Aproximación transcriptómica y fisiológica para el estudio de los mecanismos moleculares involucrados en la interacción clavel (Dianthus caryophyllus L.) – Fusarium oxysporum f. sp. dianthi

dc.contributor.advisorArdila Barrantes, Harold Duban
dc.contributor.advisorPinzon Velasco, Andrés Mauricio
dc.contributor.authorBustos Caro, Eliana
dc.contributor.orcidBustos Caro, Eliana [0009-0005-1248-6655]spa
dc.contributor.researchgroupEstudio de Actividades Metabolicas Vegetalesspa
dc.date.accessioned2024-07-03T18:09:06Z
dc.date.available2024-07-03T18:09:06Z
dc.date.issued2022-10-07
dc.descriptionilustraciones (principalmente a color), diagramas, fotografíasspa
dc.description.abstractVascular wilting caused by Fusarium oxysporum f. sp. dianthi (Fod) in carnations is undoubtedly one of the diseases with the greatest impact on the world flower sector. The molecular study of this plant-pathogen interaction will make it possible to propose new strategies for its early diagnosis and control in crops, and provide tools for the genetic design of varieties resistant to the pathogen. This study presents the first joint study of physiological parameters and comparative transcriptomics using RNAseq in this pathosystem. From the physiological approach, it was found that the mechanisms displayed by the plants of the resistant variety under study included stomatal closure without affecting the production of total chlorophyll, photochemical efficiency of photosystem II, or biomass production. Likewise, it was found that, at least in the varieties studied, leaf temperature can be postulated as an indicator for early diagnosis of the disease. On the other hand, the molecular mechanisms associated with resistance against Fod and displayed by the roots at early times include the activation of genes that code for potential RGA resistance proteins, oxidative burst, cell wall biogenesis, biosynthesis of specialized metabolites, chloroplast metabolism, and, in general, the transcriptional regulation related to stress response genes, defense response, and, to a lesser extent, some genes that participate in the response to osmotic stress, as well as some genes of hormonal pathways. In general, the transcriptional response, which was partially validated by RT-qPCR, is complex and shows components that are reported for the first time in the carnation response to the causal pathogen of vascular wilting.eng
dc.description.abstractEl marchitamiento vascular causado por Fusarium oxysporum f. sp. dianthi (Fod) en clavel, es sin duda, una de las enfermedades con mayor impacto en el sector floricultor mundial. El estudio molecular de esta interacción planta-patógeno permitirá plantear nuevas estrategias para su diagnóstico temprano, control en los cultivos y brindar herramientas para el diseño genético de variedades resistentes al patógeno. En esta investigación se presenta el primer estudio conjunto de parámetros fisiológicos y de transcriptómica comparativa usando RNAseq en este patosistema. Desde el abordaje fisiológico, se encontró que los mecanismos desplegados por las plantas de la variedad resistente en estudio, incluyeron cierre estomático sin afectación en la producción de clorofilas totales, ni en la eficiencia fotoquímica del fotosistema II o la producción de biomasa. Igualmente, se encontró que, al menos en las variedades estudiadas, la temperatura foliar puede postularse como un indicador de diagnóstico temprano de la enfermedad. Por otra parte, los mecanismos moleculares asociados a resistencia contra Fod y desplegados por las raíces a tiempos tempranos, incluyen entre otros, la activación de genes que codifican para potenciales proteínas de resistencia RGA, estallido oxidativo, biogénesis de pared celular, biosíntesis de metabolitos especializados y metabolismo del cloroplasto, así como en general, la regulación transcripcional relacionada con genes de respuesta a estrés, respuesta de defensa y en menor medida algunos genes que participan de la respuesta a estrés osmótico, así como algunos genes de las rutas hormonales. En general la respuesta transcripcional, que fue parcialmente validada por RT-qPCR, es compleja y evidencia componentes que son reportados por primera vez en la respuesta del clavel al patógeno causal del marchitamiento vascular (Texto tomado de la fuente).spa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ciencias - Bioquímicaspa
dc.description.methodsEn esta investigación se presenta el primer estudio conjunto de parámetros fisiológicos y de transcriptómica comparativa usando RNAseq en este patosistema. Desde el abordaje fisiológico, se encontró que los mecanismos desplegados por las plantas de la variedad resistente en estudio, incluyeron cierre estomático sin afectación en la producción de clorofilas totales, ni en la eficiencia fotoquímica del fotosistema II o la producción de biomasa. Igualmente, se encontró que, al menos en las variedades estudiadas, la temperatura foliar puede postularse como un indicador de diagnóstico temprano de la enfermedad. Por otra parte, los mecanismos moleculares asociados a resistencia contra Fod y desplegados por las raíces a tiempos tempranos, incluyen entre otros, Los análisis con RNAseq permitieron encontrar la activación de genes que codifican para potenciales proteínas de resistencia RGA, estallido oxidativo, biogénesis de pared celular, biosíntesis de metabolitos especializados y metabolismo del cloroplasto, así como en general, la regulación transcripcional relacionada con genes de respuesta a estrés, respuesta de defensa y en menor medida algunos genes que participan de la respuesta a estrés osmótico, así como algunos genes de las rutas hormonales. En general la respuesta transcripcional, que fue parcialmente validada por RT-qPCR, es compleja y evidencia componentes que son reportados por primera vez en la respuesta del clavel al patógeno causal del marchitamiento vascular.spa
dc.description.researchareaBioquímica de las interacciones Hospedero - Patógenospa
dc.description.sponsorshipConvocatoria Doctorados Nacionales, número 757 – 2016 de Colciencias. Ahora Min-Cienciasspa
dc.description.sponsorshipFlorval sede QFC S.A.S, Gachancipá, Cundinamarca- Colombiaspa
dc.format.extentxiv, 211 páginas, + anexosspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86376
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Bioquímicaspa
dc.relation.referencesAbd-Elsalam, K. A., Aly, I. N., Abdel-Satar, M. A., Khalil, M. S., & Verreet, J. A. (2003). PCR identification of Fusarium genus based on nuclear ribosomal-DNA sequence data. African Journal of Biotechnology, 2(4), 82–85. https://doi.org/10.4314/ajb.v2i4.14830spa
dc.relation.referencesAbuQamar, S., Chen, X., Dhawan, R., Bluhm, B., Salmeron, J., Lam, S., Dietrich, R. A., & Mengiste, T. (2006). Expression profiling and mutant analysis reveals complex regulatory networks involved in Arabidopsis response to Botrytis infection. The Plant Journal, 48(1), 28–44. https://doi.org/10.1111/j.1365-313X.2006.02849.xspa
dc.relation.referencesAdie, B. A. T., Pérez-Pérez, J., Pérez-Pérez, M. M., Godoy, M., Sánchez-Serrano, J.-J., Schmelz, E. A., & Solano, R. (2007). ABA Is an Essential Signal for Plant Resistance to Pathogens Affecting JA Biosynthesis and the Activation of Defenses in Arabidopsis. The Plant Cell, 19, 1665–1681. https://doi.org/10.1105/tpc.106.048041spa
dc.relation.referencesAfzal, A. J., Kim, J. H., & Mackey, D. (2013). The role of NOI-domain containing proteins in plant immune signaling. https://doi.org/10.1186/1471-2164-14-327spa
dc.relation.referencesAgrawal, S. (2018). Arabidopsis thaliana as a model organism to study plant-pathogen interactions. Molecular Aspects of Plant-Pathogen Interaction, 1–20. https://doi.org/10.1007/978-981-10-7371-7_1spa
dc.relation.referencesAgrios, G. (2005). Fitopatología (Limusa (ed.)).spa
dc.relation.referencesAguilar-Bultet, L., & Falquet, L. (2015). Secuenciación y ensamblaje de novo de genomas bacterianos: una alternativa para el estudio de nuevos patógenos. Rev salud Anima., 37(2). http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0253-570X2015000200008spa
dc.relation.referencesAguilar Cruz, M., Hoyos Carvajal, L., & Melgarejo, L. M. (2012). Respuesta fisiologica de la gulupa (Passiflora edulis Sims) frente al ataque por Fusarium spp. En Ecofisiología de la gulupa- (Passiflora edulis Sims) (pp. 91–113).spa
dc.relation.referencesAli, S., Ganai, B. A., Kamili, A. N., Bhat, A. A., Mir, Z. A., Bhat, J. A., Tyagi, A., Islam, S. T., Mushtaq, M., Yadav, P., Rawat, S., & Grover, A. (2018). Pathogenesis-related proteins and peptides as promising tools for engineering plants with multiple stress tolerance. Microbiological Research, 212–213, 29–37. https://doi.org/10.1016/j.micres.2018.04.008spa
dc.relation.referencesÁlvarez, S., Navarro, A., Bañon, S., & Sánchez, M. (2009). Regulated deficit irrigation in potted Dianthus plants: Effect of severe and moderate water stress on growth and physiological response. Scientia horticulturae, 122, 579–585.spa
dc.relation.referencesAnderson, J. P., Badruzsaufari, E., Schenk, P. M., Manners, J. M., Desmond, O. J., Ehlert, C., Maclean, D. J., Ebert, P. R., & Kazan, K. (2004). Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. The Plant cell, 16(12), 3460–3479. https://doi.org/10.1105/tpc.104.025833spa
dc.relation.referencesAndrews, S. (2010). FastQC: a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqcspa
dc.relation.referencesAndrews, Simon. (2016). Babraham Bioinformatics - FastQC A Quality Control tool for High Throughput Sequence Data. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/spa
dc.relation.referencesArbeláez-Torres, G. (1987). Enfermedades fungosas y bacteriales del clavel en Colombia. Agronomía Colombiana, IV, 3–8. https://revistas.unal.edu.co/index.php/agrocol/article/viewFile/20913/21822spa
dc.relation.referencesArbelaez, G., Calderon, O. L., Cevallos, F., & Gonzalez, D. (1993). Determinación de las razas fisiologicas de Fusarium oxysporum f.sp. dianthi en clavel en la sabana de Bogotá. Agronomia Colombiana, 10(1), 19–27. https://revistas.unal.edu.co/index.php/agrocol/article/view/21227spa
dc.relation.referencesArdila-Barrantes, H., Baquero, B., & Martínez-Peralta, S. T. (2007). Inducción de la actividad de la enzima fenilalanina amonio liasa en clavel (Dianthus caryophyllus L) por elicitores del hongo Fusarium oxysporum f.sp. Dianthi raza 2. Revista Colombiana de Química, 36(2), 151–167.spa
dc.relation.referencesArdila B, H. D., & Higuera, B. L. (2005). Inducción diferencial de polifenoloxidasa y B-1,3-glucanasa en clavel (Dianthus caryophyllus) durante la infección por Fusarium oxysporum f.sp. dianthi raza 2. Acta Biológica Colombiana, 10(2), 61–74.spa
dc.relation.referencesArdila, H. D. (2013). CONTRIBUCIÓN AL ESTUDIO DE ALGUNOS COMPONENTES BIOQUÍMICOS Y MOLECULARES DE LA RESISTENCIA DEL CLAVEL (Dianthus caryophyllus L) AL PATÓGENO Fusarium oxysporum f. sp. dianthi (Bogotá D.C).spa
dc.relation.referencesArdila, H. D., Martínez, S. T., & Higuera, B. L. (2013). Levels of constitutive flavonoid biosynthetic enzymes in carnation (Dianthus caryophyllus L.) cultivars with differential response to Fusarium oxysporum f. sp. dianthi. Acta Physiologiae Plantarum, 35(4), 1233–1245. https://doi.org/10.1007/s11738-012-1162-0spa
dc.relation.referencesArdila, H. D., Torres, A. M., Martínez, S. T., & Higuera, B. L. (2014). Biochemical and molecular evidence for the role of class III peroxidases in the resistance of carnation (Dianthus caryophyllus L) to Fusarium oxysporum f. sp. dianthi. Physiological and Molecular Plant Pathology, 85, 42–52. https://doi.org/10.1016/j.pmpp.2014.01.003spa
dc.relation.referencesAsai, S., Ohta, K., & Yoshioka, H. (2008). MAPK Signaling Regulates Nitric Oxide and NADPH Oxidase-Dependent Oxidative Bursts in Nicotiana benthamiana. THE PLANT CELL ONLINE, 20(5), 1390–1406. https://doi.org/10.1105/tpc.107.055855spa
dc.relation.referencesAsai, T., Tena, G., Plotnikova, J., Willmann, M. R., Chiu, W.-L., Gomez-Gomez, L., Boller, T., Ausubel, F. M., & Sheen, J. (2002). MAP kinase signalling cascade in Arabidopsis innate immunity. Nature, 415(6875), 977–983. https://doi.org/10.1038/415977aspa
dc.relation.referencesAshburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., Davis, A. P., Dolinski, K., Dwight, S. S., Eppig, J. T., Harris, M. A., Hill, D. P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J. C., Richardson, J. E., Ringwald, M., Rubin, G. M., & Sherlock, G. (2000). Gene Ontology: tool for the unification of biology. Nature Genetics, 25(1), 25–29. https://doi.org/10.1038/75556spa
dc.relation.referencesAsmann, Y. W., Klee, E. W., Thompson, E. A., Perez, E. A., Middha, S., Oberg, A. L., Therneau, T. M., Smith, D. I., Poland, G. A., Wieben, E. D., & Kocher, J.-P. A. (2009). 3’ tag digital gene expression profiling of human brain and universal reference RNA using Illumina Genome Analyzer. BMC Genomics, 10(1), 531. https://doi.org/10.1186/1471-2164-10-531spa
dc.relation.referencesAsselbergh, B., Achuo, A. E., Höfte, M., & Van Gijsegem, F. (2007). Abscisic acid deficiency leads to rapid activation of tomato defence responses upon infection with Erwinia chrysanthemi. Molecular Plant Pathology, 0(0), 070925014357003-??? https://doi.org/10.1111/j.1364-3703.2007.00437.xspa
dc.relation.referencesAxtell, M. J., McNellis, T. W., Mudgett, M. B., Hsu, C. S., & Staskawicz, B. J. (2001). Mutational analysis of the Arabidopsis RPS2 disease resistance gene and the corresponding Pseudomonas syringae avrRpt2 avirulence gene. Molecular Plant-Microbe Interactions, 14(2), 181–188. https://doi.org/10.1094/MPMI.2001.14.2.181spa
dc.relation.referencesAzcón-Bieto, J., & Talón, M. (2000). Fundamentos de Fisiología Vegetal (McGraw-Hill Interamericana (ed.)).spa
dc.relation.referencesBaayen, R. P., & Elgersma, D. M. (1985). Colonization and histopathology of susceptible and resistant carnation cultivars infected with Fusarium oxysporum f. sp. dianthi. Netherlands Journal of Plant Pathology, 91(3), 119–135. https://doi.org/10.1007/BF01976386spa
dc.relation.referencesBaayen, R. P., Elgersma, D. M., Demmink, J. F., & Sparnaaij, L. D. (1988). Differences in pathogenesis observed among susceptible interactions of carnation with four races of Fusarium oxysporum f.sp. dianthi. Netherlands Journal of Plant Pathology, 94(2), 81–94. https://doi.org/10.1007/BF01998398spa
dc.relation.referencesBaayen, R. P., Sparnaaij, L. D., Jansen, J., & Niemann, G. J. (1991). Inheritance of resistance in carnation against Fusarium oxysporum f.sp. dianthi races 1 and 2, in relation to resistance components. Netherlands Journal of Plant Pathology, 97(2), 73–86. https://doi.org/10.1007/BF01974271spa
dc.relation.referencesBaayen, R. P., Ouellette, G. B., & Rioux, D. (1996). Compartmentalization of decay in carnations resistant to Fusarium oxysporum f.sp. dianth. Phytopathology , 86 (10). http://agris.fao.org/agris-search/search.do?recordID=US1997049782spa
dc.relation.referencesBabu C. V., S., & Gassmann, M. (2016). Assessing integrity of plant RNA with the Agilent 2100 Bioanalyzer System. Agilent Application Note, 5990-8850E. https://www.agilent.com/cs/library/applications/5990-8850EN.pdfspa
dc.relation.referencesBacete, L., Schulz, J., Engelsdorf, T., Bartosova, Z., Vaahtera, L., Yan, G., Gerhold, J. M., Ticha, T., Øvstebø, C., Gigli-Bisceglia, N., Johannessen-Starheim, S., Margueritat, J., Kollist, H., Dehoux, T., McAdam, S. A. M., & Hamann, T. (2022). THESEUS1 modulates cell wall stiffness and abscisic acid production in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 119(1). https://doi.org/10.1073/pnas.2119258119spa
dc.relation.referencesBaker, N. R. (2008). Chlorophyll Fluorescence: A Probe of Photosynthesis In Vivo. Annual Review of Plant Biology, 59(1), 89–113. https://doi.org/10.1146/annurev.arplant.59.032607.092759spa
dc.relation.referencesBao, F., Azhakanandam, S., & Franks, R. G. (2010). SEUSS and SEUSS-LIKE transcriptional adaptors regulate floral and embryonic development in arabidopsis. Plant Physiology, 152(2), 821–836. https://doi.org/10.1104/pp.109.146183spa
dc.relation.referencesBao, Y., Aggarwal, P., Robbins, N. E., Sturrock, C. J., Thompson, M. C., Tan, H. Q., Tham, C., Duan, L., Rodriguez, P. L., Vernoux, T., Mooney, S. J., Bennett, M. J., & Dinneny, J. R. (2014). Plant roots use a patterning mechanism to position lateral root branches toward available water. Proceedings of the National Academy of Sciences of the United States of America, 111(25), 9319–9324. https://doi.org/10.1073/pnas.1400966111spa
dc.relation.referencesBasu, D., Shoots, J. M., & Haswell, E. S. (2020). Interactions between the N- And C-termini of the mechanosensitive ion channel AtMSL10 are consistent with a three-step mechanism for activation. Journal of Experimental Botany, 71(14), 4020–4032. https://doi.org/10.1093/jxb/eraa192spa
dc.relation.referencesBeckers, G. J. M., Jaskiewicz, M., Liu, Y., Underwood, W. R., He, S. Y., Zhang, S., & Conrath, U. (2009). Mitogen-activated protein kinases 3 and 6 are required for full priming of stress responses in Arabidopsis thaliana. The Plant cell, 21(3), 944–953. https://doi.org/10.1105/tpc.108.062158spa
dc.relation.referencesBelenghi, B., Acconcia, F., Trovato, M., Perazzolli, M., Bocedi, A., Polticelli, F., Ascenzi, P., & Delledonne, M. (2003). AtCYS1, a cystatin from Arabidopsis thaliana, suppresses hypersensitive cell death. Eur.J.Biochem, 270, 2593–2604. https://doi.org/10.1046/j.1432-1033.2003.03630.xspa
dc.relation.referencesBen-Yephet, Y., Reuven, M., & Shtienberg, D. (1997). Complete Resistance by Carnation Cultivars to Fusarium Wilt Induced by Fusarium oxysporum f . sp . dianthi Race 2. Plant Disease, 81(7), 777–780.spa
dc.relation.referencesBen-Yephet, Y., Reuven, M., Zveibil, A., & Shtienberg, D. (1996). Effects of abiotic variables on the response of carnation cultivars to Fusarium oxysporum f.sp. dianthi. Plant Pathology, 45(1), 98–105. https://doi.org/10.1046/j.1365-3059.1996.d01-102.xspa
dc.relation.referencesBen-Yephet, Y., & Shtienberg, D. (1994). Effects of solar radiation and temperature on fusarium wilt in carnation. En Phytopathology (Vol. 84, Número 12, pp. 1416–1421). https://doi.org/10.1094/phyto-84-1416spa
dc.relation.referencesBen-Yephet, Y., Shtienberg, D., Reuven, M., & Mor, Y. (1993). Response of carnation cultivars to Fusarium oxysporum f.sp. dianthi in the field. Netherlands Journal of Plant Pathology, 99(1), 3–12. https://doi.org/10.1007/BF01974780spa
dc.relation.referencesBenes, V., Blake, J., & Doyle, K. (2011). Ribo-Zero Gold Kit: improved RNA-seq results after removal of cytoplasmic and mitochondrial ribosomal RNA. Nature methods, 8(11), iii–iv. https://doi.org/10.1038/nmeth.f.352spa
dc.relation.referencesBenjamini, Y., & Hochberg, Y. (1995). Controlling The False Discovery Rate - A Practical And Powerful Approach To Multiple Testing. Journal of the Royal Statistical Society, 57, 1(November 1995), 289–300. https://doi.org/10.2307/2346101spa
dc.relation.referencesBensch, K. (2016). Mycobank. International Mycological Association (IMA). http://www.mycobank.org/BioloMICS.aspx?TableKey=14682616000000063&Rec=18372&Fields=Allspa
dc.relation.referencesBerger, S., Sinha, A. K., & Roitsch, T. (2007). Plant physiology meets phytopathology: plant primary metabolism and plant pathogen interactions. Journal of Experimental Botany, 58(15–16), 4019–4026. https://doi.org/10.1093/jxb/erm298spa
dc.relation.referencesBerger, Susanne, Papadopoulos, M., Schreiber, U., Kaiser, W., & Roitsch, T. (2004). Complex regulation of gene expression, photosynthesis and sugar levels by pathogen infection in tomato. Physiologia Plantarum, 122(4), 419–428. https://doi.org/10.1111/j.1399-3054.2004.00433.xspa
dc.relation.referencesBerrocal-Lobo, M., & Molina, A. (2008). Arabidopsis defense response against Fusarium oxysporum. Trends in Plant Science, 13(3), 145–150. https://doi.org/10.1016/j.tplants.2007.12.004spa
dc.relation.referencesBhanu A, N., Singh, M., K, S., & A, H. (2016). Molecular Mapping and Breeding of Physiological Traits. Advances in Plants & Agriculture Research, 3(6), 193–206. https://doi.org/10.15406/apar.2016.03.00120spa
dc.relation.referencesBharath, P., Gahir, S., & Raghavendra, A. S. (2021). Abscisic Acid-Induced Stomatal Closure: An Important Component of Plant Defense Against Abiotic and Biotic Stress. https://doi.org/10.3389/fpls.2021.615114spa
dc.relation.referencesBhattacharyya, D., & Chakraborty, S. (2018). Chloroplast: the Trojan horse in plant–virus interaction. Molecular Plant Pathology, 19(2), 504–518. https://doi.org/10.1111/mpp.12533spa
dc.relation.referencesBigeard, J., Colcombet, J., & Hir, H. (2015). Signaling Mechanisms in Pattern-Triggered Immunity (PTI). Molecular Plant, 8(4), 521–539. https://doi.org/10.1016/J.MOLP.2014.12.022spa
dc.relation.referencesBiniaz, Y., Tahmasebi, A., Tahmasebi, A., Riber-Albrectsen, B., Poczai, P., & and Afsharifar, A. (2022). Transcriptome Meta-Analysis Identifies Candidate Hub Genes and Pathways of Pathogen Stress Responses in Arabidopsis thaliana. Biology, 11, 1155. https://doi.org/https://doi.org/10.3390/biology11081155spa
dc.relation.referencesBlechert, S., Brodschelm, W., HÖlder, S., Kammerer, L., Kutchan, T.-M., Mueller, M.-J., Xia, Z.-Q., & Zank, M.-H. (1995). The octadecanoic pathway: Signal molecules for the regulation of secondary pathways (phytoalexins/jasmonic acid/12-oxophytodienoic acid/oxylipid cascade/signal transduction). Proc. Natl. Acad. Sci. USA, 92, 4099–4105. https://doi.org/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC41893/pdf/pnas01486-0035.pdfspa
dc.relation.referencesBolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114–2120. https://doi.org/10.1093/bioinformatics/btu170spa
dc.relation.referencesBoller, T., & Felix, G. (2009). A Renaissance of Elicitors : Perception of Microbe-Associated Molecular Patterns and Danger Signals by Pattern-Recognition Receptors. https://doi.org/10.1146/annurev.arplant.57.032905.105346spa
dc.relation.referencesBollina, V., Kumaraswamy, G. K., Khushalappa, A., Choo, T. M., Dion, Y., Rioux, S., Faubert, D., & Hamzehzarghani, H. (2010). Mass spectrometry-based metabolomics application to identify quantitative resistance-related metabolites in barley against Fusarium head blight. Molecular Plant Pathology, 11(6), no-no. https://doi.org/10.1111/j.1364-3703.2010.00643.xspa
dc.relation.referencesBonfig, K. B., Schreiber, U., Gabler, A., Roitsch, T., & Berger, S. (2006). Infection with virulent and avirulent P. syringae strains differentially affects photosynthesis and sink metabolism in Arabidopsis leaves. Planta, 225(1), 1–12. https://doi.org/10.1007/s00425-006-0303-3spa
dc.relation.referencesBostock, R. M., Pye, M. F., & Roubtsova, T. V. (2014). Predisposition in plant disease: Exploiting the nexus in abiotic and biotic stress perception and response. Annual Review of Phytopathology, 52(June), 517–549. https://doi.org/10.1146/annurev-phyto-081211-172902spa
dc.relation.referencesBoursiac, Y., Lee, S. M., Romanowsky, S., Blank, R., Sladek, C., Chung, W. S., & Harper, J. F. (2010). Disruption of the vacuolar calcium-ATPases in arabidopsis results in the activation of a salicylic acid-dependent programmed cell death pathway. Plant Physiology, 154(3), 1158–1171. https://doi.org/10.1104/pp.110.159038spa
dc.relation.referencesBuchanan, B. B., Gruissem, W., & Jones, R. L. (2015). Biochemistry & molecular biology of plants.spa
dc.relation.referencesCai, S., Chen, G., Wang, Y., Huang, Y., Marchant, D. B., Wang, Y., Yang, Q., Dai, F., Hills, A., Franks, P. J., Nevo, E., Soltis, D. E., Soltis, P. S., Sessa, E., Wolf, P. G., Xue, D., Zhang, G., Pogson, B. J., Blatt, M. R., & Chen, Z. H. (2017). Evolutionary conservation of ABA signaling for stomatal closure. Plant Physiology, 174(2), 732–747. https://doi.org/10.1104/pp.16.01848spa
dc.relation.referencesCalderón, R., Navas-Cortés, J. A., Lucena, C., & Zarco-Tejada, P. J. (2013). High-resolution airborne hyperspectral and thermal imagery for early detection of Verticillium wilt of olive using fluorescence, temperature and narrow-band spectral indices. Remote Sensing of Environment, 139, 231–245. https://doi.org/10.1016/j.rse.2013.07.031spa
dc.relation.referencesCampbell, C. L., & Laurence V. Madden. (1990). Introduction to plant disease epidemiology (Wiley-Interscience (ed.)). https://trove.nla.gov.au/work/16602642?q&versionId=19483051spa
dc.relation.referencesCampos-Bermudez, V. A., Fauguel, C. M., Tronconi, M. A., Casati, P., Presello, D. A., & Andreo, C. S. (2013). Transcriptional and metabolic changes associated to the infection by Fusarium verticillioides in maize inbreds with contrasting ear rot resistance. PloS one, 8(4), e61580. https://doi.org/10.1371/journal.pone.0061580spa
dc.relation.referencesCantero, A., Barthakur, S., Bushart, T. J., Chou, S., Morgan, R. O., Fernández, M. P., Clark, G. B., & Roux, S. J. (2006). Expression profiling of the Arabidopsis annexin gene family during germination, de-etiolation and abiotic stress. Plant Physiology and Biochemistry, 44(1), 13–24. https://doi.org/10.1016/j.plaphy.2006.02.002spa
dc.relation.referencesCao, Y., Meng, X., Koch, C., Jiang, L., Luo, L., Zhang, S., Su, J., & Peck, S. C. (2022). Protein Kinase Signaling Pathways in Plant-Colletotrichum Interaction. Frontiers in Plant Science | www.frontiersin.org, 1, 829645. https://doi.org/10.3389/fpls.2021.829645spa
dc.relation.referencesCarmona, E., Vargas, D., Borroto, C. J., López, J., Fernández, A. I., Arencibia, A., & Borras-Hidalgo, O. (2004). cDNA-AFLP analysis of differential gene expression during the interaction between sugarcane and Puccinia melanocephala. Plant Breeding, 123(5), 499–501. https://doi.org/10.1111/j.1439-0523.2004.00935.xspa
dc.relation.referencesCarmona, S. L., Villarreal-Navarrete, A., Burbano-David, D., Gómez-Marroquín, M., Torres-Rojas, E., & Soto-Suárez, M. (2021). Protection of tomato plants against Fusarium oxysporum f. sp. lycopersici induced by chitosan. Revista Colombiana de Ciencias Hortícolas, 15(3), 0–2. https://doi.org/10.17584/rcch.2021v15i3.12822spa
dc.relation.referencesCastellanos-Dominguez, O., Fonseca-Rodriguez, S., & Buriticá-Ospina, S. (2010). Agenda Prospectiva de Investigación y Desarrollo Tecnológico para la Cadena Productiva de Flores y Follajes con Énfasis en Clavel (MINISTERIO DE AGRICULTURA Y DESARROLLO RURAL & U. N. DE COLOMBIA (eds.)). http://www.bdigital.unal.edu.co/2073/1/AGENDA_FLORES_Giro.pdf%5Cnhttp://www.minagricultura.gov.co/archivos/agenda_prospectiva_de_investigacion_y_desarrollo_tecnologico_para_la_cadena_productiva_de_flores_y_follajes_con_enfasis_en_clavel.pdfspa
dc.relation.referencesCastilla V., Y., & González V., M. E. (2008). Micropropagación de clavel español (Dianthus caryophyllus L.) con el empleo de Biobrás-16.spa
dc.relation.referencesCatanzariti, A.-M., Lim, G. T. T., & Jones, D. A. (2015). The tomato I-3 gene: a novel gene for resistance to Fusarium wilt disease. New Phytologist, 207(1), 106–118. https://doi.org/10.1111/nph.13348spa
dc.relation.referencesCayalvizhi, B., Nagarajan, P., Raveendran, M., Rabindran, R., Jagadeesh Selvam, N., Kannan Bapu, J. R., & Senthil, N. (2015). Unraveling the responses of mungbean (Vigna radiata) to mungbean yellow mosaic virus through 2D-protein expression. Physiological and Molecular Plant Pathology, 90(March), 65–77. https://doi.org/10.1016/j.pmpp.2015.03.001spa
dc.relation.referencesChand, S. K., Nanda, S., Rout, E., Mohanty, J. N., Mishra, R., & Joshi, R. K. (2016). De novo sequencing and characterization of defense transcriptome responsive to Pythium aphanidermatum infection in Curcuma longa L. Physiological and Molecular Plant Pathology, 94, 27–37. https://doi.org/10.1016/j.pmpp.2016.03.008spa
dc.relation.referencesChang, Y., Sun, F., Sun, S., Wang, L., Wu, J., & Zhu, Z. (2021). Transcriptome Analysis of Resistance to Fusarium Wilt in Mung Bean (Vigna radiata L.). Frontiers in Plant Science, 12(June), 1–12. https://doi.org/10.3389/fpls.2021.679629spa
dc.relation.referencesChapelle, A., Morreel, K., Vanholme, R., Le-Bris, P., Morin, H., Lapierre, C., Boerjan, W., Jouanin, L., & Demont-Caulet, N. (2012). Impact of the Absence of Stem-Specific b-Glucosidases on Lignin and Monolignols 1[W]. Plant physiology, 160, 1204–1217. https://doi.org/10.1104/pp.112.203364spa
dc.relation.referencesChávez-Arias, C. C., Gómez-Caro, S., & Restrepo-Díaz, H. (2019). Physiological, Biochemical and Chlorophyll Fluorescence Parameters of Physalis Peruviana L. Seedlings Exposed to Different Short-Term Waterlogging Periods and Fusarium Wilt Infection. Agronomy, 9(5), 213. https://doi.org/10.3390/agronomy9050213spa
dc.relation.referencesChen, Y. C., Wong, C. L., Muzzi, F., Vlaardingerbroek, I., Kidd, B. N., & Schenk, P. M. (2014). Root defense analysis against Fusarium oxysporum reveals new regulators to confer resistance. Scientific reports, 4, 5584. https://doi.org/10.1038/srep05584spa
dc.relation.referencesChi, Y. H., Koo, S. S., Oh, H. T., Lee, E. S., Park, J. H., Phan, K. A. T., Wi, S. D., Bae, S. Bin, Paeng, S. K., Chae, H. B., Kang, C. H., Kim, M. G., Kim, W. Y., Yun, D. J., & Lee, S. Y. (2019). The physiological functions of universal stress proteins and their molecular mechanism to protect plants from environmental stresses. Frontiers in Plant Science, 10(June), 1–13. https://doi.org/10.3389/fpls.2019.00750spa
dc.relation.referencesChiocchetti, A., Bernardo, I., Daboussi, M. J., Garibaldi, A., Gullino, M. L., Langin, T., & Migheli, Q. (1999). Detection of Fusarium oxysporum f. sp. dianthi in Carnation Tissue by PCR Amplification of Transposon Insertions. Phytopathology, 89(12), 1169–1175. https://doi.org/10.1094/PHYTO.1999.89.12.1169spa
dc.relation.referencesChisholm, S. T., Coaker, G., Day, B., & Staskawicz, B. J. (2006). Host-microbe interactions: Shaping the evolution of the plant immune response. Cell, 124(4), 803–814. https://doi.org/10.1016/j.cell.2006.02.008spa
dc.relation.referencesChoi, H. W., Lee, D. H., & Hwang, B. K. (2009). The pepper calmodulin gene CaCaM1 is involved in reactive oxygen species and nitric oxide generation required for cell death and the defense response. Molecular Plant-Microbe Interactions, 22(11), 1389–1400. https://doi.org/10.1094/MPMI-22-11-1389spa
dc.relation.referencesChou, H.-M., Bundock, N., Rolfe, S. A., & Scholes, J. D. (2000). Infection of Arabidopsis thaliana leaves with Albugo candida (white blister rust) causes a reprogramming of host metabolism. Molecular Plant Pathology, 1(2), 99–113. https://doi.org/10.1046/j.1364-3703.2000.00013.xspa
dc.relation.referencesChristmann, A., Grill, E., & Huang, J. (2013). Hydraulic signals in long-distance signaling. Current Opinion in Plant Biology, 16(3), 293–300. https://doi.org/10.1016/j.pbi.2013.02.011spa
dc.relation.referencesChristmann, A., Weiler, E. W., Steudle, E., & Grill, E. (2007). A hydraulic signal in root-to-shoot signalling of water shortage. Plant Journal, 52(1), 167–174. https://doi.org/10.1111/j.1365-313X.2007.03234.xspa
dc.relation.referencesChu, Y., & Corey, D. R. (2012). RNA sequencing: platform selection, experimental design, and data interpretation. Nucleic acid therapeutics, 22(4), 271–274. https://doi.org/10.1089/nat.2012.0367spa
dc.relation.referencesClematis, F., Tedeschini, J., Dolci, M., Lanzotti, V., Cangelosi, B., Fascella, S., & Curir, P. (2011). Phenol composition and susceptibility to Fusarium oxysporum dianthi in carnation. Journal of life Sciences, 5, 921–925. https://www.mendeley.com/viewer/?fileId=7d9dc12e-3964-2b19-17ed-295823770626&documentId=c7374b53-4b8d-3c51-b99c-da7d96d9085bspa
dc.relation.referencesCock, P. J. A., Fields, C. J., Goto, N., Heuer, M. L., & Rice, P. M. (2010). The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants. Nucleic Acids Research, 38(6), 1767–1771. https://doi.org/10.1093/nar/gkp1137spa
dc.relation.referencesConesa, A., Madrigal, P., Tarazona, S., Gomez-Cabrero, D., Cervera, A., McPherson, A., Szcześniak, M. W., Gaffney, D. J., Elo, L. L., Zhang, X., & Mortazavi, A. (2016). A survey of best practices for RNA-seq data analysis. Genome Biology, 17(1), 1–19. https://doi.org/10.1186/s13059-016-0881-8spa
dc.relation.referencesCorwin, J. A., & Kliebenstein, D. J. (2017). Quantitative resistance: More than just perception of a pathogen. Plant Cell, 29(4), 655–665. https://doi.org/10.1105/tpc.16.00915spa
dc.relation.referencesCouto, D., Niebergall, R., Liang, X., Bücherl, C. A., Sklenar, J., Macho, A. P., Ntoukakis, V., Derbyshire, P., Altenbach, D., Maclean, D., Robatzek, S., Uhrig, J., Menke, F., Zhou, J. M., & Zipfel, C. (2016). The Arabidopsis Protein Phosphatase PP2C38 Negatively Regulates the Central Immune Kinase BIK1. PLoS Pathogens, 12(8), 1–24. https://doi.org/10.1371/journal.ppat.1005811spa
dc.relation.referencesCreations, G. B.-O. P. (2015). Blog ARN-Sec | Transcriptoma Investigación y Noticias de la Industria. http://www.rna-seqblog.com/spa
dc.relation.referencesCuervo-Plata, D. C. (2017). Estudio bioquímico y molecular de algunas enzimas asociadas al stress oxidativo en apoplasto de clavel (Dianthus caryophyllus L.) durante su interacción con Fusarium oxysporum f.sp. dianthi. Universidad Nacional de Colombia, sede Bogotá.spa
dc.relation.referencesCurir, P., Dolci, M., & Galeotti, F. (2005). A phytoalexin-like flavonol involved in the carnation (Dianthus caryophyllus)-Fusarium oxysporum f. sp. dianthi pathosystem. Journal of Phytopathology, 153(2), 65–67. https://doi.org/10.1111/j.1439-0434.2004.00916.xspa
dc.relation.referencesCurir, Paolo, Dolci, M., Lanzotti, V., & Taglialatela-Scafati, O. (2001). Kaempferide triglycoside: A possible factor of resistance of carnation (Dianthus caryophyllus) to Fusarium oxysporum f. sp. dianthi. Phytochemistry, 56(7), 717–721. https://doi.org/10.1016/S0031-9422(00)00488-Xspa
dc.relation.referencesDamer, C. K., Bayeva, M., Hahn, E. S., Rivera, J., & Socec, C. I. (2005). Copine A, a calcium-dependent membrane-binding protein, transiently localizes to the plasma membrane and intracellular vacuoles in Dictyostelium. BMC Cell Biology, 6, 1–18. https://doi.org/10.1186/1471-2121-6-46spa
dc.relation.referencesDavidson, N. M., Hawkins, A. D. K., & Oshlack, A. (2017). SuperTranscripts: A data driven reference for analysis and visualisation of transcriptomes. Genome Biology, 18(1), 1–10. https://doi.org/10.1186/s13059-017-1284-1spa
dc.relation.referencesDavidson, N. M., & Oshlack, A. (2018). Necklace: combining reference and assembled transcriptomes for more comprehensive RNA-Seq analysis. GigaScience, 7(5), 1–6. https://doi.org/10.1093/gigascience/giy045spa
dc.relation.referencesDavidson, R. M., Reeves, P. A., Manosalva, P. M., & Leach, J. E. (2009). Germins : A diverse protein family important for crop improvement. Plant Science, 177, 499–510. https://doi.org/10.1016/j.plantsci.2009.08.012spa
dc.relation.referencesDellagi, A., Heilbronn, J., Avrova, A. O., Montesano, M., Palva, E. T., Stewart, H. E., Toth, I. K., Cooke, D. E. L., Lyon, G. D., & Birch, P. R. J. (2000). A Potato Gene Encoding a WRKY-like Transcription Factor Is Induced in Interactions with Erwinia carotovora subsp. atroseptica and Phytophthora infestans and Is Coregulated with Class I Endochitinase Expression. Molecular Plant-Microbe Interactions, 13(10), 1092–1101. https://doi.org/10.1094/MPMI.2000.13.10.1092spa
dc.relation.referencesDelledonne, M., Zeier, J., Marocco, A., & Lamb, C. (2001). Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proceedings of the National Academy of Sciences of the United States of America, 98(23), 13454–13459. https://doi.org/10.1073/pnas.231178298spa
dc.relation.referencesDeng, S., Ma, J., Zhang, L., Chen, F., Sang, Z., Jia, Z., & Ma, L. (2019). De novo transcriptome sequencing and gene expression profiling of Magnolia wufengensis in response to cold stress. BMC Plant Biology, 19(1), 321. https://doi.org/10.1186/s12870-019-1933-5spa
dc.relation.referencesDi Pietro, A., Madrid, M. P., Caracuel, Z., Delgado-Jarana, J., & Roncero, M. I. G. (2003). Fusarium oxysporum: exploring the molecular arsenal of a vascular wilt fungus. Molecular Plant Pathology, 4(5), 315–325. https://doi.org/10.1046/j.1364-3703.2003.00180.xspa
dc.relation.referencesDiaz-Puentes, L. N. (2012). RESISTENCIA SISTÉMICA ADQUIRIDA MEDIADA POR EL ÁCIDO SALICÍLICO. Biotecnología en el sector agropecuario y agroindustrial, 10(2), 257–267. http://www.scielo.org.co/pdf/bsaa/v10n2/v10n2a30.pdfspa
dc.relation.referencesDihazi, A., Serghini, M. A., Jaiti, F., Daayf, F., Driouich, A., Dihazi, H., & El Hadrami, I. (2011). Structural and Biochemical Changes in Salicylic-Acid-Treated Date Palm Roots Challenged with Fusarium oxysporum f. sp. albedinis. Journal of Pathogens, 2011, 1–9. https://doi.org/10.4061/2011/280481spa
dc.relation.referencesDong, J., Chen, C., & Chen, Z. (2003). Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Molecular Biology, 51(1), 21–37. https://doi.org/10.1023/A:1020780022549spa
dc.relation.referencesDong, X., Ling, N., Wang, M., Shen, Q., & Guo, S. (2012). Fusaric acid is a crucial factor in the disturbance of leaf water imbalance in Fusarium-infected banana plants. Plant Physiology and Biochemistry, 60, 171–179. https://doi.org/10.1016/j.plaphy.2012.08.004spa
dc.relation.referencesDong, X., Xiong, Y., Ling, N., Shen, Q., & Guo, S. (2014). Fusaric acid accelerates the senescence of leaf in banana when infected by Fusarium. World Journal of Microbiology and Biotechnology, 30(4), 1399–1408. https://doi.org/10.1007/s11274-013-1564-1spa
dc.relation.referencesDowd, C., Wilson, I. W., & McFadden, H. (2004). Gene Expression Profile Changes in Cotton Root and Hypocotyl Tissues in Response to Infection with Fusarium oxysporum f. sp. vasinfectum. Molecular Plant-Microbe Interactions, 17(6), 654–667. https://doi.org/10.1094/MPMI.2004.17.6.654spa
dc.relation.referencesDuan, G., Christian, N., Schwachtje, J., Walther, D., & Ebenhöh, O. (2013). The metabolic interplay between plants and phytopathogens. Metabolites, 3(1), 1–23. https://doi.org/10.3390/metabo3010001spa
dc.relation.referencesDunwell, J. M., Gibbings, J. G., Mahmood, T., & Saqlan Naqvi, S. M. (2008). Germin and germin-like proteins: Evolution, structure, and function. Critical Reviews in Plant Sciences, 27(5), 342–375. https://doi.org/10.1080/07352680802333938spa
dc.relation.referencesEbrahim, S., Usha, K., & Singh, B. (2011). Pathogenesis Related (PR) Proteins in Plant Defense Mechanism Pathogenesis-Related (PR) Proteins. Division of Fruist and Horticultural Technology, Memories, 1043–1054. http://www.formatex.info/microbiology3/book/1043-1054.pdfspa
dc.relation.referencesEndah, R., Beyene, G., Kiggundu, A., van den Berg, N., Schlüter, U., Kunert, K., & Chikwamba, R. (2008). Elicitor and Fusarium-induced expression of NPR1-like genes in banana. Plant Physiology and Biochemistry, 46(11), 1007–1014. https://doi.org/10.1016/j.plaphy.2008.06.007spa
dc.relation.referencesEulgem, T., Rushton, P. J., Robatzek, S., & Somssich, I. E. (2000). The WRKY superfamily of plant transcription factors. Trends in plant science, 5(5), 199–206. https://doi.org/10.1016/S1360-1385(00)01600-9spa
dc.relation.referencesEwels, P., Magnusson, M., Lundin, S., & Käller, M. (2016). MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics, 32(19), 3047–3048. https://doi.org/doi: 10.1093/bioinformatics/btw354spa
dc.relation.referencesEyal, Y., Sagee, O., & Fluhr, R. (1992). Dark-induced accumulation of a basic pathogenesis-related (PR-1) transcript and a light requirement for its induction by ethylene. Plant molecular biology, 19(4), 589–599. http://www.ncbi.nlm.nih.gov/pubmed/1627772spa
dc.relation.referencesFagard, M., Launay, A., Clément, G., Courtial, J., Dellagi, A., Farjad, M., Krapp, A., Soulié, M. C., & Masclaux-Daubresse, C. (2014). Nitrogen metabolism meets phytopathology. En Journal of Experimental Botany (Vol. 65, Número 19). https://doi.org/10.1093/jxb/eru323spa
dc.relation.referencesFang, Z., & Cui, X. (2011). Design and validation issues in RNA-seq experiments. Briefings in Bioinformatics, 12(3), 280–287. https://doi.org/10.1093/bib/bbr004spa
dc.relation.referencesFarmer, E. E., Alméras, E., & Krishnamurthy, V. (2003). Jasmonates and related oxylipins in plant responses to pathogenesis and herbivory. Current Opinion in Plant Biology, 6(4), 372–378. https://doi.org/10.1016/S1369-5266(03)00045-1spa
dc.relation.referencesFarquhar, G. D., & Sharkey, T. D. (1982). Stomatal Conductance and Photosynthesis. Annual Review of Plant Physiology, 33(1), 317–345. https://doi.org/10.1146/annurev.pp.33.060182.001533spa
dc.relation.referencesForouhar, F., Yang, Y., Kumar, D., Chen, Y., Fridman, E., Park, S. W., Chiang, Y., Acton, T. B., Montelione, G. T., Pichersky, E., Klessig, D. F., & Tong, L. (2005). Structural and biochemical studies identify tobacco SABP2 as a methyl salicylate esterase and implicate it in plant innate immunity. Proceedings of the National Academy of Sciences of the United States of America, 102(5), 1773–1778. https://doi.org/10.1073/pnas.0409227102spa
dc.relation.referencesFrancesconi, S., Harfouche, A., Maesano, M., & Balestra, G. M. (2021). UAV-Based Thermal, RGB Imaging and Gene Expression Analysis Allowed Detection of Fusarium Head Blight and Gave New Insights Into the Physiological Responses to the Disease in Durum Wheat. Frontiers in Plant Science, 12(April), 1–19. https://doi.org/10.3389/fpls.2021.628575spa
dc.relation.referencesFujii, H., Verslues, P. E., & Zhu, J.-K. (2011). Arabidopsis decuple mutant reveals the importance of SnRK2 kinases in osmotic stress responses in vivo. PNAS, 108(4), 1717–1722.spa
dc.relation.referencesFujimoto, S. Y., Ohta, M., Usui, A., Shinshi, H., & Ohme-Takagi, M. (2000). Arabidopsis Ethylene-Responsive Element Binding Factors Act as Transcriptional Activators or Repressors of GCC Box-Mediated Gene Expression. En The Plant Cell (Vol. 12). https://academic.oup.com/plcell/article/12/3/393/6008755spa
dc.relation.referencesGaleotti, F., Barile, E., Curir, P., Dolci, M., & Lanzotti, V. (2008). Flavonoids from carnation (Dianthus caryophyllus) and their antifungal activity. Phytochemistry Letters, 1(1), 44–48. https://doi.org/10.1016/j.phytol.2007.10.001spa
dc.relation.referencesGao, M., Wang, X., Wang, D., Xu, F., Ding, X., Zhang, Z., Bi, D., Cheng, Y. T., Chen, S., Li, X., & Zhang, Y. (2009). Regulation of Cell Death and Innate Immunity by Two Receptor-like Kinases in Arabidopsis. Cell Host and Microbe, 6(1), 34–44. https://doi.org/10.1016/j.chom.2009.05.019spa
dc.relation.referencesGechev, T. S., Van Breusegem, F., Stone, J. M., Denev, I., & Laloi, C. (2006). Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. BioEssays, 28(11), 1091–1101. https://doi.org/10.1002/bies.20493spa
dc.relation.referencesGeissmann, M., Frey, T., & Ruffner, H. . (1991). Occurrence and properties of acid invertase in cultures of Botrytis cinerea. Mycological Research, 95(11), 1321–1327. https://doi.org/10.1016/S0953-7562(09)80584-4spa
dc.relation.referencesGeorge, A. (2005). Introducción a la fitopatología (Limusa (ed.)).spa
dc.relation.referencesGlazebrook, J. (2005). Contrasting Mechanisms of Defense Against Biotrophic and Necrotrophic Pathogens. Annual Review of Phytopathology, 43(1), 205–227. https://doi.org/10.1146/annurev.phyto.43.040204.135923spa
dc.relation.referencesGong, Q., Wang, Y., Jin, Z., Hong, Y., & Liu, Y. (2022). Transcriptional and post-transcriptional regulation of RNAi-related gene expression during plant-virus interactions. Stress Biology, 2, 33. https://doi.org/10.1007/s44154-022-00057-yspa
dc.relation.referencesGonneau, M., Desprez, T., Martin, M., Doblas, V. G., Bacete, L., Miart, F., Sormani, R., Hématy, K., Renou, J., Landrein, B., Murphy, E., Van De Cotte, B., Vernhettes, S., De Smet, I., & Höfte, H. (2018). Receptor Kinase THESEUS1 Is a Rapid Alkalinization Factor 34 Receptor in Arabidopsis. Current Biology, 28(15), 2452-2458.e4. https://doi.org/10.1016/j.cub.2018.05.075spa
dc.relation.referencesGonzález-Coronel, J. M., & Guevara-García, Á. A. (2021). La participación de las cinasas de proteínas activadas por mitógenos en la señalización por hormonas en Arabidopsis thaliana L. TIP Revista Especializada en Ciencias Químico-Biológicas, 24(October 2021), 0–14. https://doi.org/10.22201/fesz.23958723e.2021.368spa
dc.relation.referencesGonzalez-Moreno, S., Perales-Vela, H., & Salcedo-Alvarez, M. O. (2008). La fluorescencia de la clorofila a como herramienta en la investigación de efectos tóxicos en el aparato fotosintético de plantas y algas. REB, 27(4), 119–129.spa
dc.relation.referencesGoossens, J., Mertens, J., & Goossens, A. (2017). Role and functioning of bHLH transcription factors in jasmonate signalling. Journal of Experimental Botany, 68(6), 1333–1347. https://doi.org/doi:10.1093/jxb/erw440spa
dc.relation.referencesGorshkov, V., & Tsers, I. (2021). Plant susceptible responses: the underestimated side of plant-pathogen interactions. https://doi.org/10.1111/brv.12789spa
dc.relation.referencesGrabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I., Adiconis, X., Fan, L., Raychowdhury, R., Zeng, Q., Chen, Z., Mauceli, E., Hacohen, N., Gnirke, A., Rhind, N., di Palma, F., Birren, B. W., Nusbaum, C., Lindblad-Toh, K., … Regev, A. (2011). Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature biotechnology, 29(7), 644–652. https://doi.org/10.1038/nbt.1883spa
dc.relation.referencesGriffith, M., Griffith, O. L., Mwenifumbo, J., Goya, R., Morrissy, A. S., Morin, R. D., Corbett, R., Tang, M. J., Hou, Y.-C., Pugh, T. J., Robertson, G., Chittaranjan, S., Ally, A., Asano, J. K., Chan, S. Y., Li, H. I., McDonald, H., Teague, K., Zhao, Y., … Marra, M. A. (2010). Alternative expression analysis by RNA sequencing. Nature Methods, 7(10), 843–847. https://doi.org/10.1038/nmeth.1503spa
dc.relation.referencesGroenewald, S. (2005). Biology , pathogenicity and diversity of Fusarium oxysporum f . sp . cubense (Número November). University of Pretoria.spa
dc.relation.referencesGudesblat, G. E., Iusem, N. D., & Morris, P. C. (2007). Guard cell-specific inhibition of Arabidopsis MPK3 expression causes abnormal stomatal responses to abscisic acid and hydrogen peroxide. New Phytologist, 173(4), 713–721. https://doi.org/10.1111/j.1469-8137.2006.01953.xspa
dc.relation.referencesGullino, M. L., Daughtrey, M. L., Garibaldi, A., & Elmer, W. H. (2015). Fusarium wilts of ornamental crops and their management. Crop Protection, 73, 50–59. https://doi.org/10.1016/j.cropro.2015.01.003spa
dc.relation.referencesGupta, V., Raghuvanshi, S., Gupta, A., Saini, N., Gaur, A., Khan, M. S., Gupta, R. S., Singh, J., Duttamajumder, S. K., Srivastava, S., Suman, A., Khurana, J. P., Kapur, R., & Tyagi, A. K. (2010). The water-deficit stress- and red-rot-related genes in sugarcane. Functional & Integrative Genomics, 10(2), 207–214. https://doi.org/10.1007/s10142-009-0144-9spa
dc.relation.referencesHai, N. N., Chuong, N. N., Tu, N. H. C., Kisiala, A., Hoang, X. L. T., & Thao, N. P. (2020). Role and regulation of cytokinins in plant response to drought stress. Plants, 9(4), 10–12. https://doi.org/10.3390/plants9040422spa
dc.relation.referencesHalim, V. A., Vess, A., Scheel, D., & Rosahl, S. (2006). The Role of Salicylic Acid and Jasmonic Acid in Pathogen Defence. Plant Biology, 8(3), 307–313. https://doi.org/10.1055/s-2006-924025spa
dc.relation.referencesHamel, L.-P., Nicole, M.-C., Sritubtim, S., Morency, M.-J., Ellis, M., Ehlting, J., Beaudoin, N., Barbazuk, B., Klessig, D., Lee, J., Martin, G., Mundy, J., Ohashi, Y., Scheel, D., Sheen, J., Xing, T., Zhang, S., Seguin, A., & Ellis, B. E. (2006). Ancient signals: comparative genomics of plant MAPK and MAPKK gene families. Trends in Plant Science, 11(4), 192–198. https://doi.org/10.1016/j.tplants.2006.02.007spa
dc.relation.referencesHara, K., Yagi, M., Kusano, T., & Sano, H. (2000). Rapid systemic accumulation of transcripts encoding a tobacco WRKY transcription factor upon wounding. Molecular & general genetics : MGG, 263(1), 30–37. http://www.ncbi.nlm.nih.gov/pubmed/10732671spa
dc.relation.referencesHarrison, R. D., Daniell, J. W., & Cheshire, J. M. J. (1989). Net photosynthesis and stomatal conductance of peach seedlings and cuttings in response to changes in soil water potential. Journal of the American Society for Horticultural Science (USA). http://agris.fao.org/agris-search/search.do?recordID=US9021821spa
dc.relation.referencesHeil, M., & Bostock, R. M. (2002). Induced systemic resistance (ISR) against pathogens in the context of induced plant defences. Annals of botany, 89(5), 503–512. https://doi.org/10.1093/AOB/MCF076spa
dc.relation.referencesHernández-Blanco, C., Feng, D. X., Hu, J., Sánchez-Vallet, A., Deslandes, L., Llorente, F., Berrocal-Lobo, M., Keller, H., Barlet, X., Sánchez-Rodríguez, C., Anderson, L. K., Somerville, S., Marco, Y., & Molina, A. (2007). Impairment of Cellulose Synthases Required for Arabidopsis Secondary Cell Wall Formation Enhances Disease Resistance. The Plant Cell, 19, 890–903. https://doi.org/10.1105/tpc.106.048058spa
dc.relation.referencesHernandez-Escribano, L., Visser, E. A., Iturritxa, E., Raposo, R., & Naidoo, S. (2020). The transcriptome of Pinus pinaster under Fusarium circinatum challenge. BMC Genomics, 21(1), 1–18. https://doi.org/10.1186/s12864-019-6444-0spa
dc.relation.referencesHiguera, B. L. (2001). Contribución al estudio de la participación de los compuestos fenólicos en los mecanismos de la interacción clavel Dianthus caryophyllus L- Fusarium oxysporum f. sp. dianthi. (F. De Ciencias (ed.); Tesis de D). Universidad Nacional de Colombia.spa
dc.relation.referencesHiguera, B. L., & De Gómez, V. M. (1996). Contribution of HPLC to the Study of the Defense Mechanisms Acting in Carnation (Dianthus caryophyllus L.) Roots on Infection with Fusarium oxysporum f. sp. Dianthi. HRC Journal of High Resolution Chromatography, 19(12), 706–708. https://doi.org/10.1002/jhrc.1240191213spa
dc.relation.referencesHiguera, B. L., & Ebrahim-Nesbat, F. (1999). Study of vascular root responses as defense mechanisms in carnation resistant or susceptible to Fusarium oxysporum f. sp. dianthi by transmission electron microscopy. Acta Horticulturae, 482, 101–108. https://doi.org/10.17660/ActaHortic.1999.482.14spa
dc.relation.referencesHolley, S. R., Yalamanchili, R. D., Moura, D. S., Ryan, C. A., & Stratmann, J. W. (2003). Convergence of signaling pathways induced by systemin, oligosaccharide elicitors, and ultraviolet-B radiation at the level of mitogen-activated protein kinases in Lycopersicon peruvianum suspension-cultured cells. Plant physiology, 132(4), 1728–1738. https://doi.org/10.1104/PP.103.024414spa
dc.relation.referencesHolmquist, L., Dölfors, F., Fogelqvist, J., Cohn, J., Kraft, T., & Dixelius, C. (2021). Major latex protein-like encoding genes contribute to Rhizoctonia solani defense responses in sugar beet. Molecular Genetics and Genomics, 296(1), 155–164. https://doi.org/10.1007/s00438-020-01735-0spa
dc.relation.referencesHossain, M. A., Wani, S. H., Bhattacharjee, S., Burritl, D. J., & Tran, L. S. P. (2016). Drought stress tolerance in plants, vol 1: Physiology and biochemistry. En Drought Stress Tolerance in Plants, Vol 1: Physiology and Biochemistry (Vol. 1, pp. 1–526). https://doi.org/10.1007/978-3-319-28899-4spa
dc.relation.referencesHu, C., Zhu, Y., Cui, Y., Cheng, K., Liang, W., Wei, Z., Zhu, M., Yin, H., Zeng, L., Xiao, Y., Lv, M., Yi, J., Hou, S., He, K., Li, J., & Gou, X. (2018). A group of receptor kinases are essential for CLAVATA signalling to maintain stem cell homeostasis. Nature Plants, 4(4), 205–211. https://doi.org/10.1038/s41477-018-0123-zspa
dc.relation.referencesHuot, B., Jian, Y., & Beronda L. Montgomery, S. Y. H. (2014). Growth–Defense Tradeoffs in Plants: A Balancing Act to Optimize Fitness. Molecular Plant, 7, 1267–1287. https://doi.org/https://doi.org/10.1093/mp/ssu049spa
dc.relation.referencesImbeaud, S., Graudens, E., Boulanger, V., Barlet, X., Zaborski, P., Eveno, E., Mueller, O., Schroeder, A., & Auffray, C. (2005). Towards standardization of RNA quality assessment using user-independent classifiers of microcapillary electrophoresis traces. Nucleic Acids Research, 33(6), 1–12. https://doi.org/10.1093/nar/gni054spa
dc.relation.referencesIncremona, M. E., González, P., Pioli, R. N., & Salinas, A. R. (2014). Infection of maize silks by a native Fusarium ( Fusarium graminearum ) isolate in Argentina. 30 (3), 203–211.spa
dc.relation.referencesITC, T. M. (2021). Lista de los mercados importadores para un producto exportado por Colombia en 2020 Producto : 060312 Claveles " flores y capullos ", cortados para ramos o adornos , frescos. https://www.trademap.org/Country_SelProductCountry.aspx?nvpm=3%7C170%7C%7C%7C%7C060312%7C%7C%7C6%7C1%7C1%7C2%7C1%7C1%7C2%7C1%7C1%7C1spa
dc.relation.referencesJain, M. (2012). Next-generation sequencing technologies for gene expression profiling in plants. Briefings in Functional Genomics, 11(1), 63–70. https://doi.org/10.1093/bfgp/elr038spa
dc.relation.referencesJalmi, S. K., & Sinha, A. K. (2015). ROS mediated MAPK signaling in abiotic and biotic stress- striking similarities and differences. Frontiers in plant science, 6, 769. https://doi.org/10.3389/fpls.2015.00769spa
dc.relation.referencesJayamohan, N. S., Patil, S. V., & Kumudini, B. S. (2018). Reactive oxygen species (ROS) and antioxidative enzyme status in Solanum lycopersicum on priming with fluorescent Pseudomonas spp. against Fusarium oxysporum. Biology, 73(11), 1073–1082. https://doi.org/10.2478/s11756-018-0125-3spa
dc.relation.referencesJiménez-Suancha, S. C., Alvarado S, O. H., & Balaguera-López, H. E. (2016). Fluorescencia como indicador de estrés en Helianthus annuus L . Una revisión Fluorescence as an indicator of stress in Helianthus annuus L . A review. Revista Colombiana de ciencias hortícolas, 9(1), 149–160. https://doi.org/Doi: http://dx.doi.org/10.17584/rcch.2015v9i1.3753spa
dc.relation.referencesJohnson, M. T. J., Carpenter, E. J., Tian, Z., Bruskiewich, R., Burris, J. N., Carrigan, C. T., Chase, M. W., Clarke, N. D., Covshoff, S., dePamphilis, C. W., Edger, P. P., Goh, F., Graham, S., Greiner, S., Hibberd, J. M., Jordon-Thaden, I., Kutchan, T. M., Leebens-Mack, J., Melkonian, M., … Wong, G. K.-S. (2012). Evaluating Methods for Isolating Total RNA and Predicting the Success of Sequencing Phylogenetically Diverse Plant Transcriptomes. PLOS ONE, 7(11), 12. https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0050226&type=printablespa
dc.relation.referencesJones, J. D. G., & Dangl, J. L. (2006). The plant immune system. Nature, 444(7117), 323–329. https://doi.org/10.1038/nature05286spa
dc.relation.referencesJournot-Catalino, N., Somssich, I. E., Roby, D., & Kroj, T. (2006). The Transcription Factors WRKY11 and WRKY17 Act as Negative Regulators of Basal Resistance in Arabidopsis thaliana. THE PLANT CELL, 18, 3289–3302. https://doi.org/10.1105/tpc.106.044149spa
dc.relation.referencesJournot-Catalino, N., Somssich, I. E., Roby, D., & Kroj, T. (2006). The Transcription Factors WRKY11 and WRKY17 Act as Negative Regulators of Basal Resistance in Arabidopsis thaliana. THE PLANT CELL, 18, 3289–3302. https://doi.org/10.1105/tpc.106.044149spa
dc.relation.referencesKanehisa, M., Sato, Y., Kawashima, M., Furumichi, M., & Tanabe, M. (2015). KEGG as a reference resource for gene and protein annotation. Nucleic Acids Research, 44, 457–462. https://doi.org/10.1093/nar/gkv1070spa
dc.relation.referencesKaushal, M., Mahuku, G., & Swennen, R. (2021). Comparative transcriptome and expression profiling of resistant and susceptible banana cultivars during infection by fusarium oxysporum. International Journal of Molecular Sciences, 22(6), 1–29. https://doi.org/10.3390/ijms22063002spa
dc.relation.referencesKazan, K., & Manners, J. M. (2008). Jasmonate Signaling: Toward an Integrated View. Plant Physiology, 146, 1459–1468. https://doi.org/10.1104/pp.107.115717spa
dc.relation.referencesKent, W. J. (2002). BLAT —The BLAST -Like Alignment Tool . Genome Research, 12(4), 656–664. https://doi.org/10.1101/gr.229202spa
dc.relation.referencesKim, D., Paggi, J. M., Park, C., Bennett, C., & Salzberg, S. L. (2019). Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nature Biotechnology, 37(8), 907–915. https://doi.org/10.1038/s41587-019-0201-4spa
dc.relation.referencesKim, D. S., & Hwang, B. K. (2014). An important role of the pepper phenylalanine ammonia-lyase gene (PAL1) in salicylic acid-dependent signalling of the defence response to microbial pathogens. Journal of experimental botany, 65(9), 2295–2306. https://doi.org/10.1093/jxb/eru109spa
dc.relation.referencesKim, W. S., & Haj-Ahmad, Y. (2014). Evaluation of Plant RNA Integrity Number (RIN) generated using an Agilent BioAnalyzer 2100. https://norgenbiotek.com/sites/default/files/resources/plant_microrna_purification_kit_evaluation_of_plant_rna_integrity_number_rin_generated_using_an_agilent_bioanalyzer_2100_application_notes_599.pdfspa
dc.relation.referencesKoch, K. E. (1996). Carbohydrate-Modulated Gene Expression In Plants. Annual Review of Plant Physiology and Plant Molecular Biology, 47(1), 509–540. https://doi.org/10.1146/annurev.arplant.47.1.509spa
dc.relation.referencesKoeck, M., Hardham, A. R., & Dodds, P. N. (2011). The role of effectors of biotrophic and hemibiotrophic fungi in infection. Cellular Microbiology, 13(12), 1849–1857. https://doi.org/10.1111/j.1462-5822.2011.01665.xspa
dc.relation.referencesKrueger, F. (2016). Trim Galore. Babraham Bioinformatics. https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/spa
dc.relation.referencesKumar, D., & Klessig, D. F. (2003). High-affinity salicylic acid-binding protein 2 is required for plant innate immunity and has salicylic acid-stimulated lipase activity. Proceedings of the National Academy of Sciences of the United States of America, 100(26), 16101–16106. https://doi.org/10.1073/pnas.0307162100spa
dc.relation.referencesKumutha, D., Sairam, R. K., Ezhilmathi, K., Chinnusamy, V., & Meena, R. C. (2008). Effect of waterlogging on carbohydrate metabolism in pigeon pea (Cajanus cajan L.): Upregulation of sucrose synthase and alcohol dehydrogenase. Plant Science, 175(5), 706–716. https://doi.org/10.1016/j.plantsci.2008.07.013spa
dc.relation.referencesKunkel, B. N., & Brooks, D. M. (2002). Cross talk between signaling pathways in pathogen defense. Current opinion in plant biology, 5(4), 325–331. http://www.ncbi.nlm.nih.gov/pubmed/12179966spa
dc.relation.referencesLa Camera, S., Gouzerh, G., Dhondt, S., Hoffmann, L., Fritig, B., Legrand, M., & Heitz, T. (2004). Metabolic reprogramming in plant innate immunity: the contributions of phenylpropanoid and oxylipin pathways. Immunological reviews, 198, 267–284. http://www.ncbi.nlm.nih.gov/pubmed/15199968spa
dc.relation.referencesLanubile, A., Ferrarini, A., Maschietto, V., Delledonne, M., Marocco, A., & Bellin, D. (2014). Functional genomic analysis of constitutive and inducible defense responses to Fusarium verticillioides infection in maize genotypes with contrasting ear rot resistance. BMC genomics, 15(1), 710. https://doi.org/10.1186/1471-2164-15-710spa
dc.relation.referencesLanubile, A., Muppirala, U. K., Severin, A. J., Marocco, A., Munkvold, G. P., Arias, M. D., Leandro, L., Munkvold, G., Arias, M. D., Munkvold, G., Ellis, M., Leandro, L., Gordon, T., Martyn, R., Killebrew, J., Roy, K., Abney, T., Rizvi, S., Yang, X., … Livak, K. (2015). Transcriptome profiling of soybean (Glycine max) roots challenged with pathogenic and non-pathogenic isolates of Fusarium oxysporum. BMC Genomics, 16(1), 1089. https://doi.org/10.1186/s12864-015-2318-2spa
dc.relation.referencesLe Roy, J., Huss, B., Creach, A., & Hawkins, S. (2016). Glycosylation Is a Major Regulator of Phenylpropanoid Availability and Biological Activity in Plants. Frontiers in Plant Science | www.frontiersin.org, 1, 735. https://doi.org/10.3389/fpls.2016.00735spa
dc.relation.referencesLecomte, C., Alabouvette, C., Edel-Hermann, V., Robert, F., & Steinberg, C. (2016). Biological control of ornamental plant diseases caused by Fusarium oxysporum: A review. En Biological Control (Vol. 101). https://doi.org/10.1016/j.biocontrol.2016.06.004spa
dc.relation.referencesLee, D. H., Choi, H. W., & Hwang, B. K. (2011). The pepper E3 ubiquitin ligase RING1 gene, caRING1, is required for cell death and the salicylic acid-dependent defense response. Plant Physiology, 156(4), 2011–2025. https://doi.org/10.1104/pp.111.177568spa
dc.relation.referencesLee, D., Lal, N. K., Lin, Z.-J. D., Ma, S., Liu, J., Castro, B., Toruño, T., Dinesh-Kumar, S. P., & Coaker, G. (2020). Regulation of reactive oxygen species during plant immunity through phosphorylation and ubiquitination of RBOHD. Nature Communications, 11, 1838. https://doi.org/10.1038/s41467-020-15601-5spa
dc.relation.referencesLee, J., Feng, J., Campbell, K. B., Scheffler, B. E., Garrett, W. M., Thibivilliers, S., Stacey, G., Naiman, D. Q., Tucker, M. L., Pastor-Corrales, M. A., & Cooper, B. (2009). Quantitative proteomic analysis of bean plants infected by a virulent and avirulent obligate rust fungus. Molecular & cellular proteomics : MCP, 8(1), 19–31. https://doi.org/10.1074/mcp.M800156-MCP200spa
dc.relation.referencesLehmann, S., Funck, D., Szabados, L., & Rentsch, D. (2010). Proline metabolism and transport in plant development. Amino Acids, 39(4), 949–962. https://doi.org/10.1007/s00726-010-0525-3spa
dc.relation.referencesLeón - Rodríguez, K. (2012). Identificación, purificación parcial y caracterización bioquímica de tres proteasas secretadas por Fusarium oxysporum f. sp. dianthi raza 2 in vitro . Tesis de Maestría, en Bioquímica, Departamento de Ciencias, Universidad Nacional de Colombia. Citado en. Universidad Nacional de Colombia.spa
dc.relation.referencesLeslie, J. F., & Summerell, B. A. (2006). The Fusarium Laboratory Manual. En Blackwell Publishing (Ed.), The Fusarium Laboratory Manual (First edit). Blackwell Publishing Ltd. https://doi.org/10.1002/9780470278376.fmatterspa
dc.relation.referencesLi, A., Li, A., Deng, Z., Guo, J., & Wu, H. (2020). Cross-Species Annotation of Expressed Genes and Detection of Different Functional Gene Modules Between 10 Cold- and 10 Hot-Propertied Chinese Herbal Medicines. Frontiers in Genetics, 11. https://doi.org/10.3389/fgene.2020.00532spa
dc.relation.referencesLi, Chun-yu, Deng, G., Yang, J., Viljoen, A., Jin, Y., Kuang, R., Zuo, C., Lv, Z., Yang, Q., Sheng, O., Wei, Y., Hu, C., Dong, T., & Yi, G. (2012). Transcriptome profiling of resistant and susceptible Cavendish banana roots following inoculation with Fusarium oxysporum f. sp. cubense tropical race 4. BMC Genomics, 13(1), 374. https://doi.org/10.1186/1471-2164-13-374spa
dc.relation.referencesLi, Chunqiang, Shao, J., Wang, Y., Li, W., Guo, D., Yan, B., Xia, Y., & Peng, M. (2013). Analysis of banana transcriptome and global gene expression profiles in banana roots in response to infection by race 1 and tropical race 4 of Fusarium oxysporum f. sp. cubense. BMC genomics, 14(1), 851. https://doi.org/10.1186/1471-2164-14-851spa
dc.relation.referencesLi, Chunyu, Chen, S., Zuo, C., Sun, Q., Ye, Q., Yi, G., & Huang, B. (2011). The use of GFP-transformed isolates to study infection of banana with Fusarium oxysporum f. sp. cubense race 4. European Journal of Plant Pathology, 131(2), 327–340. https://doi.org/10.1007/s10658-011-9811-5spa
dc.relation.referencesLi, W., Wang, X., Li, C., Sun, J., Li, S., & Peng, M. (2019). Dual species transcript profiling during the interaction between banana (Musa acuminata) and the fungal pathogen Fusarium oxysporum f. sp. cubense. BMC Genomics, 20(1), 1–16. https://doi.org/10.1186/s12864-019-5902-zspa
dc.relation.referencesLiang, H., Yao, N., Song, J. T., Luo, S., Lu, H., & Greenberg, J. T. (2003). Ceramides modulate programmed cell death in plants. Genes and Development, 17(21), 2636–2641. https://doi.org/10.1101/gad.1140503spa
dc.relation.referencesLiang, J., Zhang, J., & Wong, M. H. (1997). Can stomatal closure caused by xylem ABA explain the inhibition of leaf photosynthesis under soil drying? Photosynthesis Research, 51(2), 149–159. https://doi.org/10.1023/A:1005797410190spa
dc.relation.referencesLiao, Yang, Smyth, G. K., & Shi, W. (2014). FeatureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics, 30(7), 923–930. https://doi.org/10.1093/bioinformatics/btt656spa
dc.relation.referencesLiao, Yuxing, Wang, J., Jaehnig, E. J., Shi, Z., & Zhang, B. (2019). WebGestalt 2019: gene set analysis toolkit with revamped UIs and APIs. Nucleic Acids Research, 47(W1), W199–W205. https://doi.org/10.1093/nar/gkz401spa
dc.relation.referencesLiu, G., Ji, Y., Bhuiyan, N. H., Pilot, G., Selvaraj, G., Zou, J., & Wei, Y. (2010). Amino acid homeostasis modulates salicylic acid-associated redox status and defense responses in Arabidopsis. The Plant cell, 22(11), 3845–3863. https://doi.org/10.1105/tpc.110.079392spa
dc.relation.referencesLiu, J. J., & Ekramoddoullah, A. K. M. (2006). The family 10 of plant pathogenesis-related proteins: Their structure, regulation, and function in response to biotic and abiotic stresses. Physiological and Molecular Plant Pathology, 68(1–3), 3–13. https://doi.org/10.1016/j.pmpp.2006.06.004spa
dc.relation.referencesLiu, J., Zhang, Y., Meng, Q., Shi, F., Ma, L., & Li, Y. (2017). Physiological and biochemical responses in sunflower leaves infected by Sclerotinia sclerotiorum. Physiological and Molecular Plant Pathology, 100, 41–48. https://doi.org/10.1016/J.PMPP.2017.06.001spa
dc.relation.referencesLiu, P. P., von Dahl, C. C., & Klessig, D. F. (2011). The extent to which methyl salicylate is required for signaling systemic acquired resistance is dependent on exposure to light after infection. Plant physiology, 157(4), 2216–2226. https://doi.org/10.1104/pp.111.187773spa
dc.relation.referencesLiu, Y., Guo, Y., Ma, C., Zhang, D., Wang, C., Yang, Q., & Xu, M. (2016). Transcriptome analysis of maize resistance to Fusarium graminearum. BMC Genomics, 17(1), 477. https://doi.org/10.1186/s12864-016-2780-5spa
dc.relation.referencesLiu, Z., Xie, J., Wang, H., Zhong, X., Li, H., Yu, J., & Kang, J. (2019). Identification and expression profiling analysis of NBS–LRR genes involved in Fusarium oxysporum f.sp. conglutinans resistance in cabbage. 3 Biotech, 9(5), 1–12. https://doi.org/10.1007/s13205-019-1714-8spa
dc.relation.referencesLlorente, F., Muskett, P., Sánchez-Vallet, A., López, G., Ramos, B., Sánchez-Rodríguez, C., Jordá, L., Parker, J., & Molina, A. (2008). Repression of the auxin response pathway increases Arabidopsis susceptibility to necrotrophic fungi. Molecular plant, 1(3), 496–509. https://doi.org/10.1093/mp/ssn025spa
dc.relation.referencesLo Presti, L., Lanver, D., Schweizer, G., Tanaka, S., Liang, L., Tollot, M., Zuccaro, A., Reissmann, S. and, & Kahmann, R. (2015). Fungal Effectors and Plant Susceptibility. Annual Review of Plant Biology, 66(1), 513–545. https://doi.org/10.1146/annurev-arplant-043014-114623spa
dc.relation.referencesLópez, C. E., Acosta, I. F., Jara, C., Pedraza, F., Gaitán-Solís, E., Gallego, G., Beebe, S., & Tohme, J. (2003). Identifying resistance gene analogs associated with resistances to different pathogens in common bean. Phytopathology, 93(1), 88–95. https://doi.org/10.1094/PHYTO.2003.93.1.88spa
dc.relation.referencesLópez C, C. E. (2007). Fitopatologia molecular (P. Ltda (ed.); Primera Ed).spa
dc.relation.referencesLorenc-Kukuła, K., Wróbel-Kwiatkowska, Magdalena Starzycki, M., & Szopa, J. (2007). Engineering flax with increased flavonoid content and thus Fusarium resistance. Physiological and Molecular Plant Pathology, 70(1–3), 38–48. https://doi.org/10.1016/J.PMPP.2007.05.005spa
dc.relation.referencesLove, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12), 1–21. https://doi.org/10.1186/s13059-014-0550-8spa
dc.relation.referencesLuo, H., Laluk, K., Lai, Z., Veronese, P., Song, F., & Mengiste, T. (2010). The Arabidopsis Botrytis Susceptible1 Interactor Defines a Subclass of RING E3 Ligases That Regulate Pathogen and Stress Responses 1[C][W]. Plan Physiology, 154, 1766–1782. https://doi.org/10.1104/pp.110.163915spa
dc.relation.referencesLyons, R., Stiller, J., Powell, J., Rusu, A., Manners, J. M., & Kazan, K. (2015). Fusarium oxysporum triggers tissue-specific transcriptional reprogramming in Arabidopsis thaliana. PLoS ONE, 10(4). https://doi.org/10.1371/journal.pone.0121902spa
dc.relation.referencesMacKay, V. L., Li, X., Flory, M. R., Turcott, E., Law, G. L., Serikawa, K. A., Xu, X. L., Lee, H., Goodlett, D. R., Aebersold, R., Zhao, L. P., & Morris, D. R. (2004). Gene expression analyzed by high-resolution state array analysis and quantitative proteomics. Molecular and Cellular Proteomics, 3(5), 478–489. https://doi.org/10.1074/mcp.M300129-MCP200spa
dc.relation.referencesMadriz Ordeñana, K. (2002). Mecanismos de defensa en las interacciones planta-patógeno. Manejo integrado de plantas, 2(63), 22–32. http://www.sidalc.net/repdoc/a2097e/a2097e.pdfspa
dc.relation.referencesMaina, F., Hauschild R., & Sikora R. (2008). Protection of tomato plants against fusaric acid by resistance induction. ©Journal of Applied Biosciences, 1(1), 18–31. www.biosciences.elewa.orgspa
dc.relation.referencesMakandar, R., Nalam, V. J., Lee, H., Trick, H. N., Dong, Y., & Shah, J. (2012). Salicylic Acid Regulates Basal Resistance to Fusarium Head Blight in Wheat. Molecular Plant-Microbe Interactions, 25(3), 431–439. https://doi.org/10.1094/MPMI-09-11-0232spa
dc.relation.referencesMandal, S., & Mitra, A. (2007). Reinforcement of cell wall in roots of Lycopersicon esculentum through induction of phenolic compounds and lignin by elicitors. Physiological and Molecular Plant Pathology, 71(4–6), 201–209. https://doi.org/10.1016/j.pmpp.2008.02.003spa
dc.relation.referencesMandal, S., Mitra, A., & Mallick, N. (2008). Biochemical characterization of oxidative burst during interaction between Solanum lycopersicum and Fusarium oxysporum f. sp. lycopersici. Physiological and Molecular Plant Pathology, 72(1), 56–61. https://doi.org/10.1016/j.pmpp.2008.04.002spa
dc.relation.referencesManni, M., Berkeley, M. R., Seppey, M., & Zdobnov, E. M. (2021). BUSCO: Assessing Genomic Data Quality and Beyond. Current Protocols, 1(12), 1–41. https://doi.org/10.1002/cpz1.323spa
dc.relation.referencesMarín-Ortiz, J. C., Gutierrez-Toro, N., Botero-Fernández, V., & Hoyos-Carvajal, L. M. (2019). Linking physiological parameters with visible/near-infrared leaf reflectance in the incubation period of vascular wilt disease. Saudi Journal of Biological Sciences. https://doi.org/10.1016/J.SJBS.2019.05.007spa
dc.relation.referencesMarín-Ortiz, J. C., Gutierrez-Toro, N., Botero-Fernández, V., & Hoyos-Carvajal, L. M. (2020). Linking physiological parameters with visible/near-infrared leaf reflectance in the incubation period of vascular wilt disease. Saudi Journal of Biological Sciences, 27(1), 88–99. https://doi.org/10.1016/j.sjbs.2019.05.007spa
dc.relation.referencesMarín Velázquez, J. A., Andreu Puyal, P., Carrasco, A., & Arbeloa Matute, A. (2010). Determination of proline concentration, an abiotic stress marker, in root exudates of excised root cultures of tree rootstocks under salt stress (pp. 722–727). Institut des régions arides. https://digital.csic.es/handle/10261/41324spa
dc.relation.referencesMartin, M. (2011). Cutadapt Removes Adapter Sequences From High-Throughput Sequencing Reads. EMBnet.journal, 17, 10–12. https://doi.org/https://doi.org/10.14806/ej.17.1.200spa
dc.relation.referencesMartin, M. (2013). Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal, 17(1), 10–12. http://journal.embnet.org/index.php/embnetjournal/article/view/200/458spa
dc.relation.referencesMartinez Gonzalez, A. P. (2019). Contribución al estudio de los fenómenos bioquímicos y moleculares del apoplasto de clavel (Dianthus caryophyllus L) durante su interacción con Fusarium oxysporum f. sp. dianthi. http://bdigital.unal.edu.co/74221/spa
dc.relation.referencesMatic, S., Bagnaresi, P., Biselli, C., Orru’, L., Amaral Carneiro, G., Siciliano, I., Valé, G., Gullino, M. L., & Spadaro, D. (2016). Comparative transcriptome profiling of resistant and susceptible rice genotypes in response to the seed borne pathogen Fusarium fujikuroi. BMC genomics, 17(1), 608. https://doi.org/10.1186/s12864-016-2925-6spa
dc.relation.referencesMaxwell, K., & Johnson, G. N. (2000). Chlorophyll fluorescence — a practical guide. 51(345), 659–668.spa
dc.relation.referencesMayorga, V. R. (2007). Aislamiento y Caracterización de una polifenoloxidasa relacionada con la tolerancia del clavel (Dianthus caryophyllus). Acta biol. Colomb., 12(2), 81–94.spa
dc.relation.referencesMeena, K. S., Ramyabharathi, S. A., & Jonathan, E. I. (2016). INTERACTION OF Meloidogyne incognita AND Fusarium oxysporum IN CARNATION AND PHYSIOLOGICAL CHANGES INDUCED IN PLANTS DUE TO THE INTERACTION. SAARC Journal of agriculture, 14(1), 59–69.spa
dc.relation.referencesMelgarejo, L. M., Romero, M., Hernandez, S., Barrera, J., Solarte, María E., Suárez, D., Pérez, L.-V., Rojas, A., Cruz, M., Moreno, L., Crespo, S., & Pérez, W. (2010). Experimentos en Fisiología Vegetal (L. M. MELGAREJO MUÑOZ (ed.); Primera Ed).spa
dc.relation.referencesMelotto, M., Underwood, W., & He, S. Y. (2008). Role of stomata in plant innate immunity and foliar bacterial diseases. Annual review of phytopathology, 46, 101–122. https://doi.org/10.1146/annurev.phyto.121107.104959spa
dc.relation.referencesMichielse, C. B., & Rep, M. (2009). Pathogen profile update: Fusarium oxysporum. Molecular Plant Pathology, 10(3), 311–324. https://doi.org/10.1111/j.1364-3703.2009.00538.xspa
dc.relation.referencesMiedes, E., Vanholme, R., Boerjan, W., & Molina, A. (2014). The role of the secondary cell wall in plant resistance to pathogens. Frontiers in plant science, 5, 358. https://doi.org/10.3389/fpls.2014.00358spa
dc.relation.referencesMierziak, J., Kostyn, K., & Kulma, A. (2014). Flavonoids as important molecules of plant interactions with the environment. Molecules, 19(10), 16240–16265. https://doi.org/10.3390/molecules191016240spa
dc.relation.referencesMonroy-Mena, S. (2019). EFECTO DE ELICITORES DE ORIGEN BIÓTICO EN LA TRANSCRIPCIÓN DE ALGUNOS GENES INVOLUCRADOS EN LOS MECANISMOS DE DEFENSA DEL CLAVEL Dianthus caryophyllus L. AL PATÓGENO Fusarium oxysporum f sp dianthi [Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/77930spa
dc.relation.referencesMonroy-Mena, S., Chacón-Parra, A. L., Farfan-Angarita, J. P., Martínez-Peralta, S. T., Ardila-Barrantes, H. D., Monroy-Mena, S., Chacón-Parra, A. L., Farfán-Angarita, J. P., Martínez-Peralta, S. T., & Ardila-Barrantes, H. D. (2019). Selección de genes de referencia para análisis transcripcionales en el modelo clavel (Dianthus caryophyllus L.) - Fusarium oxysporum f. sp. dianthi. Revista Colombiana de Química, 48(2), 5–14. https://doi.org/10.15446/rev.colomb.quim.v48n2.72771spa
dc.relation.referencesMorin, R. D., Bainbridge, M., Fejes, A., Hirst, M., Krzywinski, M., Pugh, T. J., McDonald, H., Varhol, R., Jones, S. J. M., & Marra, M. A. (2008). Profiling the HeLa S3 transcriptome using randomly primed cDNA and massively parallel short-read sequencing. BioTechniques, 45(1), 81–94. https://doi.org/10.2144/000112900spa
dc.relation.referencesMueller, O., & Schroeder, A. (2004). RNA Integrity Number ( RIN ) – Standardization of RNA Quality Control Application. En Agilent Technologies. https://doi.org/10.1101/gr.189621.115.7spa
dc.relation.referencesMurchie, E. H., & Lawson, T. (2013). Chlorophyll fluorescence analysis: A guide to good practice and understanding some new applications. Journal of Experimental Botany, 64(13), 3983–3998. https://doi.org/10.1093/jxb/ert208spa
dc.relation.referencesNavarro, L., Dunoyer, P., Jay, F., Arnold, B., Dharmasiri, N., Estelle, M., Voinnet, O., & Jones, J. D. G. (2006). A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science (New York, N.Y.), 312(5772), 436–439. https://doi.org/10.1126/science.1126088spa
dc.relation.referencesNeilson, E. H., Goodger, J. Q. D., Woodrow, I. E., & Møller, B. L. (2013). Plant chemical defense: At what cost? Trends in Plant Science, 18(5), 250–258. https://doi.org/10.1016/j.tplants.2013.01.001spa
dc.relation.referencesNgou, B. P. M., Ding, P., & Jones, J. D. G. (2022). Thirty years of resistance: Zig-zag through the plant immune system. The Plant cell, 34(5), 1447–1478. https://doi.org/10.1093/plcell/koac041spa
dc.relation.referencesNibedita, C., & Jolly, B. (2017). Transcriptomics: A successful approach to unravel the molecular mechanism of plant-pathogen interaction in post-genomic era. Research Journal of Biotechnology, 12(8), 78–88.spa
dc.relation.referencesNiemann, G. J. (1990). A carnation’s defense against fungal invasion: a combined effort. Mededelingen van de Faculteit Landbouwwetenschappen, Rijksuniversiteit Gent, 55(3a), 1019–1028. https://geoscience.net/research/002/007/002007547.phpspa
dc.relation.referencesNiemann, G. J., Baayen, R. P., & Boon, J. J. (1990). Localization of phytoalexin accumulation and determination of changes in lignin and carbohydrate composition in carnation (Dianthus caryophyllus L.) xylem as a consequence of infection with Fusarium oxysporum f. sp. dianthi, by pyrolysis-mass spectrometry. Netherlands Journal of Plant Pathology, 96(3), 133–153. https://doi.org/https://doi.org/10.1007/BF01974252spa
dc.relation.referencesNiemann, Gerard J. (1992). THE MECHANISM OF RESISTANCE OF CARNATION TO WILT DISEASES. Acta Horticulturae, 307, 29–36. https://doi.org/10.17660/ActaHortic.1992.307.1spa
dc.relation.referencesNiemann, Gerard J., Liem, J., van der Kerk-van Hoof, A., & Niessen, W. M. A. (1992). Phytoalexins, benzoxazinones, N-aroylanthranilates and N-aroylanilines, from Fusarium-infected carnation stems. Phytochemistry, 31(11), 3761–3767. https://doi.org/10.1016/S0031-9422(00)97523-Xspa
dc.relation.referencesNishad, R., Ahmed, T., Rahman, V. J., & Kareem, A. (2020). Modulation of Plant Defense System in Response to Microbial Interactions. Frontiers in Microbiology, 11(July), 1–13. https://doi.org/10.3389/fmicb.2020.01298spa
dc.relation.referencesNoutoshi, Y., Kuromori, T., Wada, T., Hirayama, T., Kamiya, A., Imura, Y., Yasuda, M., Nakashita, H., Shirasu, K., & Shinozaki, K. (2006). Loss of necrotic spotted lesions 1 associates with cell death and defense responses in Arabidopsis thaliana. Plant Molecular Biology, 62(1–2), 29–42. https://doi.org/10.1007/s11103-006-9001-6spa
dc.relation.referencesOh, I. S., Park, A. R., Bae, M. S., Kwon, S. J., Kim, Y. S., Lee, J. E., Kang, N. Y., Lee, S., Cheong, H., & Park, O. K. (2005). Secretome analysis reveals an Arabidopsis lipase involved in defense against Alternaria brassicicola. Plant Cell, 17(10), 2832–2847. https://doi.org/10.1105/tpc.105.034819spa
dc.relation.referencesOmicsbox. (2019). OmicsBox – Bioinformatics Made Easy, BioBam Bioinformatics. https://www.biobam.com/omicsboxspa
dc.relation.referencesOrosa-Puente, B., Leftley, N., von Wangenheim, D., Banda, J., Srivastava, A. K., Hill, K., Truskina, J., Bhosale, R., Morris, E., Srivastava, M., Kümpers, B., Goh, T., Fukaki, H., Vermeer, J. E. M., Vernoux, T., Dinneny, J. R., French, A. P., Bishopp, A., Sadanandom, A., & Bennett, M. J. (2018). Root branching toward water involves posttranslational modification of transcription factor ARF7. Science, 362(6421), 1407–1410. https://doi.org/10.1126/science.aau3956spa
dc.relation.referencesOtulak-Kozieł, K., Kozieł, E., Horváth, E., & Csiszár, J. (2022). AtGSTU19 and AtGSTU24 as Moderators of the Response of Arabidopsis thaliana to Turnip mosaic virus. International Journal of Molecular Sciences, 23, 11531. https://doi.org/10.3390/ijms231911531spa
dc.relation.referencesPagán-Rubio, E. (2012). Uso de Indicadores del Estado Hídrico de la Planta para la Optimización del Riego en Cultivos Leñosos. Universidad Politécnica de Cartagena.spa
dc.relation.referencesParvez, M. M., Tomita-Yokotani, K., Fujii, Y., Konishi, T., & Iwashina, T. (2004). Biochemical systematics and ecology. En Biochemical systematics and ecology. Pergamon Press. http://agris.fao.org/agris-search/search.do?recordID=US201300949869spa
dc.relation.referencesPathak, R. R., Mandal, V. K., Jangam, A. P., Sharma, N., Madan, B., Jaiswal, D. K., & Raghuram, N. (2021). Heterotrimeric G-protein α subunit (RGA1) regulates tiller development, yield, cell wall, nitrogen response and biotic stress in rice. Scientific Reports, 11(1), 1–19. https://doi.org/10.1038/s41598-021-81824-1spa
dc.relation.referencesPego, J. V., Kortstee, A. J., Huijser, C., & Smeekens, S. C. M. (2000). Photosynthesis, sugars and the regulation of gene expression. Journal of Experimental Botany, 51(1), 407–416. http://web.b.ebscohost.com/abstract?direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=00220957&AN=44734414&h=2UiuZSEuSwwlDiepy0iPXypo0PEOtfbk40npO1rmT4B5S1dlYCUPhNFM4575dpok9yNwBhCkde3ttiPKoj2ukg%3D%3D&crl=f&resultNs=AdminWebAuth&resultLocal=ErrCspa
dc.relation.referencesPei, Y., Li, X., Zhu, Y., Ge, X., Sun, Y., Liu, N., Jia, Y., Li, F., & Hou, Y. (2019). Ghabp19, a novel germin-like protein from Gossypium hirsutum, plays an important role in the regulation of resistance to verticillium and fusarium wilt pathogens. Frontiers in Plant Science, 10(May), 1–18. https://doi.org/10.3389/fpls.2019.00583spa
dc.relation.referencesPeña-Castro, J. M., Gregorio-Ramírez, O., & Barrera-Figueroa, B. E. (2013). Los métodos experimentales que permiten el estudio de las macromoléculas de la vida: historia, fundamentos y perspectivas. Educación Química, 24, 237–246. https://doi.org/10.1016/S0187-893X(13)72468-6spa
dc.relation.referencesPeña-Cortés, H., Barrios, P., Dorta, F., Polanco, V., Sánchez, C., Sánchez, E., & Ramírez, I. (2004). Involvement of Jasmonic Acid and Derivatives in Plant Response to Pathogen and Insects and in Fruit Ripening. Journal of Plant Growth Regulation, 23(3), 246–260. https://doi.org/10.1007/s00344-004-0035-1spa
dc.relation.referencesPérez Mora, W., Melgarejo, L. M., & Ardila, H. D. (2021). Effectiveness of some resistance inducers for controlling carnation vascular wilting caused by Fusarium oxysporum f. sp. dianthi. Archives of Phytopathology and Plant Protection, 54(13–14), 886–902. https://doi.org/10.1080/03235408.2020.1868734spa
dc.relation.referencesPertea, M., Pertea, G. M., Antonescu, C. M., Chang, T. C., Mendell, J. T., & Salzberg, S. L. (2015). StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nature Biotechnology, 33(3), 290–295. https://doi.org/10.1038/nbt.3122spa
dc.relation.referencesPfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research, 29(9), 0.spa
dc.relation.referencesPfannschmidt, T., & Yang, C. (2012). The hidden function of photosynthesis: A sensing system for environmental conditions that regulates plant acclimation responses. Protoplasma, 249(SUPPL.2), 125–136. https://doi.org/10.1007/s00709-012-0398-2spa
dc.relation.referencesPieterse, C. M. J., Van Der Does, D., Zamioudis, C., Leon-Reyes, A., & Van Wees, S. C. M. (2012). Hormonal modulation of plant immunity. Annual Review of Cell and Developmental Biology, 28(April), 489–521. https://doi.org/10.1146/annurev-cellbio-092910-154055spa
dc.relation.referencesPinzon-Sandoval, E. H., Romero-Cuervo, W. A., & Luis-Ayala, M. A. (2021). Phenology and growth flower of Dianthus caryophyllus L. cv. ‘MOON LIGHT’ under greenhouse. Revista de Ciencias Agrícolas, 39(1), 7–15. https://doi.org/10.22267/rcia.223901.167spa
dc.relation.referencesPoli, A., Bertetti, D., Rapetti, S., Gullino, M. L., & Garibaldi, A. (2013). Characterization and identification of Colombian isolates of Fusarium oxysporum f. sp. dianthi. Journal of Plant Pathology, 95(2), 255–263.spa
dc.relation.referencesQue, Y.-X., Xu, L.-P., Lin, J.-W., & Chen, R.-K. (2009). Isolation and Characterization of NBS-LRR Resistance Gene Analogs from Sugarcane. Acta Agronómica Sinica, 35(4), 631–639. https://doi.org/10.1016/S1875-2780(08)60076-0spa
dc.relation.referencesRahman, T. A. El, Oirdi, M. El, Gonzalez-Lamothe, R., & Bouarab, K. (2012). Necrotrophic Pathogens Use the Salicylic Acid Signaling Pathway to Promote Disease Development in Tomato. Molecular Plant-Microbe Interactions, 25(12), 1584–1593. https://doi.org/10.1094/MPMI-07-12-0187-Rspa
dc.relation.referencesRamsay, J. O., & Silverman, B. W. (2002). Applied Functional Data Analysis: Methods and Case Studies. En Journal of the Royal Statistical Society: Series A (Statistics in Society) (Vol. 167, Número 2). https://doi.org/10.1111/j.1467-985x.2004.t01-5-.xspa
dc.relation.referencesRestrepo-Rubio, J.-S., López-Carrascal, C.-E., & Melgarejo-M, L.-M. (2017). Physiological behavior of cassava plants (Manihot esculenta Crantz) in response to infection by Xanthomonas axonopodis pv. manihotis under greenhouse conditions. Physiological and Molecular Plant Pathology, 100, 136–141. https://doi.org/10.1016/J.PMPP.2017.09.004spa
dc.relation.referencesReyes-Hernandez Blanca Jazmin, Días de la GArza, R. I., & G, D. J. (2015). FOLATOS: SU SÍNTESIS, METABOLISMO, TRANSPORTE Y PAPEL EN EL DESARROLLO DE PLANTAS. REB, 32(2), 39–48. https://doi.org/https://www.medigraphic.com/pdfs/revedubio/reb-2015/reb152b.pdfspa
dc.relation.referencesRispail, N., & Rubiales, D. (2015). Rapid and efficient estimation of pea resistance to the soil-borne pathogen fusarium oxysporum by infrared imaging. Sensors (Switzerland), 15(2), 3988–4000. https://doi.org/10.3390/S150203988spa
dc.relation.referencesRizhsky, L., Davletova, S., Liang, H., & Mittler, R. (2004). The Zinc Finger Protein Zat12 Is Required for Cytosolic Ascorbate Peroxidase 1 Expression during Oxidative Stress in Arabidopsis. Journal of Biological Chemistry, 279(12), 11736–11743. https://doi.org/10.1074/jbc.M313350200spa
dc.relation.referencesRobert-Seilaniantz, A., Navarro, L., Bari, R., & Jones, Jo. D. . (2007). Pathological hormone imbalances. Current Opinion in Plant Biology, 10(4), 372–379. https://doi.org/10.1016/J.PBI.2007.06.003spa
dc.relation.referencesRodríguez-Mendoza., M. de las N., Alcántar G., G., Aguilar S., A., Etchevers B., J. D., & Santizó R., J. A. (1998). Estimación de la concentración de nitrógeno y clorofila en tomate mediante un medidor portátil de clorofila. Terra Latinoamericana, 16(2), 135–141. http://www.redalyc.org/articulo.oa?id=57316204spa
dc.relation.referencesRodríguez Cubillos, A. E., Perlaza-Jiménez, L., & Bernal Giraldo, A. J. (2014). RNA-Seq Data Analysis in Prokaryotes: A Review for Non-experts. Acta Biológica Colombiana, 19(2), 131. https://doi.org/10.15446/abc.v19n2.41010spa
dc.relation.referencesRojas, C. M., Senthil-Kumar, M., Tzin, V., & Mysore, K. S. (2014). Regulation of primary plant metabolism during plant-pathogen interactions and its contribution to plant defense. Frontiers in Plant Science, 5, 17. https://doi.org/10.3389/fpls.2014.00017spa
dc.relation.referencesRomero-Rincon, A. E. (2020). Efecto de la Aplicación de Elicitores de Origen Biótico en la Biosíntesis de Flavonoides en Clavel (Dianthus caryophyllus L) Durante la Interacción con Fusarium oxysporum f sp. dianthi. Universidad Nacional de Colombia.spa
dc.relation.referencesRomero-Rincón, A., Martínez, S. T., Higuera, B. L., Coy-Barrera, E., & Ardila, H. D. (2021). Flavonoid biosynthesis in Dianthus caryophyllus L. is early regulated during interaction with Fusarium oxysporum f. sp. dianthi. Phytochemistry, 192(August). https://doi.org/10.1016/j.phytochem.2021.112933spa
dc.relation.referencesRushton, P. J., Torres, J. T., Parniske, M., Wernert, P., Hahlbrock, K., & Somssich, I. E. (1996). Interaction of elicitor-induced DNA-binding proteins with elicitor response elements in the promoters of parsley PR1 genes. The EMBO journal, 15(20), 5690–5700. http://www.ncbi.nlm.nih.gov/pubmed/8896462spa
dc.relation.referencesS.W, P., Kaimoyo, E., Kumar, D., Mosher, S., & Klessig, D. F. (2007). Methyl Salicylate Is a Critical Mobile Signal for Plant Systemic Acquired Resistance. Science, 318(5847), 113–116. https://doi.org/10.1126/science.1147113spa
dc.relation.referencesSah, S. K., Reddy, K. R., & Li, J. (2016). Abscisic Acid and Abiotic Stress Tolerance in Crop Plants. Frontiers in Plant Science, 7, 571. https://doi.org/10.3389/fpls.2016.00571spa
dc.relation.referencesSankaran, S., Mishra, A., Ehsani, R., & Davis, C. (2010). A review of advanced techniques for detecting plant diseases. Computers and Electronics in Agriculture, 72(1), 1–13. https://doi.org/10.1016/J.COMPAG.2010.02.007spa
dc.relation.referencesSantos-Rodriguez. J.F. (2022). Contribución al estudio de la respuesta bioquímica de resistencia inducida mediante el uso de elicitores de origen biótico en la interacción Fusarium oxysporum f. sp. dianthi raza 2 - clavel (Dianthus caryophyllus L.). Universidad Nacional de Colombia.spa
dc.relation.referencesSantos-Rodríguez, J., Coy-Barrera, E., Duban Ardila, H., Velasco, P., Escobar, C., & Poveda, J. (2021). Mycelium Dispersion from Fusarium oxysporum f. sp. dianthi Elicits a Reduction of Wilt Severity and Influences Phenolic Profiles of Carnation (Dianthus caryophyllus L.) Roots. Plants, 10, 1447. https://doi.org/10.3390/plants10071447spa
dc.relation.referencesSarrocco, S., Falaschi, N., Vergara, M., Nicoletti, F., & Vannacci, G. (2007). Use of Fusarium oxysporum F. sp. dianthi transformed with marker genes to follow colonization of carnation roots. Journal of Plant Pathology, 89(1), 47–54. https://doi.org/10.4454/jpp.v89i1.723spa
dc.relation.referencesScheideler, M., Schlaich, N. L., Fellenberg, K., Beissbarth, T., Hauser, N. C., Vingron, M., Slusarenko, A. J., & Hoheisel, J. D. (2002). Monitoring the switch from housekeeping to pathogen defense metabolism in Arabidopsis thaliana using cDNA arrays. The Journal of biological chemistry, 277(12), 10555–10561. https://doi.org/10.1074/jbc.M104863200spa
dc.relation.referencesScholes, J., & Rolfe, S. (1996). Photosynthesis in localised regions of oat leaves infected with crown rust (Puccinia coronata): quantitative imaging of chlorophyll fluorescence. Planta, 199(4), 573–582. https://doi.org/10.1007/BF00195189spa
dc.relation.referencesSebastiani, M. S., Bagnaresi, P., Sestili, S., Biselli, C., Zechini, A., Orru’, L., Cattivelli, L., & Ficcadenti, N. (2017). Transcriptome Analysis of the melon-Fusarium oxysporum f. sp. melonis Race 1.2 Pathosystem in Susceptible and Resistant Plants (Front. Plant Sci., (2017) 8, 362, 10.3389/fpls.2017.00362). En Frontiers in Plant Science (Vol. 8, pp. 1–15). https://doi.org/10.3389/fpls.2017.00922spa
dc.relation.referencesSeleiman, M. F., Al-Suhaibani, N., Ali, N., Akmal, M., Alotaibi, M., Refay, Y., Dindaroglu, T., Abdul-Wajid, H. H., & Battaglia, M. L. (2021). Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants, 10(2), 1–25. https://doi.org/10.3390/plants10020259spa
dc.relation.referencesSelvaraj, N., Ramadass, A., Amalraj, R. S., Palaniyandi, M., & Rasappa, V. (2014). Molecular Profiling of Systemic Acquired Resistance (SAR)-Responsive Transcripts in Sugarcane Challenged with Colletotrichum falcatum. Applied Biochemistry and Biotechnology, 174(8), 2839–2850. https://doi.org/10.1007/s12010-014-1230-6spa
dc.relation.referencesShen, Y., & Diener, A. C. (2013). Arabidopsis thaliana RESISTANCE TO FUSARIUM OXYSPORUM 2 Implicates Tyrosine-Sulfated Peptide Signaling in Susceptibility and Resistance to Root Infection. PLoS Genetics, 9(5). https://doi.org/10.1371/journal.pgen.1003525spa
dc.relation.referencesShendure, J., & Ji, H. (2008). Next-generation DNA sequencing. Nature Biotechnology, 26(10), 1135–1145. https://doi.org/10.1038/nbt1486spa
dc.relation.referencesShi, Y., & He, M. (2014). Differential gene expression identified by RNA-Seq and qPCR in two sizes of pearl oyster (Pinctada fucata). Gene, 538(2), 313–322. https://doi.org/10.1016/j.gene.2014.01.031spa
dc.relation.referencesSimão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V., & Zdobnov, E. M. (2015). BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics, 31(19), 3210–3212. https://doi.org/10.1093/bioinformatics/btv351spa
dc.relation.referencesSinha, M., Singh, R. P., Kushwaha, G. S., Iqbal, N., Singh, A., Kaushik, S., Kaur, P., Sharma, S., & Singh, T. P. (2014). Current overview of allergens of plant pathogenesis related protein families. TheScientificWorldJournal, 2014, 543195. https://doi.org/10.1155/2014/543195spa
dc.relation.referencesSkadhauge, B., Thomsen, K. K., & Wettstein, D. (2004). The Role of the Barley Testa Layer and its Flavonoid Content in Resistance to Fusarium Infections. Hereditas, 126(2), 147–160. https://doi.org/10.1111/j.1601-5223.1997.00147.xspa
dc.relation.referencesSlavokhotova, A., Korostyleva, T., Shelenkov, A., Pukhalskiy, V., Korottseva, I., Slezina, M., Istomina, E., & Odintsova, T. (2021). Transcriptomic analysis of genes involved in plant defense response to the cucumber green mottle mosaic virus infection. Life, 11(10). https://doi.org/10.3390/life11101064spa
dc.relation.referencesSong, L., Wang, J., Jia, H., Kamran, A., Qin, Y., Liu, Y., Hao, K., Han, F., Zhang, C., Li, B., Li, Y., Shen, L., Wang, F., Wu, Y., & Yang, J. (2020). Identification and functional characterization of NbMLP28, a novel MLP-like protein 28 enhancing Potato virus y resistance in Nicotiana benthamiana. BMC Microbiology, 20(1), 1–14. https://doi.org/10.1186/s12866-020-01725-7spa
dc.relation.referencesSoria, S., Alonso, R. ., & Bettucci, L. . (2012). Endophytic bacteria from Pinus taeda L. as biocontrol agents of Fusarium circinatum Nirenberg & O‘Donell. Chilean journal of agricultural research, 72(2) APRI(October 2016), 281–284. https://doi.org/10.4067/S0718-58392012000200018spa
dc.relation.referencesSorribas, J. J., Pasini, C., & D´aquila, F. (2004). Principales enfermedades fúngicas y bacterianas del clavel (Dianthus caryophyllus) y su control. Phytoma, 161. http://www.phytoma.com/tienda/articulos-editorial/196-161-agosto-septiembre-2004/6435-principales-enfermedades-fngicas-y-bacterianas-del-clavel-dianthus-caryophyllus-y-su-control#spa
dc.relation.referencesSoto-Sedano, J. C., Clavijo-Ortiz, M. J., & Filgueira-Duarte, J. J. (2012). Phenotypic evaluation of the resistance in F1 carnation populations to vascular wilt caused by Fusarium oxysporum f.sp. dianthi. Agronomía Colombiana, 30(2), 172–178. http://revistas.unal.edu.co/index.php/agrocol/article/view/22777spa
dc.relation.referencesSouza, T. P., Días, R. O., & Silva-Filho, M. C. (2017). Defense-related proteins involved in sugarcane responses to biotic stress. Genetics and Molecular Biology, 40(1 (suppl)), 360–372. https://doi.org/10.1590/1678-4685-GMB-2016-0057spa
dc.relation.referencesSperschneider, J., Gardiner, D. M., Thatcher, L. F., Lyons, R., Singh, K. B., Manners, J. M., & Taylor, J. M. (2015). Genome-Wide Analysis in Three Fusarium Pathogens Identifies Rapidly Evolving Chromosomes and Genes Associated with Pathogenicity (Vol. 7, Número 6). https://doi.org/10.1093/gbe/evv092spa
dc.relation.referencesSTATQUEST. (2017). Statquest. Statquest. https://statquest.org/page/2/spa
dc.relation.referencesStergiopoulos, I., & de Wit, P. J. G. M. (2009). Fungal Effector Proteins. Annual Review of Phytopathology, 47(1), 233–263. https://doi.org/10.1146/annurev.phyto.112408.132637spa
dc.relation.referencesSun, T., & Zhang, Y. (2021). Short- and long-distance signaling in plant defense. Plant Journal, 105(2), 505–517. https://doi.org/10.1111/tpj.15068spa
dc.relation.referencesSwarbrick, P. J., Schulze-Lefert, P., & Scholes, J. D. (2006). Metabolic consequences of susceptibility and resistance (race-specific and broad-spectrum) in barley leaves challenged with powdery mildew. Plant, Cell and Environment, 29(6), 1061–1076. https://doi.org/10.1111/j.1365-3040.2005.01472.xspa
dc.relation.referencesSwarupa, V., Ravishankar, K. ., & Rekha, A. (2013). Characterization of tolerance to Fusarium oxysporum f.sp., cubense infection in banana using suppression subtractive hybridization and gene expression analysis. Physiological and Molecular Plant Pathology, 83, 1–7. https://doi.org/10.1016/j.pmpp.2013.02.003spa
dc.relation.referencesSwarupa, V., Ravishankar, K. V., & Rekha, A. (2014). Plant defense response against Fusarium oxysporum and strategies to develop tolerant genotypes in banana. Planta, 239(4), 735–751. https://doi.org/10.1007/s00425-013-2024-8spa
dc.relation.referencesSzklarczyk, D., Gable, A. L., Nastou, K. C., Lyon, D., Kirsch, R., Pyysalo, S., Doncheva, N. T., Legeay, M., Fang, T., Bork, P., Jensen, L. J., & von Mering, C. (2021). The STRING database in 2021: Customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Research, 49(D1), D605–D612. https://doi.org/10.1093/nar/gkaa1074spa
dc.relation.referencesTada, Y., Mori, T., Shinogi, T., Yao, N., Takahashi, S., Betsuyaku, S., Sakamoto, M., Park, P., Nakayashiki, H., Tosa, Y., & Mayama, S. (2004). Nitric Oxide and Reactive Oxygen Species Do Not Elicit Hypersensitive Cell Death but Induce Apoptosis in the Adjacent Cells During the Defense Response of Oat. Molecular Plant-Microbe Interactions, 17(3), 245–253. https://doi.org/10.1094/MPMI.2004.17.3.245spa
dc.relation.referencesTaiz, L., & Zeiger, E. (2010). Secondary metabolites in plant defense. En Plant physiology (p. 371).spa
dc.relation.referencesTakahashi, F., Kuromori, T., Urano, K., Yamaguchi-Shinozaki, K., & Shinozaki, K. (2020). Drought Stress Responses and Resistance in Plants: From Cellular Responses to Long-Distance Intercellular Communication. Frontiers in Plant Science, 11(September), 1–14. https://doi.org/10.3389/fpls.2020.556972spa
dc.relation.referencesTakahashi, H., Kanayama, Y., Zheng, M. S., Kusano, T., Hase, S., Ikegami, M., & Shah, J. (2004). Antagonistic interactions between the SA and JA signaling pathways in Arabidopsis modulate expression of defense genes and gene-for-gene resistance to cucumber mosaic virus. Plant & cell physiology, 45(6), 803–809. http://www.ncbi.nlm.nih.gov/pubmed/15215516spa
dc.relation.referencesTakeno, K. (2016). Stress-induced flowering: The third category of flowering response. Journal of Experimental Botany, 67(17), 4925–4934. https://doi.org/10.1093/jxb/erw272spa
dc.relation.referencesTanase, K., Nishitani, C., Hirakawa, H., Isobe, S., Tabata, S., Ohmiya, A., & Onozaki, T. (2012). Transcriptome analysis of carnation (Dianthus caryophyllus L.) based on next-generation sequencing technology. BMC Genomics, 13(1), 292. https://doi.org/10.1186/1471-2164-13-292spa
dc.relation.referencesThatcher, L. F., Gardiner, D. M., Kazan, K., & Manners, J. M. (2012). A Highly Conserved Effector in Fusarium oxysporum Is Required for Full Virulence on Arabidopsis. 25(2), 180–190.spa
dc.relation.referencesTon, W. J., Jakab, G., Rie Toquin, V., Flors, V., Iavicoli, A., Maeder, M. N., Mé, J.-P., & Mauch-Mani, B. (2005). Dissecting the b-Aminobutyric Acid–Induced Priming Phenomenon in Arabidopsis. The Plant Cell, 17, 987–999. https://doi.org/10.1105/tpc.104.029728spa
dc.relation.referencesTorres, M. A., Jones, J. D. G., & Dangl, J. L. (2006). Reactive oxygen species signaling in response to pathogens. Plant physiology, 141(2), 373–378. https://doi.org/10.1104/pp.106.079467spa
dc.relation.referencesTortosa, M., Cartea, M. E., Velasco, P., Soengas, P., & Rodriguez, V. M. (2019). Calcium-signaling proteins mediate the plant transcriptomic response during a well-established Xanthomonas campestris pv. campestris infection. Horticulture Research, 6, 103. https://doi.org/10.1038/s41438-019-0186-7spa
dc.relation.referencesTrapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D. R., Pimentel, H., Salzberg, S. L., Rinn, J. L., & Pachter, L. (2012). Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nature protocols, 7(3), 562–578. https://doi.org/10.1038/nprot.2012.016spa
dc.relation.referencesTrillas, M. I., Cotxarrera, L., Casanova, E., & Cortadellas, N. (2000). Ultrastructural changes and localization of chitin and callose in compatible and incompatible interactions between carnation callus and Fusarium oxysporum. Physiological and Molecular Plant Pathology, 56(3), 107–116. https://doi.org/10.1006/pmpp.1999.0254spa
dc.relation.referencesÜlker, B., & Somssich, I. E. (2004). WRKY transcription factors: from DNA binding towards biological function. Current Opinion in Plant Biology, 7(5), 491–498. https://doi.org/10.1016/J.PBI.2004.07.012spa
dc.relation.referencesUllah, S., & Finch, C. F. (2013). Applications of functional data analysis: A systematic review. BMC Medical Research Methodology, 13(1). https://doi.org/10.1186/1471-2288-13-43spa
dc.relation.referencesVan de Peer, Y. (2022). Calculate and draw custom Venn diagrams. Bioinformatics & Evolutionary Genomics. http://bioinformatics.psb.ugent.be/webtools/Venn/spa
dc.relation.referencesVan Loon, L.C., & Van Kammen, A. (1970). Polyacrylamide disc electrophoresis of the soluble leaf proteins from Nicotiana tabacum var. ‘Samsun’ and ‘Samsun NN’. Virology, 40(2), 199–211. https://doi.org/10.1016/0042-6822(70)90395-8spa
dc.relation.referencesVan Loon, Leendert Cornelis, & Van Strien, E. A. (1999). The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiological and Molecular Plant Pathology, 55(2), 85–97. https://doi.org/10.1006/PMPP.1999.0213spa
dc.relation.referencesVan Ooijen, G., Mayr, G., Kasiem, M. M. A., Albrecht, M., Cornelissen, B. J. C., & Takken, F. L. W. (2008). Structure-function analysis of the NB-ARC domain of plant disease resistance proteins. Journal of Experimental Botany, 59(6), 1383–1397. https://doi.org/10.1093/jxb/ern045spa
dc.relation.referencesVanegas-Cano, L., Martínez-Peralta, S., Coy-Barrera, E., & Ardila-Barrantes, H. (2022). Plant hormones accumulation and its relationship with symplastic peroxidases expression during carnation-Fusarium oxysporum interaction. Ornamental Horticulture, 28(1), 49–59. https://doi.org/10.1590/2447-536X.V28I1.2412spa
dc.relation.referencesVanegas-Cano, L.J;, Martinez-Peralta, S. T., Coy-Barrera, E., & Ardila-Barrantes, H. . (2022). Respuestas tempranas en simplasto de tallo asociadas a la ruta del ácido salicílico en la interacción clavel (Dianthus caryophyllus, caryophyllaceae)- FOD (Fusarium oxysporum f. sp. dianthi). Acta Biológica Colombiana, 27(2). https://doi.org/https://doi.org/10.15446/abc.v27n2.85778 Tospa
dc.relation.referencesVanegas-Cano, Leidy Johana. (2019). Aproximación bioquímica al estudio de las rutas de señalización involucradas en la resistencia del clavel (Dianthus caryophyllus L.) al patógeno Fusarium oxysporum f. sp. dianthi. Universidad Nacional de Colombia Sede Bogotá.spa
dc.relation.referencesVerslues, P. E., & Sharma, S. (2010). Proline metabolism and its implications for plant-environment interaction. The Arabidopsis book, 8, e0140. https://doi.org/10.1199/tab.0140spa
dc.relation.referencesVillarreal-Navarrete, A., Fischer, G., Melgarejo, L. M., Correa, G., & Hoyos-Carvajal, L. (2017). Growth response of the cape gooseberry (Physalis peruviana L.) to waterlogging stress and Fusarium oxysporum infection. Acta Horticulturae, 1178, 161–168. https://doi.org/10.17660/ActaHortic.2017.1178.28spa
dc.relation.referencesVlot, A. C., Klessig, D. F., & Park, S.-W. (2008). Systemic acquired resistance: the elusive signal(s). Current opinion in Plant Biology, 11, 436–442. https://doi.org/10.1016/j.pbi.2008.05.003spa
dc.relation.referencesVoegele, R. T., Wirsel, S., Möll, U., Lechner, M., & Mendgen, K. (2006). Cloning and Characterization of a Novel Invertase from the Obligate Biotroph Uromyces fabae and Analysis of Expression Patterns of Host and Pathogen Invertases in the Course of Infection. Molecular Plant-Microbe Interactions, 19(6), 625–634. https://doi.org/10.1094/MPMI-19-0625spa
dc.relation.referencesVoiniciuc, C. (2022). Research review Modern mannan: a hemicellulose’s journey. New Phytologist, 234, 1175–1184. https://doi.org/10.1111/nph.18091spa
dc.relation.referencesWalters, D. R. (2015). Physiological Responses of Plants to Attack. En Wiley Blackwell (Ed.), Physiological Responses of Plants to Attack (1a ed.). 2015. https://doi.org/10.1002/9781118783054spa
dc.relation.referencesWang, D., Pajerowska-Mukhtar, K., Culler, A. H., & Dong, X. (2007). Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. Current biology : CB, 17(20), 1784–1790. https://doi.org/10.1016/j.cub.2007.09.025spa
dc.relation.referencesWang, M., Sun, Y., Sun, G., Liu, X., Zhai, L., Shen, Q., & Guo, S. (2015). Water balance altered in cucumber plants infected with Fusarium oxysporum f. sp. cucumerinum. Scientific Reports, 5(1), 7722. https://doi.org/10.1038/srep07722spa
dc.relation.referencesWang, X., Jiang, N., Liu, J., Liu, W., & Wang, G.-L. (2014). The role of effectors and host immunity in plant–necrotrophic fungal interactions. Virulence, 5(7), 722–732. https://doi.org/10.4161/viru.29798spa
dc.relation.referencesWang, Z., Gerstein, M., & Snyder, M. (2009). RNA-Seq: a revolutionary tool for transcriptomics. Nature Reviews Genetics, 10(1), 57–63. https://doi.org/10.1038/nrg2484spa
dc.relation.referencesWard, J. L., Forcat, S., Beckmann, M., Bennett, M., Miller, S. J., Baker, J. M., Hawkins, N. D., Vermeer, C. P., Lu, C., Lin, W., Truman, W. M., Beale, M. H., Draper, J., Mansfield, J. W., & Grant, M. (2010). The metabolic transition during disease following infection of Arabidopsis thaliana by Pseudomonas syringae pv. tomato. The Plant Journal, 63(3), 443–457. https://doi.org/10.1111/j.1365-313X.2010.04254.xspa
dc.relation.referencesWarzecha, T., Skrzypek, E., & Sutkowska, A. (2015). Effect of Fusarium culmorum infection on selected physiological and biochemical parameters of barley (Hordeum vulgare L.) DH lines. Physiological and Molecular Plant Pathology, 89, 62–69. https://doi.org/10.1016/j.pmpp.2014.12.002spa
dc.relation.referencesWellburn, A. R. (1994). The Spectral Determination of Chlorophylls a and b, as well as Total Carotenoids, Using Various Solvents with Spectrophotometers of Different Resolution. Journal of Plant Physiology, 144(3), 307–313. https://doi.org/10.1016/S0176-1617(11)81192-2spa
dc.relation.referencesWilliams, M., Rastetter, E. ., Fernandes, D. ., Goulden, M. L., Wofsy, S. C., Shaver, G. R., Melillo, J. M., Munger, J. W., Fan, S. M., & Nadelhoffer, K. J. (1996). Modelling the soil-plant-atmosphere continuum in a Quercus-acer stand at Harvard forest: The regulation of stomatal conductance by light, nitrogen and soil/plant hydraulic properties. Plant. Cell and Environmenf, 19, 911–927. https://doi.org/10.1111/j.1365-3040.1996.tb00456.xspa
dc.relation.referencesWong, S. C., Cowan, I. R., & Farquhar, G. D. (1979). Stomatal conductance correlates with photosynthetic capacity. Nature, 282(5737), 424–426. https://doi.org/10.1038/282424a0spa
dc.relation.referencesWu, A. R., Neff, N. F., Kalisky, T., Dalerba, P., Treutlein, B., Rothenberg, M. E., Mburu, F. M., Mantalas, G. L., Sim, S., Clarke, M. F., & Quake, S. R. (2013). Quantitative assessment of single-cell RNA-sequencing methods. Nature Methods, 11(1), 41–46. https://doi.org/10.1038/nmeth.2694spa
dc.relation.referencesXiang, G., Zhang, H., Jian, H., Yan, H., Wang, Q., Zhou, N., Li, S., Tang, K., & Qiu, X. (2019). De Novo assembly and characterization of the transcriptome of susceptible and resistant rose species in response to powdery mildew. Scientia Horticulturae, 257(March), 108653. https://doi.org/10.1016/j.scienta.2019.108653spa
dc.relation.referencesXing, M., Lv, H., Ma, J., Xu, D., Li, H., Yang, L., Kang, J., Wang, X., & Fang, Z. (2016). Transcriptome Profiling of Resistance to Fusarium oxysporum f. sp. conglutinans in Cabbage (Brassica oleracea) Roots. PLoS ONE, 11(2). https://doi.org/10.1371/journal.pone.0148048spa
dc.relation.referencesXu, C., Jiao, C., Sun, H., Cai, X., Wang, X., Ge, C., Zheng, Y., Liu, W., Sun, X., Xu, Y., Deng, J., Zhang, Z., Huang, S., Dai, S., Mou, B., Wang, Q., Fei, Z., & Wang, Q. (2017). Draft genome of spinach and transcriptome diversity of 120 Spinacia accessions. Nature Communications, 8. https://doi.org/10.1038/ncomms15275spa
dc.relation.referencesXu, Juan, Li, Y., Wang, Y., Liu, H., Lei, L., Yang, H., Liu, G., & Ren, D. (2008). Activation of MAPK kinase 9 induces ethylene and camalexin biosynthesis and enhances sensitivity to salt stress in Arabidopsis. Journal of Biological Chemistry, 283(40), 26996–27006. https://doi.org/10.1074/jbc.M801392200spa
dc.relation.referencesXu, Junhuan, Padilla, C. S., Li, J., Wickramanayake, J., Fischer, H. D., & Goggin, F. L. (2021). Redox responses of Arabidopsis thaliana to the green peach aphid, Myzus persicae. Molecular Plant Pathology, 22(6), 727–736. https://doi.org/10.1111/mpp.13054spa
dc.relation.referencesXu, Z., Escamilla-Treviño, L. L., Zeng, L., Lalgondar, M., Bevan, D. R., Winkel, B. S. J., Mohamed, A., Cheng, C. L., Shih, M. C., Poulton, J. E., & Esen, A. (2004). Functional genomic analysis of Arabidopsis thaliana glycoside hydrolase family 1. Plant Molecular Biology, 55(3), 343–367. https://doi.org/10.1007/s11103-004-0790-1spa
dc.relation.referencesYagi, M., Kosugi, S., Hirakawa, H., Ohmiya, A., Tanase, K., Harada, T., Kishimoto, K., Nakayama, M., Ichimura, K., Onozaki, T., Yamaguchi, H., Sasaki, N., Miyahara, T., Nishizaki, Y., Ozeki, Y., Nakamura, N., Suzuki, T., Tanaka, Y., Sato, S., … Tabata, S. (2014). Sequence analysis of the genome of carnation (Dianthus caryophyllus L.). DNA Research, 21(3), 231–241. https://doi.org/10.1093/dnares/dst053spa
dc.relation.referencesYagi, M., Yamamoto, T., Isobe, S., Hirakawa, H., Tabata, S., Tanase, K., Yamaguchi, H., & Onozaki, T. (2013). Construction of a reference genetic linkage map for carnation (Dianthus caryophyllus L.). BMC genomics, 14(1), 734. https://doi.org/10.1186/1471-2164-14-734spa
dc.relation.referencesYang, I. S., & Kim, S. (2015). Analysis of Whole Transcriptome Sequencing Data: Workflow and Software. Genomics & informatics, 13(4), 119–125. https://doi.org/10.5808/GI.2015.13.4.119spa
dc.relation.referencesYang, Q., Reinhard, K., Schiltz, E., & Matern, U. (1997). Characterization and heterologous expression of hydroxycinnamoyl/benzoyl-coA:anthranilate N-hydroxycinnamoyl/benzoyltransferase from elicited cell cultures of carnation, Dianthus caryophyllus L. Plant Molecular Biology, 35(6), 777–789. https://doi.org/10.1023/A:1005878622437spa
dc.relation.referencesYang, S., Yang, H., Grisafi, P., Sanchatjate, S., Fink, G. R., Sun, Q., & Hua, J. (2006). The BON/CPN gene family represses cell death and promotes cell growth in Arabidopsis. Plant Journal, 45(2), 166–179. https://doi.org/10.1111/j.1365-313X.2005.02585.xspa
dc.relation.referencesYang, Y., Liu, X., Zhang, W., Qian, Q., Zhou, L., Liu, S., Li, Y., & Hou, X. (2021). Stress response proteins NRP1 and NRP2 are prosurvival factors that inhibit cell death during ER stress. Plant Physiology, 187(3), 1414–1427. https://doi.org/10.1093/plphys/kiab335spa
dc.relation.referencesYe, S. F., Zhou, Y. H., Sun, Y., Zou, L. Y., & Yu, J. Q. (2006). Cinnamic acid causes oxidative stress in cucumber roots, and promotes incidence of Fusarium wilt. Environmental and Experimental Botany, 56(3), 255–262. https://doi.org/10.1016/j.envexpbot.2005.02.010spa
dc.relation.referencesYuan, G., He, X., Li, H., Xiang, K., Liu, L., Zou, C., Lin, H., Wu, J., Zhang, Z., & Pan, G. (2020). Transcriptomic responses in resistant and susceptible maize infected with Fusarium graminearum.pdf. The Crop Journal, 8, 153–163.spa
dc.relation.referencesZerbino, D. R., & Birney, E. (2008). Velvet: Algorithms for de novo short read assembly using de Bruijn graphs. Genome Research, 18(5), 821–829. https://doi.org/10.1101/gr.074492.107spa
dc.relation.referencesZhang, G., Fedyunin, I., Kirchner, S., Xiao, C., Valleriani, A., & Ignatova, Z. (2012). FANSe: an accurate algorithm for quantitative mapping of large scale sequencing reads. Nucleic Acids Research, 40(11), e83–e83. https://doi.org/10.1093/nar/gks196spa
dc.relation.referencesZhang, N., Li, R., Shen, W., Jiao, S., Zhang, J., & Xu, W. (2018). Genome-wide evolutionary characterization and expression analyses of major latex protein (MLP) family genes in Vitis vinifera. Molecular Genetics and Genomics, 293(5), 1061–1075. https://doi.org/10.1007/s00438-018-1440-7spa
dc.relation.referencesZhang, Y. L., Jia, Q. L., Li, D. W., Wang, J. E., Yin, Y. X., & Gong, Z. H. (2013). Characteristic of the pepper CaRGA2 Gene in defense responses against Phytophthora capsici leonian. International Journal of Molecular Sciences, 14(5), 8985–9004. https://doi.org/10.3390/ijms14058985spa
dc.relation.referencesZhao, C., Avci, U., Grant, E. H., Haigler, C. H., & Beers, E. P. (2008). XND1, a member of the NAC_negatively regulates lignocellulose synthesis and PCD in xylem.pdf. The Plant Journal, 53, 425–436. https://doi.org/https://doi.org/10.1111/j.1365-313X.2007.03350.xspa
dc.relation.referencesZhao, M., Ji, H.-M., Gao, Y., Cao, X.-X., Mao, H.-Y., Liu, P., & Ouyang, S.-Q. (2017). Comparative transcriptome profiling of resistance to Fusarium oxysporum infection between resistant and susceptible tomato. BioRxiv, on line, 1–25. https://doi.org/http://dx.doi.org/10.1101/116988spa
dc.relation.referencesZhao, X., Mehrabi, R., Xu, J.-R., Zhao, X., Mehrabi, R., & Xu, J.-R. (2007). Mitogen-activated protein kinase pathways and fungal pathogenesis. Eukaryotic cell, 6(10), 1701–1714. https://doi.org/10.1128/EC.00216-07spa
dc.relation.referencesZhou, R., Zhu, T., Han, L., Liu, M., Xu, M., Liu, Y., Han, D., Qiu, D., Gong, Q., & Liu, X. (2017). The asparagine-rich protein NRP interacts with the Verticillium effector PevD1 and regulates the subcellular localization of cryptochrome 2. Journal of Experimental Botany, 68(13), 3427–3440. https://doi.org/10.1093/jxb/erx192spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.subject.ddc570 - Biología::572 - Bioquímicaspa
dc.subject.lembClavelesspa
dc.subject.lembFisiología vegetalspa
dc.subject.lembPlant physiologyeng
dc.subject.proposalFusarium oxysporumspa
dc.subject.proposalTranscriptómicaspa
dc.subject.proposalResistencia vegetalspa
dc.subject.proposalPlant Physiologyeng
dc.subject.proposalRNAseqeng
dc.subject.proposalClavelspa
dc.subject.wikidataFusarium oxysporum
dc.subject.wikidataTranscriptomicseng
dc.subject.wikidataTecnologías de transcriptómicaspa
dc.subject.wikidataRNA sequencing
dc.subject.wikidataRNA-Seq
dc.titleAproximación transcriptómica y fisiológica para el estudio de los mecanismos moleculares involucrados en la interacción clavel (Dianthus caryophyllus L.) – Fusarium oxysporum f. sp. dianthispa
dc.title.translatedTranscriptomic and physiological approach for the study of the molecular mechanisms involved in the carnation (Dianthus caryophyllus L.) – Fusarium oxysporum f. sp. dianthieng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentConsejerosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentGrupos comunitariosspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentMedios de comunicaciónspa
dcterms.audience.professionaldevelopmentPadres y familiasspa
dcterms.audience.professionaldevelopmentPersonal de apoyo escolarspa
dcterms.audience.professionaldevelopmentProveedores de ayuda financiera para estudiantesspa
dcterms.audience.professionaldevelopmentPúblico generalspa
dcterms.audience.professionaldevelopmentReceptores de fondos federales y solicitantesspa
dcterms.audience.professionaldevelopmentResponsables políticosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_14cbspa
oaire.awardtitleEstudio de fenómenos bioquímicos del apoplasto del clavel (Dianthus caryophyllus) durante su interacción con Fusarium oxysporum f. sp dianthispa
oaire.awardtitleEstudio del uso de elicitores de origen biótico en el clavel (Dianthus caryophyllus) para el control del marchitamiento vascular: una alternativa al uso de fungicidas de origen sintéticospa
oaire.fundernameMinCiencias (antes ColCiencias)spa

Archivos

Bloque original

Mostrando 1 - 5 de 7
Cargando...
Miniatura
Nombre:
63518026_2023.pdf
Tamaño:
34.42 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ciencias - Bioquímica
Cargando...
Miniatura
Nombre:
Anexo A.pdf
Tamaño:
156.36 KB
Formato:
Adobe Portable Document Format
Descripción:
Anexo A
Cargando...
Miniatura
Nombre:
Anexo B.xlsx
Tamaño:
243.08 KB
Formato:
Microsoft Excel XML
Descripción:
Anexo B
Cargando...
Miniatura
Nombre:
Anexo C.xlsx
Tamaño:
5.58 MB
Formato:
Microsoft Excel XML
Descripción:
Anexo C
Cargando...
Miniatura
Nombre:
ANEXO D.pdf
Tamaño:
1.45 MB
Formato:
Adobe Portable Document Format
Descripción:
Anexo D

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: