Propuesta de escenarios de digitalización para integración de demanda activa en sistemas de distribución utilizando técnicas metaheurísticas
dc.contributor.advisor | Carvajal Quintero, Sandra Ximena | |
dc.contributor.author | Obando Paredes, Edgar Darío | |
dc.contributor.cvlac | Obando Paredes, Edgar Darío [0001493475] | |
dc.contributor.googlescholar | Obando Paredes, Edgar Darío [sGk6rtQAAAAJ&hl] | |
dc.contributor.orcid | Obando Paredes, Edgar Darío [0000000225157640] | |
dc.contributor.researchgroup | Environmental Energy and Education Policy E3P | |
dc.contributor.scopus | Obando Paredes, Edgar Darío [57211790612] | |
dc.date.accessioned | 2025-09-22T02:33:44Z | |
dc.date.available | 2025-09-22T02:33:44Z | |
dc.date.issued | 2025 | |
dc.description | graficas, tablas | spa |
dc.description.abstract | Esta tesis de investigación doctoral aborda el desafío de integrar la demanda activa en sistemas de distribución eléctrica mediante un enfoque de digitalización progresiva basado en escenarios. La investigación está estructurada en cinco momentos clave: revisión del estado del arte, identificación de brechas en la normatividad, establecimiento de la metodología, definición de escenarios progresivos y modelado de cada escenario. En la primera etapa, se realizó una revisión del estado del arte, identificando las principales tendencias y limitaciones en la gestión de la demanda activa y la integración de DER´s. Simultáneamente, se analizó la normatividad vigente, revelando importantes brechas que justifican la necesidad de un enfoque formal para la integración de tecnologías digitales. A partir de estas brechas, se establece una metodología por fases que guía la transición hacia sistemas inteligentes de distribución. Los escenarios definidos representan diferentes niveles de digitalización, desde la supervisión básica hasta el control avanzado basado en datos. Cada uno fue modelado matemáticamente para minimizar costos operativos y penalizaciones, maximizando la integración de fuentes renovables y optimizando el uso de infraestructuras tecnológicas habilitadoras disponibles. Los modelos diseñados incorporan técnicas y tecnologías emergentes para gestionar la demanda de manera dinámica. Finalmente, se validaron los modelos en un caso de estudio aplicado a la ciudad de Pasto, analizando el impacto de la digitalización en la sostenibilidad y la democratización energética (Texto tomado de la fuente) | spa |
dc.description.abstract | This doctoral research thesis addresses the challenge of integrating active demand into electrical distribution systems through a scenario-based progressive digitalization approach. The research is structured in five key moments: a review of the state of the art, identification of gaps in the regulations, the establishment of the methodology, the definition of progressive scenarios, and modeling of each scenario. In the first stage, a review of the state of the art was carried out, identifying the main trends and limitations in managing active demand and integrating Distributed Energy Resources (DER). Simultaneously, the current regulations were analyzed, revealing gaps that justify the need for a formal approach to incorporating digital technologies. Based on these gaps, a phased methodology is established that guides the transition to smart distribution systems. The defined scenarios represent different levels of digitalization, from essential supervision to advanced data-based control. Each was mathematically modeled to minimize operating costs and penalties, maximizing the integration of renewable sources and optimizing the use of available enabling technological infrastructures. The designed models incorporate emerging techniques and technologies to manage demand dynamically. Finally, the models were validated in a case study applied to the city of Pasto, analyzing the impact of digitalization on sustainability and energy democratization. | eng |
dc.description.curriculararea | Eléctrica, Electrónica, Automatización Y Telecomunicaciones.Sede Manizales | |
dc.description.degreelevel | Doctorado | |
dc.description.degreename | Doctor en Ingeniería - Autómatica | |
dc.format.extent | xv, 194 páginas | |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88927 | |
dc.language.iso | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Manizales | |
dc.publisher.faculty | Facultad de Ingeniería y Arquitectura | |
dc.publisher.place | Manizales, Colombia | |
dc.publisher.program | Manizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - Automática | |
dc.relation.references | A. Latina el Caribe et al., “Watt’s on: una mirada al sector energético en America Latina y El caribe,” 2024. | |
dc.relation.references | ABC-ComunidadesEnergeticas-2024 | |
dc.relation.references | Ministerio de minas de Colombia, “Potencial energético subnacional y oportunidades de descarbonización en usos de energía final.”. | |
dc.relation.references | J. Światowiec-Szczepańska and B. Stępień, “Drivers of Digitalization in the Energy Sector—The Managerial Perspective from the Catching Up Economy,” Energies (Basel), vol. 15, no. 4, Feb. 2022, doi: 10.3390/en15041437. | |
dc.relation.references | P. A. Gbadega and Y. Sun, “Centralized peer-to-peer transactive energy market approach in a prosumer-centric residential smart grid environment,” Energy Reports, vol. 8, pp. 105–116, Nov. 2022, doi: 10.1016/j.egyr.2022.10.080. | |
dc.relation.references | J. A. Marcelo, G. Muñoz-Delgado, D. Rupolo, J. Contreras, and J. R. S. Mantovani, “Multistage planning for active power distribution systems with increasing penetration of prosumers and electric vehicles,” Sustainable Energy, Grids and Networks, vol. 38, Jun. 2024, doi: 10.1016/j.segan.2024.101280. | |
dc.relation.references | A. Pandey and P. Jain, “P2P Transaction-Based Sharing Solution for Prosumers in Management of Cloud Energy Storage System,” in 2022 IEEE 10th Power India International Conference, PIICON 2022, Institute of Electrical and Electronics Engineers Inc., 2022. doi: 10.1109/PIICON56320.2022.10045195. | |
dc.relation.references | D. Díaz-Bello, C. Vargas-Salgado, M. Alcázar-Ortega, and T. Gómez-Navarro, “Demand response of prosumers integrating storage system for optimizing grid-connected photovoltaics through time-pricing,” J Energy Storage, vol. 88, May 2024, doi: 10.1016/j.est.2024.111536. | |
dc.relation.references | S. Kloppenburg and M. Boekelo, “Digital platforms and the future of energy provisioning: Promises and perils for the next phase of the energy transition,” Mar. 01, 2019, Elsevier Ltd. doi: 10.1016/j.erss.2018.10.016. | |
dc.relation.references | M. Vadari, R. Melton, and K. Schneider, “Distribution Operations: The Evolution of Distributed Energy Resources [Guest Editorial],” Jan. 01, 2020, Institute of Electrical and Electronics Engineers Inc. doi: 10.1109/MPE.2019.2945342. | |
dc.relation.references | J. Caballero-Peña, C. Cadena-Zarate, A. Parrado-Duque, and G. Osma-Pinto, “Distributed energy resources on distribution networks: A systematic review of modelling, simulation, metrics, and impacts,” Jun. 01, 2022, Elsevier Ltd. doi: 10.1016/j.ijepes.2021.107900. | |
dc.relation.references | P. De Martini, L. Kristov, and L. Schwartz, “DISTRIBUTION SYSTEMS IN A HIGH DISTRIBUTED ENERGY RESOURCES FUTURE Planning, Market Design, Operation and Oversight,” 2015. [Online]. Available: http://emp.lbl.gov/future-electric-utility-regulation-series. | |
dc.relation.references | NREL, “Advanced Distribution Management Systems,” https://www.nrel.gov/grid/advanced-distribution-management.html. | |
dc.relation.references | J. Światowiec-Szczepańska and B. Stępień, “Drivers of Digitalization in the Energy Sector—The Managerial Perspective from the Catching Up Economy,” Energies (Basel), vol. 15, no. 4, Feb. 2022, doi: 10.3390/en15041437. | |
dc.relation.references | S. Baidya, V. Potdar, P. Pratim Ray, and C. Nandi. "Reviewing the opportunities, challenges, and future directions for the digitalization of energy,” Nov. 01, 2021, Elsevier Ltd. doi: 10.1016/j.erss.2021.102243. | |
dc.relation.references | D. Agdas and P. Barooah, “Impact of the COVID-19 Pandemic on the U.S. Electricity Demand and Supply: An Early View from Data,” IEEE Access, vol. 8, pp. 151523–151534, 2020, doi: 10.1109/ACCESS.2020.3016912. | |
dc.relation.references | G. Morva and I. Diahovchenko, “Effects of COVID-19 on the electricity sectors of Ukraine and Hungary: Challenges of energy demand and renewables integration,” CANDO-EPE 2020 - Proceedings, IEEE 3rd International Conference and Workshop | |
dc.relation.references | P. Jiang, Y. van Fan, and J. J. Klemeš, “Impacts of COVID-19 on energy demand and consumption: Challenges, lessons and emerging opportunities,” Appl Energy, vol. 285, no. November 2020, 2021, doi: 10.1016/j.apenergy.2021.116441. | |
dc.relation.references | R. Rajkumar and U. S. Ragupathy, “An ANN-based harmonic mitigation and power injection technique for solar-fed distributed generation system,” Soft comput, vol. 24, no. 20, pp. 15763–15772, Oct. 2020, doi: 10.1007/s00500-020-04907-7 | |
dc.relation.references | Priti Paudyal et al., “The Impact of Behind-the-Meter Heterogeneous Distributed Energy Resources on Distribution Grids,” 20210105. | |
dc.relation.references | S. Chen and C. C. Liu, “From demand response to transactive energy: state of the art,” Journal of Modern Power Systems and Clean Energy, vol. 5, no. 1, pp. 10–19, Jan. 2017, doi: 10.1007/s40565-016-0256-x. | |
dc.relation.references | A. F. Moreno Jaramillo, J. Lopez-Lorente, D. M. Laverty, J. Martinez-del-Rincon, D. J. Morrow, and A. M. Foley, “Effective identification of distributed energy resources using smart meter net-demand data,” IET Smart Grid, vol. 5, no. 2, pp. 120–135, Apr. 2022, doi: 10.1049/stg2.12056. | |
dc.relation.references | Q. Huang et al., “A review of transactive energy systems: Concept and implementation,” Nov. 01, 2021, Elsevier Ltd. doi: 10.1016/j.egyr.2021.05.037. | |
dc.relation.references | J. Światowiec-Szczepańska and B. Stępień, “Drivers of Digitalization in the Energy Sector—The Managerial Perspective from the Catching Up Economy,” Energies (Basel), vol. 15, no. 4, Feb. 2022, doi: 10.3390/en15041437. | |
dc.relation.references | E. Obando-Paredes and R. Vargas-Cañas, “Desempeño de un sistema fotovoltaico autónomo frente a condiciones medioambientales de una región en particular,” Rev Acad Colomb Cienc Exactas Fis Nat, vol. 40, no. 154, pp. 27–33, 2016, doi: 10.18257/raccefyn.301. | |
dc.relation.references | O. Summerfield-Ryan and S. Park, “The power of wind: The global wind energy industry’s successes and failures,” Ecological Economics, vol. 210, Aug. 2023, doi: 10.1016/j.ecolecon.2023.107841. | |
dc.relation.references | J. K. Kirkegaard et al., “Tackling grand challenges in wind energy through a socio-technical perspective,” Jul. 01, 2023, Nature Research. doi: 10.1038/s41560-023-01266-z. | |
dc.relation.references | M. Loock, “Unlocking the value of digitalization for the European energy transition: A typology of innovative business models,” Nov. 01, 2020, Elsevier Ltd. doi: 10.1016/j.erss.2020.101740. | |
dc.relation.references | Q. Xu, M. Zhong, and X. Li, “How does digitalization affect energy? International evidence,” Energy Econ, vol. 107, Mar. 2022, doi: 10.1016/j.eneco.2022.105879. | |
dc.relation.references | K. Mahmud, J. Ravishankar, M. J. Hossain, and Z. Y. Dong, “The Impact of Prediction Errors in the Domestic Peak Power Demand Management,” IEEE Trans Industr Inform, vol. 16, no. 7, pp. 4567–4579, Jul. 2020, doi: 10.1109/TII.2019.2946292. | |
dc.relation.references | M. Daneshvar, B. Mohammadi-ivatloo, and K. Zare, “Integration of Distributed Energy Resources Under the Transactive Energy Structure in the Future Smart Distribution Networks,” in Operation of Distributed Energy Resources in Smart Distribution Networks, Elsevier, 2018, pp. 349–379. doi: 10.1016/B978-0-12-814891-4.00014-X. | |
dc.relation.references | B. Li, C. Wan, K. Yuan, and Y. Song, “Demand response for integrating distributed energy resources in transactive energy system,” in Energy Procedia, Elsevier Ltd, 2019, pp. 6645–6651. doi: 10.1016/j.egypro.2019.01.040. | |
dc.relation.references | Y. Wu, Y. Wu, J. M. Guerrero, and J. C. Vasquez, “Digitalization and decentralization driving transactive energy Internet: Key technologies and infrastructures,” International Journal of Electrical Power and Energy Systems, vol. 126, Mar. 2021, doi: 10.1016/j.ijepes.2020.106593. | |
dc.relation.references | IEA, “Digitalization & Energy,” Digitalization & Energy, 2017, doi: 10.1787/9789264286276-en. | |
dc.relation.references | S. R. Sinsel, R. L. Riemke, and V. H. Hoffmann, “Challenges and solution technologies for the integration of variable renewable energy sources—a review,” Jan. 01, 2020, Elsevier Ltd. doi: 10.1016/j.renene.2019.06.147. | |
dc.relation.references | M. Vadari, R. Melton, and K. Schneider, “Distribution Operations: The Evolution of Distributed Energy Resources [Guest Editorial],” Jan. 01, 2020, Institute of Electrical and Electronics Engineers Inc. doi: 10.1109/MPE.2019.2945342. | |
dc.relation.references | IEEE Std 1547-2018 (Revision of IEEE Std 1547-2003) : IEEE Standard for Interconnection and Interoperability of Distributed Energy Resources with Associated Electric Power Systems Interfaces. IEEE, 2018. | |
dc.relation.references | E. Adhekpukoli, “The democratization of electricity in Nigeria,” Electricity Journal, vol. 31, no. 2, pp. 1–6, Mar. 2018, doi: 10.1016/j.tej.2018.02.007. | |
dc.relation.references | K. Szulecki, A. Ancygier, and D. Szwed, “Energy democratization? Societal aspects of de-carbonization in the German and Polish energy sectors Citation,” 2015. | |
dc.relation.references | I. Antonopoulos et al., “Artificial intelligence and machine learning approaches to energy demand-side response: A systematic review,” Sep. 01, 2020, Elsevier Ltd. doi: 10.1016/j.rser.2020.109899. | |
dc.relation.references | J. Wang, H. Zhong, Z. Ma, Q. Xia, and C. Kang, “Review and prospect of integrated demand response in the multi-energy system,” 2017, Elsevier Ltd. doi: 10.1016/j.apenergy.2017.05.150. | |
dc.relation.references | S. Nizami, W. Tushar, M. J. Hossain, C. Yuen, T. Saha, and H. V. Poor, “Transactive energy for low voltage residential networks: A review,” Oct. 01, 2022, Elsevier Ltd. doi: 10.1016/j.apenergy.2022.119556. | |
dc.relation.references | M. S. H. Nizami, M. J. Hossain, and E. Fernandez, “Multiagent-Based Transactive Energy Management Systems for Residential Buildings with Distributed Energy Resources,” IEEE Trans Industr Inform, vol. 16, no. 3, pp. 1836–1847, Mar. 2020, doi: 10.1109/TII.2019.2932109. | |
dc.relation.references | K. K. Küster, A. R. Aoki, and G. Lambert-Torres, “Transaction-based operation of electric distribution systems: A review,” International Transactions on Electrical Energy Systems, 2019, doi: 10.1002/2050-7038.12194. | |
dc.relation.references | A. Pandey and P. Jain, “P2P Transaction-Based Sharing Solution for Prosumers in Management of Cloud Energy Storage System,” in 2022 IEEE 10th Power India International Conference, PIICON 2022, Institute of Electrical and Electronics Engineers Inc., 2022. doi: 10.1109/PIICON56320.2022.10045195. | |
dc.relation.references | A. Valenzuela, I. Montalvo, and E. Inga, “A decision-making tool for electric distribution network planning based on heuristics and georeferenced data,” Energies (Basel), vol. 12, no. 21, Oct. 2019, doi: 10.3390/en12214065. | |
dc.relation.references | A. Zomorodi Moghadam and M. H. Javidi, “Designing a two-stage transactive energy system for future distribution networks in the presence of prosumers’ P2P transactions,” Electric Power Systems Research, vol. 211, Oct. 2022, doi: 10.1016/j.epsr.2022.108202. | |
dc.relation.references | “Totally Integrated Power siemens.com/tip-cs Planning of Electric Power Distribution Technical Principles.” | |
dc.relation.references | M. A. A. Al-Jaafreh and G. Mokryani, “Planning and operation of LV distribution networks: A comprehensive review,” Sep. 01, 2019, Institution of Engineering and Technology. doi: 10.1049/iet-esi.2019.0013. | |
dc.relation.references | F. García-Muñoz, F. Díaz-González, and C. Corchero, “A two-stage stochastic programming model for the sizing and location of DERs considering electric vehicles and demand response,” Sustainable Energy, Grids and Networks, vol. 30, Jun. 2022, doi: 10.1016/j.segan.2022.100624. | |
dc.relation.references | E. Obando-Paredes, “Algoritmos genéticos y PSO aplicados a un problema de generación distribuida . PSO and genetic algorithms applied to a distributed generation problem,” vol. 22, no. 1, pp. 15–23, 2017, doi: https://doi.org/10.22517/23447214.14301. | |
dc.relation.references | E. Obando Paredes, “Modelo de pronóstico de radiación solar basado en Machine Learning,” p. 106, 2018. | |
dc.relation.references | E. D. Obando, S. X. Carvajal, and J. Pineda, “Solar radiation prediction using machine learning techniques: a review,” IEEE Latin America Transactions, vol. 17, no. 4, pp. 684–697, 2019. | |
dc.relation.references | S. A. Kalogirou, “Artificial neural networks in renewable energy systems applications: a review,” 2001. [Online]. Available: www.elsevier.com/locate/rser | |
dc.relation.references | M. Guo, W. Song, and J. Buhain, “Bioenergy and biofuels: History, status, and perspective,” 2015, Elsevier Ltd. doi: 10.1016/j.rser.2014.10.013. | |
dc.relation.references | D. R. . Biggar and M. Reza. Hesamzadeh, The Economics of Electricity Markets. Wiley, 2014. | |
dc.relation.references | D. López García, J. D. Beltrán Gallego, and S. X. Carvajal Quintero, “Proposing Dynamic Pricing as an Alternative to Improve Technical and Economic Conditions in Rural Electrification: A Case Study from Colombia,” Sustainability (Switzerland), vol. 15, no. 10, May 2023, doi: 10.3390/su15107985. | |
dc.relation.references | E. Nam and T. Jin, “Mitigating carbon emissions by energy transition, energy efficiency, and electrification: Difference between regulation indicators and empirical data,” J Clean Prod, vol. 300, Jun. 2021, doi: 10.1016/j.jclepro.2021.126962. | |
dc.relation.references | “The Concept of Demand-Side Management for Electric Utilities.” | |
dc.relation.references | G. Strbac, “Demand side management: Benefits and challenges,” Energy Policy, vol. 36, no. 12, pp. 4419–4426, Dec. 2008, doi: 10.1016/j.enpol.2008.09.030. | |
dc.relation.references | C. Bergaentzlé, C. Clastres, and H. Khalfallah, “Demand-side management and European environmental and energy goals: An optimal complementary approach,” Energy Policy, vol. 67, pp. 858–869, 2014, doi: 10.1016/j.enpol.2013.12.008. | |
dc.relation.references | G. Strbac, E. D. Farmer, and B. J. Cory, “ework for the incorporation of demand-side in a petitive electricity market.” | |
dc.relation.references | “2015 Assessment of Demand Response and Advanced Metering Staff Report Federal Energy Regulatory Commission,” 2015. | |
dc.relation.references | M. H. Albadi and E. F. El-Saadany, “A summary of demand response in electricity markets,” Nov. 2008. doi: 10.1016/j.epsr.2008.04.002. | |
dc.relation.references | F. Møller Andersen et al., “General rights Analyses of demand response in Denmark,” APA, 2006. [Online]. Available: www.risoe.dk | |
dc.relation.references | W. Phillips et al., “2023 Assessment of Demand Response and Advanced Metering Pursuant to Energy Policy Act of 2005 Section 1252(e)(3) Staff Report FEDERAL ENERGY REGULATORY COMMISSION 2023 Assessment of Demand Response and Advanced Metering i Acknowledgements Federal Energy Regulatory Commission Staff Team,” 2023. | |
dc.relation.references | J. Kwac and R. Rajagopal, Demand Response Targeting Using Big Data Analytics. | |
dc.relation.references | H. Shareef, M. S. Ahmed, A. Mohamed, and E. Al Hassan, “Review on Home Energy Management System Considering Demand Responses, Smart Technologies, and Intelligent Controllers,” IEEE Access, vol. 6, pp. 24498–24509, Apr. 2018, doi: 10.1109/ACCESS.2018.2831917. | |
dc.relation.references | T. Müller and D. Möst, “Demand Response Potential: Available when Needed?,” Energy Policy, vol. 115, pp. 181–198, Apr. 2018, doi: 10.1016/j.enpol.2017.12.025 | |
dc.relation.references | M. Parvania, M. Fotuhi-Firuzabad, and M. Shahidehpour, “Optimal demand response aggregation in wholesale electricity markets,” IEEE Trans Smart Grid, vol. 4, no. 4, pp. 1957–1965, Dec. 2013, doi: 10.1109/TSG.2013.2257894. | |
dc.relation.references | M. Lynch, S. Nolan, M. T. Devine, and M. O’Malley, “The impacts of demand response participation in capacity markets,” Appl Energy, vol. 250, pp. 444–451, Sep. 2019, doi: 10.1016/j.apenergy.2019.05.063. | |
dc.relation.references | A. Malik and J. Ravishankar, “A hybrid control approach for regulating frequency through demand response,” Appl Energy, vol. 210, pp. 1347–1362, Jan. 2018, doi: 10.1016/j.apenergy.2017.08.160. | |
dc.relation.references | C. Haslund and S. R. Johnson, “AMI Demand Response: The Opportunity and Challenges of Mass Market Dynamic Pricing.” | |
dc.relation.references | A. Pujara, V. G. Vilas, S. M. Bakre, and V. Muralidhara, “A novel approach for UI charge reduction using AMI based load prioritization in smart grid,” Journal of Electrical Systems and Information Technology, vol. 4, no. 2, pp. 338–346, Sep. 2017, doi: 10.1016/j.jesit.2017.01.001. | |
dc.relation.references | A. Arteconi, D. Patteeuw, K. Bruninx, E. Delarue, W. D’haeseleer, and L. Helsen, “Active demand response with electric heating systems: Impact of market penetration,” Appl Energy, vol. 177, pp. 636–648, Sep. 2016, doi: 10.1016/j.apenergy.2016.05.146. | |
dc.relation.references | “The Smart Grid: Enabling Energy Efficiency and Demand Response.” | |
dc.relation.references | Régine Belhomme, Ramon Cerero, Giovanni Valtorta, and Philippe Eyrolles, “The ADDRESS project: Developing Active Demand in smart power systems integrating renewables,” 2011 IEEE Power and Energy Society General Meeting, 2011. | |
dc.relation.references | R. Sharifi, S. H. Fathi, and V. Vahidinasab, “A review on Demand-side tools in electricity market,” 2017, Elsevier Ltd. doi: 10.1016/j.rser.2017.01.020. | |
dc.relation.references | J. A. Marcelo, G. Muñoz-Delgado, D. Rupolo, J. Contreras, and J. R. S. Mantovani, “Multistage planning for active power distribution systems with increasing penetration of prosumers and electric vehicles,” Sustainable Energy, Grids and Networks, vol. 38, Jun. 2024, doi: 10.1016/j.segan.2024.101280. | |
dc.relation.references | G. Chebotareva, “Digital transformation of the energy sector: A case of Russia,” in E3S Web of Conferences, EDP Sciences, Apr. 2021. doi: 10.1051/e3sconf/202125001001. | |
dc.relation.references | J. Caballero-Peña, C. Cadena-Zarate, A. Parrado-Duque, and G. Osma-Pinto, “Distributed energy resources on distribution networks: A systematic review of modelling, simulation, metrics, and impacts,” Jun. 01, 2022, Elsevier Ltd. doi: 10.1016/j.ijepes.2021.107900. | |
dc.relation.references | R. Quint et al., “Transformation of the grid: The impact of distributed energy resources on bulk power systems,” IEEE Power and Energy Magazine, vol. 17, no. 6, pp. 35–45, Nov. 2019, doi: 10.1109/MPE.2019.2933071. | |
dc.relation.references | J. Guerrero et al., “Distributed generation: Toward a new energy paradigm,” IEEE Industrial Electronics Magazine, vol. 4, no. 1, pp. 52–64, Mar. 2010, doi: 10.1109/MIE.2010.935862. | |
dc.relation.references | F. Liu, G. Cheng, and B. Pan, “Smart management system in electric market considering customer demand response,” Computers and Electrical Engineering, vol. 99, Apr. 2022, doi: 10.1016/j.compeleceng.2022.107830. | |
dc.relation.references | A. Update, “IEC 61850 and IEEE 2030.5: A Comparison of 2 Key Standards for DER Integration.” [Online]. Available: https://www.techstreet.com/standards/din-en-iec-61850-7-420- | |
dc.relation.references | S. Ren, Y. Hao, L. Xu, H. Wu, and N. Ba, “Digitalization and energy: How does internet development affect China’s energy consumption?,” Energy Econ, vol. 98, Jun. 2021, doi: 10.1016/j.eneco.2021.105220. | |
dc.relation.references | IRENA, Planning for the Renewable Future. 2017. [Online]. Available: http://www.irena.org/DocumentDownloads/Publications/IRENA_Planning_for_the_Renewable_Future_2017.pdf | |
dc.relation.references | N. George, S. Nithin, and S. K. Kottayil, “Hybrid Key Management Scheme for Secure AMI Communications,” in Procedia Computer Science, Elsevier B.V., 2016, pp. 862–869. doi: 10.1016/j.procs.2016.07.260. | |
dc.relation.references | S. Z. Abbas, A. Kousar, S. Razzaq, A. Saeed, M. Alam, and A. Mahmood, “Energy management in South Asia,” Aug. 01, 2018, Elsevier Ltd. doi: 10.1016/j.esr.2018.04.004. | |
dc.relation.references | R. Haider, D. D’Achiardi, V. Venkataramanan, A. Srivastava, A. Bose, and A. M. Annaswamy, “Reinventing the utility for distributed energy resources: A proposal for retail electricity markets,” Advances in Applied Energy, vol. 2, May 2021, doi: 10.1016/j.adapen.2021.100026. | |
dc.relation.references | C. Eid, P. Codani, Y. Perez, J. Reneses, and R. Hakvoort, “Managing electric flexibility from Distributed Energy Resources: A review of incentives for market design,” Oct. 01, 2016, Elsevier Ltd. doi: 10.1016/j.rser.2016.06.008. | |
dc.relation.references | R. Rashed Mohassel, A. Fung, F. Mohammadi, and K. Raahemifar, “A survey on Advanced Metering Infrastructure,” International Journal of Electrical Power and Energy Systems, vol. 63, pp. 473–484, 2014, doi: 10.1016/j.ijepes.2014.06.025. | |
dc.relation.references | I. Antonopoulos et al., “Artificial intelligence and machine learning approaches to energy demand-side response: A systematic review,” Sep. 01, 2020, Elsevier Ltd. doi: 10.1016/j.rser.2020.109899. | |
dc.relation.references | N. J. van Eck and L. Waltman, “Software survey: VOSviewer, a computer program for bibliometric mapping,” Scientometrics, vol. 84, no. 2, pp. 523–538, 2010, doi: 10.1007/s11192-009-0146-3. | |
dc.relation.references | “Proactive demand-side participation_ Ce...transactive demand-Supply coordination”. | |
dc.relation.references | J. Fan, L. Wu, X. Ma, H. Zhou, and F. Zhang, “Hybrid support vector machines with heuristic algorithms for prediction of daily diffuse solar radiation in air-polluted regions,” Renew Energy, vol. 145, pp. 2034–2045, Jan. 2020, doi: 10.1016/j.renene.2019.07.104. | |
dc.relation.references | E. D. Obando, S. X. Carvajal, and J. Pineda Agudelo, “Solar Radiation Prediction Using Machine Learning Techniques: A Review,” IEEE Latin America Transactions, vol. 17, no. 4, pp. 684–697, 2019, doi: 10.1109/TLA.2019.8891934. | |
dc.relation.references | D. Kanakadhurga and N. Prabaharan, “Demand side management in microgrid: A critical review of key issues and recent trends,” Mar. 01, 2022, Elsevier Ltd. doi: 10.1016/j.rser.2021.111915. | |
dc.relation.references | M. Waseem, Z. Lin, S. Liu, Z. Zhang, T. Aziz, and D. Khan, “Fuzzy compromised solution-based novel home appliances scheduling and demand response with optimal dispatch of distributed energy resources,” Appl Energy, vol. 290, May 2021, doi: 10.1016/j.apenergy.2021.116761 | |
dc.relation.references | J. R. Vázquez-Canteli and Z. Nagy, “Reinforcement learning for demand response: A review of algorithms and modeling techniques,” Feb. 01, 2019, Elsevier Ltd. doi: 10.1016/j.apenergy.2018.11.002. | |
dc.relation.references | J. Lee, M. Azamfar, and J. Singh, “A blockchain enabled Cyber-Physical System architecture for Industry 4.0 manufacturing systems,” Manuf Lett, vol. 20, pp. 34–39, Apr. 2019, doi: 10.1016/j.mfglet.2019.05.003. | |
dc.relation.references | C. Pop, T. Cioara, M. Antal, I. Anghel, I. Salomie, and M. Bertoncini, “Blockchain based decentralized management of demand response programs in smart energy grids,” Sensors (Switzerland), vol. 18, no. 1, Jan. 2018, doi: 10.3390/s18010162. | |
dc.relation.references | K. Christidis and M. Devetsikiotis, “Blockchains and Smart Contracts for the Internet of Things,” 2016, Institute of Electrical and Electronics Engineers Inc. doi: 10.1109/ACCESS.2016.2566339. | |
dc.relation.references | N. Z. Aitzhan and D. Svetinovic, “Security and Privacy in Decentralized Energy Trading Through Multi-Signatures, Blockchain and Anonymous Messaging Streams,” IEEE Trans Dependable Secure Comput, vol. 15, no. 5, pp. 840–852, Sep. 2018, doi: 10.1109/TDSC.2016.2616861. | |
dc.relation.references | R. Sabzehgar, D. Z. Amirhosseini, and M. Rasouli, “Solar power forecast for a residential smart microgrid based on numerical weather predictions using artificial intelligence methods,” Journal of Building Engineering, vol. 32, Nov. 2020, doi: 10.1016/j.jobe.2020.101629. | |
dc.relation.references | S. Mohseni, A. C. Brent, S. Kelly, and W. N. Browne, “Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review,” Apr. 01, 2022, Elsevier Ltd. doi: 10.1016/j.rser.2022.112095. | |
dc.relation.references | C. Ibrahim, I. Mougharbel, H. Y. Kanaan, N. A. Daher, S. Georges, and M. Saad, “A review on the deployment of demand response programs with multiple aspects coexistence over smart grid platform,” Jul. 01, 2022, Elsevier Ltd. doi: 10.1016/j.rser.2022.112446. | |
dc.relation.references | M. M. Eissa, “Developing incentive demand response with commercial energy management system (CEMS) based on diffusion model, smart meters and new communication protocol,” Appl Energy, vol. 236, pp. 273–292, Feb. 2019, doi: 10.1016/j.apenergy.2018.11.083. | |
dc.relation.references | P. Paudyal et al., “The Impact of Behind-the-Meter Heterogeneous Distributed Energy Resources on Distribution Grids,” in 2020 47th IEEE Photovoltaic Specialists Conference (PVSC), IEEE, Jun. 2020, pp. 0857–0862. doi: 10.1109/PVSC45281.2020.9300626. | |
dc.relation.references | B. Li, C. Wan, K. Yuan, and Y. Song, “Demand Response for Integrating Distributed Energy Resources in Transactive Energy System,” Energy Procedia, vol. 158, pp. 6645–6651, Feb. 2019, doi: 10.1016/j.egypro.2019.01.040. | |
dc.relation.references | D. S. Ochoa, E. P. Gonzalez, and R. C. Rodriguez, “Characterization of the demand for electric energy considering the integration of distributed energy resources,” in 2019 FISE-IEEE/CIGRE Conference - Living the energy Transition (FISE/CIGRE), IEEE, Dec. 2019, pp. 1–5. doi: 10.1109/FISECIGRE48012.2019.8984998. | |
dc.relation.references | W. Li, R. Wang, T. Zhang, M. Ming, and H. Lei, “Multi-scenario microgrid optimization using an evolutionary multi-objective algorithm,” Swarm Evol Comput, vol. 50, p. 100570, Nov. 2019, doi: 10.1016/j.swevo.2019.100570. | |
dc.relation.references | H.-J. Lee, B. J. Chung, and S.-Y. Huh, “Consumer Preferences for Smart Energy Services Based on AMI Data in the Power Sector,” Energies (Basel), vol. 16, no. 9, p. 3961, May 2023, doi: 10.3390/en16093961. | |
dc.relation.references | C. Haslund and S. R. Johnson, “AMI Demand Response : The Opportunity and Challenges of Mass Market Dynamic Pricing,” Response, pp. 1–14, 2011. | |
dc.relation.references | P. Aketi and S. Sen, “Modeling demand response and economic impact of advanced and smart metering,” Energy Systems, vol. 5, no. 3, pp. 583–606, Sep. 2014, doi: 10.1007/s12667-013-0113-1. | |
dc.relation.references | Ministerio de Minas y Energía de Colombia and M. E.-U. Unidad de Planeación, “Plan Energético Nacional 2020-2050,” 2020. Accessed: Mar. 02, 2024. [Online]. Available: https://www1.upme.gov.co/DemandayEficiencia/Documents/PEN_2020_2050/Plan_Energetico_Nacional_2020_2050.pdf | |
dc.relation.references | J. Liu, H. Gao, Z. Ma, and Y. Li, “Review and prospect of active distribution system planning,” Dec. 01, 2015. doi: 10.1007/s40565-015-0170-7. | |
dc.relation.references | E. D. Obando‐Paredes, D. López‐García, and S. X. Carvajal‐Quintero, “Integrating active demand into the distribution system using metaheuristic techniques,” The Journal of Engineering, vol. 2024, no. 11, Nov. 2024, doi: 10.1049/tje2.70005. | |
dc.relation.references | J. L. Picard, I. Aguado, N. G. Cobos, V. Fuster-Roig, and A. Quijano-López, “Electric distribution system planning methodology considering distributed energy resources: A contribution towards real smart grid deployment,” Energies (Basel), vol. 14, no. 7, Apr. 2021, doi: 10.3390/en14071924. | |
dc.relation.references | G. Ma, J. Lyu, Y. Wang, J. Zhang, and J. Xu, “The Prosumer Energy Management Method Based on Smart Load,” IEEE Access, vol. 8, pp. 117086–117095, 2020, doi: 10.1109/ACCESS.2020.3004557. | |
dc.relation.references | A. Zomorodi Moghadam and M. H. Javidi, “Designing a two-stage transactive energy system for future distribution networks in the presence of prosumers’ P2P transactions,” Electric Power Systems Research, vol. 211, Oct. 2022, doi: 10.1016/j.epsr.2022.108202. | |
dc.relation.references | J. Hu, Y. Li, and H. Zhou, “Energy Management Strategy for a Society of Prosumers under the IOT Environment Considering the Network Constraints,” IEEE Access, vol. 7, pp. 57760–57768, 2019, doi: 10.1109/ACCESS.2019.2913724. | |
dc.relation.references | N. Koltsaklis, I. P. Panapakidis, D. Pozo, and G. C. Christoforidis, “A prosumer model based on smart home energy management and forecasting techniques,” Energies (Basel), vol. 14, no. 6, Mar. 2021, doi: 10.3390/en14061724. | |
dc.relation.references | L. Park, Y. Yoon, S. Cho, and S. Choi, “Prosumer Energy Management Considering Contract with Consumers under Progressive Pricing Policy,” IEEE Access, vol. 8, pp. 115789–115799, 2020, doi: 10.1109/ACCESS.2020.3004643. | |
dc.relation.references | N. Koltsaklis, I. P. Panapakidis, D. Pozo, and G. C. Christoforidis, “A prosumer model based on smart home energy management and forecasting techniques,” Energies (Basel), vol. 14, no. 6, Mar. 2021, doi: 10.3390/en14061724. | |
dc.relation.references | C. Ibrahim, I. Mougharbel, H. Y. Kanaan, N. A. Daher, S. Georges, and M. Saad, “A review on the deployment of demand response programs with multiple aspects coexistence over smart grid platform,” Jul. 01, 2022, Elsevier Ltd. doi: 10.1016/j.rser.2022.112446. | |
dc.relation.references | G. Ma, J. Lyu, Y. Wang, J. Zhang, and J. Xu, “The Prosumer Energy Management Method Based on Smart Load,” IEEE Access, vol. 8, pp. 117086–117095, 2020, doi: 10.1109/ACCESS.2020.3004557. | |
dc.relation.references | S. Yin, Q. Ai, Z. Li, Y. Zhang, and T. Lu, “Energy management for aggregate prosumers in a virtual power plant: A robust Stackelberg game approach,” International Journal of Electrical Power and Energy Systems, vol. 117, May 2020, doi: 10.1016/j.ijepes.2019.105605. | |
dc.relation.references | F. S. Ali, M. Aloqaily, O. Ozkasap, and O. Bouachir, “Blockchain-assisted Decentralized Virtual Prosumer Grouping for P2P Energy Trading,” in Proceedings - 21st IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks, WoWMoM 2020, Institute of Electrical and Electronics Engineers Inc., Aug. 2020, pp. 385–390. doi: 10.1109/WoWMoM49955.2020.00071. | |
dc.relation.references | A. Zomorodi Moghadam and M. H. Javidi, “Designing a two-stage transactive energy system for future distribution networks in the presence of prosumers’ P2P transactions,” Electric Power Systems Research, vol. 211, Oct. 2022, doi: 10.1016/j.epsr.2022.108202. | |
dc.relation.references | Z. Guo, W. Wei, L. Chen, Z. Wang, J. P. S. Catalao, and S. Mei, “Optimal Energy Management of a Residential Prosumer: A Robust Data-Driven Dynamic Programming Approach,” IEEE Syst J, vol. 16, no. 1, pp. 1548–1557, Mar. 2022, doi: 10.1109/JSYST.2020.3043342. | |
dc.relation.references | Q. Xie, H. Cheng, Y. Z. Xiangzhang, and S. Jiao, “Active Distribution Network Planning Based on Active Management,” 2014. | |
dc.relation.references | J. L. Picard, I. Aguado, N. G. Cobos, V. Fuster-Roig, and A. Quijano-López, “Electric distribution system planning methodology considering distributed energy resources: A contribution towards real smart grid deployment,” Energies (Basel), vol. 14, no. 7, Apr. 2021, doi: 10.3390/en14071924. | |
dc.relation.references | P. A. Gbadega and Y. Sun, “Centralized peer-to-peer transactive energy market approach in a prosumer-centric residential smart grid environment,” Energy Reports, vol. 8, pp. 105–116, Nov. 2022, doi: 10.1016/j.egyr.2022.10.080. | |
dc.relation.references | N. Koltsaklis, I. P. Panapakidis, D. Pozo, and G. C. Christoforidis, “A prosumer model based on smart home energy management and forecasting techniques,” Energies (Basel), vol. 14, no. 6, Mar. 2021, doi: 10.3390/en14061724. | |
dc.relation.references | J. H. Yi, R. Cherkaoui, M. Paolone, D. Shchetinin, and K. Knezovic, “Expansion planning of active distribution networks achieving their dispatchability via energy storage systems,” Appl Energy, vol. 326, Nov. 2022, doi: 10.1016/j.apenergy.2022.119942. | |
dc.relation.references | N. Koltsaklis, I. P. Panapakidis, D. Pozo, and G. C. Christoforidis, “A prosumer model based on smart home energy management and forecasting techniques,” Energies (Basel), vol. 14, no. 6, Mar. 2021, doi: 10.3390/en14061724. | |
dc.relation.references | M. A. A. Al-Jaafreh and G. Mokryani, “Planning and operation of LV distribution networks: A comprehensive review,” Sep. 01, 2019, Institution of Engineering and Technology. doi: 10.1049/iet-esi.2019.0013. | |
dc.relation.references | J. M. . Gers, Distribution system analysis and automation. Institution of Engineering and Technology, 2014. | |
dc.relation.references | W. H. Kersting, “Distribution System Modeling and Analysis.” | |
dc.relation.references | H. Shareef, M. S. Ahmed, A. Mohamed, and E. Al Hassan, “Review on Home Energy Management System Considering Demand Responses, Smart Technologies, and Intelligent Controllers,” IEEE Access, vol. 6, pp. 24498–24509, Apr. 2018, doi: 10.1109/ACCESS.2018.2831917. | |
dc.relation.references | J. J. D. Marin, S. Carvajal Quintero, and M. Jiménez, “Análisis para la provisión del Servicio Complementario de Capacidad de Operación por Islas a partir de Recursos Energéticos Distribuidos en ambientes desregulados,” 2017. | |
dc.relation.references | Comisión de Regulación de Energía y Gas (CREG), Resolución 015 de 2018 - Por la cual se establece la metodología para la remuneración de la actividad de distribución de energía eléctrica en el Sistema Interconectado Nacional. Accessed: Feb. 22, 2025. [Online]. Available: https://gestornormativo.creg.gov.co/gestor/entorno/docs/resolucion_creg_0015_2018.htm | |
dc.relation.references | IEEE Standard Association, IEEE Std. 1547-2018. Standard for Interconnection and Interoperability of Distributed Energy Resources with Associated Electric Power Systems Interfaces. 2018. | |
dc.relation.references | 1547-2018 - IEEE Standard for Interconnection and Interoperability of Distributed Energy Resources with Associated Electric Power Systems Interfaces. IEEE, 2018 | |
dc.relation.references | E. D. Obando Paredes and S. X. Carvajal Quintero, “Implementación de Estrategias de Digitalización en Sistemas de Distribución de Energía: Un Análisis de Escenarios de Optimización,” in SEMINARIO INTERNACIONAL EN ENERGÍA TRANSACTIVA (SIET), Pasto: Universidad de Nariño, 2024. | |
dc.relation.references | Multistage planning for active power distribution systems with increasing”. | |
dc.relation.references | A. Valenzuela, I. Montalvo, and E. Inga, “A decision-making tool for electric distribution network planning based on heuristics and georeferenced data,” Energies (Basel), vol. 12, no. 21, Oct. 2019, doi: 10.3390/en12214065. | |
dc.relation.references | R. Alirezaei, R. Dashti, and M. Mirhosseini, “Analysis of energy supply scenarios using grid-connected hybrid systems: Investigating time-of-use demand response strategy for improving operational performance,” Energy, vol. 318, Mar. 2025, doi: 10.1016/j.energy.2025.134596. | |
dc.relation.references | S. Xie, Z. Hu, L. Yang, and J. Wang, “Expansion planning of active distribution system considering multiple active network managements and the optimal load-shedding direction,” International Journal of Electrical Power and Energy Systems, vol. 115, Feb. 2020, doi: 10.1016/j.ijepes.2019.105451. | |
dc.relation.references | A. Ali, A. Aftab, M. N. Akram, S. Awan, H. A. Muqeet, and Z. A. Arfeen, “Residential Prosumer Energy Management System with Renewable Integration Considering Multi-Energy Storage and Demand Response,” Sustainability (Switzerland) , vol. 16, no. 5, Mar. 2024, doi: 10.3390/su16052156. | |
dc.relation.references | B. Li, C. Wan, K. Yuan, and Y. Song, “Demand response for integrating distributed energy resources in transactive energy system,” in Energy Procedia, Elsevier Ltd, 2019, pp. 6645–6651. doi: 10.1016/j.egypro.2019.01.040. | |
dc.relation.references | J. Li, Y. Ye, D. Papadaskalopoulos, and G. Strbac, “Distributed Consensus-Based Coordination of Flexible Demand and Energy Storage Resources,” IEEE Transactions on Power Systems, vol. 36, no. 4, pp. 3053–3069, Jul. 2021, doi: 10.1109/TPWRS.2020.3041193. | |
dc.relation.references | A. A. (Abdelhay. A. ) Sallam, Electric Distribution Systems, IEEE. IEEE series on power engineering. | |
dc.relation.references | M. Chakravorty and D. Das, “Voltage stability analysis of radial distribution networks.” [Online]. Available: www.elsevier.com/locate/ijepes | |
dc.relation.references | J. Liu, H. Gao, Z. Ma, and Y. Li, “Review and prospect of active distribution system planning,” Dec. 01, 2015. doi: 10.1007/s40565-015-0170-7. | |
dc.relation.references | N. Goitia-Zabaleta, A. Milo, H. Gaztañaga, and E. Fernandez, “Two-stage centralised management of Local Energy Market for prosumers integration in a community-based P2P,” Appl Energy, vol. 348, Oct. 2023, doi: 10.1016/j.apenergy.2023.121552. | |
dc.relation.references | Z. Duan et al., “An MILP method for design of distributed energy resource system considering stochastic energy supply and demand,” Energies (Basel), vol. 11, no. 1, Jan. 2018, doi: 10.3390/en11010022. | |
dc.relation.references | S. García, A. Fernández, J. Luengo, and F. Herrera, “A study of statistical techniques and performance measures for genetics-based machine learning: Accuracy and interpretability,” Soft comput, vol. 13, no. 10, pp. 959–977, 2009, doi: 10.1007/s00500-008-0392-y. | |
dc.relation.references | A. K. Erenoğlu, İ. Şengör, O. Erdinç, A. Taşcıkaraoğlu, and J. P. S. Catalão, “Optimal energy management system for microgrids considering energy storage, demand response and renewable power generation,” International Journal of Electrical Power and Energy Systems, vol. 136, Mar. 2022, doi: 10.1016/j.ijepes.2021.107714. | |
dc.relation.references | R. Torkan, A. Ilinca, and M. Ghorbanzadeh, “A genetic algorithm optimization approach for smart energy management of microgrid,” Renew Energy, vol. 197, pp. 852–863, Sep. 2022, doi: 10.1016/j.renene.2022.07.055. | |
dc.relation.references | J. Li et al., “Multi-objective optimization method for medium and long-term power supply and demand balance considering the spatiotemporal correlation of source and load,” Energy Strategy Reviews, vol. 54, Jul. 2024, doi: 10.1016/j.esr.2024.101463. | |
dc.relation.references | J. Soares, M. Silva, T. Sousa, Z. Vale, and H. Morais, “Distributed energy resource short-term scheduling using Signaled Particle Swarm Optimization,” Energy, vol. 42, no. 1, pp. 466–476, 2012, doi: 10.1016/j.energy.2012.03.022. | |
dc.relation.references | B. N. Silva, M. Khan, R. E. Wijesinghe, and U. Wijenayake, “Meta-heuristic optimization based cost efficient demand-side management for sustainable smart communities,” Energy Build, vol. 303, Jan. 2024, doi: 10.1016/j.enbuild.2023.113599. | |
dc.relation.references | F. R. Albogamy, “A Hybrid Heuristic Algorithm for Energy Management in Electricity Market with Demand Response and Distributed Generators,” Applied Sciences (Switzerland), vol. 13, no. 4, Feb. 2023, doi: 10.3390/app13042552. | |
dc.relation.references | J. Vaish, A. K. Tiwari, A. University, U. Pradesh, and K. Seethalekshmi, “Swarm Intelligence techniques for optimization of Microgrid with Renewable Energy System,” 2023, doi: 10.21203/rs.3.rs-2650932/v1. | |
dc.relation.references | S. Rahim et al., “Ant colony optimization based energy management controller for smart grid,” in Proceedings - International Conference on Advanced Information Networking and Applications, AINA, Institute of Electrical and Electronics Engineers Inc., May 2016, pp. 1154–1159. doi: 10.1109/AINA.2016.163. | |
dc.relation.references | M. Sharafi and T. Y. ElMekkawy, “Stochastic optimization of hybrid renewable energy systems using sampling average method,” Dec. 01, 2015, Elsevier Ltd. doi: 10.1016/j.rser.2015.08.010. | |
dc.relation.references | A. S. Rodrigo, A. M. Ranawaka, M. Abeywickrama, and D. A. M. Arachchi, “A mixed integer nonlinear programming model and heuristic solutions for an automated demand response system for large facilities,” in MERCon 2021 - 7th International Multidisciplinary Moratuwa Engineering Research Conference, Proceedings, Institute of Electrical and Electronics Engineers Inc., Jul. 2021, pp. 83–88. doi: 10.1109/MERCon52712.2021.9525693. | |
dc.relation.references | B. N. Silva, M. Khan, R. E. Wijesinghe, and U. Wijenayake, “Meta-heuristic optimization based cost efficient demand-side management for sustainable smart communities,” Energy Build, vol. 303, Jan. 2024, doi: 10.1016/j.enbuild.2023.113599. | |
dc.relation.references | L. Blackhall, G. Kuiper, L. Nicholls, and P. Scott, “Optimising the value of distributed energy resources,” Electricity Journal, vol. 33, no. 9, p. 106838, 2020, doi: 10.1016/j.tej.2020.106838. | |
dc.relation.references | F. Henao, Y. Rodriguez, J. P. Viteri, and I. Dyner, “Optimising the insertion of renewables in the Colombian power sector,” Renew Energy, vol. 132, pp. 81–92, 2019, doi: 10.1016/j.renene.2018.07.099. | |
dc.relation.references | P. Dimitroulis and M. Alamaniotis, “A fuzzy logic energy management system of on-grid electrical system for residential prosumbers,” Electric Power Systems Research, vol. 202, Jan. 2022, doi: 10.1016/j.epsr.2021.107621. | |
dc.relation.references | Y. Zhu, L. Chen, Y. Fu, H. Zhang, and G. Zhao, “Design and Engineering Application of Low Voltage Power Grid,” in 2022 5th International Conference on Power and Energy Applications, ICPEA 2022, Institute of Electrical and Electronics Engineers Inc., 2022, pp. 410–413. doi: 10.1109/ICPEA56363.2022.10052476. | |
dc.relation.references | CEDENAR, “Centrales Eléctricas de Nariño S.A. E.S.P. (CEDENAR).” | |
dc.relation.references | ASC Ingeniería S.A. E.S.P, “ASC Ingeniería S.A. E.S.P.” | |
dc.relation.references | Universidad de Nariño UDENAR, “ALTERNAR: Análisis de Oportunidades Energéticas con Fuentes Alternativas en el Departamento de Nariño.” | |
dc.relation.references | Alcaldia de Pasto, “Pasto incluido en Ciudades Sostenibles”. | |
dc.relation.references | W. Wright, D. Schroh, P. Proulx, A. Skaburskis, and B. Cort, “The Sandbox for Analysis-Concepts and Methods,” 2006. | |
dc.relation.references | K. P. Schneider et al., “Analytic Considerations and Design Basis for the IEEE Distribution Test Feeders,” IEEE Transactions on Power Systems, vol. 33, no. 3, pp. 3181–3188, May 2018, doi: 10.1109/TPWRS.2017.2760011. | |
dc.relation.references | Radial Distribution Test Feeders Distribution System Analysis Subcommittee Report.” [Online]. Available: http://ewh.ieee.org/soc/pes/dsacom/testfeeders.html. | |
dc.relation.references | E. D. Obando and S. Carvajal Quintero, “Datos Sistema de Distribución Prueba .” Accessed: Sep. 05, 2024. [Online]. Available: https://bit.ly/4j34Nxs | |
dc.relation.references | E. D. Obando and S. Carvajal Quintero, “Data User Simulations,” 2024. Accessed: Oct. 07, 2024. [Online]. Available: https://bit.ly/3PN4I3H | |
dc.relation.references | “Gurobi Optimizer Reference Manual,” 2025. | |
dc.relation.references | M. Trafton, “The role of modeling in the energy transition,” MIT News. Accessed: Feb. 25, 2025. [Online]. Available: https://news.mit.edu/2025/role-modeling-energy-transition-0107 | |
dc.relation.references | Unidad de Planeación Minero Energética (UPME), Resolución No. 000135 de 2025: Por la cual se establecen los requisitos, el procedimiento y las tarifas a cobrar para evaluar las solicitudes y emitir los certificados que permitan acceder a los incentivos tributarios de la Ley 1715 de 2014. Accessed: Mar. 10, 2025. [Online]. Available: https://www1.upme.gov.co/Normatividad/135_2025_con_anexos.pdf | |
dc.relation.references | E. D. Obando Paredes and S. X. Carvajal Quintero, “Estrategias Para Integrar Recursos Energéticos Distribuidos Bajo Escenarios De Digitalización En El Sistema Eléctrico Colombiano,” in Seminario Internacional de Ingeniería y sus Aplicaciones SIIA 2021, vol. 1, 2021. | |
dc.relation.references | E. D. Obando Paredes and S. X. Carvajal Quintero, “Distributed energy resources and digitalization, outlook of integration and discussion of points of view when integrating them,” in III Congreso Internacional de Biorrefinerías y Energías renovables Soportadas en TIC, Medellin, 2021. | |
dc.relation.references | E. D. Obando Paredes and S. X. Carvajal Quintero, “Propuesta de escenarios de digitalización para integración de demanda activa en sistemas de distribución utilizando técnicas metaheurísticas,” in VI Festival de ciencia tecnología e innovación DATIC , Cali: Secretaria de tecnologias TIC de Cali, 2022. | |
dc.relation.references | E. D. Obando, S. X. Carvajal, and J. Pineda Agudelo, “Proposal for integrating active demand in the distribution system: variables, scenarios, and case study.,” Simposio Internacional sobre la Calidad de la Energía Eléctrica - SICEL, vol. 11, Jan. 2024, doi: 10.15446/sicel.v11.110033. | |
dc.relation.references | E. D. Obando Paredes and S. X. Carvajal Quintero, “Implementación de Estrategias de Digitalización en Sistemas de Distribución de Energía: Un Análisis basado en Escenarios de Optimización,” in II Congreso Internacional de Electrónica Aplicada CIEA 2024, Pasto : Universidad CESMAG, 2024. | |
dc.relation.references | R. Sharifi, S. H. Fathi, and V. Vahidinasab, “A review on Demand-side tools in electricity market,” 2017, Elsevier Ltd. doi: 10.1016/j.rser.2017.01.020. | |
dc.relation.references | N. , P. B. R. , P. J. R. , B.-J. B. , & F. K. H. B. Karthikeyan, “Demand Response in Low Voltage Distribution Networks with High PV Penetration,” | |
dc.relation.references | Z. Duan et al., “An MILP method for design of distributed energy resource system considering stochastic energy supply and demand,” Energies (Basel), vol. 11, no. 1, Jan. 2018, doi: 10.3390/en11010022. | |
dc.relation.references | D. S. Ochoa, E. P. González, and R. C. Rodríguez, “Characterization of the demand for electric energy considering the integration of distributed energy resources,” in 2019 FISE-IEEE/CIGRE Conference - Living the Energy Transition, FISE/CIGRE 2019, Institute of Electrical and Electronics Engineers Inc., Dec. 2019. doi: 10.1109/FISECIGRE48012.2019.8984998. | |
dc.relation.references | E. Galperova and V. Galperov, “A Methodological Approach to the Assessment of the Impact of Digital Technologies Development in Energy Industry on Electricity Price and Demand in a Region,” in E3S Web of Conferences, EDP Sciences, Nov. 2020. doi: 10.1051/e3sconf/202020906006. | |
dc.relation.references | J. Li, Y. Ye, D. Papadaskalopoulos, and G. Strbac, “Distributed Consensus-Based Coordination of Flexible Demand and Energy Storage Resources,” IEEE Transactions on Power Systems, vol. 36, no. 4, pp. 3053–3069, Jul. 2021, doi: 10.1109/TPWRS.2020.3041193. | |
dc.relation.references | M. Waseem, Z. Lin, S. Liu, Z. Zhang, T. Aziz, and D. Khan, “Fuzzy compromised solution-based novel home appliances scheduling and demand response with optimal dispatch of distributed energy resources,” Appl Energy, vol. 290, May 2021, doi: 10.1016/j.apenergy.2021.116761. | |
dc.relation.references | S. Lange, J. Pohl, and T. Santarius, “Digitalization and energy consumption. Does ICT reduce energy demand?,” Ecological Economics, vol. 176, Oct. 2020, doi: 10.1016/j.ecolecon.2020.106760. | |
dc.relation.references | A. F. Moreno Jaramillo, J. Lopez-Lorente, D. M. Laverty, J. Martinez-del-Rincon, D. J. Morrow, and A. M. Foley, “Effective identification of distributed energy resources using smart meter net-demand data,” IET Smart Grid, vol. 5, no. 2, pp. 120–135, Apr. 2022, doi: 10.1049/stg2.12056. | |
dc.relation.references | F. Farzan, F. Farzan, M. A. Jafari, and J. Gong, “Integration of Demand Dynamics and Investment Decisions on Distributed Energy Resources,” IEEE Trans Smart Grid, vol. 7, no. 4, pp. 1886–1895, Jul. 2016, doi: 10.1109/TSG.2015.2426151. | |
dc.relation.references | M. Ostadijafari, J. C. Bedoya, W. Wang, A. Dubey, C.-C. Liu, and N. Yu, “Proactive demand-side participation: Centralized versus transactive demand-Supply coordination,” Electric Power Systems Research, vol. 206, p. 107789, May 2022, doi: 10.1016/j.epsr.2022.107789. | |
dc.relation.references | F. Liu, G. Cheng, and B. Pan, “Smart management system in electric market considering customer demand response,” Computers and Electrical Engineering, vol. 99, p. 107830, Apr. 2022, doi: 10.1016/j.compeleceng.2022.107830. | |
dc.relation.references | P. Dimitroulis and M. Alamaniotis, “A fuzzy logic energy management system of on-grid electrical system for residential prosumbers,” Electric Power Systems Research, vol. 202, Jan. 2022, doi: 10.1016/j.epsr.2021.107621. | |
dc.relation.references | J. A. Marcelo, G. Muñoz-Delgado, D. Rupolo, J. Contreras, and J. R. S. Mantovani, “Multistage planning for active power distribution systems with increasing penetration of prosumers and electric vehicles,” Sustainable Energy, Grids and Networks, vol. 38, Jun. 2024, doi: 10.1016/j.segan.2024.101280. | |
dc.relation.references | D. Díaz-Bello, C. Vargas-Salgado, M. Alcázar-Ortega, and T. Gómez-Navarro, “Demand response of prosumers integrating storage system for optimizing grid-connected photovoltaics through time-pricing,” J Energy Storage, vol. 88, May 2024, doi: 10.1016/j.est.2024.111536. | |
dc.relation.references | A. Ali, A. Aftab, M. N. Akram, S. Awan, H. A. Muqeet, and Z. A. Arfeen, “Residential Prosumer Energy Management System with Renewable Integration Considering Multi-Energy Storage and Demand Response,” Sustainability (Switzerland) , vol. 16, no. 5, Mar. 2024, doi: 10.3390/su16052156. | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.ddc | 620 - Ingeniería y operaciones afines | |
dc.subject.proposal | Monitoreo activo de la demanda | spa |
dc.subject.proposal | Descentralización | spa |
dc.subject.proposal | Técnicas metaheurísticas | spa |
dc.subject.proposal | Integración de energías renovables | spa |
dc.subject.proposal | Sistemas transactivos | eng |
dc.subject.proposal | Active demand monitoring | eng |
dc.subject.proposal | Decentralization | eng |
dc.subject.proposal | Metaheuristic techniques | eng |
dc.subject.proposal | Renewable energy integration | eng |
dc.subject.proposal | Transactive systems | eng |
dc.title | Propuesta de escenarios de digitalización para integración de demanda activa en sistemas de distribución utilizando técnicas metaheurísticas | spa |
dc.title.translated | Proposal of digitalization scenarios for integrating active demand in distribution systems using metaheuristic techniques | eng |
dc.type | Trabajo de grado - Doctorado | |
dc.type.coar | http://purl.org/coar/resource_type/c_db06 | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/doctoralThesis | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dcterms.audience.professionaldevelopment | Bibliotecarios | |
dcterms.audience.professionaldevelopment | Administradores | |
dcterms.audience.professionaldevelopment | Estudiantes | |
dcterms.audience.professionaldevelopment | Grupos comunitarios | |
dcterms.audience.professionaldevelopment | Investigadores | |
dcterms.audience.professionaldevelopment | Maestros | |
dcterms.audience.professionaldevelopment | Público general | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Tesis de Doctorado en Ingeniería – Automática.pdf
- Tamaño:
- 3.56 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Doctorado en Ingeniería – Automática
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: