and avirulent P. syringae strains differentially affects photosynthesis and sink metabolism in Arabidopsis leaves. Planta, 225(1), 1–12. https://doi.org/10.1007/s00425-006-0303-3 | spa |
dc.relation.references | Bostock, R. M., Pye, M. F., & Roubtsova, T. V. (2014). Predisposition in plant disease: Exploiting the nexus in abiotic and biotic stress perception and response. Annual Review of Phytopathology, 52(June), 517–549. https://doi.org/10.1146/annurev-phyto-081211-172902 | spa |
dc.relation.references | Boursiac, Y., Lee, S. M., Romanowsky, S., Blank, R., Sladek, C., Chung, W. S., & Harper, J. F. (2010). Disruption of the vacuolar calcium-ATPases in arabidopsis results in the activation of a salicylic acid-dependent programmed cell death pathway. Plant Physiology, 154(3), 1158–1171. https://doi.org/10.1104/pp.110.159038 | spa |
dc.relation.references | Buchanan, B. B., Gruissem, W., & Jones, R. L. (2015). Biochemistry & molecular biology of plants. | spa |
dc.relation.references | Cai, S., Chen, G., Wang, Y., Huang, Y., Marchant, D. B., Wang, Y., Yang, Q., Dai, F., Hills, A., Franks, P. J., Nevo, E., Soltis, D. E., Soltis, P. S., Sessa, E., Wolf, P. G., Xue, D., Zhang, G., Pogson, B. J., Blatt, M. R., & Chen, Z. H. (2017). Evolutionary conservation of ABA signaling for stomatal closure. Plant Physiology, 174(2), 732–747. https://doi.org/10.1104/pp.16.01848 | spa |
dc.relation.references | Calderón, R., Navas-Cortés, J. A., Lucena, C., & Zarco-Tejada, P. J. (2013). High-resolution airborne hyperspectral and thermal imagery for early detection of Verticillium wilt of olive using fluorescence, temperature and narrow-band spectral indices. Remote Sensing of Environment, 139, 231–245. https://doi.org/10.1016/j.rse.2013.07.031 | spa |
dc.relation.references | Campbell, C. L., & Laurence V. Madden. (1990). Introduction to plant disease epidemiology (Wiley-Interscience (ed.)). https://trove.nla.gov.au/work/16602642?q&versionId=19483051 | spa |
dc.relation.references | Campos-Bermudez, V. A., Fauguel, C. M., Tronconi, M. A., Casati, P., Presello, D. A., & Andreo, C. S. (2013). Transcriptional and metabolic changes associated to the infection by Fusarium verticillioides in maize inbreds with contrasting ear rot resistance. PloS one, 8(4), e61580. https://doi.org/10.1371/journal.pone.0061580 | spa |
dc.relation.references | Cantero, A., Barthakur, S., Bushart, T. J., Chou, S., Morgan, R. O., Fernández, M. P., Clark, G. B., & Roux, S. J. (2006). Expression profiling of the Arabidopsis annexin gene family during germination, de-etiolation and abiotic stress. Plant Physiology and Biochemistry, 44(1), 13–24. https://doi.org/10.1016/j.plaphy.2006.02.002 | spa |
dc.relation.references | Cao, Y., Meng, X., Koch, C., Jiang, L., Luo, L., Zhang, S., Su, J., & Peck, S. C. (2022). Protein Kinase Signaling Pathways in Plant-Colletotrichum Interaction. Frontiers in Plant Science | www.frontiersin.org, 1, 829645. https://doi.org/10.3389/fpls.2021.829645 | spa |
dc.relation.references | Carmona, E., Vargas, D., Borroto, C. J., López, J., Fernández, A. I., Arencibia, A., & Borras-Hidalgo, O. (2004). cDNA-AFLP analysis of differential gene expression during the interaction between sugarcane and Puccinia melanocephala. Plant Breeding, 123(5), 499–501. https://doi.org/10.1111/j.1439-0523.2004.00935.x | spa |
dc.relation.references | Carmona, S. L., Villarreal-Navarrete, A., Burbano-David, D., Gómez-Marroquín, M., Torres-Rojas, E., & Soto-Suárez, M. (2021). Protection of tomato plants against Fusarium oxysporum f. sp. lycopersici induced by chitosan. Revista Colombiana de Ciencias Hortícolas, 15(3), 0–2. https://doi.org/10.17584/rcch.2021v15i3.12822 | spa |
dc.relation.references | Castellanos-Dominguez, O., Fonseca-Rodriguez, S., & Buriticá-Ospina, S. (2010). Agenda Prospectiva de Investigación y Desarrollo Tecnológico para la Cadena Productiva de Flores y Follajes con Énfasis en Clavel (MINISTERIO DE AGRICULTURA Y DESARROLLO RURAL & U. N. DE COLOMBIA (eds.)). http://www.bdigital.unal.edu.co/2073/1/AGENDA_FLORES_Giro.pdf%5Cnhttp://www.minagricultura.gov.co/archivos/agenda_prospectiva_de_investigacion_y_desarrollo_tecnologico_para_la_cadena_productiva_de_flores_y_follajes_con_enfasis_en_clavel.pdf | spa |
dc.relation.references | Castilla V., Y., & González V., M. E. (2008). Micropropagación de clavel español (Dianthus caryophyllus L.) con el empleo de Biobrás-16. | spa |
dc.relation.references | Catanzariti, A.-M., Lim, G. T. T., & Jones, D. A. (2015). The tomato I-3 gene: a novel gene for resistance to Fusarium wilt disease. New Phytologist, 207(1), 106–118. https://doi.org/10.1111/nph.13348 | spa |
dc.relation.references | Cayalvizhi, B., Nagarajan, P., Raveendran, M., Rabindran, R., Jagadeesh Selvam, N., Kannan Bapu, J. R., & Senthil, N. (2015). Unraveling the responses of mungbean (Vigna radiata) to mungbean yellow mosaic virus through 2D-protein expression. Physiological and Molecular Plant Pathology, 90(March), 65–77. https://doi.org/10.1016/j.pmpp.2015.03.001 | spa |
dc.relation.references | Chand, S. K., Nanda, S., Rout, E., Mohanty, J. N., Mishra, R., & Joshi, R. K. (2016). De novo sequencing and characterization of defense transcriptome responsive to Pythium aphanidermatum infection in Curcuma longa L. Physiological and Molecular Plant Pathology, 94, 27–37. https://doi.org/10.1016/j.pmpp.2016.03.008 | spa |
dc.relation.references | Chang, Y., Sun, F., Sun, S., Wang, L., Wu, J., & Zhu, Z. (2021). Transcriptome Analysis of Resistance to Fusarium Wilt in Mung Bean (Vigna radiata L.). Frontiers in Plant Science, 12(June), 1–12. https://doi.org/10.3389/fpls.2021.679629 | spa |
dc.relation.references | Chapelle, A., Morreel, K., Vanholme, R., Le-Bris, P., Morin, H., Lapierre, C., Boerjan, W., Jouanin, L., & Demont-Caulet, N. (2012). Impact of the Absence of Stem-Specific b-Glucosidases on Lignin and Monolignols 1[W]. Plant physiology, 160, 1204–1217. https://doi.org/10.1104/pp.112.203364 | spa |
dc.relation.references | Chávez-Arias, C. C., Gómez-Caro, S., & Restrepo-Díaz, H. (2019). Physiological, Biochemical and Chlorophyll Fluorescence Parameters of Physalis Peruviana L. Seedlings Exposed to Different Short-Term Waterlogging Periods and Fusarium Wilt Infection. Agronomy, 9(5), 213. https://doi.org/10.3390/agronomy9050213 | spa |
dc.relation.references | Chen, Y. C., Wong, C. L., Muzzi, F., Vlaardingerbroek, I., Kidd, B. N., & Schenk, P. M. (2014). Root defense analysis against Fusarium oxysporum reveals new regulators to confer resistance. Scientific reports, 4, 5584. https://doi.org/10.1038/srep05584 | spa |
dc.relation.references | Chi, Y. H., Koo, S. S., Oh, H. T., Lee, E. S., Park, J. H., Phan, K. A. T., Wi, S. D., Bae, S. Bin, Paeng, S. K., Chae, H. B., Kang, C. H., Kim, M. G., Kim, W. Y., Yun, D. J., & Lee, S. Y. (2019). The physiological functions of universal stress proteins and their molecular mechanism to protect plants from environmental stresses. Frontiers in Plant Science, 10(June), 1–13. https://doi.org/10.3389/fpls.2019.00750 | spa |
dc.relation.references | Chiocchetti, A., Bernardo, I., Daboussi, M. J., Garibaldi, A., Gullino, M. L., Langin, T., & Migheli, Q. (1999). Detection of Fusarium oxysporum f. sp. dianthi in Carnation Tissue by PCR Amplification of Transposon Insertions. Phytopathology, 89(12), 1169–1175. https://doi.org/10.1094/PHYTO.1999.89.12.1169 | spa |
dc.relation.references | Chisholm, S. T., Coaker, G., Day, B., & Staskawicz, B. J. (2006). Host-microbe interactions: Shaping the evolution of the plant immune response. Cell, 124(4), 803–814. https://doi.org/10.1016/j.cell.2006.02.008 | spa |
dc.relation.references | Choi, H. W., Lee, D. H., & Hwang, B. K. (2009). The pepper calmodulin gene CaCaM1 is involved in reactive oxygen species and nitric oxide generation required for cell death and the defense response. Molecular Plant-Microbe Interactions, 22(11), 1389–1400. https://doi.org/10.1094/MPMI-22-11-1389 | spa |
dc.relation.references | Chou, H.-M., Bundock, N., Rolfe, S. A., & Scholes, J. D. (2000). Infection of Arabidopsis thaliana leaves with Albugo candida (white blister rust) causes a reprogramming of host metabolism. Molecular Plant Pathology, 1(2), 99–113. https://doi.org/10.1046/j.1364-3703.2000.00013.x | spa |
dc.relation.references | Christmann, A., Grill, E., & Huang, J. (2013). Hydraulic signals in long-distance signaling. Current Opinion in Plant Biology, 16(3), 293–300. https://doi.org/10.1016/j.pbi.2013.02.011 | spa |
dc.relation.references | Christmann, A., Weiler, E. W., Steudle, E., & Grill, E. (2007). A hydraulic signal in root-to-shoot signalling of water shortage. Plant Journal, 52(1), 167–174. https://doi.org/10.1111/j.1365-313X.2007.03234.x | spa |
dc.relation.references | Chu, Y., & Corey, D. R. (2012). RNA sequencing: platform selection, experimental design, and data interpretation. Nucleic acid therapeutics, 22(4), 271–274. https://doi.org/10.1089/nat.2012.0367 | spa |
dc.relation.references | Clematis, F., Tedeschini, J., Dolci, M., Lanzotti, V., Cangelosi, B., Fascella, S., & Curir, P. (2011). Phenol composition and susceptibility to Fusarium oxysporum dianthi in carnation. Journal of life Sciences, 5, 921–925. https://www.mendeley.com/viewer/?fileId=7d9dc12e-3964-2b19-17ed-295823770626&documentId=c7374b53-4b8d-3c51-b99c-da7d96d9085b | spa |
dc.relation.references | Cock, P. J. A., Fields, C. J., Goto, N., Heuer, M. L., & Rice, P. M. (2010). The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants. Nucleic Acids Research, 38(6), 1767–1771. https://doi.org/10.1093/nar/gkp1137 | spa |
dc.relation.references | Conesa, A., Madrigal, P., Tarazona, S., Gomez-Cabrero, D., Cervera, A., McPherson, A., Szcześniak, M. W., Gaffney, D. J., Elo, L. L., Zhang, X., & Mortazavi, A. (2016). A survey of best practices for RNA-seq data analysis. Genome Biology, 17(1), 1–19. https://doi.org/10.1186/s13059-016-0881-8 | spa |
dc.relation.references | Corwin, J. A., & Kliebenstein, D. J. (2017). Quantitative resistance: More than just perception of a pathogen. Plant Cell, 29(4), 655–665. https://doi.org/10.1105/tpc.16.00915 | spa |
dc.relation.references | Couto, D., Niebergall, R., Liang, X., Bücherl, C. A., Sklenar, J., Macho, A. P., Ntoukakis, V., Derbyshire, P., Altenbach, D., Maclean, D., Robatzek, S., Uhrig, J., Menke, F., Zhou, J. M., & Zipfel, C. (2016). The Arabidopsis Protein Phosphatase PP2C38 Negatively Regulates the Central Immune Kinase BIK1. PLoS Pathogens, 12(8), 1–24. https://doi.org/10.1371/journal.ppat.1005811 | spa |
dc.relation.references | Creations, G. B.-O. P. (2015). Blog ARN-Sec | Transcriptoma Investigación y Noticias de la Industria. http://www.rna-seqblog.com/ | spa |
dc.relation.references | Cuervo-Plata, D. C. (2017). Estudio bioquímico y molecular de algunas enzimas asociadas al stress oxidativo en apoplasto de clavel (Dianthus caryophyllus L.) durante su interacción con Fusarium oxysporum f.sp. dianthi. Universidad Nacional de Colombia, sede Bogotá. | spa |
dc.relation.references | Curir, P., Dolci, M., & Galeotti, F. (2005). A phytoalexin-like flavonol involved in the carnation (Dianthus caryophyllus)-Fusarium oxysporum f. sp. dianthi pathosystem. Journal of Phytopathology, 153(2), 65–67. https://doi.org/10.1111/j.1439-0434.2004.00916.x | spa |
dc.relation.references | Curir, Paolo, Dolci, M., Lanzotti, V., & Taglialatela-Scafati, O. (2001). Kaempferide triglycoside: A possible factor of resistance of carnation (Dianthus caryophyllus) to Fusarium oxysporum f. sp. dianthi. Phytochemistry, 56(7), 717–721. https://doi.org/10.1016/S0031-9422(00)00488-X | spa |
dc.relation.references | Damer, C. K., Bayeva, M., Hahn, E. S., Rivera, J., & Socec, C. I. (2005). Copine A, a calcium-dependent membrane-binding protein, transiently localizes to the plasma membrane and intracellular vacuoles in Dictyostelium. BMC Cell Biology, 6, 1–18. https://doi.org/10.1186/1471-2121-6-46 | spa |
dc.relation.references | Davidson, N. M., Hawkins, A. D. K., & Oshlack, A. (2017). SuperTranscripts: A data driven reference for analysis and visualisation of transcriptomes. Genome Biology, 18(1), 1–10. https://doi.org/10.1186/s13059-017-1284-1 | spa |
dc.relation.references | Davidson, N. M., & Oshlack, A. (2018). Necklace: combining reference and assembled transcriptomes for more comprehensive RNA-Seq analysis. GigaScience, 7(5), 1–6. https://doi.org/10.1093/gigascience/giy045 | spa |
dc.relation.references | Davidson, R. M., Reeves, P. A., Manosalva, P. M., & Leach, J. E. (2009). Germins : A diverse protein family important for crop improvement. Plant Science, 177, 499–510. https://doi.org/10.1016/j.plantsci.2009.08.012 | spa |
dc.relation.references | Dellagi, A., Heilbronn, J., Avrova, A. O., Montesano, M., Palva, E. T., Stewart, H. E., Toth, I. K., Cooke, D. E. L., Lyon, G. D., & Birch, P. R. J. (2000). A Potato Gene Encoding a WRKY-like Transcription Factor Is Induced in Interactions with Erwinia carotovora subsp. atroseptica and Phytophthora infestans and Is Coregulated with Class I Endochitinase Expression. Molecular Plant-Microbe Interactions, 13(10), 1092–1101. https://doi.org/10.1094/MPMI.2000.13.10.1092 | spa |
dc.relation.references | Delledonne, M., Zeier, J., Marocco, A., & Lamb, C. (2001). Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proceedings of the National Academy of Sciences of the United States of America, 98(23), 13454–13459. https://doi.org/10.1073/pnas.231178298 | spa |
dc.relation.references | Deng, S., Ma, J., Zhang, L., Chen, F., Sang, Z., Jia, Z., & Ma, L. (2019). De novo transcriptome sequencing and gene expression profiling of Magnolia wufengensis in response to cold stress. BMC Plant Biology, 19(1), 321. https://doi.org/10.1186/s12870-019-1933-5 | spa |
dc.relation.references | Di Pietro, A., Madrid, M. P., Caracuel, Z., Delgado-Jarana, J., & Roncero, M. I. G. (2003). Fusarium oxysporum: exploring the molecular arsenal of a vascular wilt fungus. Molecular Plant Pathology, 4(5), 315–325. https://doi.org/10.1046/j.1364-3703.2003.00180.x | spa |
dc.relation.references | Diaz-Puentes, L. N. (2012). RESISTENCIA SISTÉMICA ADQUIRIDA MEDIADA POR EL ÁCIDO SALICÍLICO. Biotecnología en el sector agropecuario y agroindustrial, 10(2), 257–267. http://www.scielo.org.co/pdf/bsaa/v10n2/v10n2a30.pdf | spa |
dc.relation.references | Dihazi, A., Serghini, M. A., Jaiti, F., Daayf, F., Driouich, A., Dihazi, H., & El Hadrami, I. (2011). Structural and Biochemical Changes in Salicylic-Acid-Treated Date Palm Roots Challenged with Fusarium oxysporum f. sp. albedinis. Journal of Pathogens, 2011, 1–9. https://doi.org/10.4061/2011/280481 | spa |
dc.relation.references | Dong, J., Chen, C., & Chen, Z. (2003). Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Molecular Biology, 51(1), 21–37. https://doi.org/10.1023/A:1020780022549 | spa |
dc.relation.references | Dong, X., Ling, N., Wang, M., Shen, Q., & Guo, S. (2012). Fusaric acid is a crucial factor in the disturbance of leaf water imbalance in Fusarium-infected banana plants. Plant Physiology and Biochemistry, 60, 171–179. https://doi.org/10.1016/j.plaphy.2012.08.004 | spa |
dc.relation.references | Dong, X., Xiong, Y., Ling, N., Shen, Q., & Guo, S. (2014). Fusaric acid accelerates the senescence of leaf in banana when infected by Fusarium. World Journal of Microbiology and Biotechnology, 30(4), 1399–1408. https://doi.org/10.1007/s11274-013-1564-1 | spa |
dc.relation.references | Dowd, C., Wilson, I. W., & McFadden, H. (2004). Gene Expression Profile Changes in Cotton Root and Hypocotyl Tissues in Response to Infection with Fusarium oxysporum f. sp. vasinfectum. Molecular Plant-Microbe Interactions, 17(6), 654–667. https://doi.org/10.1094/MPMI.2004.17.6.654 | spa |
dc.relation.references | Duan, G., Christian, N., Schwachtje, J., Walther, D., & Ebenhöh, O. (2013). The metabolic interplay between plants and phytopathogens. Metabolites, 3(1), 1–23. https://doi.org/10.3390/metabo3010001 | spa |
dc.relation.references | Dunwell, J. M., Gibbings, J. G., Mahmood, T., & Saqlan Naqvi, S. M. (2008). Germin and germin-like proteins: Evolution, structure, and function. Critical Reviews in Plant Sciences, 27(5), 342–375. https://doi.org/10.1080/07352680802333938 | spa |
dc.relation.references | Ebrahim, S., Usha, K., & Singh, B. (2011). Pathogenesis Related (PR) Proteins in Plant Defense Mechanism Pathogenesis-Related (PR) Proteins. Division of Fruist and Horticultural Technology, Memories, 1043–1054. http://www.formatex.info/microbiology3/book/1043-1054.pdf | spa |
dc.relation.references | Endah, R., Beyene, G., Kiggundu, A., van den Berg, N., Schlüter, U., Kunert, K., & Chikwamba, R. (2008). Elicitor and Fusarium-induced expression of NPR1-like genes in banana. Plant Physiology and Biochemistry, 46(11), 1007–1014. https://doi.org/10.1016/j.plaphy.2008.06.007 | spa |
dc.relation.references | Eulgem, T., Rushton, P. J., Robatzek, S., & Somssich, I. E. (2000). The WRKY superfamily of plant transcription factors. Trends in plant science, 5(5), 199–206. https://doi.org/10.1016/S1360-1385(00)01600-9 | spa |
dc.relation.references | Ewels, P., Magnusson, M., Lundin, S., & Käller, M. (2016). MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics, 32(19), 3047–3048. https://doi.org/doi: 10.1093/bioinformatics/btw354 | spa |
dc.relation.references | Eyal, Y., Sagee, O., & Fluhr, R. (1992). Dark-induced accumulation of a basic pathogenesis-related (PR-1) transcript and a light requirement for its induction by ethylene. Plant molecular biology, 19(4), 589–599. http://www.ncbi.nlm.nih.gov/pubmed/1627772 | spa |
dc.relation.references | Fagard, M., Launay, A., Clément, G., Courtial, J., Dellagi, A., Farjad, M., Krapp, A., Soulié, M. C., & Masclaux-Daubresse, C. (2014). Nitrogen metabolism meets phytopathology. En Journal of Experimental Botany (Vol. 65, Número 19). https://doi.org/10.1093/jxb/eru323 | spa |
dc.relation.references | Fang, Z., & Cui, X. (2011). Design and validation issues in RNA-seq experiments. Briefings in Bioinformatics, 12(3), 280–287. https://doi.org/10.1093/bib/bbr004 | spa |
dc.relation.references | Farmer, E. E., Alméras, E., & Krishnamurthy, V. (2003). Jasmonates and related oxylipins in plant responses to pathogenesis and herbivory. Current Opinion in Plant Biology, 6(4), 372–378. https://doi.org/10.1016/S1369-5266(03)00045-1 | spa |
dc.relation.references | Farquhar, G. D., & Sharkey, T. D. (1982). Stomatal Conductance and Photosynthesis. Annual Review of Plant Physiology, 33(1), 317–345. https://doi.org/10.1146/annurev.pp.33.060182.001533 | spa |
dc.relation.references | Forouhar, F., Yang, Y., Kumar, D., Chen, Y., Fridman, E., Park, S. W., Chiang, Y., Acton, T. B., Montelione, G. T., Pichersky, E., Klessig, D. F., & Tong, L. (2005). Structural and biochemical studies identify tobacco SABP2 as a methyl salicylate esterase and implicate it in plant innate immunity. Proceedings of the National Academy of Sciences of the United States of America, 102(5), 1773–1778. https://doi.org/10.1073/pnas.0409227102 | spa |
dc.relation.references | Francesconi, S., Harfouche, A., Maesano, M., & Balestra, G. M. (2021). UAV-Based Thermal, RGB Imaging and Gene Expression Analysis Allowed Detection of Fusarium Head Blight and Gave New Insights Into the Physiological Responses to the Disease in Durum Wheat. Frontiers in Plant Science, 12(April), 1–19. https://doi.org/10.3389/fpls.2021.628575 | spa |
dc.relation.references | Fujii, H., Verslues, P. E., & Zhu, J.-K. (2011). Arabidopsis decuple mutant reveals the importance of SnRK2 kinases in osmotic stress responses in vivo. PNAS, 108(4), 1717–1722. | spa |
dc.relation.references | Fujimoto, S. Y., Ohta, M., Usui, A., Shinshi, H., & Ohme-Takagi, M. (2000). Arabidopsis Ethylene-Responsive Element Binding Factors Act as Transcriptional Activators or Repressors of GCC Box-Mediated Gene Expression. En The Plant Cell (Vol. 12). https://academic.oup.com/plcell/article/12/3/393/6008755 | spa |
dc.relation.references | Galeotti, F., Barile, E., Curir, P., Dolci, M., & Lanzotti, V. (2008). Flavonoids from carnation (Dianthus caryophyllus) and their antifungal activity. Phytochemistry Letters, 1(1), 44–48. https://doi.org/10.1016/j.phytol.2007.10.001 | spa |
dc.relation.references | Gao, M., Wang, X., Wang, D., Xu, F., Ding, X., Zhang, Z., Bi, D., Cheng, Y. T., Chen, S., Li, X., & Zhang, Y. (2009). Regulation of Cell Death and Innate Immunity by Two Receptor-like Kinases in Arabidopsis. Cell Host and Microbe, 6(1), 34–44. https://doi.org/10.1016/j.chom.2009.05.019 | spa |
dc.relation.references | Gechev, T. S., Van Breusegem, F., Stone, J. M., Denev, I., & Laloi, C. (2006). Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. BioEssays, 28(11), 1091–1101. https://doi.org/10.1002/bies.20493 | spa |
dc.relation.references | Geissmann, M., Frey, T., & Ruffner, H. . (1991). Occurrence and properties of acid invertase in cultures of Botrytis cinerea. Mycological Research, 95(11), 1321–1327. https://doi.org/10.1016/S0953-7562(09)80584-4 | spa |
dc.relation.references | George, A. (2005). Introducción a la fitopatología (Limusa (ed.)). | spa |
dc.relation.references | Glazebrook, J. (2005). Contrasting Mechanisms of Defense Against Biotrophic and Necrotrophic Pathogens. Annual Review of Phytopathology, 43(1), 205–227. https://doi.org/10.1146/annurev.phyto.43.040204.135923 | spa |
dc.relation.references | Gong, Q., Wang, Y., Jin, Z., Hong, Y., & Liu, Y. (2022). Transcriptional and post-transcriptional regulation of RNAi-related gene expression during plant-virus interactions. Stress Biology, 2, 33. https://doi.org/10.1007/s44154-022-00057-y | spa |
dc.relation.references | Gonneau, M., Desprez, T., Martin, M., Doblas, V. G., Bacete, L., Miart, F., Sormani, R., Hématy, K., Renou, J., Landrein, B., Murphy, E., Van De Cotte, B., Vernhettes, S., De Smet, I., & Höfte, H. (2018). Receptor Kinase THESEUS1 Is a Rapid Alkalinization Factor 34 Receptor in Arabidopsis. Current Biology, 28(15), 2452-2458.e4. https://doi.org/10.1016/j.cub.2018.05.075 | spa |
dc.relation.references | González-Coronel, J. M., & Guevara-García, Á. A. (2021). La participación de las cinasas de proteínas activadas por mitógenos en la señalización por hormonas en Arabidopsis thaliana L. TIP Revista Especializada en Ciencias Químico-Biológicas, 24(October 2021), 0–14. https://doi.org/10.22201/fesz.23958723e.2021.368 | spa |
dc.relation.references | Gonzalez-Moreno, S., Perales-Vela, H., & Salcedo-Alvarez, M. O. (2008). La fluorescencia de la clorofila a como herramienta en la investigación de efectos tóxicos en el aparato fotosintético de plantas y algas. REB, 27(4), 119–129. | spa |
dc.relation.references | Goossens, J., Mertens, J., & Goossens, A. (2017). Role and functioning of bHLH transcription factors in jasmonate signalling. Journal of Experimental Botany, 68(6), 1333–1347. https://doi.org/doi:10.1093/jxb/erw440 | spa |
dc.relation.references | Gorshkov, V., & Tsers, I. (2021). Plant susceptible responses: the underestimated side of plant-pathogen interactions. https://doi.org/10.1111/brv.12789 | spa |
dc.relation.references | Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I., Adiconis, X., Fan, L., Raychowdhury, R., Zeng, Q., Chen, Z., Mauceli, E., Hacohen, N., Gnirke, A., Rhind, N., di Palma, F., Birren, B. W., Nusbaum, C., Lindblad-Toh, K., … Regev, A. (2011). Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature biotechnology, 29(7), 644–652. https://doi.org/10.1038/nbt.1883 | spa |
dc.relation.references | Griffith, M., Griffith, O. L., Mwenifumbo, J., Goya, R., Morrissy, A. S., Morin, R. D., Corbett, R., Tang, M. J., Hou, Y.-C., Pugh, T. J., Robertson, G., Chittaranjan, S., Ally, A., Asano, J. K., Chan, S. Y., Li, H. I., McDonald, H., Teague, K., Zhao, Y., … Marra, M. A. (2010). Alternative expression analysis by RNA sequencing. Nature Methods, 7(10), 843–847. https://doi.org/10.1038/nmeth.1503 | spa |
dc.relation.references | Groenewald, S. (2005). Biology , pathogenicity and diversity of Fusarium oxysporum f . sp . cubense (Número November). University of Pretoria. | spa |
dc.relation.references | Gudesblat, G. E., Iusem, N. D., & Morris, P. C. (2007). Guard cell-specific inhibition of Arabidopsis MPK3 expression causes abnormal stomatal responses to abscisic acid and hydrogen peroxide. New Phytologist, 173(4), 713–721. https://doi.org/10.1111/j.1469-8137.2006.01953.x | spa |
dc.relation.references | Gullino, M. L., Daughtrey, M. L., Garibaldi, A., & Elmer, W. H. (2015). Fusarium wilts of ornamental crops and their management. Crop Protection, 73, 50–59. https://doi.org/10.1016/j.cropro.2015.01.003 | spa |
dc.relation.references | Gupta, V., Raghuvanshi, S., Gupta, A., Saini, N., Gaur, A., Khan, M. S., Gupta, R. S., Singh, J., Duttamajumder, S. K., Srivastava, S., Suman, A., Khurana, J. P., Kapur, R., & Tyagi, A. K. (2010). The water-deficit stress- and red-rot-related genes in sugarcane. Functional & Integrative Genomics, 10(2), 207–214. https://doi.org/10.1007/s10142-009-0144-9 | spa |
dc.relation.references | Hai, N. N., Chuong, N. N., Tu, N. H. C., Kisiala, A., Hoang, X. L. T., & Thao, N. P. (2020). Role and regulation of cytokinins in plant response to drought stress. Plants, 9(4), 10–12. https://doi.org/10.3390/plants9040422 | spa |
dc.relation.references | Halim, V. A., Vess, A., Scheel, D., & Rosahl, S. (2006). The Role of Salicylic Acid and Jasmonic Acid in Pathogen Defence. Plant Biology, 8(3), 307–313. https://doi.org/10.1055/s-2006-924025 | spa |
dc.relation.references | Hamel, L.-P., Nicole, M.-C., Sritubtim, S., Morency, M.-J., Ellis, M., Ehlting, J., Beaudoin, N., Barbazuk, B., Klessig, D., Lee, J., Martin, G., Mundy, J., Ohashi, Y., Scheel, D., Sheen, J., Xing, T., Zhang, S., Seguin, A., & Ellis, B. E. (2006). Ancient signals: comparative genomics of plant MAPK and MAPKK gene families. Trends in Plant Science, 11(4), 192–198. https://doi.org/10.1016/j.tplants.2006.02.007 | spa |
dc.relation.references | Hara, K., Yagi, M., Kusano, T., & Sano, H. (2000). Rapid systemic accumulation of transcripts encoding a tobacco WRKY transcription factor upon wounding. Molecular & general genetics : MGG, 263(1), 30–37. http://www.ncbi.nlm.nih.gov/pubmed/10732671 | spa |
dc.relation.references | Harrison, R. D., Daniell, J. W., & Cheshire, J. M. J. (1989). Net photosynthesis and stomatal conductance of peach seedlings and cuttings in response to changes in soil water potential. Journal of the American Society for Horticultural Science (USA). http://agris.fao.org/agris-search/search.do?recordID=US9021821 | spa |
dc.relation.references | Heil, M., & Bostock, R. M. (2002). Induced systemic resistance (ISR) against pathogens in the context of induced plant defences. Annals of botany, 89(5), 503–512. https://doi.org/10.1093/AOB/MCF076 | spa |
dc.relation.references | Hernández-Blanco, C., Feng, D. X., Hu, J., Sánchez-Vallet, A., Deslandes, L., Llorente, F., Berrocal-Lobo, M., Keller, H., Barlet, X., Sánchez-Rodríguez, C., Anderson, L. K., Somerville, S., Marco, Y., & Molina, A. (2007). Impairment of Cellulose Synthases Required for Arabidopsis Secondary Cell Wall Formation Enhances Disease Resistance. The Plant Cell, 19, 890–903. https://doi.org/10.1105/tpc.106.048058 | spa |
dc.relation.references | Hernandez-Escribano, L., Visser, E. A., Iturritxa, E., Raposo, R., & Naidoo, S. (2020). The transcriptome of Pinus pinaster under Fusarium circinatum challenge. BMC Genomics, 21(1), 1–18. https://doi.org/10.1186/s12864-019-6444-0 | spa |
dc.relation.references | Higuera, B. L. (2001). Contribución al estudio de la participación de los compuestos fenólicos en los mecanismos de la interacción clavel Dianthus caryophyllus L- Fusarium oxysporum f. sp. dianthi. (F. De Ciencias (ed.); Tesis de D). Universidad Nacional de Colombia. | spa |
dc.relation.references | Higuera, B. L., & De Gómez, V. M. (1996). Contribution of HPLC to the Study of the Defense Mechanisms Acting in Carnation (Dianthus caryophyllus L.) Roots on Infection with Fusarium oxysporum f. sp. Dianthi. HRC Journal of High Resolution Chromatography, 19(12), 706–708. https://doi.org/10.1002/jhrc.1240191213 | spa |
dc.relation.references | Higuera, B. L., & Ebrahim-Nesbat, F. (1999). Study of vascular root responses as defense mechanisms in carnation resistant or susceptible to Fusarium oxysporum f. sp. dianthi by transmission electron microscopy. Acta Horticulturae, 482, 101–108. https://doi.org/10.17660/ActaHortic.1999.482.14 | spa |
dc.relation.references | Holley, S. R., Yalamanchili, R. D., Moura, D. S., Ryan, C. A., & Stratmann, J. W. (2003). Convergence of signaling pathways induced by systemin, oligosaccharide elicitors, and ultraviolet-B radiation at the level of mitogen-activated protein kinases in Lycopersicon peruvianum suspension-cultured cells. Plant physiology, 132(4), 1728–1738. https://doi.org/10.1104/PP.103.024414 | spa |
dc.relation.references | Holmquist, L., Dölfors, F., Fogelqvist, J., Cohn, J., Kraft, T., & Dixelius, C. (2021). Major latex protein-like encoding genes contribute to Rhizoctonia solani defense responses in sugar beet. Molecular Genetics and Genomics, 296(1), 155–164. https://doi.org/10.1007/s00438-020-01735-0 | spa |
dc.relation.references | Hossain, M. A., Wani, S. H., Bhattacharjee, S., Burritl, D. J., & Tran, L. S. P. (2016). Drought stress tolerance in plants, vol 1: Physiology and biochemistry. En Drought Stress Tolerance in Plants, Vol 1: Physiology and Biochemistry (Vol. 1, pp. 1–526). https://doi.org/10.1007/978-3-319-28899-4 | spa |
dc.relation.references | Hu, C., Zhu, Y., Cui, Y., Cheng, K., Liang, W., Wei, Z., Zhu, M., Yin, H., Zeng, L., Xiao, Y., Lv, M., Yi, J., Hou, S., He, K., Li, J., & Gou, X. (2018). A group of receptor kinases are essential for CLAVATA signalling to maintain stem cell homeostasis. Nature Plants, 4(4), 205–211. https://doi.org/10.1038/s41477-018-0123-z | spa |
dc.relation.references | Huot, B., Jian, Y., & Beronda L. Montgomery, S. Y. H. (2014). Growth–Defense Tradeoffs in Plants: A Balancing Act to Optimize Fitness. Molecular Plant, 7, 1267–1287. https://doi.org/https://doi.org/10.1093/mp/ssu049 | spa |
dc.relation.references | Imbeaud, S., Graudens, E., Boulanger, V., Barlet, X., Zaborski, P., Eveno, E., Mueller, O., Schroeder, A., & Auffray, C. (2005). Towards standardization of RNA quality assessment using user-independent classifiers of microcapillary electrophoresis traces. Nucleic Acids Research, 33(6), 1–12. https://doi.org/10.1093/nar/gni054 | spa |
dc.relation.references | Incremona, M. E., González, P., Pioli, R. N., & Salinas, A. R. (2014). Infection of maize silks by a native Fusarium ( Fusarium graminearum ) isolate in Argentina. 30 (3), 203–211. | spa |
dc.relation.references | ITC, T. M. (2021). Lista de los mercados importadores para un producto exportado por Colombia en 2020 Producto : 060312 Claveles " flores y capullos ", cortados para ramos o adornos , frescos. https://www.trademap.org/Country_SelProductCountry.aspx?nvpm=3%7C170%7C%7C%7C%7C060312%7C%7C%7C6%7C1%7C1%7C2%7C1%7C1%7C2%7C1%7C1%7C1 | spa |
dc.relation.references | Jain, M. (2012). Next-generation sequencing technologies for gene expression profiling in plants. Briefings in Functional Genomics, 11(1), 63–70. https://doi.org/10.1093/bfgp/elr038 | spa |
dc.relation.references | Jalmi, S. K., & Sinha, A. K. (2015). ROS mediated MAPK signaling in abiotic and biotic stress- striking similarities and differences. Frontiers in plant science, 6, 769. https://doi.org/10.3389/fpls.2015.00769 | spa |
dc.relation.references | Jayamohan, N. S., Patil, S. V., & Kumudini, B. S. (2018). Reactive oxygen species (ROS) and antioxidative enzyme status in Solanum lycopersicum on priming with fluorescent Pseudomonas spp. against Fusarium oxysporum. Biology, 73(11), 1073–1082. https://doi.org/10.2478/s11756-018-0125-3 | spa |
dc.relation.references | Jiménez-Suancha, S. C., Alvarado S, O. H., & Balaguera-López, H. E. (2016). Fluorescencia como indicador de estrés en Helianthus annuus L . Una revisión Fluorescence as an indicator of stress in Helianthus annuus L . A review. Revista Colombiana de ciencias hortícolas, 9(1), 149–160. https://doi.org/Doi: http://dx.doi.org/10.17584/rcch.2015v9i1.3753 | spa |
dc.relation.references | Johnson, M. T. J., Carpenter, E. J., Tian, Z., Bruskiewich, R., Burris, J. N., Carrigan, C. T., Chase, M. W., Clarke, N. D., Covshoff, S., dePamphilis, C. W., Edger, P. P., Goh, F., Graham, S., Greiner, S., Hibberd, J. M., Jordon-Thaden, I., Kutchan, T. M., Leebens-Mack, J., Melkonian, M., … Wong, G. K.-S. (2012). Evaluating Methods for Isolating Total RNA and Predicting the Success of Sequencing Phylogenetically Diverse Plant Transcriptomes. PLOS ONE, 7(11), 12. https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0050226&type=printable | spa |
dc.relation.references | Jones, J. D. G., & Dangl, J. L. (2006). The plant immune system. Nature, 444(7117), 323–329. https://doi.org/10.1038/nature05286 | spa |
dc.relation.references | Journot-Catalino, N., Somssich, I. E., Roby, D., & Kroj, T. (2006). The Transcription Factors WRKY11 and WRKY17 Act as Negative Regulators of Basal Resistance in Arabidopsis thaliana. THE PLANT CELL, 18, 3289–3302. https://doi.org/10.1105/tpc.106.044149 | spa |
dc.relation.references | Journot-Catalino, N., Somssich, I. E., Roby, D., & Kroj, T. (2006). The Transcription Factors WRKY11 and WRKY17 Act as Negative Regulators of Basal Resistance in Arabidopsis thaliana. THE PLANT CELL, 18, 3289–3302. https://doi.org/10.1105/tpc.106.044149 | spa |
dc.relation.references | Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M., & Tanabe, M. (2015). KEGG as a reference resource for gene and protein annotation. Nucleic Acids Research, 44, 457–462. https://doi.org/10.1093/nar/gkv1070 | spa |
dc.relation.references | Kaushal, M., Mahuku, G., & Swennen, R. (2021). Comparative transcriptome and expression profiling of resistant and susceptible banana cultivars during infection by fusarium oxysporum. International Journal of Molecular Sciences, 22(6), 1–29. https://doi.org/10.3390/ijms22063002 | spa |
dc.relation.references | Kazan, K., & Manners, J. M. (2008). Jasmonate Signaling: Toward an Integrated View. Plant Physiology, 146, 1459–1468. https://doi.org/10.1104/pp.107.115717 | spa |
dc.relation.references | Kent, W. J. (2002). BLAT —The BLAST -Like Alignment Tool . Genome Research, 12(4), 656–664. https://doi.org/10.1101/gr.229202 | spa |
dc.relation.references | Kim, D., Paggi, J. M., Park, C., Bennett, C., & Salzberg, S. L. (2019). Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nature Biotechnology, 37(8), 907–915. https://doi.org/10.1038/s41587-019-0201-4 | spa |
dc.relation.references | Kim, D. S., & Hwang, B. K. (2014). An important role of the pepper phenylalanine ammonia-lyase gene (PAL1) in salicylic acid-dependent signalling of the defence response to microbial pathogens. Journal of experimental botany, 65(9), 2295–2306. https://doi.org/10.1093/jxb/eru109 | spa |
dc.relation.references | Kim, W. S., & Haj-Ahmad, Y. (2014). Evaluation of Plant RNA Integrity Number (RIN) generated using an Agilent BioAnalyzer 2100. https://norgenbiotek.com/sites/default/files/resources/plant_microrna_purification_kit_evaluation_of_plant_rna_integrity_number_rin_generated_using_an_agilent_bioanalyzer_2100_application_notes_599.pdf | spa |
dc.relation.references | Koch, K. E. (1996). Carbohydrate-Modulated Gene Expression In Plants. Annual Review of Plant Physiology and Plant Molecular Biology, 47(1), 509–540. https://doi.org/10.1146/annurev.arplant.47.1.509 | spa |
dc.relation.references | Koeck, M., Hardham, A. R., & Dodds, P. N. (2011). The role of effectors of biotrophic and hemibiotrophic fungi in infection. Cellular Microbiology, 13(12), 1849–1857. https://doi.org/10.1111/j.1462-5822.2011.01665.x | spa |
dc.relation.references | Krueger, F. (2016). Trim Galore. Babraham Bioinformatics. https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/ | spa |
dc.relation.references | Kumar, D., & Klessig, D. F. (2003). High-affinity salicylic acid-binding protein 2 is required for plant innate immunity and has salicylic acid-stimulated lipase activity. Proceedings of the National Academy of Sciences of the United States of America, 100(26), 16101–16106. https://doi.org/10.1073/pnas.0307162100 | spa |
dc.relation.references | Kumutha, D., Sairam, R. K., Ezhilmathi, K., Chinnusamy, V., & Meena, R. C. (2008). Effect of waterlogging on carbohydrate metabolism in pigeon pea (Cajanus cajan L.): Upregulation of sucrose synthase and alcohol dehydrogenase. Plant Science, 175(5), 706–716. https://doi.org/10.1016/j.plantsci.2008.07.013 | spa |
dc.relation.references | Kunkel, B. N., & Brooks, D. M. (2002). Cross talk between signaling pathways in pathogen defense. Current opinion in plant biology, 5(4), 325–331. http://www.ncbi.nlm.nih.gov/pubmed/12179966 | spa |
dc.relation.references | La Camera, S., Gouzerh, G., Dhondt, S., Hoffmann, L., Fritig, B., Legrand, M., & Heitz, T. (2004). Metabolic reprogramming in plant innate immunity: the contributions of phenylpropanoid and oxylipin pathways. Immunological reviews, 198, 267–284. http://www.ncbi.nlm.nih.gov/pubmed/15199968 | spa |
dc.relation.references | Lanubile, A., Ferrarini, A., Maschietto, V., Delledonne, M., Marocco, A., & Bellin, D. (2014). Functional genomic analysis of constitutive and inducible defense responses to Fusarium verticillioides infection in maize genotypes with contrasting ear rot resistance. BMC genomics, 15(1), 710. https://doi.org/10.1186/1471-2164-15-710 | spa |
dc.relation.references | Lanubile, A., Muppirala, U. K., Severin, A. J., Marocco, A., Munkvold, G. P., Arias, M. D., Leandro, L., Munkvold, G., Arias, M. D., Munkvold, G., Ellis, M., Leandro, L., Gordon, T., Martyn, R., Killebrew, J., Roy, K., Abney, T., Rizvi, S., Yang, X., … Livak, K. (2015). Transcriptome profiling of soybean (Glycine max) roots challenged with pathogenic and non-pathogenic isolates of Fusarium oxysporum. BMC Genomics, 16(1), 1089. https://doi.org/10.1186/s12864-015-2318-2 | spa |
dc.relation.references | Le Roy, J., Huss, B., Creach, A., & Hawkins, S. (2016). Glycosylation Is a Major Regulator of Phenylpropanoid Availability and Biological Activity in Plants. Frontiers in Plant Science | www.frontiersin.org, 1, 735. https://doi.org/10.3389/fpls.2016.00735 | spa |
dc.relation.references | Lecomte, C., Alabouvette, C., Edel-Hermann, V., Robert, F., & Steinberg, C. (2016). Biological control of ornamental plant diseases caused by Fusarium oxysporum: A review. En Biological Control (Vol. 101). https://doi.org/10.1016/j.biocontrol.2016.06.004 | spa |
dc.relation.references | Lee, D. H., Choi, H. W., & Hwang, B. K. (2011). The pepper E3 ubiquitin ligase RING1 gene, caRING1, is required for cell death and the salicylic acid-dependent defense response. Plant Physiology, 156(4), 2011–2025. https://doi.org/10.1104/pp.111.177568 | spa |
dc.relation.references | Lee, D., Lal, N. K., Lin, Z.-J. D., Ma, S., Liu, J., Castro, B., Toruño, T., Dinesh-Kumar, S. P., & Coaker, G. (2020). Regulation of reactive oxygen species during plant immunity through phosphorylation and ubiquitination of RBOHD. Nature Communications, 11, 1838. https://doi.org/10.1038/s41467-020-15601-5 | spa |
dc.relation.references | Lee, J., Feng, J., Campbell, K. B., Scheffler, B. E., Garrett, W. M., Thibivilliers, S., Stacey, G., Naiman, D. Q., Tucker, M. L., Pastor-Corrales, M. A., & Cooper, B. (2009). Quantitative proteomic analysis of bean plants infected by a virulent and avirulent obligate rust fungus. Molecular & cellular proteomics : MCP, 8(1), 19–31. https://doi.org/10.1074/mcp.M800156-MCP200 | spa |
dc.relation.references | Lehmann, S., Funck, D., Szabados, L., & Rentsch, D. (2010). Proline metabolism and transport in plant development. Amino Acids, 39(4), 949–962. https://doi.org/10.1007/s00726-010-0525-3 | spa |
dc.relation.references | León - Rodríguez, K. (2012). Identificación, purificación parcial y caracterización bioquímica de tres proteasas secretadas por Fusarium oxysporum f. sp. dianthi raza 2 in vitro . Tesis de Maestría, en Bioquímica, Departamento de Ciencias, Universidad Nacional de Colombia. Citado en. Universidad Nacional de Colombia. | spa |
dc.relation.references | Leslie, J. F., & Summerell, B. A. (2006). The Fusarium Laboratory Manual. En Blackwell Publishing (Ed.), The Fusarium Laboratory Manual (First edit). Blackwell Publishing Ltd. https://doi.org/10.1002/9780470278376.fmatter | spa |
dc.relation.references | Li, A., Li, A., Deng, Z., Guo, J., & Wu, H. (2020). Cross-Species Annotation of Expressed Genes and Detection of Different Functional Gene Modules Between 10 Cold- and 10 Hot-Propertied Chinese Herbal Medicines. Frontiers in Genetics, 11. https://doi.org/10.3389/fgene.2020.00532 | spa |
dc.relation.references | Li, Chun-yu, Deng, G., Yang, J., Viljoen, A., Jin, Y., Kuang, R., Zuo, C., Lv, Z., Yang, Q., Sheng, O., Wei, Y., Hu, C., Dong, T., & Yi, G. (2012). Transcriptome profiling of resistant and susceptible Cavendish banana roots following inoculation with Fusarium oxysporum f. sp. cubense tropical race 4. BMC Genomics, 13(1), 374. https://doi.org/10.1186/1471-2164-13-374 | spa |
dc.relation.references | Li, Chunqiang, Shao, J., Wang, Y., Li, W., Guo, D., Yan, B., Xia, Y., & Peng, M. (2013). Analysis of banana transcriptome and global gene expression profiles in banana roots in response to infection by race 1 and tropical race 4 of Fusarium oxysporum f. sp. cubense. BMC genomics, 14(1), 851. https://doi.org/10.1186/1471-2164-14-851 | spa |
dc.relation.references | Li, Chunyu, Chen, S., Zuo, C., Sun, Q., Ye, Q., Yi, G., & Huang, B. (2011). The use of GFP-transformed isolates to study infection of banana with Fusarium oxysporum f. sp. cubense race 4. European Journal of Plant Pathology, 131(2), 327–340. https://doi.org/10.1007/s10658-011-9811-5 | spa |
dc.relation.references | Li, W., Wang, X., Li, C., Sun, J., Li, S., & Peng, M. (2019). Dual species transcript profiling during the interaction between banana (Musa acuminata) and the fungal pathogen Fusarium oxysporum f. sp. cubense. BMC Genomics, 20(1), 1–16. https://doi.org/10.1186/s12864-019-5902-z | spa |
dc.relation.references | Liang, H., Yao, N., Song, J. T., Luo, S., Lu, H., & Greenberg, J. T. (2003). Ceramides modulate programmed cell death in plants. Genes and Development, 17(21), 2636–2641. https://doi.org/10.1101/gad.1140503 | spa |
dc.relation.references | Liang, J., Zhang, J., & Wong, M. H. (1997). Can stomatal closure caused by xylem ABA explain the inhibition of leaf photosynthesis under soil drying? Photosynthesis Research, 51(2), 149–159. https://doi.org/10.1023/A:1005797410190 | spa |
dc.relation.references | Liao, Yang, Smyth, G. K., & Shi, W. (2014). FeatureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics, 30(7), 923–930. https://doi.org/10.1093/bioinformatics/btt656 | spa |
dc.relation.references | Liao, Yuxing, Wang, J., Jaehnig, E. J., Shi, Z., & Zhang, B. (2019). WebGestalt 2019: gene set analysis toolkit with revamped UIs and APIs. Nucleic Acids Research, 47(W1), W199–W205. https://doi.org/10.1093/nar/gkz401 | spa |
dc.relation.references | Liu, G., Ji, Y., Bhuiyan, N. H., Pilot, G., Selvaraj, G., Zou, J., & Wei, Y. (2010). Amino acid homeostasis modulates salicylic acid-associated redox status and defense responses in Arabidopsis. The Plant cell, 22(11), 3845–3863. https://doi.org/10.1105/tpc.110.079392 | spa |
dc.relation.references | Liu, J. J., & Ekramoddoullah, A. K. M. (2006). The family 10 of plant pathogenesis-related proteins: Their structure, regulation, and function in response to biotic and abiotic stresses. Physiological and Molecular Plant Pathology, 68(1–3), 3–13. https://doi.org/10.1016/j.pmpp.2006.06.004 | spa |
dc.relation.references | Liu, J., Zhang, Y., Meng, Q., Shi, F., Ma, L., & Li, Y. (2017). Physiological and biochemical responses in sunflower leaves infected by Sclerotinia sclerotiorum. Physiological and Molecular Plant Pathology, 100, 41–48. https://doi.org/10.1016/J.PMPP.2017.06.001 | spa |
dc.relation.references | Liu, P. P., von Dahl, C. C., & Klessig, D. F. (2011). The extent to which methyl salicylate is required for signaling systemic acquired resistance is dependent on exposure to light after infection. Plant physiology, 157(4), 2216–2226. https://doi.org/10.1104/pp.111.187773 | spa |
dc.relation.references | Liu, Y., Guo, Y., Ma, C., Zhang, D., Wang, C., Yang, Q., & Xu, M. (2016). Transcriptome analysis of maize resistance to Fusarium graminearum. BMC Genomics, 17(1), 477. https://doi.org/10.1186/s12864-016-2780-5 | spa |
dc.relation.references | Liu, Z., Xie, J., Wang, H., Zhong, X., Li, H., Yu, J., & Kang, J. (2019). Identification and expression profiling analysis of NBS–LRR genes involved in Fusarium oxysporum f.sp. conglutinans resistance in cabbage. 3 Biotech, 9(5), 1–12. https://doi.org/10.1007/s13205-019-1714-8 | spa |
dc.relation.references | Llorente, F., Muskett, P., Sánchez-Vallet, A., López, G., Ramos, B., Sánchez-Rodríguez, C., Jordá, L., Parker, J., & Molina, A. (2008). Repression of the auxin response pathway increases Arabidopsis susceptibility to necrotrophic fungi. Molecular plant, 1(3), 496–509. https://doi.org/10.1093/mp/ssn025 | spa |
dc.relation.references | Lo Presti, L., Lanver, D., Schweizer, G., Tanaka, S., Liang, L., Tollot, M., Zuccaro, A., Reissmann, S. and, & Kahmann, R. (2015). Fungal Effectors and Plant Susceptibility. Annual Review of Plant Biology, 66(1), 513–545. https://doi.org/10.1146/annurev-arplant-043014-114623 | spa |
dc.relation.references | López, C. E., Acosta, I. F., Jara, C., Pedraza, F., Gaitán-Solís, E., Gallego, G., Beebe, S., & Tohme, J. (2003). Identifying resistance gene analogs associated with resistances to different pathogens in common bean. Phytopathology, 93(1), 88–95. https://doi.org/10.1094/PHYTO.2003.93.1.88 | spa |
dc.relation.references | López C, C. E. (2007). Fitopatologia molecular (P. Ltda (ed.); Primera Ed). | spa |
dc.relation.references | Lorenc-Kukuła, K., Wróbel-Kwiatkowska, Magdalena Starzycki, M., & Szopa, J. (2007). Engineering flax with increased flavonoid content and thus Fusarium resistance. Physiological and Molecular Plant Pathology, 70(1–3), 38–48. https://doi.org/10.1016/J.PMPP.2007.05.005 | spa |
dc.relation.references | Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12), 1–21. https://doi.org/10.1186/s13059-014-0550-8 | spa |
dc.relation.references | Luo, H., Laluk, K., Lai, Z., Veronese, P., Song, F., & Mengiste, T. (2010). The Arabidopsis Botrytis Susceptible1 Interactor Defines a Subclass of RING E3 Ligases That Regulate Pathogen and Stress Responses 1[C][W]. Plan Physiology, 154, 1766–1782. https://doi.org/10.1104/pp.110.163915 | spa |
dc.relation.references | Lyons, R., Stiller, J., Powell, J., Rusu, A., Manners, J. M., & Kazan, K. (2015). Fusarium oxysporum triggers tissue-specific transcriptional reprogramming in Arabidopsis thaliana. PLoS ONE, 10(4). https://doi.org/10.1371/journal.pone.0121902 | spa |
dc.relation.references | MacKay, V. L., Li, X., Flory, M. R., Turcott, E., Law, G. L., Serikawa, K. A., Xu, X. L., Lee, H., Goodlett, D. R., Aebersold, R., Zhao, L. P., & Morris, D. R. (2004). Gene expression analyzed by high-resolution state array analysis and quantitative proteomics. Molecular and Cellular Proteomics, 3(5), 478–489. https://doi.org/10.1074/mcp.M300129-MCP200 | spa |
dc.relation.references | Madriz Ordeñana, K. (2002). Mecanismos de defensa en las interacciones planta-patógeno. Manejo integrado de plantas, 2(63), 22–32. http://www.sidalc.net/repdoc/a2097e/a2097e.pdf | spa |
dc.relation.references | Maina, F., Hauschild R., & Sikora R. (2008). Protection of tomato plants against fusaric acid by resistance induction. ©Journal of Applied Biosciences, 1(1), 18–31. www.biosciences.elewa.org | spa |
dc.relation.references | Makandar, R., Nalam, V. J., Lee, H., Trick, H. N., Dong, Y., & Shah, J. (2012). Salicylic Acid Regulates Basal Resistance to Fusarium Head Blight in Wheat. Molecular Plant-Microbe Interactions, 25(3), 431–439. https://doi.org/10.1094/MPMI-09-11-0232 | spa |
dc.relation.references | Mandal, S., & Mitra, A. (2007). Reinforcement of cell wall in roots of Lycopersicon esculentum through induction of phenolic compounds and lignin by elicitors. Physiological and Molecular Plant Pathology, 71(4–6), 201–209. https://doi.org/10.1016/j.pmpp.2008.02.003 | spa |
dc.relation.references | Mandal, S., Mitra, A., & Mallick, N. (2008). Biochemical characterization of oxidative burst during interaction between Solanum lycopersicum and Fusarium oxysporum f. sp. lycopersici. Physiological and Molecular Plant Pathology, 72(1), 56–61. https://doi.org/10.1016/j.pmpp.2008.04.002 | spa |
dc.relation.references | Manni, M., Berkeley, M. R., Seppey, M., & Zdobnov, E. M. (2021). BUSCO: Assessing Genomic Data Quality and Beyond. Current Protocols, 1(12), 1–41. https://doi.org/10.1002/cpz1.323 | spa |
dc.relation.references | Marín-Ortiz, J. C., Gutierrez-Toro, N., Botero-Fernández, V., & Hoyos-Carvajal, L. M. (2019). Linking physiological parameters with visible/near-infrared leaf reflectance in the incubation period of vascular wilt disease. Saudi Journal of Biological Sciences. https://doi.org/10.1016/J.SJBS.2019.05.007 | spa |
dc.relation.references | Marín-Ortiz, J. C., Gutierrez-Toro, N., Botero-Fernández, V., & Hoyos-Carvajal, L. M. (2020). Linking physiological parameters with visible/near-infrared leaf reflectance in the incubation period of vascular wilt disease. Saudi Journal of Biological Sciences, 27(1), 88–99. https://doi.org/10.1016/j.sjbs.2019.05.007 | spa |
dc.relation.references | Marín Velázquez, J. A., Andreu Puyal, P., Carrasco, A., & Arbeloa Matute, A. (2010). Determination of proline concentration, an abiotic stress marker, in root exudates of excised root cultures of tree rootstocks under salt stress (pp. 722–727). Institut des régions arides. https://digital.csic.es/handle/10261/41324 | spa |
dc.relation.references | Martin, M. (2011). Cutadapt Removes Adapter Sequences From High-Throughput Sequencing Reads. EMBnet.journal, 17, 10–12. https://doi.org/https://doi.org/10.14806/ej.17.1.200 | spa |
dc.relation.references | Martin, M. (2013). Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal, 17(1), 10–12. http://journal.embnet.org/index.php/embnetjournal/article/view/200/458 | spa |
dc.relation.references | Martinez Gonzalez, A. P. (2019). Contribución al estudio de los fenómenos bioquímicos y moleculares del apoplasto de clavel (Dianthus caryophyllus L) durante su interacción con Fusarium oxysporum f. sp. dianthi. http://bdigital.unal.edu.co/74221/ | spa |
dc.relation.references | Matic, S., Bagnaresi, P., Biselli, C., Orru’, L., Amaral Carneiro, G., Siciliano, I., Valé, G., Gullino, M. L., & Spadaro, D. (2016). Comparative transcriptome profiling of resistant and susceptible rice genotypes in response to the seed borne pathogen Fusarium fujikuroi. BMC genomics, 17(1), 608. https://doi.org/10.1186/s12864-016-2925-6 | spa |
dc.relation.references | Maxwell, K., & Johnson, G. N. (2000). Chlorophyll fluorescence — a practical guide. 51(345), 659–668. | spa |
dc.relation.references | Mayorga, V. R. (2007). Aislamiento y Caracterización de una polifenoloxidasa relacionada con la tolerancia del clavel (Dianthus caryophyllus). Acta biol. Colomb., 12(2), 81–94. | spa |
dc.relation.references | Meena, K. S., Ramyabharathi, S. A., & Jonathan, E. I. (2016). INTERACTION OF Meloidogyne incognita AND Fusarium oxysporum IN CARNATION AND PHYSIOLOGICAL CHANGES INDUCED IN PLANTS DUE TO THE INTERACTION. SAARC Journal of agriculture, 14(1), 59–69. | spa |
dc.relation.references | Melgarejo, L. M., Romero, M., Hernandez, S., Barrera, J., Solarte, María E., Suárez, D., Pérez, L.-V., Rojas, A., Cruz, M., Moreno, L., Crespo, S., & Pérez, W. (2010). Experimentos en Fisiología Vegetal (L. M. MELGAREJO MUÑOZ (ed.); Primera Ed). | spa |
dc.relation.references | Melotto, M., Underwood, W., & He, S. Y. (2008). Role of stomata in plant innate immunity and foliar bacterial diseases. Annual review of phytopathology, 46, 101–122. https://doi.org/10.1146/annurev.phyto.121107.104959 | spa |
dc.relation.references | Michielse, C. B., & Rep, M. (2009). Pathogen profile update: Fusarium oxysporum. Molecular Plant Pathology, 10(3), 311–324. https://doi.org/10.1111/j.1364-3703.2009.00538.x | spa |
dc.relation.references | Miedes, E., Vanholme, R., Boerjan, W., & Molina, A. (2014). The role of the secondary cell wall in plant resistance to pathogens. Frontiers in plant science, 5, 358. https://doi.org/10.3389/fpls.2014.00358 | spa |
dc.relation.references | Mierziak, J., Kostyn, K., & Kulma, A. (2014). Flavonoids as important molecules of plant interactions with the environment. Molecules, 19(10), 16240–16265. https://doi.org/10.3390/molecules191016240 | spa |
dc.relation.references | Monroy-Mena, S. (2019). EFECTO DE ELICITORES DE ORIGEN BIÓTICO EN LA TRANSCRIPCIÓN DE ALGUNOS GENES INVOLUCRADOS EN LOS MECANISMOS DE DEFENSA DEL CLAVEL Dianthus caryophyllus L. AL PATÓGENO Fusarium oxysporum f sp dianthi [Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/77930 | spa |
dc.relation.references | Monroy-Mena, S., Chacón-Parra, A. L., Farfan-Angarita, J. P., Martínez-Peralta, S. T., Ardila-Barrantes, H. D., Monroy-Mena, S., Chacón-Parra, A. L., Farfán-Angarita, J. P., Martínez-Peralta, S. T., & Ardila-Barrantes, H. D. (2019). Selección de genes de referencia para análisis transcripcionales en el modelo clavel (Dianthus caryophyllus L.) - Fusarium oxysporum f. sp. dianthi. Revista Colombiana de Química, 48(2), 5–14. https://doi.org/10.15446/rev.colomb.quim.v48n2.72771 | spa |
dc.relation.references | Morin, R. D., Bainbridge, M., Fejes, A., Hirst, M., Krzywinski, M., Pugh, T. J., McDonald, H., Varhol, R., Jones, S. J. M., & Marra, M. A. (2008). Profiling the HeLa S3 transcriptome using randomly primed cDNA and massively parallel short-read sequencing. BioTechniques, 45(1), 81–94. https://doi.org/10.2144/000112900 | spa |
dc.relation.references | Mueller, O., & Schroeder, A. (2004). RNA Integrity Number ( RIN ) – Standardization of RNA Quality Control Application. En Agilent Technologies. https://doi.org/10.1101/gr.189621.115.7 | spa |
dc.relation.references | Murchie, E. H., & Lawson, T. (2013). Chlorophyll fluorescence analysis: A guide to good practice and understanding some new applications. Journal of Experimental Botany, 64(13), 3983–3998. https://doi.org/10.1093/jxb/ert208 | spa |
dc.relation.references | Navarro, L., Dunoyer, P., Jay, F., Arnold, B., Dharmasiri, N., Estelle, M., Voinnet, O., & Jones, J. D. G. (2006). A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science (New York, N.Y.), 312(5772), 436–439. https://doi.org/10.1126/science.1126088 | spa |
dc.relation.references | Neilson, E. H., Goodger, J. Q. D., Woodrow, I. E., & Møller, B. L. (2013). Plant chemical defense: At what cost? Trends in Plant Science, 18(5), 250–258. https://doi.org/10.1016/j.tplants.2013.01.001 | spa |
dc.relation.references | Ngou, B. P. M., Ding, P., & Jones, J. D. G. (2022). Thirty years of resistance: Zig-zag through the plant immune system. The Plant cell, 34(5), 1447–1478. https://doi.org/10.1093/plcell/koac041 | spa |
dc.relation.references | Nibedita, C., & Jolly, B. (2017). Transcriptomics: A successful approach to unravel the molecular mechanism of plant-pathogen interaction in post-genomic era. Research Journal of Biotechnology, 12(8), 78–88. | spa |
dc.relation.references | Niemann, G. J. (1990). A carnation’s defense against fungal invasion: a combined effort. Mededelingen van de Faculteit Landbouwwetenschappen, Rijksuniversiteit Gent, 55(3a), 1019–1028. https://geoscience.net/research/002/007/002007547.php | spa |
dc.relation.references | Niemann, G. J., Baayen, R. P., & Boon, J. J. (1990). Localization of phytoalexin accumulation and determination of changes in lignin and carbohydrate composition in carnation (Dianthus caryophyllus L.) xylem as a consequence of infection with Fusarium oxysporum f. sp. dianthi, by pyrolysis-mass spectrometry. Netherlands Journal of Plant Pathology, 96(3), 133–153. https://doi.org/https://doi.org/10.1007/BF01974252 | spa |
dc.relation.references | Niemann, Gerard J. (1992). THE MECHANISM OF RESISTANCE OF CARNATION TO WILT DISEASES. Acta Horticulturae, 307, 29–36. https://doi.org/10.17660/ActaHortic.1992.307.1 | spa |
dc.relation.references | Niemann, Gerard J., Liem, J., van der Kerk-van Hoof, A., & Niessen, W. M. A. (1992). Phytoalexins, benzoxazinones, N-aroylanthranilates and N-aroylanilines, from Fusarium-infected carnation stems. Phytochemistry, 31(11), 3761–3767. https://doi.org/10.1016/S0031-9422(00)97523-X | spa |
dc.relation.references | Nishad, R., Ahmed, T., Rahman, V. J., & Kareem, A. (2020). Modulation of Plant Defense System in Response to Microbial Interactions. Frontiers in Microbiology, 11(July), 1–13. https://doi.org/10.3389/fmicb.2020.01298 | spa |
dc.relation.references | Noutoshi, Y., Kuromori, T., Wada, T., Hirayama, T., Kamiya, A., Imura, Y., Yasuda, M., Nakashita, H., Shirasu, K., & Shinozaki, K. (2006). Loss of necrotic spotted lesions 1 associates with cell death and defense responses in Arabidopsis thaliana. Plant Molecular Biology, 62(1–2), 29–42. https://doi.org/10.1007/s11103-006-9001-6 | spa |
dc.relation.references | Oh, I. S., Park, A. R., Bae, M. S., Kwon, S. J., Kim, Y. S., Lee, J. E., Kang, N. Y., Lee, S., Cheong, H., & Park, O. K. (2005). Secretome analysis reveals an Arabidopsis lipase involved in defense against Alternaria brassicicola. Plant Cell, 17(10), 2832–2847. https://doi.org/10.1105/tpc.105.034819 | spa |
dc.relation.references | Omicsbox. (2019). OmicsBox – Bioinformatics Made Easy, BioBam Bioinformatics. https://www.biobam.com/omicsbox | spa |
dc.relation.references | Orosa-Puente, B., Leftley, N., von Wangenheim, D., Banda, J., Srivastava, A. K., Hill, K., Truskina, J., Bhosale, R., Morris, E., Srivastava, M., Kümpers, B., Goh, T., Fukaki, H., Vermeer, J. E. M., Vernoux, T., Dinneny, J. R., French, A. P., Bishopp, A., Sadanandom, A., & Bennett, M. J. (2018). Root branching toward water involves posttranslational modification of transcription factor ARF7. Science, 362(6421), 1407–1410. https://doi.org/10.1126/science.aau3956 | spa |
dc.relation.references | Otulak-Kozieł, K., Kozieł, E., Horváth, E., & Csiszár, J. (2022). AtGSTU19 and AtGSTU24 as Moderators of the Response of Arabidopsis thaliana to Turnip mosaic virus. International Journal of Molecular Sciences, 23, 11531. https://doi.org/10.3390/ijms231911531 | spa |
dc.relation.references | Pagán-Rubio, E. (2012). Uso de Indicadores del Estado Hídrico de la Planta para la Optimización del Riego en Cultivos Leñosos. Universidad Politécnica de Cartagena. | spa |
dc.relation.references | Parvez, M. M., Tomita-Yokotani, K., Fujii, Y., Konishi, T., & Iwashina, T. (2004). Biochemical systematics and ecology. En Biochemical systematics and ecology. Pergamon Press. http://agris.fao.org/agris-search/search.do?recordID=US201300949869 | spa |
dc.relation.references | Pathak, R. R., Mandal, V. K., Jangam, A. P., Sharma, N., Madan, B., Jaiswal, D. K., & Raghuram, N. (2021). Heterotrimeric G-protein α subunit (RGA1) regulates tiller development, yield, cell wall, nitrogen response and biotic stress in rice. Scientific Reports, 11(1), 1–19. https://doi.org/10.1038/s41598-021-81824-1 | spa |
dc.relation.references | Pego, J. V., Kortstee, A. J., Huijser, C., & Smeekens, S. C. M. (2000). Photosynthesis, sugars and the regulation of gene expression. Journal of Experimental Botany, 51(1), 407–416. http://web.b.ebscohost.com/abstract?direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=00220957&AN=44734414&h=2UiuZSEuSwwlDiepy0iPXypo0PEOtfbk40npO1rmT4B5S1dlYCUPhNFM4575dpok9yNwBhCkde3ttiPKoj2ukg%3D%3D&crl=f&resultNs=AdminWebAuth&resultLocal=ErrC | spa |
dc.relation.references | Pei, Y., Li, X., Zhu, Y., Ge, X., Sun, Y., Liu, N., Jia, Y., Li, F., & Hou, Y. (2019). Ghabp19, a novel germin-like protein from Gossypium hirsutum, plays an important role in the regulation of resistance to verticillium and fusarium wilt pathogens. Frontiers in Plant Science, 10(May), 1–18. https://doi.org/10.3389/fpls.2019.00583 | spa |
dc.relation.references | Peña-Castro, J. M., Gregorio-Ramírez, O., & Barrera-Figueroa, B. E. (2013). Los métodos experimentales que permiten el estudio de las macromoléculas de la vida: historia, fundamentos y perspectivas. Educación Química, 24, 237–246. https://doi.org/10.1016/S0187-893X(13)72468-6 | spa |
dc.relation.references | Peña-Cortés, H., Barrios, P., Dorta, F., Polanco, V., Sánchez, C., Sánchez, E., & Ramírez, I. (2004). Involvement of Jasmonic Acid and Derivatives in Plant Response to Pathogen and Insects and in Fruit Ripening. Journal of Plant Growth Regulation, 23(3), 246–260. https://doi.org/10.1007/s00344-004-0035-1 | spa |
dc.relation.references | Pérez Mora, W., Melgarejo, L. M., & Ardila, H. D. (2021). Effectiveness of some resistance inducers for controlling carnation vascular wilting caused by Fusarium oxysporum f. sp. dianthi. Archives of Phytopathology and Plant Protection, 54(13–14), 886–902. https://doi.org/10.1080/03235408.2020.1868734 | spa |
dc.relation.references | Pertea, M., Pertea, G. M., Antonescu, C. M., Chang, T. C., Mendell, J. T., & Salzberg, S. L. (2015). StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nature Biotechnology, 33(3), 290–295. https://doi.org/10.1038/nbt.3122 | spa |
dc.relation.references | Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research, 29(9), 0. | spa |
dc.relation.references | Pfannschmidt, T., & Yang, C. (2012). The hidden function of photosynthesis: A sensing system for environmental conditions that regulates plant acclimation responses. Protoplasma, 249(SUPPL.2), 125–136. https://doi.org/10.1007/s00709-012-0398-2 | spa |
dc.relation.references | Pieterse, C. M. J., Van Der Does, D., Zamioudis, C., Leon-Reyes, A., & Van Wees, S. C. M. (2012). Hormonal modulation of plant immunity. Annual Review of Cell and Developmental Biology, 28(April), 489–521. https://doi.org/10.1146/annurev-cellbio-092910-154055 | spa |
dc.relation.references | Pinzon-Sandoval, E. H., Romero-Cuervo, W. A., & Luis-Ayala, M. A. (2021). Phenology and growth flower of Dianthus caryophyllus L. cv. ‘MOON LIGHT’ under greenhouse. Revista de Ciencias Agrícolas, 39(1), 7–15. https://doi.org/10.22267/rcia.223901.167 | spa |
dc.relation.references | Poli, A., Bertetti, D., Rapetti, S., Gullino, M. L., & Garibaldi, A. (2013). Characterization and identification of Colombian isolates of Fusarium oxysporum f. sp. dianthi. Journal of Plant Pathology, 95(2), 255–263. | spa |
dc.relation.references | Que, Y.-X., Xu, L.-P., Lin, J.-W., & Chen, R.-K. (2009). Isolation and Characterization of NBS-LRR Resistance Gene Analogs from Sugarcane. Acta Agronómica Sinica, 35(4), 631–639. https://doi.org/10.1016/S1875-2780(08)60076-0 | spa |
dc.relation.references | Rahman, T. A. El, Oirdi, M. El, Gonzalez-Lamothe, R., & Bouarab, K. (2012). Necrotrophic Pathogens Use the Salicylic Acid Signaling Pathway to Promote Disease Development in Tomato. Molecular Plant-Microbe Interactions, 25(12), 1584–1593. https://doi.org/10.1094/MPMI-07-12-0187-R | spa |
dc.relation.references | Ramsay, J. O., & Silverman, B. W. (2002). Applied Functional Data Analysis: Methods and Case Studies. En Journal of the Royal Statistical Society: Series A (Statistics in Society) (Vol. 167, Número 2). https://doi.org/10.1111/j.1467-985x.2004.t01-5-.x | spa |
dc.relation.references | Restrepo-Rubio, J.-S., López-Carrascal, C.-E., & Melgarejo-M, L.-M. (2017). Physiological behavior of cassava plants (Manihot esculenta Crantz) in response to infection by Xanthomonas axonopodis pv. manihotis under greenhouse conditions. Physiological and Molecular Plant Pathology, 100, 136–141. https://doi.org/10.1016/J.PMPP.2017.09.004 | spa |
dc.relation.references | Reyes-Hernandez Blanca Jazmin, Días de la GArza, R. I., & G, D. J. (2015). FOLATOS: SU SÍNTESIS, METABOLISMO, TRANSPORTE Y PAPEL EN EL DESARROLLO DE PLANTAS. REB, 32(2), 39–48. https://doi.org/https://www.medigraphic.com/pdfs/revedubio/reb-2015/reb152b.pdf | spa |
dc.relation.references | Rispail, N., & Rubiales, D. (2015). Rapid and efficient estimation of pea resistance to the soil-borne pathogen fusarium oxysporum by infrared imaging. Sensors (Switzerland), 15(2), 3988–4000. https://doi.org/10.3390/S150203988 | spa |
dc.relation.references | Rizhsky, L., Davletova, S., Liang, H., & Mittler, R. (2004). The Zinc Finger Protein Zat12 Is Required for Cytosolic Ascorbate Peroxidase 1 Expression during Oxidative Stress in Arabidopsis. Journal of Biological Chemistry, 279(12), 11736–11743. https://doi.org/10.1074/jbc.M313350200 | spa |
dc.relation.references | Robert-Seilaniantz, A., Navarro, L., Bari, R., & Jones, Jo. D. . (2007). Pathological hormone imbalances. Current Opinion in Plant Biology, 10(4), 372–379. https://doi.org/10.1016/J.PBI.2007.06.003 | spa |
dc.relation.references | Rodríguez-Mendoza., M. de las N., Alcántar G., G., Aguilar S., A., Etchevers B., J. D., & Santizó R., J. A. (1998). Estimación de la concentración de nitrógeno y clorofila en tomate mediante un medidor portátil de clorofila. Terra Latinoamericana, 16(2), 135–141. http://www.redalyc.org/articulo.oa?id=57316204 | spa |
dc.relation.references | Rodríguez Cubillos, A. E., Perlaza-Jiménez, L., & Bernal Giraldo, A. J. (2014). RNA-Seq Data Analysis in Prokaryotes: A Review for Non-experts. Acta Biológica Colombiana, 19(2), 131. https://doi.org/10.15446/abc.v19n2.41010 | spa |
dc.relation.references | Rojas, C. M., Senthil-Kumar, M., Tzin, V., & Mysore, K. S. (2014). Regulation of primary plant metabolism during plant-pathogen interactions and its contribution to plant defense. Frontiers in Plant Science, 5, 17. https://doi.org/10.3389/fpls.2014.00017 | spa |
dc.relation.references | Romero-Rincon, A. E. (2020). Efecto de la Aplicación de Elicitores de Origen Biótico en la Biosíntesis de Flavonoides en Clavel (Dianthus caryophyllus L) Durante la Interacción con Fusarium oxysporum f sp. dianthi. Universidad Nacional de Colombia. | spa |
dc.relation.references | Romero-Rincón, A., Martínez, S. T., Higuera, B. L., Coy-Barrera, E., & Ardila, H. D. (2021). Flavonoid biosynthesis in Dianthus caryophyllus L. is early regulated during interaction with Fusarium oxysporum f. sp. dianthi. Phytochemistry, 192(August). https://doi.org/10.1016/j.phytochem.2021.112933 | spa |
dc.relation.references | Rushton, P. J., Torres, J. T., Parniske, M., Wernert, P., Hahlbrock, K., & Somssich, I. E. (1996). Interaction of elicitor-induced DNA-binding proteins with elicitor response elements in the promoters of parsley PR1 genes. The EMBO journal, 15(20), 5690–5700. http://www.ncbi.nlm.nih.gov/pubmed/8896462 | spa |
dc.relation.references | S.W, P., Kaimoyo, E., Kumar, D., Mosher, S., & Klessig, D. F. (2007). Methyl Salicylate Is a Critical Mobile Signal for Plant Systemic Acquired Resistance. Science, 318(5847), 113–116. https://doi.org/10.1126/science.1147113 | spa |
dc.relation.references | Sah, S. K., Reddy, K. R., & Li, J. (2016). Abscisic Acid and Abiotic Stress Tolerance in Crop Plants. Frontiers in Plant Science, 7, 571. https://doi.org/10.3389/fpls.2016.00571 | spa |
dc.relation.references | Sankaran, S., Mishra, A., Ehsani, R., & Davis, C. (2010). A review of advanced techniques for detecting plant diseases. Computers and Electronics in Agriculture, 72(1), 1–13. https://doi.org/10.1016/J.COMPAG.2010.02.007 | spa |
dc.relation.references | Santos-Rodriguez. J.F. (2022). Contribución al estudio de la respuesta bioquímica de resistencia inducida mediante el uso de elicitores de origen biótico en la interacción Fusarium oxysporum f. sp. dianthi raza 2 - clavel (Dianthus caryophyllus L.). Universidad Nacional de Colombia. | spa |
dc.relation.references | Santos-Rodríguez, J., Coy-Barrera, E., Duban Ardila, H., Velasco, P., Escobar, C., & Poveda, J. (2021). Mycelium Dispersion from Fusarium oxysporum f. sp. dianthi Elicits a Reduction of Wilt Severity and Influences Phenolic Profiles of Carnation (Dianthus caryophyllus L.) Roots. Plants, 10, 1447. https://doi.org/10.3390/plants10071447 | spa |
dc.relation.references | Sarrocco, S., Falaschi, N., Vergara, M., Nicoletti, F., & Vannacci, G. (2007). Use of Fusarium oxysporum F. sp. dianthi transformed with marker genes to follow colonization of carnation roots. Journal of Plant Pathology, 89(1), 47–54. https://doi.org/10.4454/jpp.v89i1.723 | spa |
dc.relation.references | Scheideler, M., Schlaich, N. L., Fellenberg, K., Beissbarth, T., Hauser, N. C., Vingron, M., Slusarenko, A. J., & Hoheisel, J. D. (2002). Monitoring the switch from housekeeping to pathogen defense metabolism in Arabidopsis thaliana using cDNA arrays. The Journal of biological chemistry, 277(12), 10555–10561. https://doi.org/10.1074/jbc.M104863200 | spa |
dc.relation.references | Scholes, J., & Rolfe, S. (1996). Photosynthesis in localised regions of oat leaves infected with crown rust (Puccinia coronata): quantitative imaging of chlorophyll fluorescence. Planta, 199(4), 573–582. https://doi.org/10.1007/BF00195189 | spa |
dc.relation.references | Sebastiani, M. S., Bagnaresi, P., Sestili, S., Biselli, C., Zechini, A., Orru’, L., Cattivelli, L., & Ficcadenti, N. (2017). Transcriptome Analysis of the melon-Fusarium oxysporum f. sp. melonis Race 1.2 Pathosystem in Susceptible and Resistant Plants (Front. Plant Sci., (2017) 8, 362, 10.3389/fpls.2017.00362). En Frontiers in Plant Science (Vol. 8, pp. 1–15). https://doi.org/10.3389/fpls.2017.00922 | spa |
dc.relation.references | Seleiman, M. F., Al-Suhaibani, N., Ali, N., Akmal, M., Alotaibi, M., Refay, Y., Dindaroglu, T., Abdul-Wajid, H. H., & Battaglia, M. L. (2021). Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants, 10(2), 1–25. https://doi.org/10.3390/plants10020259 | spa |
dc.relation.references | Selvaraj, N., Ramadass, A., Amalraj, R. S., Palaniyandi, M., & Rasappa, V. (2014). Molecular Profiling of Systemic Acquired Resistance (SAR)-Responsive Transcripts in Sugarcane Challenged with Colletotrichum falcatum. Applied Biochemistry and Biotechnology, 174(8), 2839–2850. https://doi.org/10.1007/s12010-014-1230-6 | spa |
dc.relation.references | Shen, Y., & Diener, A. C. (2013). Arabidopsis thaliana RESISTANCE TO FUSARIUM OXYSPORUM 2 Implicates Tyrosine-Sulfated Peptide Signaling in Susceptibility and Resistance to Root Infection. PLoS Genetics, 9(5). https://doi.org/10.1371/journal.pgen.1003525 | spa |
dc.relation.references | Shendure, J., & Ji, H. (2008). Next-generation DNA sequencing. Nature Biotechnology, 26(10), 1135–1145. https://doi.org/10.1038/nbt1486 | spa |
dc.relation.references | Shi, Y., & He, M. (2014). Differential gene expression identified by RNA-Seq and qPCR in two sizes of pearl oyster (Pinctada fucata). Gene, 538(2), 313–322. https://doi.org/10.1016/j.gene.2014.01.031 | spa |
dc.relation.references | Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V., & Zdobnov, E. M. (2015). BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics, 31(19), 3210–3212. https://doi.org/10.1093/bioinformatics/btv351 | spa |
dc.relation.references | Sinha, M., Singh, R. P., Kushwaha, G. S., Iqbal, N., Singh, A., Kaushik, S., Kaur, P., Sharma, S., & Singh, T. P. (2014). Current overview of allergens of plant pathogenesis related protein families. TheScientificWorldJournal, 2014, 543195. https://doi.org/10.1155/2014/543195 | spa |
dc.relation.references | Skadhauge, B., Thomsen, K. K., & Wettstein, D. (2004). The Role of the Barley Testa Layer and its Flavonoid Content in Resistance to Fusarium Infections. Hereditas, 126(2), 147–160. https://doi.org/10.1111/j.1601-5223.1997.00147.x | spa |
dc.relation.references | Slavokhotova, A., Korostyleva, T., Shelenkov, A., Pukhalskiy, V., Korottseva, I., Slezina, M., Istomina, E., & Odintsova, T. (2021). Transcriptomic analysis of genes involved in plant defense response to the cucumber green mottle mosaic virus infection. Life, 11(10). https://doi.org/10.3390/life11101064 | spa |
dc.relation.references | Song, L., Wang, J., Jia, H., Kamran, A., Qin, Y., Liu, Y., Hao, K., Han, F., Zhang, C., Li, B., Li, Y., Shen, L., Wang, F., Wu, Y., & Yang, J. (2020). Identification and functional characterization of NbMLP28, a novel MLP-like protein 28 enhancing Potato virus y resistance in Nicotiana benthamiana. BMC Microbiology, 20(1), 1–14. https://doi.org/10.1186/s12866-020-01725-7 | spa |
dc.relation.references | Soria, S., Alonso, R. ., & Bettucci, L. . (2012). Endophytic bacteria from Pinus taeda L. as biocontrol agents of Fusarium circinatum Nirenberg & O‘Donell. Chilean journal of agricultural research, 72(2) APRI(October 2016), 281–284. https://doi.org/10.4067/S0718-58392012000200018 | spa |
dc.relation.references | Sorribas, J. J., Pasini, C., & D´aquila, F. (2004). Principales enfermedades fúngicas y bacterianas del clavel (Dianthus caryophyllus) y su control. Phytoma, 161. http://www.phytoma.com/tienda/articulos-editorial/196-161-agosto-septiembre-2004/6435-principales-enfermedades-fngicas-y-bacterianas-del-clavel-dianthus-caryophyllus-y-su-control# | spa |
dc.relation.references | Soto-Sedano, J. C., Clavijo-Ortiz, M. J., & Filgueira-Duarte, J. J. (2012). Phenotypic evaluation of the resistance in F1 carnation populations to vascular wilt caused by Fusarium oxysporum f.sp. dianthi. Agronomía Colombiana, 30(2), 172–178. http://revistas.unal.edu.co/index.php/agrocol/article/view/22777 | spa |
dc.relation.references | Souza, T. P., Días, R. O., & Silva-Filho, M. C. (2017). Defense-related proteins involved in sugarcane responses to biotic stress. Genetics and Molecular Biology, 40(1 (suppl)), 360–372. https://doi.org/10.1590/1678-4685-GMB-2016-0057 | spa |
dc.relation.references | Sperschneider, J., Gardiner, D. M., Thatcher, L. F., Lyons, R., Singh, K. B., Manners, J. M., & Taylor, J. M. (2015). Genome-Wide Analysis in Three Fusarium Pathogens Identifies Rapidly Evolving Chromosomes and Genes Associated with Pathogenicity (Vol. 7, Número 6). https://doi.org/10.1093/gbe/evv092 | spa |
dc.relation.references | STATQUEST. (2017). Statquest. Statquest. https://statquest.org/page/2/ | spa |
dc.relation.references | Stergiopoulos, I., & de Wit, P. J. G. M. (2009). Fungal Effector Proteins. Annual Review of Phytopathology, 47(1), 233–263. https://doi.org/10.1146/annurev.phyto.112408.132637 | spa |
dc.relation.references | Sun, T., & Zhang, Y. (2021). Short- and long-distance signaling in plant defense. Plant Journal, 105(2), 505–517. https://doi.org/10.1111/tpj.15068 | spa |
dc.relation.references | Swarbrick, P. J., Schulze-Lefert, P., & Scholes, J. D. (2006). Metabolic consequences of susceptibility and resistance (race-specific and broad-spectrum) in barley leaves challenged with powdery mildew. Plant, Cell and Environment, 29(6), 1061–1076. https://doi.org/10.1111/j.1365-3040.2005.01472.x | spa |
dc.relation.references | Swarupa, V., Ravishankar, K. ., & Rekha, A. (2013). Characterization of tolerance to Fusarium oxysporum f.sp., cubense infection in banana using suppression subtractive hybridization and gene expression analysis. Physiological and Molecular Plant Pathology, 83, 1–7. https://doi.org/10.1016/j.pmpp.2013.02.003 | spa |
dc.relation.references | Swarupa, V., Ravishankar, K. V., & Rekha, A. (2014). Plant defense response against Fusarium oxysporum and strategies to develop tolerant genotypes in banana. Planta, 239(4), 735–751. https://doi.org/10.1007/s00425-013-2024-8 | spa |
dc.relation.references | Szklarczyk, D., Gable, A. L., Nastou, K. C., Lyon, D., Kirsch, R., Pyysalo, S., Doncheva, N. T., Legeay, M., Fang, T., Bork, P., Jensen, L. J., & von Mering, C. (2021). The STRING database in 2021: Customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Research, 49(D1), D605–D612. https://doi.org/10.1093/nar/gkaa1074 | spa |
dc.relation.references | Tada, Y., Mori, T., Shinogi, T., Yao, N., Takahashi, S., Betsuyaku, S., Sakamoto, M., Park, P., Nakayashiki, H., Tosa, Y., & Mayama, S. (2004). Nitric Oxide and Reactive Oxygen Species Do Not Elicit Hypersensitive Cell Death but Induce Apoptosis in the Adjacent Cells During the Defense Response of Oat. Molecular Plant-Microbe Interactions, 17(3), 245–253. https://doi.org/10.1094/MPMI.2004.17.3.245 | spa |
dc.relation.references | Taiz, L., & Zeiger, E. (2010). Secondary metabolites in plant defense. En Plant physiology (p. 371). | spa |
dc.relation.references | Takahashi, F., Kuromori, T., Urano, K., Yamaguchi-Shinozaki, K., & Shinozaki, K. (2020). Drought Stress Responses and Resistance in Plants: From Cellular Responses to Long-Distance Intercellular Communication. Frontiers in Plant Science, 11(September), 1–14. https://doi.org/10.3389/fpls.2020.556972 | spa |
dc.relation.references | Takahashi, H., Kanayama, Y., Zheng, M. S., Kusano, T., Hase, S., Ikegami, M., & Shah, J. (2004). Antagonistic interactions between the SA and JA signaling pathways in Arabidopsis modulate expression of defense genes and gene-for-gene resistance to cucumber mosaic virus. Plant & cell physiology, 45(6), 803–809. http://www.ncbi.nlm.nih.gov/pubmed/15215516 | spa |
dc.relation.references | Takeno, K. (2016). Stress-induced flowering: The third category of flowering response. Journal of Experimental Botany, 67(17), 4925–4934. https://doi.org/10.1093/jxb/erw272 | spa |
dc.relation.references | Tanase, K., Nishitani, C., Hirakawa, H., Isobe, S., Tabata, S., Ohmiya, A., & Onozaki, T. (2012). Transcriptome analysis of carnation (Dianthus caryophyllus L.) based on next-generation sequencing technology. BMC Genomics, 13(1), 292. https://doi.org/10.1186/1471-2164-13-292 | spa |
dc.relation.references | Thatcher, L. F., Gardiner, D. M., Kazan, K., & Manners, J. M. (2012). A Highly Conserved Effector in Fusarium oxysporum Is Required for Full Virulence on Arabidopsis. 25(2), 180–190. | spa |
dc.relation.references | Ton, W. J., Jakab, G., Rie Toquin, V., Flors, V., Iavicoli, A., Maeder, M. N., Mé, J.-P., & Mauch-Mani, B. (2005). Dissecting the b-Aminobutyric Acid–Induced Priming Phenomenon in Arabidopsis. The Plant Cell, 17, 987–999. https://doi.org/10.1105/tpc.104.029728 | spa |
dc.relation.references | Torres, M. A., Jones, J. D. G., & Dangl, J. L. (2006). Reactive oxygen species signaling in response to pathogens. Plant physiology, 141(2), 373–378. https://doi.org/10.1104/pp.106.079467 | spa |
dc.relation.references | Tortosa, M., Cartea, M. E., Velasco, P., Soengas, P., & Rodriguez, V. M. (2019). Calcium-signaling proteins mediate the plant transcriptomic response during a well-established Xanthomonas campestris pv. campestris infection. Horticulture Research, 6, 103. https://doi.org/10.1038/s41438-019-0186-7 | spa |
dc.relation.references | Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D. R., Pimentel, H., Salzberg, S. L., Rinn, J. L., & Pachter, L. (2012). Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nature protocols, 7(3), 562–578. https://doi.org/10.1038/nprot.2012.016 | spa |
dc.relation.references | Trillas, M. I., Cotxarrera, L., Casanova, E., & Cortadellas, N. (2000). Ultrastructural changes and localization of chitin and callose in compatible and incompatible interactions between carnation callus and Fusarium oxysporum. Physiological and Molecular Plant Pathology, 56(3), 107–116. https://doi.org/10.1006/pmpp.1999.0254 | spa |
dc.relation.references | Ülker, B., & Somssich, I. E. (2004). WRKY transcription factors: from DNA binding towards biological function. Current Opinion in Plant Biology, 7(5), 491–498. https://doi.org/10.1016/J.PBI.2004.07.012 | spa |
dc.relation.references | Ullah, S., & Finch, C. F. (2013). Applications of functional data analysis: A systematic review. BMC Medical Research Methodology, 13(1). https://doi.org/10.1186/1471-2288-13-43 | spa |
dc.relation.references | Van de Peer, Y. (2022). Calculate and draw custom Venn diagrams. Bioinformatics & Evolutionary Genomics. http://bioinformatics.psb.ugent.be/webtools/Venn/ | spa |
dc.relation.references | Van Loon, L.C., & Van Kammen, A. (1970). Polyacrylamide disc electrophoresis of the soluble leaf proteins from Nicotiana tabacum var. ‘Samsun’ and ‘Samsun NN’. Virology, 40(2), 199–211. https://doi.org/10.1016/0042-6822(70)90395-8 | spa |
dc.relation.references | Van Loon, Leendert Cornelis, & Van Strien, E. A. (1999). The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiological and Molecular Plant Pathology, 55(2), 85–97. https://doi.org/10.1006/PMPP.1999.0213 | spa |
dc.relation.references | Van Ooijen, G., Mayr, G., Kasiem, M. M. A., Albrecht, M., Cornelissen, B. J. C., & Takken, F. L. W. (2008). Structure-function analysis of the NB-ARC domain of plant disease resistance proteins. Journal of Experimental Botany, 59(6), 1383–1397. https://doi.org/10.1093/jxb/ern045 | spa |
dc.relation.references | Vanegas-Cano, L., Martínez-Peralta, S., Coy-Barrera, E., & Ardila-Barrantes, H. (2022). Plant hormones accumulation and its relationship with symplastic peroxidases expression during carnation-Fusarium oxysporum interaction. Ornamental Horticulture, 28(1), 49–59. https://doi.org/10.1590/2447-536X.V28I1.2412 | spa |
dc.relation.references | Vanegas-Cano, L.J;, Martinez-Peralta, S. T., Coy-Barrera, E., & Ardila-Barrantes, H. . (2022). Respuestas tempranas en simplasto de tallo asociadas a la ruta del ácido salicílico en la interacción clavel (Dianthus caryophyllus, caryophyllaceae)- FOD (Fusarium oxysporum f. sp. dianthi). Acta Biológica Colombiana, 27(2). https://doi.org/https://doi.org/10.15446/abc.v27n2.85778 To | spa |
dc.relation.references | Vanegas-Cano, Leidy Johana. (2019). Aproximación bioquímica al estudio de las rutas de señalización involucradas en la resistencia del clavel (Dianthus caryophyllus L.) al patógeno Fusarium oxysporum f. sp. dianthi. Universidad Nacional de Colombia Sede Bogotá. | spa |
dc.relation.references | Verslues, P. E., & Sharma, S. (2010). Proline metabolism and its implications for plant-environment interaction. The Arabidopsis book, 8, e0140. https://doi.org/10.1199/tab.0140 | spa |
dc.relation.references | Villarreal-Navarrete, A., Fischer, G., Melgarejo, L. M., Correa, G., & Hoyos-Carvajal, L. (2017). Growth response of the cape gooseberry (Physalis peruviana L.) to waterlogging stress and Fusarium oxysporum infection. Acta Horticulturae, 1178, 161–168. https://doi.org/10.17660/ActaHortic.2017.1178.28 | spa |
dc.relation.references | Vlot, A. C., Klessig, D. F., & Park, S.-W. (2008). Systemic acquired resistance: the elusive signal(s). Current opinion in Plant Biology, 11, 436–442. https://doi.org/10.1016/j.pbi.2008.05.003 | spa |
dc.relation.references | Voegele, R. T., Wirsel, S., Möll, U., Lechner, M., & Mendgen, K. (2006). Cloning and Characterization of a Novel Invertase from the Obligate Biotroph Uromyces fabae and Analysis of Expression Patterns of Host and Pathogen Invertases in the Course of Infection. Molecular Plant-Microbe Interactions, 19(6), 625–634. https://doi.org/10.1094/MPMI-19-0625 | spa |
dc.relation.references | Voiniciuc, C. (2022). Research review Modern mannan: a hemicellulose’s journey. New Phytologist, 234, 1175–1184. https://doi.org/10.1111/nph.18091 | spa |
dc.relation.references | Walters, D. R. (2015). Physiological Responses of Plants to Attack. En Wiley Blackwell (Ed.), Physiological Responses of Plants to Attack (1a ed.). 2015. https://doi.org/10.1002/9781118783054 | spa |
dc.relation.references | Wang, D., Pajerowska-Mukhtar, K., Culler, A. H., & Dong, X. (2007). Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. Current biology : CB, 17(20), 1784–1790. https://doi.org/10.1016/j.cub.2007.09.025 | spa |
dc.relation.references | Wang, M., Sun, Y., Sun, G., Liu, X., Zhai, L., Shen, Q., & Guo, S. (2015). Water balance altered in cucumber plants infected with Fusarium oxysporum f. sp. cucumerinum. Scientific Reports, 5(1), 7722. https://doi.org/10.1038/srep07722 | spa |
dc.relation.references | Wang, X., Jiang, N., Liu, J., Liu, W., & Wang, G.-L. (2014). The role of effectors and host immunity in plant–necrotrophic fungal interactions. Virulence, 5(7), 722–732. https://doi.org/10.4161/viru.29798 | spa |
dc.relation.references | Wang, Z., Gerstein, M., & Snyder, M. (2009). RNA-Seq: a revolutionary tool for transcriptomics. Nature Reviews Genetics, 10(1), 57–63. https://doi.org/10.1038/nrg2484 | spa |
dc.relation.references | Ward, J. L., Forcat, S., Beckmann, M., Bennett, M., Miller, S. J., Baker, J. M., Hawkins, N. D., Vermeer, C. P., Lu, C., Lin, W., Truman, W. M., Beale, M. H., Draper, J., Mansfield, J. W., & Grant, M. (2010). The metabolic transition during disease following infection of Arabidopsis thaliana by Pseudomonas syringae pv. tomato. The Plant Journal, 63(3), 443–457. https://doi.org/10.1111/j.1365-313X.2010.04254.x | spa |
dc.relation.references | Warzecha, T., Skrzypek, E., & Sutkowska, A. (2015). Effect of Fusarium culmorum infection on selected physiological and biochemical parameters of barley (Hordeum vulgare L.) DH lines. Physiological and Molecular Plant Pathology, 89, 62–69. https://doi.org/10.1016/j.pmpp.2014.12.002 | spa |
dc.relation.references | Wellburn, A. R. (1994). The Spectral Determination of Chlorophylls a and b, as well as Total Carotenoids, Using Various Solvents with Spectrophotometers of Different Resolution. Journal of Plant Physiology, 144(3), 307–313. https://doi.org/10.1016/S0176-1617(11)81192-2 | spa |
dc.relation.references | Williams, M., Rastetter, E. ., Fernandes, D. ., Goulden, M. L., Wofsy, S. C., Shaver, G. R., Melillo, J. M., Munger, J. W., Fan, S. M., & Nadelhoffer, K. J. (1996). Modelling the soil-plant-atmosphere continuum in a Quercus-acer stand at Harvard forest: The regulation of stomatal conductance by light, nitrogen and soil/plant hydraulic properties. Plant. Cell and Environmenf, 19, 911–927. https://doi.org/10.1111/j.1365-3040.1996.tb00456.x | spa |
dc.relation.references | Wong, S. C., Cowan, I. R., & Farquhar, G. D. (1979). Stomatal conductance correlates with photosynthetic capacity. Nature, 282(5737), 424–426. https://doi.org/10.1038/282424a0 | spa |
dc.relation.references | Wu, A. R., Neff, N. F., Kalisky, T., Dalerba, P., Treutlein, B., Rothenberg, M. E., Mburu, F. M., Mantalas, G. L., Sim, S., Clarke, M. F., & Quake, S. R. (2013). Quantitative assessment of single-cell RNA-sequencing methods. Nature Methods, 11(1), 41–46. https://doi.org/10.1038/nmeth.2694 | spa |
dc.relation.references | Xiang, G., Zhang, H., Jian, H., Yan, H., Wang, Q., Zhou, N., Li, S., Tang, K., & Qiu, X. (2019). De Novo assembly and characterization of the transcriptome of susceptible and resistant rose species in response to powdery mildew. Scientia Horticulturae, 257(March), 108653. https://doi.org/10.1016/j.scienta.2019.108653 | spa |
dc.relation.references | Xing, M., Lv, H., Ma, J., Xu, D., Li, H., Yang, L., Kang, J., Wang, X., & Fang, Z. (2016). Transcriptome Profiling of Resistance to Fusarium oxysporum f. sp. conglutinans in Cabbage (Brassica oleracea) Roots. PLoS ONE, 11(2). https://doi.org/10.1371/journal.pone.0148048 | spa |
dc.relation.references | Xu, C., Jiao, C., Sun, H., Cai, X., Wang, X., Ge, C., Zheng, Y., Liu, W., Sun, X., Xu, Y., Deng, J., Zhang, Z., Huang, S., Dai, S., Mou, B., Wang, Q., Fei, Z., & Wang, Q. (2017). Draft genome of spinach and transcriptome diversity of 120 Spinacia accessions. Nature Communications, 8. https://doi.org/10.1038/ncomms15275 | spa |
dc.relation.references | Xu, Juan, Li, Y., Wang, Y., Liu, H., Lei, L., Yang, H., Liu, G., & Ren, D. (2008). Activation of MAPK kinase 9 induces ethylene and camalexin biosynthesis and enhances sensitivity to salt stress in Arabidopsis. Journal of Biological Chemistry, 283(40), 26996–27006. https://doi.org/10.1074/jbc.M801392200 | spa |
dc.relation.references | Xu, Junhuan, Padilla, C. S., Li, J., Wickramanayake, J., Fischer, H. D., & Goggin, F. L. (2021). Redox responses of Arabidopsis thaliana to the green peach aphid, Myzus persicae. Molecular Plant Pathology, 22(6), 727–736. https://doi.org/10.1111/mpp.13054 | spa |
dc.relation.references | Xu, Z., Escamilla-Treviño, L. L., Zeng, L., Lalgondar, M., Bevan, D. R., Winkel, B. S. J., Mohamed, A., Cheng, C. L., Shih, M. C., Poulton, J. E., & Esen, A. (2004). Functional genomic analysis of Arabidopsis thaliana glycoside hydrolase family 1. Plant Molecular Biology, 55(3), 343–367. https://doi.org/10.1007/s11103-004-0790-1 | spa |
dc.relation.references | Yagi, M., Kosugi, S., Hirakawa, H., Ohmiya, A., Tanase, K., Harada, T., Kishimoto, K., Nakayama, M., Ichimura, K., Onozaki, T., Yamaguchi, H., Sasaki, N., Miyahara, T., Nishizaki, Y., Ozeki, Y., Nakamura, N., Suzuki, T., Tanaka, Y., Sato, S., … Tabata, S. (2014). Sequence analysis of the genome of carnation (Dianthus caryophyllus L.). DNA Research, 21(3), 231–241. https://doi.org/10.1093/dnares/dst053 | spa |
dc.relation.references | Yagi, M., Yamamoto, T., Isobe, S., Hirakawa, H., Tabata, S., Tanase, K., Yamaguchi, H., & Onozaki, T. (2013). Construction of a reference genetic linkage map for carnation (Dianthus caryophyllus L.). BMC genomics, 14(1), 734. https://doi.org/10.1186/1471-2164-14-734 | spa |
dc.relation.references | Yang, I. S., & Kim, S. (2015). Analysis of Whole Transcriptome Sequencing Data: Workflow and Software. Genomics & informatics, 13(4), 119–125. https://doi.org/10.5808/GI.2015.13.4.119 | spa |
dc.relation.references | Yang, Q., Reinhard, K., Schiltz, E., & Matern, U. (1997). Characterization and heterologous expression of hydroxycinnamoyl/benzoyl-coA:anthranilate N-hydroxycinnamoyl/benzoyltransferase from elicited cell cultures of carnation, Dianthus caryophyllus L. Plant Molecular Biology, 35(6), 777–789. https://doi.org/10.1023/A:1005878622437 | spa |
dc.relation.references | Yang, S., Yang, H., Grisafi, P., Sanchatjate, S., Fink, G. R., Sun, Q., & Hua, J. (2006). The BON/CPN gene family represses cell death and promotes cell growth in Arabidopsis. Plant Journal, 45(2), 166–179. https://doi.org/10.1111/j.1365-313X.2005.02585.x | spa |
dc.relation.references | Yang, Y., Liu, X., Zhang, W., Qian, Q., Zhou, L., Liu, S., Li, Y., & Hou, X. (2021). Stress response proteins NRP1 and NRP2 are prosurvival factors that inhibit cell death during ER stress. Plant Physiology, 187(3), 1414–1427. https://doi.org/10.1093/plphys/kiab335 | spa |
dc.relation.references | Ye, S. F., Zhou, Y. H., Sun, Y., Zou, L. Y., & Yu, J. Q. (2006). Cinnamic acid causes oxidative stress in cucumber roots, and promotes incidence of Fusarium wilt. Environmental and Experimental Botany, 56(3), 255–262. https://doi.org/10.1016/j.envexpbot.2005.02.010 | spa |
dc.relation.references | Yuan, G., He, X., Li, H., Xiang, K., Liu, L., Zou, C., Lin, H., Wu, J., Zhang, Z., & Pan, G. (2020). Transcriptomic responses in resistant and susceptible maize infected with Fusarium graminearum.pdf. The Crop Journal, 8, 153–163. | spa |
dc.relation.references | Zerbino, D. R., & Birney, E. (2008). Velvet: Algorithms for de novo short read assembly using de Bruijn graphs. Genome Research, 18(5), 821–829. https://doi.org/10.1101/gr.074492.107 | spa |
dc.relation.references | Zhang, G., Fedyunin, I., Kirchner, S., Xiao, C., Valleriani, A., & Ignatova, Z. (2012). FANSe: an accurate algorithm for quantitative mapping of large scale sequencing reads. Nucleic Acids Research, 40(11), e83–e83. https://doi.org/10.1093/nar/gks196 | spa |
dc.relation.references | Zhang, N., Li, R., Shen, W., Jiao, S., Zhang, J., & Xu, W. (2018). Genome-wide evolutionary characterization and expression analyses of major latex protein (MLP) family genes in Vitis vinifera. Molecular Genetics and Genomics, 293(5), 1061–1075. https://doi.org/10.1007/s00438-018-1440-7 | spa |
dc.relation.references | Zhang, Y. L., Jia, Q. L., Li, D. W., Wang, J. E., Yin, Y. X., & Gong, Z. H. (2013). Characteristic of the pepper CaRGA2 Gene in defense responses against Phytophthora capsici leonian. International Journal of Molecular Sciences, 14(5), 8985–9004. https://doi.org/10.3390/ijms14058985 | spa |
dc.relation.references | Zhao, C., Avci, U., Grant, E. H., Haigler, C. H., & Beers, E. P. (2008). XND1, a member of the NAC_negatively regulates lignocellulose synthesis and PCD in xylem.pdf. The Plant Journal, 53, 425–436. https://doi.org/https://doi.org/10.1111/j.1365-313X.2007.03350.x | spa |
dc.relation.references | Zhao, M., Ji, H.-M., Gao, Y., Cao, X.-X., Mao, H.-Y., Liu, P., & Ouyang, S.-Q. (2017). Comparative transcriptome profiling of resistance to Fusarium oxysporum infection between resistant and susceptible tomato. BioRxiv, on line, 1–25. https://doi.org/http://dx.doi.org/10.1101/116988 | spa |
dc.relation.references | Zhao, X., Mehrabi, R., Xu, J.-R., Zhao, X., Mehrabi, R., & Xu, J.-R. (2007). Mitogen-activated protein kinase pathways and fungal pathogenesis. Eukaryotic cell, 6(10), 1701–1714. https://doi.org/10.1128/EC.00216-07 | spa |
dc.relation.references | Zhou, R., Zhu, T., Han, L., Liu, M., Xu, M., Liu, Y., Han, D., Qiu, D., Gong, Q., & Liu, X. (2017). The asparagine-rich protein NRP interacts with the Verticillium effector PevD1 and regulates the subcellular localization of cryptochrome 2. Journal of Experimental Botany, 68(13), 3427–3440. https://doi.org/10.1093/jxb/erx192 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.subject.ddc | 570 - Biología::572 - Bioquímica | spa |
dc.subject.lemb | Claveles | spa |
dc.subject.lemb | Fisiología vegetal | spa |
dc.subject.lemb | Plant physiology | eng |
dc.subject.proposal | Fusarium oxysporum | spa |
dc.subject.proposal | Transcriptómica | spa |
dc.subject.proposal | Resistencia vegetal | spa |
dc.subject.proposal | Plant Physiology | eng |
dc.subject.proposal | RNAseq | eng |
dc.subject.proposal | Clavel | spa |
dc.subject.wikidata | Fusarium oxysporum | |
dc.subject.wikidata | Transcriptomics | eng |
dc.subject.wikidata | Tecnologías de transcriptómica | spa |
dc.subject.wikidata | RNA sequencing | |
dc.subject.wikidata | RNA-Seq | |
dc.title | Aproximación transcriptómica y fisiológica para el estudio de los mecanismos moleculares involucrados en la interacción clavel (Dianthus caryophyllus L.) – Fusarium oxysporum f. sp. dianthi | spa |
dc.title.translated | Transcriptomic and physiological approach for the study of the molecular mechanisms involved in the carnation (Dianthus caryophyllus L.) – Fusarium oxysporum f. sp. dianthi | eng |
dc.type | Trabajo de grado - Doctorado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_db06 | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/doctoralThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TD | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Bibliotecarios | spa |
dcterms.audience.professionaldevelopment | Consejeros | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Grupos comunitarios | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Medios de comunicación | spa |
dcterms.audience.professionaldevelopment | Padres y familias | spa |
dcterms.audience.professionaldevelopment | Personal de apoyo escolar | spa |
dcterms.audience.professionaldevelopment | Proveedores de ayuda financiera para estudiantes | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
dcterms.audience.professionaldevelopment | Receptores de fondos federales y solicitantes | spa |
dcterms.audience.professionaldevelopment | Responsables políticos | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_14cb | spa |
oaire.awardtitle | Estudio de fenómenos bioquímicos del apoplasto del clavel (Dianthus caryophyllus) durante su interacción con Fusarium oxysporum f. sp dianthi | spa |
oaire.awardtitle | Estudio del uso de elicitores de origen biótico en el clavel (Dianthus caryophyllus) para el control del marchitamiento vascular: una alternativa al uso de fungicidas de origen sintético | spa |
oaire.fundername | MinCiencias (antes ColCiencias) | spa |
Archivos
Bloque original
1 - 5 de 7
Cargando...
- Nombre:
- 63518026_2023.pdf
- Tamaño:
- 34.42 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Doctorado en Ciencias - Bioquímica
Cargando...
- Nombre:
- Anexo A.pdf
- Tamaño:
- 156.36 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Anexo A
Cargando...
- Nombre:
- Anexo B.xlsx
- Tamaño:
- 243.08 KB
- Formato:
- Microsoft Excel XML
- Descripción:
- Anexo B
Cargando...
- Nombre:
- Anexo C.xlsx
- Tamaño:
- 5.58 MB
- Formato:
- Microsoft Excel XML
- Descripción:
- Anexo C
Cargando...
- Nombre:
- ANEXO D.pdf
- Tamaño:
- 1.45 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Anexo D
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: