Regression and multimodal learning to aid diagnosis in ophthalmology and histopathology

dc.contributor.advisorGonzález Osorio, Fabio Augustospa
dc.contributor.authorToledo Cortés, Santiagospa
dc.contributor.cvlac0001449836spa
dc.contributor.googlescholarhttps://scholar.google.com/citations?user=M7l6jx4AAAAJ&hl=enspa
dc.contributor.orcid0000-0003-4172-9263spa
dc.contributor.researchgatehttps://www.researchgate.net/profile/Santiago-Toledo-Cortes-2spa
dc.contributor.researchgroupMindlabspa
dc.contributor.scopus57207843310spa
dc.date.accessioned2024-01-16T19:43:16Z
dc.date.available2024-01-16T19:43:16Z
dc.date.issued2023
dc.descriptionilustraciones, diagramasspa
dc.description.abstractThe main contribution of this thesis is the development of probabilistic machine learning models to support disease diagnosis from medical data sources. We show how a probabilistic approach offers great versatility in exploiting all available information about the target task. Based on the mathematical formalism of quantum mechanics, we develop and apply machine learning models that allow us to handle the flow of information using density matrices in different ways. We develop mechanisms that can naturally encode not only categorical but also ordinal information, and can also merge different data modalities. Furthermore, we show that the proposed models are naturally interpretable, which allows and facilitates their use in sensitive domains such as health applications. In particular, our models are tested in the diagnosis of several eye diseases and prostate cancer. First, we show the effectiveness and benefit of using regression models in the diagnosis of eye diseases of genetic origin. We then demonstrate the importance of including disease grading information and performing discrete regression to improve the performance of the binary diagnosis of diabetic retinopathy and prostate cancer. We show that a probabilistic interpretation of the results provides information on the uncertainty of the models, which can also be used in training processes. Finally, the proposed framework allows us to encode information using kernel functions, which in turn allows us to naturally introduce flexible information fusion mechanisms and thus to address multimodal tasks. Overall, we show that incorporating ordinal and multimodal information using probabilistic kernel-based frameworks allows learning better data representations, which improves the performance of the models and provides them with a higher level of interpretability.eng
dc.description.abstractLa principal contribución de esta tesis es el desarrollo de modelos probabilísticos de aprendizaje de máquina para apoyar el diagnóstico de enfermedades a partir de información médica. Mostramos cómo un enfoque probabilístico ofrece una gran versatilidad al momento de aprovechar toda la información disponible sobre la tarea objetivo. Basándonos en el formalismo matemático de la mecánica cuántica, desarrollamos y aplicamos modelos de aprendizaje que nos permiten manejar el flujo de información utilizando matrices de densidad de diferentes maneras. Desarrollamos mecanismos que pueden codificar de forma natural no sólo información categórica, sino también ordinal, y que también pueden fusionar distintas modalidades de información. Además, demostramos que los modelos propuestos son naturalmente interpretables, lo que permite y facilita su aplicación en dominios sensibles como las aplicaciones médicas. Precisamente, en este trabajo probamos nuestros modelos en tareas específicas de diagnóstico de enfermedades oculares y cáncer de próstata. En primer lugar, mostramos la eficacia y el beneficio de usar modelos de regresión en el diagnóstico de enfermedades oculares de origen genético. A continuación, demostramos la importancia de incluir información sobre el estadio de las enfermedades y realizar una regresión discreta para mejorar el rendimiento del diagnóstico binario de la retinopatía diabética y el cáncer de próstata. Demostramos que la interpretación probabilística de los resultados proporciona información sobre la incertidumbre de los modelos, que puede utilizarse también en los procesos de entrenamiento. Por último, los modelos propuestos nos permiten codificar la información mediante funciones kernel, que a su vez nos permiten introducir de forma natural mecanismos de fusión de información, flexibles y versátiles, y con estos abordar tareas multimodales. En conjunto, demostramos que la incorporación de información ordinal y multimodal mediante modelos probabilísticos basados en funciones de kernel permite aprender mejores representaciones de los datos, lo que mejora el rendimiento de los modelos y les proporciona un mayor nivel de interpretabilidad. (Texto tomado de la fuente).spa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingenieríaspa
dc.description.researchareaSistemas Inteligentesspa
dc.format.extentxvi, 123 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85336
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Sistemas y Computaciónspa
dc.relation.indexedBiremespa
dc.relation.referencesTesting for Glaucoma. https://glaucoma.org/learn-about-glaucoma/testing-for-glaucoma/. 2023spa
dc.relation.referencesAbràmoff, Michael D. ; Folk, James C. ; Han, Dennis P. ; Walker, Jonathan D. ; Williams, David F. ; Russell, Stephen R. ; Massin, Pascale ; Cochener, Beatrice ; Gain, Philippe ; Tang, Li ; Lamard, Mathieu ; Moga, Daniela C. ; Quellec, Gwénolé ; Niemeijer, Meindert: Automated analysis of retinal images for detection of referable diabetic retinopathy. In: JAMA Ophthalmology 131 (2013), Nr. 3, S. 351–357. – ISSN 21686165spa
dc.relation.referencesAdler, Tim J. ; Ardizzone, Lynton ; Vemuri, Anant ; Ayala, Leonardo ; Gröhl, Janek ; Kirchner, Thomas ; Wirkert, Sebastian ; Kruse, Jakob ; Rother, Carsten ; Köthe, Ullrich ; Maier-Hein, Lena: Uncertainty-aware performance assessment of optical imaging modalities with invertible neural networks. In: In- ternational Journal of Computer Assisted Radiology and Surgery 14 (2019), Nr. 6, S. 997–1007. – ISSN 18616429spa
dc.relation.referencesAmerican Academy of Ophthalmology: International clinical diabetic retinopathy disease severity scale detailed table. In: International Council of Oph- thalmology (2002)spa
dc.relation.referencesAndrearczyk, Vincent ; Müller, Henning: Deep multimodal classification of image types in biomedical journal figures. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 11018 LNCS (2018), S. 3–14. – ISBN 9783319989310spa
dc.relation.referencesAraújo, Teresa ; Aresta, Guilherme ; Mendonça, Luı́s ; Penas, Susana ; Maia, Carolina ; Carneiro, Ângela ; Mendonça, Ana M. ; Campilho, Aurélio: DR—GRADUATE: Uncertainty-aware deep learning-based diabetic retinopathy grading in eye fundus images. In: Medical Image Analysis 63 (2020). – ISSN 13618423spa
dc.relation.referencesArevalo, John ; Solorio, Thamar ; Montes-Y-Gómez, Manuel ; González, Fabio A.: Gated multimodal units for information fusion. In: 5th International Conference on Learning Representations, ICLR 2017 - Workshop Track Proceedings (2017)spa
dc.relation.referencesBaccianella, Stefano ; Esuli, Andrea ; Sebastiani, Fabrizio: Evaluation measures for ordinal regression. In: 2009 Ninth international conference on intelligent systems design and applications IEEE, 2009, S. 283–287spa
dc.relation.referencesBaltrusaitis, Tadas ; Ahuja, Chaitanya ; Morency, Louis P.: Multimodal Machine Learning: A Survey and Taxonomy. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 41 (2019), Nr. 2, S. 423–443. – ISSN 19393539spa
dc.relation.referencesBauer, Dominik F. ; Russ, Tom ; Waldkirch, Barbara I. ; Tönnes, Christian ; Segars, William P. ; Schad, Lothar R. ; Zöllner, Frank G. ; Golla, Alena K.: Generation of annotated multimodal ground truth datasets for abdominal medical image registration. In: International Journal of Computer Assisted Radiology and Surgery 16 (2021), Nr. 8, S. 1277–1285. – ISSN 18616429spa
dc.relation.referencesBayoudh, K ; Knani, R ; Hamdaoui, F ; Mtibaa, A: A survey on deep multimodal learning for computer vision: advances, trends, applications, and datasets. In: Vis Comput 38 (2022), Nr. 8, S. 2939–2970. – Epub 2021 Jun 10; PMID: 34131356; PMCID: PMC8192112spa
dc.relation.referencesBeckham, Christopher ; Pal, Christopher: A simple squared-error reformulation for ordinal classification. (2016), Nr. Nipsspa
dc.relation.referencesBeckham, Christopher ; Pal, Christopher: Unimodal probability distributions for deep ordinal classification. In: 34th International Conference on Machine Learning, ICML 2017 1 (2017), S. 647–655. ISBN 9781510855144spa
dc.relation.referencesBenzebouchi, Nacer E. ; Azizi, Nabiha ; Ashour, Amira S. ; Dey, Nilanjan ; Sherratt, R. S.: Multi-modal classifier fusion with feature cooperation for glaucoma diagnosis. In: Journal of Experimental and Theoretical Artificial Intelligence 31 (2019), Nr. 6, S. 841–874. – ISSN 13623079spa
dc.relation.referencesBlunt, Nick S. ; Camps, Joan ; Crawford, Ophelia ; Izsák, Róbert ; Leontica, Sebastian ; Mirani, Arjun ; Moylett, Alexandra E. ; Scivier, Sam A. ; Sünder- hauf, Christoph ; Schopf, Patrick ; Taylor, Jacob M. ; Holzmann, Nicole: Per- spective on the Current State-of-the-Art of Quantum Computing for Drug Discovery Applications. In: Journal of Chemical Theory and Computation 18 (2022), Nr. 12, S. 7001–7023. – PMID: 36355616spa
dc.relation.referencesBradshaw, John ; Matthews, Alexander G. de G. ; Ghahramani, Zoubin: Ad- versarial Examples, Uncertainty, and Transfer Testing Robustness in Gaussian Process Hybrid Deep Networks. In: https://arxiv.org/pdf/1707.02476.pdfarXiv:1707.02476v1 eprint (2017), S. 1–33spa
dc.relation.referencesBulten, Wouter ; Litjens, Geert ; Pinckaers, Hans ; Ström, Peter ; Eklund, Martin ; Kartasalo, Kimmo ; Demkin, Maggie ; Dane, Sohier. The PANDA challenge: Prostate cANcer graDe Assessment using the Gleason grading system. März 2020spa
dc.relation.referencesBurns, Stephen A. ; Elsner, Ann E. ; Sapoznik, Kaitlyn A. ; Warner, Raymond L. ; Gast, Thomas J.: Adaptive optics imaging of the human retina. In: Progress in Retinal and Eye Research 68 (2019), S. 1–30. – ISSN 1350–9462spa
dc.relation.referencesBurns, Stephen A. ; Elsner, Ann E. ; Sapoznik, Kaitlyn A. ; Warner, Raymond L. ; Gast, Thomas J.: Adaptive optics imaging of the human retina. In: Progress in Retinal and Eye Research 68 (2019), Nr. August 2018, S. 1–30. – ISSN 18731635spa
dc.relation.referencesCamargo, Jorge E. ; Caicedo, Juan C. ; Gonzalez, Fabio A.: A kernel-based framework for image collection exploration. In: Journal of Visual Languages and Computing 24 (2013), Nr. 1, S. 53–67. – ISSN 1045926Xspa
dc.relation.referencesCamargo, Jorge E. ; González, Fabio A.: Multimodal latent topic analysis for image collection summarization. In: Information Sciences 328 (2016), S. 270–287. – ISSN 00200255spa
dc.relation.referencesCampochiaro, Peter A. ; Mir, Tahreem A.: The mechanism of cone cell death in Retinitis Pigmentosa. In: Progress in Retinal and Eye Research 62 (2018), S. 24–37. – ISSN 1350–9462spa
dc.relation.referencesIn: Castellano, Ginevra ; Kessous, Loic ; Caridakis, George: Emotion Recog- nition through Multiple Modalities: Face, Body Gesture, Speech. Berlin, Heidelberg : Springer Berlin Heidelberg, 2008, S. 92–103. – ISBN 978–3–540–85099–1spa
dc.relation.referencesCerezo, M ; Verdon, Guillaume ; Huang, Hsin-Yuan ; Cincio, Lukasz ; Coles, Patrick J.: Challenges and opportunities in quantum machine learning. In: Nature Computational Science 2 (2022), Nr. 9, S. 567–576spa
dc.relation.referencesChakravarty, Arunava ; Sivaswamy, Jayanthi: Glaucoma classification with a fusion of segmentation and image-based features. In: Proceedings - International Symposium on Biomedical Imaging 2016-June (2016), Nr. i, S. 689–692. – ISBN 9781479923502spa
dc.relation.referencesChen, Richard J. ; Lu, Ming Y. ; Williamson, Drew F. ; Chen, Tiffany Y. ; Lipkova, Jana ; Noor, Zahra ; Shaban, Muhammad ; Shady, Maha ; Williams, Mane ; Joo, Bumjin ; Mahmood, Faisal: Pan-cancer integrative histology-genomic analysis via multimodal deep learning. In: Cancer Cell 40 (2022), Nr. 8, S. 865–878.e6. – ISSN 18783686spa
dc.relation.referencesChen, Yingming ; Ratnam, Kavitha ; Sundquist, Sanna M. ; Lujan, Brandon ; Ayyagari, Radha ; Gudiseva, V. H. ; Roorda, Austin ; Duncan, Jacque L.: Cone photoreceptor abnormalities correlate with vision loss in patients with Stargardt Disease. In: Investigative Ophthalmology and Visual Science 52 (2011), Nr. 6, S. 3281–3292. – ISSN 01460404spa
dc.relation.referencesChoi, Joon Y. ; Yoo, Tae K. ; Seo, Jeong G. ; Kwak, Jiyong ; Um, Terry T. ; Rim, Tyler H.: Multi-categorical deep learning neural network to classify retinal images: A pilot study employing small database. In: PLOS ONE 12 (2017), 11, Nr. 11, S. 1–16spa
dc.relation.referencesChollet, Francois: Image segmentation with a U-Net-like architecture. https:// keras.io/examples/vision/oxford_pets_image_segmentation/. 2020. – [Online; accessed 30-September-2021]spa
dc.relation.referencesChollet, Francois [u. a.]: Keras. https://github.com/fchollet/keras. 2015. – [Online; accessed 01-Mar-2022]spa
dc.relation.referencesContreras, Victor H. ; Lara, Juan S. ; Perdomo, Oscar J. ; González, Fabio A.: Supervised online matrix factorization for histopathological multimodal retrieval. In: Romero, Eduardo (Hrsg.) ; Lepore, Natasha (Hrsg.) ; Brieva, Jorge (Hrsg.): 14th International Symposium on Medical Information Processing and Analysis Bd. 10975 International Society for Optics and Photonics, SPIE, 2018, S. 109750Yspa
dc.relation.referencesCross, Nancy ; van Steen, Cécile ; Zegaoui, Yasmina ; Satherley, Andrew ; Angelillo, Luigi: Current and Future Treatment of Retinitis Pigmentosa. In: Clinical Ophthalmology 16 (2022), S. 2909–2921. – ISSN 11775483spa
dc.relation.referencesCui, Shaoguo ; Mao, Lei ; Jiang, Jingfeng ; Liu, Chang ; Xiong, Shuyu: Automatic semantic segmentation of brain gliomas from MRI images using a deep cascaded neural network. In: Journal of Healthcare Engineering 2018 (2018). – ISSN 20402309spa
dc.relation.referencesCunefare, David: CNN-Cone-Detection. https://github.com/DavidCunefare/ CNN-Cone-Detection. 2017. – [Online; accessed 01-Mar-2022]spa
dc.relation.referencesCunefare, David ; Fang, Leyuan ; Cooper, Robert F. ; Dubra, Alfredo ; Car- roll, Joseph ; Farsiu, Sina: Open source software for automatic detection of cone photoreceptors in adaptive optics ophthalmoscopy using convolutional neural networks. In: Scientific Reports 7 (2017), Nr. 1, S. 1–11. – ISSN 20452322spa
dc.relation.referencesCunefare, David ; Huckenpahler, Alison L. ; Patterson, Emily J. ; Dubra, Alfredo ; Carroll, Joseph ; Farsiu, Sina: RAC-CNN: multimodal deep learning based automatic detection and classification of rod and cone photoreceptors in adaptive optics scanning light ophthalmoscope images. In: Biomedical Optics Express 10 (2019), Nr. 8, S. 3815. – ISSN 2156–7085spa
dc.relation.referencesCutajar, Kurt ; Bonilla, Edwin V. ; Michiardi, Pietro ; Filippone, Maur- izio: Random feature expansions for Deep Gaussian Processes. In: 34th Interna- tional Conference on Machine Learning, ICML 2017 2 (2017), S. 1467–1482. ISBN 9781510855144spa
dc.relation.referencesDavidson, Benjamin ; Kalitzeos, Angelos ; Carroll, Joseph ; Dubra, Alfredo ; Ourselin, Sebastien ; Michaelides, Michel ; Bergeles, Christos: Automatic Cone Photoreceptor Localisation in Healthy and Stargardt Afflicted Retinas Using Deep Learning. In: Scientific Reports 8 (2018), Nr. 1, S. 1–13. – ISBN 4159801826350spa
dc.relation.referencesDecencière, Etienne ; Zhang, Xiwei ; Cazuguel, Guy ; Laÿ, Bruno ; Cochener, Béatrice ; Trone, Caroline ; Gain, Philippe ; Ordóñez-Varela, John R. ; Massin, Pascale ; Erginay, Ali ; Charton, Béatrice ; Klein, Jean C.: Feedback on a publicly distributed image database: The Messidor database. In: Image Analysis and Stereology 33 (2014), Nr. 3, S. 231–234. – ISSN 18545165spa
dc.relation.referencesDiabetic Retinopathy Detection of Kaggle: EyePACS Challenge. www. kaggle.com/c/diabetic-retinopathy-detection/data. – Accessed: 2019-10-15spa
dc.relation.referencesFor Disease Control, Centers ; Prevention: Prostate Cancer Statistics. 2022. – Accessed: 2023-06-01spa
dc.relation.referencesFor Disease Control, Centers ; Prevention. Prostate Cancer Incidence by Age and Stage at Diagnosis, United States—20012019. USCS data brief, no 34. 2023spa
dc.relation.referencesEladawi, Nabila ; Eltanboly, Ahmed ; Elmogy, Mohammed ; Ghazal, Mo- hammed ; Fraiwan, Luay ; Aboelfetouh, Ahmed ; Riad, Alaa ; Keynton, Robert ; El-Azab, Magdi ; Schaal, Shlomit ; El-Baz, Ayman: Diabetic retinopathy early detection based on OCT and OCTA feature fusion. In: Proceedings - Interna- tional Symposium on Biomedical Imaging 2019-April (2019), S. 587–591. – ISBN 9781538636411spa
dc.relation.referencesEthem, Alpaydin: Introduction to Machine Learning. 3. The MIT Press, 2014spa
dc.relation.referencesFaraj, Sheila F. ; Bezerra, Stephania M. ; Yousefi, Kasra ; Fedor, Helen ; Glavaris, Stephanie ; Han, Misop ; Partin, Alan W. ; Humphreys, Elizabeth ; Tosoian, Jeffrey ; Johnson, Michael H. ; Davicioni, Elai ; Trock, Bruce J. ; Schaeffer, Edward M. ; Ross, Ashley E. ; Netto, George J.: Clinical validation of the 2005 isup gleason grading system in a cohort of intermediate and high risk men undergoing radical prostatectomy. In: PLoS ONE 11 (2016), Nr. 1, S. 1–13. – ISSN 19326203spa
dc.relation.referencesFrank, Eibe ; Hall, Mark: A Simple Approach to Ordinal Classification. In: De Raedt, Luc (Hrsg.) ; Flach, Peter (Hrsg.): Machine Learning: ECML 2001. Berlin, Heidelberg : Springer Berlin Heidelberg, 2001. – ISBN 978–3–540–44795–5, S. 145–156spa
dc.relation.referencesGarcia Arnal Barbedo, Jayme: A Review on Methods for Automatic Counting of Objects in Digital Images. In: IEEE Latin America Transactions 10 (2012), Nr. 5, S. 2112–2124spa
dc.relation.referencesGarg, Bhanu ; Manwani, Naresh: Robust Deep Ordinal Regression under Label Noise. In: Pan, Sinno J. (Hrsg.) ; Sugiyama, Masashi (Hrsg.): Proceedings of The 12th Asian Conference on Machine Learning Bd. 129. Bangkok, Thailand : PMLR, 18–20 Nov 2020, S. 782–796spa
dc.relation.referencesGargeya, Rishab ; Leng, Theodore: Automated Identification of Diabetic Retinopa- thy Using Deep Learning. In: Ophthalmology 124 (2017), Nr. 7, S. 962–969spa
dc.relation.referencesGieres, François: Mathematical surprises and Dirac’s formalism in quantum mechan- ics. In: Reports on Progress in Physics 63 (2000), dec, Nr. 12, S. 1893spa
dc.relation.referencesGolabbakhsh, M. ; Rabbani, H.: Vessel-based registration of fundus and optical coherence tomography projection images of retina using a quadratic registration model. In: IET Image Processing 7 (2013), November, Nr. 8, S. 768–776. – ISSN 1751–9667spa
dc.relation.referencesGonzález, Fabio A. ; Ramos-Pollán, Raúl ; Gallego-Mejia, Joseph A.: Quan- tum Kernel Mixtures for Probabilistic Deep Learning. (2023)spa
dc.relation.referencesGonzález, Fabio A. ; Vargas-Calderón, Vladimir ; Vinck-Posada, Herbert: Classification with quantum measurements. In: Journal of the Physical Society of Japan 90 (2021), Nr. 4, S. 044002spa
dc.relation.referencesGonzález, F.A. ; Gallego, A. ; Toledo-Cortés, S. [u. a.]: Learning with density matrices and random features. In: Quantum Machine Intelligence 4 (2022), S. 23spa
dc.relation.referencesGonzález, Fabio A. ; Vargas-Calderón, Vladimir ; Vinck-Posada, Herbert: Classification with Quantum Measurements. In: Journal of the Physical Society of Japan 90 (2021), Nr. 4, S. 044002spa
dc.relation.referencesGulshan, Varun ; Peng, Lily ; Coram, Marc ; Stumpe, Martin C. ; Wu, Derek ; Narayanaswamy, Arunachalam ; Venugopalan, Subhashini ; Widner, Kasumi ; Madams, Tom ; Cuadros, Jorge ; Kim, Ramasamy ; Raman, Rajiv ; Nelson, Philip C. ; Mega, Jessica L. ; Webster, Dale R.: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. In: JAMA - Journal of the American Medical Association 316 (2016), Nr. 22, S. 2402–2410spa
dc.relation.referencesGunawardhana, Piumi L. ; Jayathilake, Raviru ; Withanage, Yasiru ; Gane- goda, Gamage U.: Automatic Diagnosis of Diabetic Retinopathy using Machine Learning: A Review. In: Proceedings of ICITR 2020 - 5th International Conference on Information Technology Research: Towards the New Digital Enlightenment (2020). ISBN 9781665414753spa
dc.relation.referencesGuo, Z. ; Li, X. ; Huang, H. ; Guo, N. ; Li, Q.: Medical image segmentation based on multi-modal convolutional neural network: Study on image fusion schemes. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), 2018. – ISSN 1945–8452, S. 903–907spa
dc.relation.referencesGuo, Z. ; Li, X. ; Huang, H. ; Guo, N. ; Li, Q.: Deep Learning-Based Image Segmentation on Multimodal Medical Imaging. In: IEEE Transactions on Radiation and Plasma Medical Sciences 3 (2019), March, Nr. 2, S. 162–169. – ISSN 2469–7303spa
dc.relation.referencesGutiérrez, Pedro A. ; Pérez-Ortiz, Marı́a ; Sánchez-Monedero, Javier ; Fernández-Navarro, Francisco ; Hervás-Martı́nez, César: Ordinal Regression Methods: Survey and Experimental Study. In: IEEE Transactions on Knowledge and Data Engineering 28 (2016), Nr. 1, S. 127–146. – ISSN 10414347spa
dc.relation.referencesGutman, David A. ; Cobb, Jake ; Somanna, Dhananjaya ; Park, Yuna ; Wang, Fusheng ; Kurc, Tahsin ; Saltz, Joel H. ; Brat, Daniel J. ; Cooper, Lee A. ; Kong, Jun: Cancer Digital Slide Archive: an informatics resource to support integrated in silico analysis of TCGA pathology data. In: Journal of the American Medical Informatics Association 20 (2013), Nr. 6, S. 1091–1098spa
dc.relation.referencesHashemi, Mehrdad ; Zandieh, Mohammad A. ; Talebi, Yasmin ; Rahmanian, Parham ; Shafiee, Sareh S. ; Nejad, Melina M. ; Babaei, Roghayeh ; Sadi, Farzaneh H. ; Rajabi, Romina ; Abkenar, Zahra O. ; Rezaei, Shamin ; Ren, Jun ; Nabavi, Noushin ; Khorrami, Ramin ; Rashidi, Mohsen ; Hushmandi, Kiavash ; Entezari, Maliheh ; Taheriazam, Afshin: Paclitaxel and docetaxel resistance in prostate cancer: Molecular mechanisms and possible therapeutic strategies. In: Biomedicine Pharmacotherapy 160 (2023), S. 114392. – ISSN 0753–3322spa
dc.relation.referencesHe, Shenghua ; Minn, Kyaw T. ; Solnica-Krezel, Lilianna ; Anastasio, Mark A. ; Li, Hua: Deeply-supervised density regression for automatic cell counting in mi- croscopy images. In: Medical Image Analysis 68 (2021), S. 101892. – ISSN 1361–8415spa
dc.relation.referencesHuang, Di ; Heath Jeffery, Rachael C. ; Aung-Htut, May T. ; McLenachan, Samuel ; Fletcher, Sue ; Wilton, Steve D. ; Chen, Fred K.: Stargardt disease and progress in therapeutic strategies. In: Ophthalmic Genetics 43 (2022), Nr. 1, S. 1–26. – ISSN 17445094spa
dc.relation.referencesHuang, Huikang ; Situ, Haozhen ; Zheng, Shenggen: Bidirectional Information Flow Quantum State Tomography. In: Chinese Physics Letters 38 (2021), Nr. 4, S. 1–6. – ISSN 17413540spa
dc.relation.referencesJim, Oscar A. ; Cirujeda, Pol ; Henning, M: Combining Radiology Images and Meta – data for Multimodal Medical Case – based Retrieval. In: VISCERAL book (2017), S. 1–14spa
dc.relation.referencesJiménez del Toro, Oscar ; Atzori, Manfredo ; Otálora, Sebastian ; Andersson, Mats ; Eurén, Kristian ; Hedlund, Martin ; Rönnquist, Peter ; Müller, Henning: Convolutional neural networks for an automatic classification of prostate tissue slides with high-grade Gleason score. In: Medical Imaging 2017: Digital Pathology 10140 (2017), S. 101400O. – ISBN 9781510607255spa
dc.relation.referencesKamnitsas, K. ; Bai, W. ; Ferrante, E. ; McDonagh, S. ; Sinclair, M. ; Pawlowski, N. ; Rajchl, M. ; Lee, M. ; Kainz, B. ; Rueckert, D. ; Glocker, B.: Ensembles of multiple models and architectures for robust brain tumour segmentation. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 10670 LNCS (2018), S. 450–462. – ISBN 9783319752372spa
dc.relation.referencesKarimi, Davood ; Nir, Guy ; Fazli, Ladan ; Black, Peter C. ; Goldenberg, Larry ; Salcudean, Septimiu E.: Deep Learning-Based Gleason Grading of Prostate Cancer from Histopathology Images - Role of Multiscale Decision Aggregation and Data Augmentation. In: IEEE Journal of Biomedical and Health Informatics 24 (2020), may, Nr. 5, S. 1413–1426. – ISSN 21682208spa
dc.relation.referencesKaya, Mahmut ; Bilge, H.s: Deep Metric Learning: A Survey. In: Symmetry 11 (2019), 08, S. 1066spa
dc.relation.referencesKendall, Alex ; Gal, Yarin: What uncertainties do we need in Bayesian deep learning for computer vision? In: Advances in Neural Information Processing Systems 2017-December (2017), Nr. Nips, S. 5575–5585. – ISSN 10495258spa
dc.relation.referencesKhani, Ali A. ; Fatemi Jahromi, Seyed A. ; Shahreza, Hatef O. ; Behroozi, Hamid ; Baghshah, Mahdieh S.: Towards Automatic Prostate Gleason Grading Via Deep Convolutional Neural Networks. In: 5th Iranian Conference on Signal Process- ing and Intelligent Systems, ICSPIS 2019 (2019), Nr. December, S. 18–19. ISBN 9781728153506spa
dc.relation.referencesKim, Hee E. ; Cosa-Linan, Alejandro ; Santhanam, Nandhini ; Jannesari, Mah- boubeh ; Maros, Mate E. ; Ganslandt, Thomas: Transfer learning for medical image classification: a literature review. In: BMC medical imaging 22 (2022), Nr. 1, S. 69spa
dc.relation.referencesKim, Tae H. ; Jeong, Dae J. ; Hahn, Soo Y. ; Shin, Jung H. ; Oh, Young L. ; Ki, Chang S. ; Kim, Jong W. ; Jang, Ju Y. ; Cho, Yoon Y. ; Chung, Jae H. ; Kim, Sun W.: Triage of patients with AUS/FLUS on thyroid cytopathology: Effectiveness of the multimodal diagnostic techniques. In: Cancer Medicine 5 (2016), Nr. 5, S. 769–777. – ISSN 20457634spa
dc.relation.referencesKleesiek, Jens ; Urban, Gregor ; Hubert, Alexander ; Schwarz, Daniel ; Maier- Hein, Klaus ; Bendszus, Martin ; Biller, Armin: Deep MRI brain extraction: A 3D convolutional neural network for skull stripping. In: NeuroImage 129 (2016), S. 460–469. – ISSN 10959572spa
dc.relation.referencesKong, Jun ; Cooper, Lee A. ; Wang, Fusheng ; Gutman, David A. ; Gao, Jingjing ; Chisolm, Candace ; Sharma, Ashish ; Pan, Tony ; Van Meir, Erwin G. ; Kurc, Tahsin M. ; Moreno, Carlos S. ; Saltz, Joel H. ; Brat, Daniel J.: Integrative, multimodal analysis of glioblastoma using TCGA molecular data, pathology images, and clinical outcomes. In: IEEE Transactions on Biomedical Engineering 58 (2011), Nr. 12 PART 2, S. 3469–3474. – ISSN 00189294spa
dc.relation.referencesKononenko, Igor: Machine learning for medical diagnosis: History, state of the art and perspective. In: Artificial Intelligence in Medicine 23 (2001), Nr. 1, S. 89–109. – ISSN 09333657spa
dc.relation.referencesKovalyk, Oleksandr ; Morales-Sánchez, Juan ; Verdú-Monedero, Rafael ; Sellés-Navarro, Inmaculada ; Palazón-Cabanes, Ana ; Sancho-Gómez, José Luis: PAPILA: Dataset with fundus images and clinical data of both eyes of the same patient for glaucoma assessment. In: Scientific Data 9 (2022), Nr. 1, S. 1–12. – ISBN 4159702201spa
dc.relation.referencesKrause, Jonathan ; Gulshan, Varun ; Rahimy, Ehsan ; Karth, Peter ; Widner, Kasumi ; Corrado, Greg S. ; Peng, Lily ; Webster, Dale R.: Grader Variability and the Importance of Reference Standards for Evaluating Machine Learning Models for Diabetic Retinopathy. In: Ophthalmology 125 (2018), Nr. 8, S. 1264–1272. – ISSN 15494713spa
dc.relation.referencesKrenn, Mario ; Malik, Mehul ; Fickler, Robert ; Lapkiewicz, Radek ; Zeilinger, Anton: Automated Search for new Quantum Experiments. In: Phys. Rev. Lett. 116 (2016), S. 090405spa
dc.relation.referencesLara, Juan S. ; Contreras O., Victor H. ; Otálora, Sebastián ; Müller, Hen- ning ; González, Fabio A.: Multimodal Latent Semantic Alignment for Automated Prostate Tissue Classification and Retrieval. In: Martel, Anne L. (Hrsg.) ; Abol- maesumi, Purang (Hrsg.) ; Stoyanov, Danail (Hrsg.) ; Mateus, Diana (Hrsg.) ; Zuluaga, Maria A. (Hrsg.) ; Zhou, S. K. (Hrsg.) ; Racoceanu, Daniel (Hrsg.) ; Joskowicz, Leo (Hrsg.): Medical Image Computing and Computer Assisted Inter- vention – MICCAI 2020. Cham : Springer International Publishing, 2020. – ISBN 978–3–030–59722–1, S. 572–581spa
dc.relation.referencesLara, Juan S. ; Contreras O, Victor H. ; Otálora, Sebastián ; Müller, Hen- ning ; González, Fabio A.: Multimodal Latent Semantic Alignment for Automated Prostate Tissue Classification and Retrieval. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioin- formatics) Bd. 12265 LNCS, 2020. – ISBN 9783030597214, S. 572–581spa
dc.relation.referencesLee, Jimmy A. ; Liu, Peng ; Cheng, Jun ; Fu, Huazhu: A Deep Step Pattern Rep- resentation for Multimodal Retinal Image Registration. In: The IEEE International Conference on Computer Vision (ICCV) (2019), S. 5077–5086spa
dc.relation.referencesLee, Ki S. ; Jung, Seok K. ; Ryu, Jae J. ; Shin, Sang W. ; Choi, Jinwook: Evaluation of transfer learning with deep convolutional neural networks for screening osteoporosis in dental panoramic radiographs. In: Journal of Clinical Medicine 9 (2020), Nr. 2. – ISSN 20770383spa
dc.relation.referencesLeibig, Christian ; Allken, Vaneeda ; Ayhan, Murat S. ; Berens, Philipp ; Wahl, Siegfried: Leveraging uncertainty information from deep neural networks for disease detection. In: Scientific Reports 7 (2017), Nr. 1, S. 1–14. – ISSN 20452322spa
dc.relation.referencesLeibig, Christian ; Allken, Vaneeda ; Ayhan, Murat S. ; Berens, Philipp ; Wahl, Siegfried: Leveraging uncertainty information from deep neural networks for disease detection. In: Scientific Reports 7 (2017), Nr. 1, S. 1–14spa
dc.relation.referencesLi, Daoliang ; Miao, Zheng ; Peng, Fang ; Wang, Liang ; Hao, Yinfeng ; Wang, Zhenhu ; Chen, Tao ; Li, Hui ; Zheng, Yingying: Automatic counting methods in aquaculture: A review. In: Journal of the World Aquaculture Society 52 (2021), Nr. 2, S. 269–283spa
dc.relation.referencesLi, Feng ; Liu, Zheng ; Chen, Hua ; Jiang, Minshan ; Zhang, Xuedian ; Wu, Zhizheng: Automatic detection of diabetic retinopathy in retinal fundus photographs based on deep learning algorithm. In: Translational Vision Science and Technology 8 (2019), Nr. 6. – ISSN 21642591spa
dc.relation.referencesLi, Hongming ; Habes, Mohamad ; Fan, Yong: Deep Ordinal Ranking for Multi- Category Diagnosis of Alzheimer’s Disease using Hippocampal MRI data. In: arXiv (2017), sepspa
dc.relation.referencesLi, Yuchun ; Huang, Mengxing ; Zhang, Yu ; Chen, Jing ; Xu, Haixia ; Wang, Gang ; Feng, Wenlong: Automated Gleason Grading and Gleason Pattern Region Segmentation Based on Deep Learning for Pathological Images of Prostate Cancer. In: IEEE Access 8 (2020), S. 117714–117725. – ISSN 21693536spa
dc.relation.referencesLim, G. ; Bellemo, V. ; Xie, Y. [u. a.]: Different fundus imaging modalities and technical factors in AI screening for diabetic retinopathy: a review. In: Eye and Vision 7 (2020), S. 21spa
dc.relation.referencesLim, Zhan W. ; Lee, Mong L. ; Hsu, Wynne ; Wong, Tien Y.: Building Trust in Deep Learning System towards Automated Disease Detection. In: The Thirty-First AAAI Conference on Innovative Applications of Artificial Intelligence (2018), S. 9516–9521spa
dc.relation.referencesLiu, Xiaofeng: Ordinal Regression with Neuron Stick-breaking for Medical Diagnosis. 2018. – Forschungsbericht. – 0–0 Sspa
dc.relation.referencesLucas, Marit ; Jansen, Ilaria ; Savci-Heijink, C. D. ; Meijer, Sybren L. ; de Boer, Onno J. ; van Leeuwen, Ton G. ; de Bruin, Daniel M. ; Marquering, Henk A.: Deep learning for automatic Gleason pattern classification for grade group determination of prostate biopsies. In: Virchows Archiv 475 (2019), Nr. 1, S. 77–83. – ISSN 14322307spa
dc.relation.referencesMa, Mengmeng ; Ren, Jian ; Zhao, Long ; Testuggine, Davide ; Peng, Xi: Are Multimodal Transformers Robust to Missing Modality? (2022), S. 18177–18186spa
dc.relation.referencesMa, Mengmeng ; Ren, Jian ; Zhao, Long ; Tulyakov, Sergey ; Wu, Cathy ; Peng, Xi: SMIL: Multimodal Learning with Severely Missing Modality. In: 35th AAAI Conference on Artificial Intelligence, AAAI 2021 3B (2021), S. 2302–2310. ISBN 9781713835974spa
dc.relation.referencesManjula Sri, K.M.M. R.: Novel image pro-cessing techniquesto detect lesion us-ing lab view R. In: India Conference (INDICON), 2011 Annual IEEE (2011)spa
dc.relation.referencesMcgurk, Harry ; Macdonald, John: Hearing lips and seeing voices. In: Nature 264 (1976), Nr. 5588, S. 746–748. – ISSN 00280836spa
dc.relation.referencesMenze, Bjoern ; Reyes, Mauricio ; Jakab, Andras ; Gerstner, Elisabeth ; Fara- hani, Keyvan ; Menze, Bjoern ; Reyes, Mauricio ; Jakab, Andras ; Gerstner, Elisabeth ; Kirby, Justin: Brain Tumor Image Segmentation ( BRATS ) 2013 To cite this version : NCI-MICCAI Challenge on Multimodal Brain Tumor Segmentation. (2013)spa
dc.relation.referencesMINSALUD: ANÁLISIS DE SITUACIÓN DE SALUD VISUAL EN COLOMBIA 2016. (2015). – ISBN 9780511993398spa
dc.relation.referencesMiri, Mohammad S. ; Abràmoff, Michael D. ; Lee, Kyungmoo ; Niemeijer, Mein- dert ; Wang, Jui K. ; Kwon, Young H. ; Garvin, Mona K.: Multimodal Segmen- tation of Optic Disc and Cup from SD-OCT and Color Fundus Photographs Using a Machine-Learning Graph-Based Approach. In: IEEE Transactions on Medical Imaging 34 (2015), Nr. 9, S. 1854–1866. – ISSN 1558254Xspa
dc.relation.referencesMoccia, Sara ; Wirkert, Sebastian J. ; Kenngott, Hannes ; Vemuri, Anant S. ; Apitz, Martin ; Mayer, Benjamin ; De Momi, Elena ; Mattos, Leonardo S. ; Maier-Hein, Lena: Uncertainty-aware organ classification for surgical data science applications in laparoscopy. In: IEEE Transactions on Biomedical Engineering 65 (2018), Nr. 11, S. 2649–2659. – ISSN 15582531spa
dc.relation.referencesMookiah, Muthu Rama K. ; Acharya, U. R. ; Chua, Chua K. ; Min, Lim C. ; Ng, E. Y. ; Mushrif, Milind M. ; Laude, Augustinus: Automated detection of optic disk in retinal fundus images using intuitionistic fuzzy histon segmentation. In: Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 227 (2013), Nr. 1, S. 37–49. – ISSN 09544119spa
dc.relation.referencesMorgan, Jessica I. ; Chen, Min ; Huang, Andrew M. ; Jiang, Yu Y. ; Cooper, Robert F.: Cone identification in choroideremia: Repeatability, reliability, and au- tomation through use of a convolutional neural network. In: Translational Vision Science and Technology 9 (2020), Nr. 2, S. 1–13. – ISSN 21642591spa
dc.relation.referencesMüller, Henning ; Ünay, Devrim: Medical Decision Support Using Increasingly Large Multimodal Data Sets. In: Big Data Analytics for Large-Scale Multimedia Search (2019), S. 317–336spa
dc.relation.referencesNagpal, Kunal ; Foote, Davis ; Liu, Yun ; Chen, Po Hsuan C. ; Wulczyn, Ellery ; Tan, Fraser ; Olson, Niels ; Smith, Jenny L. ; Mohtashamian, Arash ; Wren, James H. ; Corrado, Greg S. ; MacDonald, Robert ; Peng, Lily H. ; Amin, Mahul B. ; Evans, Andrew J. ; Sangoi, Ankur R. ; Mermel, Craig H. ; Hipp, Jason D. ; Stumpe, Martin C.: Development and validation of a deep learning algorithm for improving Gleason scoring of prostate cancer. In: npj Digital Medicine 2 (2019), dec, Nr. 1, S. 1–10. – ISSN 23986352spa
dc.relation.referencesNakatake, Shunji ; Murakami, Yusuke ; Funatsu, Jun ; Koyanagi, Yoshito ; Akiyama, Masato ; Momozawa, Yukihide ; Ishibashi, Tatsuro ; Sonoda, Koh H. ; Ikeda, Yasuhiro: Early detection of cone photoreceptor cell loss in retinitis pig- mentosa using adaptive optics scanning laser ophthalmoscopy. In: Graefe’s archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie 257 (2019), Nr. 6, S. 1169–1181. – ISSN 1435702Xspa
dc.relation.referencesNie, Dong ; Wang, Li ; Gao, Yaozong ; Shen, Dinggang: FULLY CONVOLU- TIONAL NETWORKS FOR MULTI-MODALITY ISOINTENSE INFANT BRAIN IMAGE SEGMENTATION Dong. In: Proc IEEE Int Symp Biomed Imaging (2016)spa
dc.relation.referencesNiu, Zhenxing ; Zhou, Mo ; Wang, Le ; Gao, Xinbo ; Hua, Gang: Ordinal regression with multiple output CNN for age estimation. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Bd. 2016-Decem, IEEE Computer Society, dec 2016. – ISBN 9781467388504, S. 4920–4928spa
dc.relation.referencesOtálora, Sebastian ; Perdomo, Oscar ; González, Fabio ; Müller, Henning: Training Deep Convolutional Neural Networks with Active Learning for Exudate Clas- sification in Eye Fundus Images. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) Bd. 10552 LNCS, 2017. – ISBN 9783319675336, S. 146–154spa
dc.relation.referencesPerdomo, Oscar. ; Gonzalez, Fabio.: A Systematic Review of Deep Learning Methods Applied to Ocular Images. In: Ciencia e Ingenieria Neogranadina 30 (2019), Nr. 1. ISBN 0000000314251spa
dc.relation.referencesPerdomo, Oscar ; Otalora, Sebastian ; Gonzalez, Fabio A. ; Meriaudeau, Fabrice ; Muller, Henning: OCT-NET: A convolutional network for automatic clas- sification of normal and diabetic macular edema using sd-oct volumes. In: Proceedings - International Symposium on Biomedical Imaging 2018-April (2018), Nr. Isbi, S. 1423–1426. – ISBN 9781538636367spa
dc.relation.referencesPerdomo Charry, Oscar J. ; Arevalo, John ; González, Fabio A.: Combin- ing morphometric features and convolutional networks fusion for glaucoma diagnosis. (2017), Nr. November, S. 57. – ISBN 9781510616332spa
dc.relation.referencesPinz, A. ; Bernogger, S. ; Datlinger, P. ; Kruger, A.: Mapping the human retina. In: IEEE Transactions on Medical Imaging 17 (1998), Aug, Nr. 4, S. 606–619. – ISSN 1558–254Xspa
dc.relation.referencesPiotter, Elena ; McClements, Michelle E. ; Maclaren, Robert E.: Therapy approaches for stargardt disease. In: Biomolecules 11 (2021), Nr. 8, S. 1–28. – ISSN 2218273Xspa
dc.relation.referencesPolikar, R. ; Tilley, C. ; Hillis, B. ; Clark, C. M.: Multimodal EEG, MRI and PET data fusion for Alzheimer’s disease diagnosis. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, 2010. – ISSN 1558–4615, S. 6058–6061spa
dc.relation.referencesRahimi, Ali ; Recht, Ben: Random features for large-scale kernel machines. In: Advances in neural information . . . (2007), Nr. 1, S. 1–8. – ISBN 160560352Xspa
dc.relation.referencesRahimi, Ali ; Recht, Benjamin: Random features for large-scale kernel machines. In: Advances in Neural Information Processing Systems 20 - Proceedings of the 2007 Conference, 2009. – ISBN 160560352Xspa
dc.relation.referencesRamirez, Geovany A. ; Baltrušaitis, Tadas ; Morency, Louis-Philippe: Modeling Latent Discriminative Dynamic of Multi-dimensional Affective Signals. In: D’Mello, Sidney (Hrsg.) ; Graesser, Arthur (Hrsg.) ; Schuller, Björn (Hrsg.) ; Martin, Jean-Claude (Hrsg.): Affective Computing and Intelligent Interaction. Berlin, Heidel- berg : Springer Berlin Heidelberg, 2011. – ISBN 978–3–642–24571–8, S. 396–406spa
dc.relation.referencesRasmussen, Carl E. ; Williams, Christopher K. I.: Gaussian processes for machine learning. The MIT Press, 2006. – ISBN 026218253Xspa
dc.relation.referencesRen, Jian ; Hacihaliloglu, Ilker ; Singer, Eric A. ; Foran, David J. ; Qi, Xin: Unsupervised Domain Adaptation for Classification of Histopathology Whole-Slide Images. In: Frontiers in Bioengineering and Biotechnology 7 (2019), Nr. May, S. 1–12. – ISSN 2296–4185spa
dc.relation.referencesRitter, N. ; Owens, R. ; Cooper, J. ; Eikelboom, R. H. ; Van Saarloos, P. P.: Registration of stereo and temporal images of the retina. In: IEEE Transactions on Medical Imaging 18 (1999), May, Nr. 5, S. 404–418. – ISSN 1558–254Xspa
dc.relation.referencesRonneberger, Olaf ; Fischer, Philipp ; Brox, Thomas: U-net: Convolutional networks for biomedical image segmentation. In: Lecture Notes in Computer Sci- ence (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 9351 (2015), S. 234–241. – ISBN 9783319245737spa
dc.relation.referencesRoorda, Austin ; Romero-Borja, Fernando ; III, William J. D. ; Queener, Hope ; Hebert, Thomas J. ; Campbell, Melanie C.: Adaptive optics scanning laser ophthalmoscopy. In: Opt. Express 10 (2002), May, Nr. 9, S. 405–412spa
dc.relation.referencesRussakovsky, Olga ; Deng, Jia ; Su, Hao ; Krause, Jonathan ; Satheesh, Sanjeev ; Ma, Sean ; Huang, Zhiheng ; Karpathy, Andrej ; Khosla, Aditya ; Bernstein, Michael ; Berg, Alexander C. ; Fei-Fei, Li: ImageNet Large Scale Visual Recognition Challenge. In: International Journal of Computer Vision (IJCV) 115 (2015), Nr. 3, S. 211–252spa
dc.relation.referencesSahran, Shahnorbanun ; Albashish, Dheeb ; Abdullah, Azizi ; Shukor, Nor- dashima A. ; Hayati Md Pauzi, Suria: Absolute cosine-based SVM-RFE feature selection method for prostate histopathological grading. In: Artificial Intelligence in Medicine 87 (2018), S. 78–90. – ISSN 18732860spa
dc.relation.referencesSalam, Anum A. ; Khalil, Tehmina ; Akram, M. U. ; Jameel, Amina ; Basit, Imran: Automated detection of glaucoma using structural and non structural features. In: SpringerPlus 5 (2016), Nr. 1. – ISSN 21931801spa
dc.relation.referencesSalam, Anum A. ; Akram, M. U. ; Wazir, Kamran ; Anwar, Syed M. ; Majid, Muhammad: Autonomous Glaucoma detection from fundus image using cup to disc ratio and hybrid features. In: 2015 IEEE International Symposium on Signal Pro- cessing and Information Technology, ISSPIT 2015 (2016), Nr. c, S. 370–374. ISBN 9781509004805spa
dc.relation.referencesSchlegl, Thomas ; Waldstein, Sebastian ; Vogl, Wolf-Dieter ; Schmidt- Erfurth, Ursula ; Langs, Georg: Predicting Semantic Descriptions from Medical Images with Convolutional Neural Networks. In: Information Processing in Medical Imaging 9123 (2015), Nr. Chapter 58, S. 733–745. – ISBN 978–3–319–19991–7spa
dc.relation.referencesSchmidhuber, Jürgen: Deep Learning in neural networks: An overview. In: Neural Networks 61 (2015), S. 85–117. – ISBN 0893–6080spa
dc.relation.referencesShah, Mital ; Roomans Ledo, Ana ; Rittscher, Jens: Automated classification of normal and Stargardt disease optical coherence tomography images using deep learn- ing. In: Acta Ophthalmologica 98 (2020), Nr. 6, S. e715–e721spa
dc.relation.referencesShawe-Taylor, John ; Cristianini, Nello: Kernel Methods for Pattern Analysis. New York, New York, USA : Cambridge University Press, 2004. – ISBN 9780521813976spa
dc.relation.referencesSingh, Amitojdeep ; Sengupta, Sourya ; Lakshminarayanan, Vasudevan: Ex- plainable deep learning models in medical image analysis. In: Journal of Imaging 6 (2020), Nr. 6, S. 1–19. – ISSN 2313433Xspa
dc.relation.referencesSociety, American C. Key Statistics for Prostate Cancer. 2023spa
dc.relation.referencesStolte, Skylar ; Fang, Ruogu: A survey on medical image analysis in diabetic retinopathy. In: Medical Image Analysis 64 (2020), S. 101742. – ISSN 13618423spa
dc.relation.referencesStröm, Peter ; Kartasalo, Kimmo ; Olsson, Henrik ; Solorzano, Leslie ; De- lahunt, Brett ; Berney, Daniel M. ; Bostwick, David G. ; Evans, Andrew J. ; Grignon, David J. ; Humphrey, Peter A. ; Iczkowski, Kenneth A. ; Kench, James G. ; Kristiansen, Glen ; van der Kwast, Theodorus H. ; Leite, Katia R. ; McKenney, Jesse K. ; Oxley, Jon ; Pan, Chin C. ; Samaratunga, Hemamali ; Srigley, John R. ; Takahashi, Hiroyuki ; Tsuzuki, Toyonori ; Varma, Mu- rali ; Zhou, Ming ; Lindberg, Johan ; Lindskog, Cecilia ; Ruusuvuori, Pekka ; Wählby, Carolina ; Grönberg, Henrik ; Rantalainen, Mattias ; Egevad, Lars ; Eklund, Martin: Artificial intelligence for diagnosis and grading of prostate cancer in biopsies: a population-based, diagnostic study. In: The Lancet Oncology 21 (2020), Nr. 2, S. 222–232. – ISSN 14745488spa
dc.relation.referencesSummerfield, Quentin: L ipreading and audio-visual speech perception. In: Philo- sophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 335 (1992), Nr. 1273, S. 71–78spa
dc.relation.referencesSun, Yunlian ; Tang, Jinhui ; Sun, Zhenan ; Tistarelli, Massimo: Facial Age and Expression Synthesis Using Ordinal Ranking Adversarial Networks. In: IEEE Transactions on Information Forensics and Security 15 (2020), S. 2960–2972. – ISSN 15566021spa
dc.relation.referencesSzegedy, Christian ; Vanhoucke, Vincent ; Ioffe, Sergey ; Shlens, Jon ; Wojna, Zbigniew: Rethinking the Inception Architecture for Computer Vision. In: Pro- ceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2016-December (2016), S. 2818–2826. – ISBN 9781467388504spa
dc.relation.referencesTang, Yehui ; Yan, Junchi ; Hu, Guoqiang ; Zhang, Baohua ; Zhou, Jinzan: Recent progress and perspectives on quantum computing for finance. In: Service Oriented Computing and Applications 16 (2022), Nr. 4, S. 227–229spa
dc.relation.referencesTeng, Q. ; Liu, Z. ; Song, Y. ; Han, K. ; Lu, Y.: A survey on the interpretability of deep learning in medical diagnosis. In: Multimed Syst 28 (2022), Nr. 6, S. 2335–2355spa
dc.relation.referencesThreatt, Jennifer ; Williamson, Jennifer F. ; Huynh, Kyle ; Davis, Richard M.: Ocular disease, knowledge and technology applications in patients with diabetes. In: American Journal of the Medical Sciences 345 (2013), Nr. 4, S. 266–270. – ISSN 00029629spa
dc.relation.referencesTian, Li ; Ma, Liyan ; Wen, Zhijie ; Xie, Shaorong ; Xu, Yupeng: Learning Dis- criminative Representations for Fine-Grained Diabetic Retinopathy Grading. (2020)spa
dc.relation.referencesToledo-Cortés, Santiago ; De La Pava, Melissa ; Perdómo, Oscar ; González, Fabio A.: Hybrid Deep Learning Gaussian Process for Diabetic Retinopathy Diagnosis and Uncertainty Quantification. In: Ophthalmic Medical Image Analysis. OMIA 2020. Lecture Notes in Computer Science, vol 12069. Springer, Cham., 2020, S. 206–215spa
dc.relation.referencesToledo-Cortés, Santiago: AOSLO-CNN Diagnosis and Counting. https:// github.com/stoledoc/AOSLO-CNN_Diagnosis_Counting. 2022. – [Online; accessed 01-Mar-2022]spa
dc.relation.referencesToledo-Cortés, Santiago: DQOR Code for Medical Image Grading with Deep Quan- tum Ordinal Regression. https://github.com/stoledoc/DQOR. 2022. – [Online; ac- cessed 01-Mar-2022]spa
dc.relation.referencesToledo-Cortés, Santiago ; Dubis, Adam M. ; González, Fabio A. ; Müller, Henning: Deep Density Estimation for Cone Counting and Diagnosis of Genetic Eye Diseases From Adaptive Optics Scanning Light Ophthalmoscope Images. In: Transla- tional Vision Science Technology 12 (2023), 11, Nr. 11, S. 25–25. – ISSN 2164–2591spa
dc.relation.referencesToledo-Cortés, Santiago ; Useche, Diego H. ; Müller, Henning ; González, Fabio A.: Grading diabetic retinopathy and prostate cancer diagnostic images with deep quantum ordinal regression. In: Computers in Biology and Medicine 145 (2022), S. 105472. – ISSN 0010–4825spa
dc.relation.referencesTolkach, Yuri ; Dohmgörgen, Tilmann ; Toma, Marieta ; Kristiansen, Glen: High-accuracy prostate cancer pathology using deep learning. In: Nature Machine Intelligence 2 (2020), jul, Nr. 7, S. 411–418. – ISSN 25225839spa
dc.relation.referencesIn: Tsang, Stephen H. ; Sharma, Tarun: Stargardt Disease. Cham : Springer International Publishing, 2018, S. 139–151. – ISBN 978–3–319–95046–4spa
dc.relation.referencesUppamma, P. ; Bhattacharya, S.: Deep Learning and Medical Image Process- ing Techniques for Diabetic Retinopathy: A Survey of Applications, Challenges, and Future Trends. In: J Healthc Eng 2023 (2023), S. 2728719spa
dc.relation.referencesUrban, G. ; Bendszus, M. ; Hamprecht, Fred A. ; Kleesiek, J.: Multi-modal Brain Tumor Segmentation using Deep Convolutional NeuralNetworks. In: MIC- CAI BraTS (Brain Tumor Segmentation) Challenge. Proceedings, winningcontribution, 2014, S. 31–35spa
dc.relation.referencesVaghefi, Ehsan ; Hill, Sophie ; Kersten, Hannah M. ; Squirrell, David: Mul- timodal Retinal Image Analysis via Deep Learning for the Diagnosis of Intermediate Dry Age-Related Macular Degeneration : A Feasibility Study. 2020 (2020)spa
dc.relation.referencesVaicenavicius, Juozas ; Widmann, David ; Andersson, Carl ; Lindsten, Fredrik ; Roll, Jacob ; Schön, Thomas: Evaluating model calibration in classification. In: Chaudhuri, Kamalika (Hrsg.) ; Sugiyama, Masashi (Hrsg.): Proceedings of Machine Learning Research Bd. 89, PMLR, 16–18 Apr 2019, S. 3459–3467spa
dc.relation.referencesVan Grinsven, Mark J. ; Buitendijk, Gabriëlle H.S. ; Brussee, Corina ; Van Ginneken, Bram ; Hoyng, Carel B. ; Theelen, Thomas ; Klaver, Caroline C. ; Sánchez, Clara I.: Automatic identification of reticular pseudodrusen using multi- modal retinal image analysis. In: Investigative Ophthalmology and Visual Science 56 (2015), Nr. 1, S. 633–639. – ISSN 15525783spa
dc.relation.referencesVanegas, Jorge A.: Large-scale Non-linear Multimodal Semantic Embedding Large- scale Non-linear Multimodal Semantic Embedding, Dissertation, 2017spa
dc.relation.referencesVoets, Mike ; Møllersen, Kajsa ; Bongo, Lars A.: Reproduction study using public data of: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. In: PLoS ONE 14 (2019), Nr. 6, S. 1–11spa
dc.relation.referencesVoets, Mike ; Møllersen, Kajsa ; Bongo, Lars A.: Reproduction study using public data of: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. In: PLoS ONE 14 (2019), Nr. 6, S. 1–11. – ISBN 1111111111spa
dc.relation.referencesWang, Daihou ; Foran, David J. ; Ren, Jian ; Zhong, Hua ; Kim, Isaac Y. ; Qi, Xin: Exploring automatic prostate histopathology image gleason grading via local structure modeling. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2015-Novem (2015), S. 2649–2652. – ISBN 9781424492718spa
dc.relation.referencesWang, Weisen ; Xu, Zhiyan ; Yu, Weihong ; Zhao, Jianchun ; Yang, Jingyuan ; He, Feng ; Yang, Zhikun ; Chen, Di ; Ding, Dayong ; Chen, Youxin ; Li, Xirong: Two-Stream CNN with Loose Pair Training for Multi-modal AMD Categorization. (2019), S. 156–164. – ISBN 9783030322380spa
dc.relation.referencesWells, John A. ; Glassman, Adam R. ; Ayala, Allison R. ; Jampol, Lee M. ; Bressler, Neil M. ; Bressler, Susan B. ; Brucker, Alexander J. ; Ferris, Fred- erick L. ; Hampton, G. R. ; Jhaveri, Chirag ; Melia, Michele ; Beck, Roy W.: Aflibercept, Bevacizumab, or Ranibizumab for Diabetic Macular Edema Two-Year Re- sults from a Comparative Effectiveness Randomized Clinical Trial. In: Ophthalmology 123 (2016), Nr. 6, S. 1351–1359spa
dc.relation.referencesWilkinson, C. P. ; Ferris, Frederick L. ; Klein, Ronald E. ; Lee, Paul P. ; Agardh, Carl D. ; Davis, Matthew ; Dills, Diana ; Kampik, Anselm ; Pararajasegaram, R. ; Verdaguer, Juan T. ; Lum, Flora: Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. In: Ophthalmology 110 (2003), Nr. 9, S. 1677–1682spa
dc.relation.referencesWilson, Andrew ; Nickisch, Hannes: Kernel Interpolation for Scalable Structured Gaussian Processes (KISS-GP). In: Proceedings of the 32nd International Conference on Machine Learning, JMLR: W&CP. Lille, France, 2015spa
dc.relation.referencesWorld Health Organisation: World report on vision. 2019 ( 14). – Forschungs- bericht. – 180–235 S. – ISBN 9789241516570spa
dc.relation.referencesWynne, Niamh ; Carroll, Joseph ; Duncan, Jacque L.: Promises and pitfalls of evaluating photoreceptor-based retinal disease with adaptive optics scanning light ophthalmoscopy (AOSLO). In: Progress in Retinal and Eye Research (2021), Nr. October, S. 100920. – ISSN 18731635spa
dc.relation.referencesXie, Weidi ; Noble, J. A. ; Zisserman, Andrew: Microscopy cell counting and de- tection with fully convolutional regression networks. In: Computer Methods in Biome- chanics and Biomedical Engineering: Imaging and Visualization 6 (2018), Nr. 3, S. 283–292. – ISSN 21681171spa
dc.relation.referencesXin, Qiu ; Elliot, Meyerson ; Miikkulainen, Risto: Quantifying Point-Prediction Uncertainty in Neural Networks via Residual Estimation with an I/O Kernel. In: ICLR 2020., 2019, S. 1–17. Addis Ababa, Ethiopiaspa
dc.relation.referencesYang, Jialiang ; Ju, Jie ; Guo, Lei ; Ji, Binbin ; Shi, Shufang ; Yang, Zixuan ; Gao, Songlin ; Yuan, Xu ; Tian, Geng ; Liang, Yuebin ; Yuan, Peng: Prediction of HER2-positive breast cancer recurrence and metastasis risk from histopathological images and clinical information via multimodal deep learning. In: Computational and Structural Biotechnology Journal 20 (2022), S. 333–342. – ISSN 2001–0370spa
dc.relation.referencesYap, Jordan ; Yolland, William ; Tschandl, Philipp: Multimodal skin lesion classification using deep learning. In: Experimental Dermatology 27 (2018), Nr. 11, S. 1261–1267. – ISSN 16000625spa
dc.relation.referencesYau, Joanne W. ; Rogers, Sophie L. ; Kawasaki, Rho ; Lamoureux, Ecosse L. ; Kowalski, Jonathan W. ; Bek, Toke ; Chen, Shih J. ; Dekker, Jacqueline M. ; Fletcher, Astrid ; Grauslund, Jakob ; Haffner, Steven ; Hamman, Richard F. ; Ikram, M. K. ; Kayama, Takamasa ; Klein, Barbara E. ; Klein, Ronald ; Krish- naiah, Sannapaneni ; Mayurasakorn, Korapat ; O’Hare, Joseph P. ; Orchard, Trevor J. ; Porta, Massimo ; Rema, Mohan ; Roy, Monique S. ; Sharma, Tarun ; Shaw, Jonathan ; Taylor, Hugh ; Tielsch, James M. ; Varma, Rohit ; Wang, Jie J. ; Wang, Ningli ; West, Sheila ; Zu, Liang ; Yasuda, Miho ; Zhang, Xinzhi ; Mitchell, Paul ; Wong, Tien Y.: Global prevalence and major risk factors of diabetic retinopathy. In: Diabetes Care 35 (2012), Nr. 3, S. 556–564spa
dc.relation.referencesYoo, Tae K. ; Choi, Joon Y. ; Seo, Jeong G. ; Ramasubramanian, Bhoopalan ; Selvaperumal, Sundaramoorthy ; Kim, Deok W.: The possibility of the combination of OCT and fundus images for improving the diagnostic accuracy of deep learning for age-related macular degeneration: a preliminary experiment. In: Medical and Biological Engineering and Computing 57 (2019), Nr. 3, S. 677–687. – ISSN 17410444spa
dc.relation.referencesZadeh, Amir ; Chen, Minghai ; Cambria, Erik ; Poria, Soujanya ; Morency, Louis P.: Tensor fusion network for multimodal sentiment analysis. In: EMNLP 2017 - Conference on Empirical Methods in Natural Language Processing, Proceedings (2017), S. 1103–1114. ISBN 9781945626838spa
dc.relation.referencesZana, F. ; Klein, J. C.: A multimodal registration algorithm of eye fundus images using vessels detection and Hough transform. In: IEEE Transactions on Medical Imaging 18 (1999), May, Nr. 5, S. 419–428. – ISSN 1558–254Xspa
dc.relation.referencesZeng, Xianglong ; Chen, Haiquan ; Luo, Yuan ; Ye, Wenbin: Automated diabetic retinopathy detection based on binocular siamese-like convolutional neural network. In: IEEE Access 7 (2019), Nr. c, S. 30744–30753spa
dc.relation.referencesZhang, Daoqiang ; Wang, Yaping ; Zhou, Luping ; Yuan, Hong: Multimodal Classification of Alzheimer’s Disease and Mild Cognitive Impairment. In: Neuroimage (2011). – ISBN 6176321972spa
dc.relation.referencesZhang, Yao ; Ni, Qiang: Recent advances in quantum machine learning. In: Quantum Engineering 2 (2020), Nr. 1, S. e34spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadoresspa
dc.subject.ddc510 - Matemáticas::519 - Probabilidades y matemáticas aplicadasspa
dc.subject.proposalHistopathologyeng
dc.subject.proposalOphthalmologyeng
dc.subject.proposalHistopatologı́aspa
dc.subject.proposalMétodos de Kernelspa
dc.subject.proposalOftalmologı́aspa
dc.subject.proposalDeep learningeng
dc.subject.proposalKernel methodseng
dc.subject.proposalMedical image analysiseng
dc.subject.proposalMultimodal learningeng
dc.subject.proposalOrdinal regressioneng
dc.subject.proposalProbabilistic modelseng
dc.subject.proposalQuantum machine learningeng
dc.subject.proposalAprendizaje profundospa
dc.subject.proposalAnálisis de imágenes médicaseng
dc.subject.proposalAprendizaje de máquina cuánticospa
dc.subject.proposalAprendizaje multimodalspa
dc.subject.proposalModelos probabilı́sticosspa
dc.subject.proposalRegresión ordinalspa
dc.subject.unescoTeoría de las probabilidadesspa
dc.subject.unescoProbability theoryeng
dc.subject.unescoInteligencia artificialspa
dc.subject.unescoArtificial intelligenceeng
dc.subject.unescoCiencias médicasspa
dc.subject.unescoMedical scienceseng
dc.titleRegression and multimodal learning to aid diagnosis in ophthalmology and histopathologyeng
dc.title.translatedRegresión y aprendizaje multimodal como ayuda al diagnóstico en oftalmologı́a e histopatologı́aspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentMedios de comunicaciónspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032441097.2023.pdf
Tamaño:
9.4 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería - Sistemas y Computación

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: