Diversidad criptica, sistemática y biogeografía histórica del genero Manerebia Staudinger, 1897 (Satyrinae: Pronophilina) en el neotrópico

dc.contributor.advisorPyrcz, Tomasz W.
dc.contributor.advisorArmenteras Pascual, Dolors
dc.contributor.authorMahecha Jiménez, Oscar Javier
dc.contributor.researchgroupEcología del Paisaje y Modelación de Ecosistemasspa
dc.date.accessioned2022-08-04T19:39:43Z
dc.date.available2022-08-04T19:39:43Z
dc.date.issued2021-11-26
dc.descriptionilustraciones, graficasspa
dc.description.abstractLas mariposas Pronophilina Reuter, es una de las subtribus de la tribu Satyrini, son reconocidas como uno de los grupos de mariposas más diversificados en ambientes montañosos y presentan altos niveles de endemismo. Sin embargo, la determinación taxonómica precisa de las especies en muchos géneros de Pronophilina se ha visto afectada por la diversidad críptica y taxones taxonómicamente confusos como es el caso del género Manerebia Staudinger. Este género es un grupo de mariposas andinas, que se distribuye desde el norte de Argentina hasta Venezuela, y presenta una alta diversidad críptica y una variación fenotípica alta (polimorfismos). Se han descrito varias especies nuevas durante las últimas décadas, y otras aún esperan ser descritas. No obstante, la ubicación de Manerebia dentro de la subtribu Pronophilina debe considerarse provisional porque no hay un análisis filogenético y su monofilia aún no se ha evaluado. Además, aún se desconocen las relaciones filogenéticas de las especies dentro del género. Aunque, el género es de interés desde las perspectivas ecológica, evolutiva, biogeográfica y de conservación, pero como base necesaria para tales estudios se necesita un conocimiento sólido que ayude a comprender e inferir los patrones filogenéticos y biogeográficos sobre la historia evolutiva del género Manerebia en el Neotrópico. Por lo tanto, evaluamos la monofilia del género Manerebia, determinamos su posición taxonómica y las relaciones filogenéticas dentro de la tribu Satyrini, y proporcionamos una mejor comprensión de las relaciones a nivel de subtribu dentro de Satyrini. Encontramos a Manerebia como un grupo monofilético en Pronophilina y aclaramos sus relaciones filogenéticas. Descubrimos que el uso de un muestreo taxonómico más grande puede ayudar a mejorar los problemas al usar genes individuales y permite construir relaciones sistemáticas más sólidas. Con base en nuestros análisis, encontramos 48 especies distintas de nuestras 24 especies nominales muestreadas, de las cuales 14 son especies nuevas. Por lo tanto, de acuerdo con nuestra propuesta sistemática, el género Manerebia comprendería 58 especies nominales, pero por el momento algunas permanecen sin describir. Los análisis filogenéticos, junto con los métodos de delimitación de especies y los caracteres morfológicos, permitieron evaluar la alta diversidad críptica dentro del género. Además, nuestro análisis destaca la importancia de emplear el marco de taxonomía integradora para la detección de diversidad críptica en regiones como el Neotrópico. Generamos la primera hipótesis filogenética para el género Manerebia basada en datos de secuencias mitocondriales (COI) y utilizando herramientas filogenéticas. Se proponen nueve clados para el género Manerebia a lo largo de los Andes Central y del Norte, siendo el Norte de los Andes la zona con mayor riqueza para el género. Nuestros análisis nos permitieron aclarar algunas de las relaciones filogenéticas dentro del género a nivel de especie. Finalmente, nuestro estudio exploró la historia biogeográfica del género Manerebia estimando tiempos y tasas de diversificación de sus linajes y empleando un análisis biogeográfico parareconstruir su historia evolutiva. Nuestros resultados nos permitieron inferir que el tiempo de divergencia de Manerebia fue entre el Mioceno tardío y el Plioceno, y la mayoría de los linajes existentes ya habían aparecido en el Pleistoceno. El género tuvo un estallido temprano general en el límite del Mioceno tardío / Plioceno temprano seguido de una desaceleración debido a una disminución en la especiación a lo largo del Pleistoceno, y este patrón se refleja para todos los clados en Manerebia. Los eventos de dispersión fue posiblemente el proceso biogeográficos más común dentro del género, y nuestros resultados nos permiten confirmar el papel de la geomorfología andina en la evolución de la biodiversidad Neotropical. (Texto tomado de la fuente)spa
dc.description.abstractThe Pronophilina Reuter butterflies, one of the subtribes of the tribe Satyrini, are recognized as one of the most diversified groups of butterflies in mountain environments and present high levels of endemism. However, the accurate taxonomic determination of species in many genera of Pronophilina has been affected by the cryptic diversity and taxonomically confusing taxa as is the case of the genus Manerebia Staudinger. This genus is an Andean butterflies group, which is distributed from northern Argentina to Venezuela, and it presents a high cryptic diversity and a phenotypic variation (polymorphisms). Several new species have been described during the last few decades, and others still await description. Nevertheless, the placement of Manerebia within the subtribe Pronophilina is to be considered tentative because there isn't a phylogenetic analysis, and its monophyly is not evaluated yet. In addition, the species phylogenetic relationships within the genus are unknown yet. However, the genus is of interest from ecological, evolutionary, biogeographic, and conservation perspectives, but as a necessary base for such studies a robust knowledge is needed to help to understand and infer the phylogenetic and biogeographic patterns about the genus Manerebia evolutionary history in the Neotropic. Hence, we evaluated the monophyly of the genus Manerebia, determined its taxonomic position and phylogenetic relationships within the tribe Satyrini, and provided a better understanding of the at the subtribe level relationships within the Satyrini. We found Manerebia as a monophyletic group into Pronophilina and clarified its phylogenetic relationships. We found that using larger taxonomic sampling may help to improve the problems when using individual genes and it allows to build systematic relationships more robust. Based on our analyses we found 48 distinct species from our sampled 24 nominal species, where 14 are new species. Therefore, according to our systematic proposal, the genus Manerebia would comprise 58 nominal species, but for the moment some remain undescribed. The phylogenetic analyses, together with the species delimitation methods and the morphological characters, allowed us to evaluate the high cryptic diversity within the genus. In addition, our analysis highlights the importance of employe the integrative taxonomy framework for the detection of cryptic diversity in regions such as the Neotropics. We generated the first phylogenetic hypothesis for the genus Manerebia based on sequence data from mitochondrial (COI) using phylogenetic tools. Nine clades are proposed for the Manerebia along the Central and Northern Andes being the Northern Andes the zone with the most richness. Our analyses permitted us to clarify some of the phylogenetic relationships within the genus to species-level. Finally, our study explored the biogeographical history of the genus Manerebia estimating times and rates of diversification for its lineages and employing a biogeographical analysis in order to reconstruct its evolutionary history. Our results allowed us to infer that the divergence time of Manerebia was between the late Miocene and Pliocene, and most extant lineages had already appeared in the Pleistocene. The genus had an overall early burst in the late Miocene / early Pliocene boundary followed by deceleration due to a decrease in speciation along to Pleistocene, and this pattern is reflected for all clades in Manerebia. Dispersal events are possibly the most common process within the genus, and our results confirm the role of the Andean geomorphological inthe evolution of Neotropical biodiversity.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ciencias - Biologíaspa
dc.description.researchareaBiogeografiaspa
dc.description.sponsorshipThis thesis was supported by an Internal Research Grant of the Institute of Zoology and Biomedical Research of the Jagiellonian University, BW/IZ/ADD/2005, and by NCN grant Harmonia-10 2018/30/M/NZ8/00293 “Evolutionary biogeography and diversification of the predominantly Andean butterfly subtribe Pronophilina (Nymphalidae, Satyrinae) based on phylogenetic data generated using modern molecular methods”. Molecular analysis was partly carried out in the laboratory of the Nature Education Centre, Jagiellonian University, Kraków, Poland (CEPUJ). Finally, PROM Programme International Scholarship Exchange of Ph.D. Students and Academics. Polish National Agency for Academic Exchange-NAWA. Jagiellonian University, Krakow, Poland. Agreement number: PPI/PRO/2018/1/00001/U/001-2019spa
dc.format.extentxv, 212 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81785
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Biologíaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Biologíaspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAdams, M. J. 1985. Speciation in the Pronophiline Butterflies (Satyridae) of the Northern Andes. Journal of Research on the Lepidoptera, 1985, Supplement No.1: 33-49.spa
dc.relation.referencesAdams, M. J. 1986. Pronophiline butterflies (Satyridae) of the three Andean Cordilleras of Colombia. Zoological Journal of the Linnean Society, 87: 235-320.spa
dc.relation.referencesAdams, M. J., & G. I. Bernard. 1977. Pronophiline butterflies (Satyridae) of the Sierra Nevada de Santa Marta, Colombia. Systematic Entomology, 2: 263-281.spa
dc.relation.referencesAdams, M. J. 1979. Pronophiline butterflies (Satyridae) of the Serranía de Valledupar, Colombia-Venezuela border. Systematic Entomology, 4: 95-118.spa
dc.relation.referencesAdams, M. J. 1981. Pronophiline butterflies (Satyridae) of the Cordillera de Mérida, Venezuela. Zoological Journal of the Linnean Society, 71: 343-372.spa
dc.relation.referencesBeheregaray, LB & Caccone A. 2007.Cryptic biodiversity in a changing world. J. Biol. 6, 9. (doi:10.1186/jbiol60)spa
dc.relation.referencesBickford, D, Lohman DJ, Sodhi NS, Ng PK, Meier R, Winker K, Ingram KK, Das I. 2007. Cryptic species as a window on diversity and conservation.Trends Ecol. Evol. 22, 148–155. (doi:10.1016/j.tree. 2006.11.004)spa
dc.relation.referencesBremer K (1992) Ancestral areas: a cladistic reinterpretation of the centre oforigin concept. Systematic Biology, 41: 436–445.spa
dc.relation.referencesBrown, F. M. 1944. Notes on Ecuadorian butterflies. IV. The genus Penrosada, new (Lepidoptera, Satyridae). Annals of the Entomological Society of America, 37: 255-260.spa
dc.relation.referencesBueno, A & Llorente-Bousquets, J. 2000. Una visión histórica de la biogeografía dispersionista con críticas a sus fundamentos. CALDASIA, 22 (2).spa
dc.relation.referencesBurns, J. M., Janzen, D. H., Hajibabaei, M., Hallwachs, W., & Hebert, P. D. 2008.DNA barcodes and cryptic species of skipper butterflies in the genus Perichares in Area de Conservacion Guanacaste, Costa Rica. Proceedings of the National Academy of Sciences, 105(17), 6350-6355.spa
dc.relation.referencesButler, A. G. 1867. A monograph of the genus Euptychia, a numerous race of butterflies belonging to the family Satyridae; with descriptions of sixty species new to science, and notes to their affinities, etc. Proceedings of the Zoological Society of London, 1866(3): 484-504, pls. 39-40.spa
dc.relation.referencesCadena, D. 2003. Taxonomy of Cistothorus apolinari (Troglodytidae), species concepts and conservation of threatened birds of Colombia: a commentary. Ornitología Colombiana, 1: 71-75.spa
dc.relation.referencesCardoso Da Silva, J.; Cardoso De Sousa, M. & Castelleti, C. 2004. Areas of endemism for passerine birds in the Atlantic forest, South America. Global Ecology and Biogeography, 13, 85-92.spa
dc.relation.referencesChazot, N., Willmott, K. R., Condamine, F. L., De‐Silva, D. L., Freitas, A. V., Lamas, G., & Mallet, J. 2016. Into the Andes: multiple independent colonizations drive montane diversity in the Neotropical clearwing butterflies Godyridina. Molecular Ecology, 25(22), 5765-5784.spa
dc.relation.referencesCracraft, J. 1989. Speciation and its ontology: the empirical consequences of alternative species concepts for understanding patterns and processes of differentiation. Págs. 28-59 en: D. Otte & J. A. Endler (eds.). Speciation and its consequences.Sinauer Associates, Sunderland, Massachusetts.spa
dc.relation.referencesCracraft, J. 1991. Patterns of diversification within continental biota; hierarchical congruence among the areas of endemism in Australia. Australian Systematic Botany, 4, 211–227.spa
dc.relation.referencesCrisci, J.; Katinas, L. & Posadas, P. 2003. Historical Biogeography: an introduction. Lybrary of Congress Cataloging in Publication Data.249 p. U.S.A.spa
dc.relation.referencesCoyne, JA & Orr, HA. 2004. Speciation. Sunderland, MA: Sinauer Associates, 545 pp. U.S.A.spa
dc.relation.referencesD‘abrera, B. 1988. Butterflies of the Neoptropical Region, part V, Nymphalidae (Concl.) & Satyridae. pp. 680-887. Victoria: Hill House.spa
dc.relation.referencesDayrat, B. 2005.Towards integrative taxonomy. Biological Journal of the Linnean Society, 85: 407-415.spa
dc.relation.referencesDemos, TC, Kerbis-Peterhans. JC, Agwanda, B, Hickerson. MJ. 2014. Uncovering cryptic diversity and refugial persistence among small mammal lineages across the Eastern Afromontane biodiversity hotspot. Mol. Phylogenet. Evol. 71, 41–54.spa
dc.relation.referencesEscalante T, Sánchez-Cordero V, Morrone JJ, LinajeM. 2007. Areas of endemism of Mexican terrestrial mammals:a case study using species‘ ecological niche modeling,Parsimony Analysis of Endemicity and Goloboff fit. Interciencia32: 151–159.spa
dc.relation.referencesEscalante T, Szumik C, Morrone JJ. 2009. Areas of endemismof Mexican mammals: reanalysis applying the optimalitycriterion. Biological Journal of the Linnean Society, 98: 468–478.spa
dc.relation.referencesEscalante T, Morrone JJ, Rodríguez-Tapia G. 2013. Biogeographicregions of North American mammals based onendemism. Biological Journal of the Linnean Society, 110:485–499.spa
dc.relation.referencesEscalante T. 2015. Parsimony analysis of endemicity andanalysis of endemicity: a fair comparison. Systematics and Biodiversity, 13: 413–418.spa
dc.relation.referencesEspíndola, A, Ruffley M, Smith ML, Carstens BC, Tank DC, Sullivan J. 2016.Identifying cryptic diversity with predictive phylogeography. Proc. R. Soc. B. 283: 20161529. http://dx.doi.org/10.1098/rspb.2016.1529spa
dc.relation.referencesEsteban, G. F. & Finlay, B. J. 2010.Conservation work is incomplete without cryptic biodiversity. Nature, 463, 293. Feder, JL, Flaxman, SM, Egan, SP, Comeault, AA, Nosil, P. 2013. Geographic mode of speciation and genomic divergence.Annu. Rev. Ecol. Evol. Syst. 44, 73–97. (doi:10.1146/annurev-ecolsys-110512-135825).spa
dc.relation.referencesFelsenstein J. 2004. Inferring phylogenies. Sunderland, MA: Sinauer Associates.spa
dc.relation.referencesFusinatto, LA, Alexandrino, J, Haddad CFB, Brunes, TO, Rocha CFD, Sequeira F. 2013. Cryptic genetic diversity is paramount in small-bodied amphibians of the genus Euparkerella (Anura: Craugastoridae) endemic to the Brazilian Atlantic forest. PLoS ONE 8, pARTN e79504. (doi:10.1371/journal.pone.0079504).spa
dc.relation.referencesFutuyma, D. J. 2005. Evolution. 2d ed. Sunderland, England: Sinauer Associates.spa
dc.relation.referencesGiraldo, C. E. 2015. La taxonomía integrativa en la resolución de problemas taxonómicos complejos en insectos: un caso de estudio en mariposas diurnas neotropicales. MEMORIAS & RESÚMENES, 156.spa
dc.relation.referencesGuarnizo, E.; Amézquita, A. & Bermingham, E. 2009. The relative roles of vicariance versus elevational gradients in the genetic differentiation of the high Andean tree frog, Dendropsophus labialis. Molecular Phylogenetics and Evolution, 50: 84– 92.spa
dc.relation.referencesHarrison, R. G.1998. Linking evolutionary pattern and process. Endless Forms, 19-31.spa
dc.relation.referencesHaubrich, K., & Schmitt, T. 2007. Cryptic differentiation in alpine‐endemic, high‐altitude butterflies reveals down‐slope glacial refugia. Molecular Ecology, 16(17), 3643-3658.spa
dc.relation.referencesHebert, P. D. N., Cywinska, A., Ball, S. L. & deWaard, J. R. 2003.Biological identifications through DNA barcodes. Proc. R. Soc. B. 270, 313–321.spa
dc.relation.referencesHebert, P. D., Penton, E. H., Burns, J. M., Janzen, D. H., & Hallwachs, W. 2004. Ten species in one: DNA barcoding reveals cryptic species in the Neotropical skipper butterfly Astraptes fulgerator. Proceedings of the National Academy of Sciences of the United States of America, 101(41), 14812-14817.spa
dc.relation.referencesHelbig, A. J., Knox, A. G, Parkin, D. T., Sangster, G. & Collinson, M. 2002. Guidelines for assigning species rank. Ibis 144: 518-525.spa
dc.relation.referencesHewitson, W. C. 1861. Descriptions of new diurnal Lepidoptera. Journal of Entomology, 1(3): 155-158.spa
dc.relation.referencesHewitson, W. C. 1870. Descriptions of twenty-two new species of Equatorial Lepidoptera. Transactions of the Entomological Society of London, 1870(2): 153-163.spa
dc.relation.referencesHovenkamp P.1997. Vicariance events, not areas, should be used inbiogeographic analysis. Cladistics, 13: 67–79.spa
dc.relation.referencesHuang, X.; Lei, F. & Quiao, G. 2008.Areas of endemism and patterns of diversity for aphids of the QinghaiTibetan Plateau and the Himalayas. Journal of Biogeography, 35, 230–240. .spa
dc.relation.referencesHurdu, B. I., Escalante, T., Pușcaș, M., Novikoff, A., Bartha, L., & Zimmermann, N. E. 2016. Exploring the different facets of plant endemism in the South-Eastern Carpathians: a manifold approach for the determination of biotic elements, centres and areas of endemism. Biological Journal of the Linnean Society, 119(3), 649-672.spa
dc.relation.referencesJones M, Ghoorad A, Blaxter M, 2011. jMOTU and Taxonerator: turning DNA barcode sequences into annotated operational taxonomic units. PLoS ONE 6: e19359.spa
dc.relation.referencesKembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, et al.2010. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26: 1463–1464.spa
dc.relation.referencesKnowlton, N. 1986.Cryptic and sibling species among the decapods Crustacea. J. Crustac. Biol. 6, 356–363spa
dc.relation.referencesKnowlton, N. 1993.Sibling species in the sea. Annu. Rev. Ecol. Syst. 24, 189–216spa
dc.relation.referencesKrüger, E. 1924.Beitrage zur Kenntnis der columbischen Satyriden. Entomologische Rundschau, 41: 7, 9-10, 16, 19-20, 23-24, 27-28, 31-32, 35, 38-39, 41-42, 46-47.spa
dc.relation.referencesKrüger, E. 1925.Beiträge zur Kenntnis der columbischen Satyriden.Entomologische Rundschau, 42(3): 10-12.spa
dc.relation.referencesLamas, G., & A. L. Viloria. 2004. Nymphalidae. Satyrinae. Tribe Satyrini. Subtribe Erebiina, pp. 215-216. In: Lamas, G. (Ed.), Checklist: Part 4A. Hesperioidea - Papilionoidea. In: Heppner, J. B. (Ed.), Atlas of Neotropical Lepidoptera. Volume 5A.Gainesville, Association for Tropical Lepidoptera; Scientific Publishers.spa
dc.relation.referencesLayton, K., Martel, A. Hebert, P. 2014. Patterns of DNA Barcode Variation in Canadian Marine Molluscs.PLoS ONE, 9 (4): e95003. doi:10.1371/journal. pone.0095003.spa
dc.relation.referencesLavinia, P. D., Bustos, E. O. N., Kopuchian, C., Lijtmaer, D. A., García, N. C., Hebert, P. D., & Tubaro, P. L. 2017. Barcoding the butterflies of southern South America: Species delimitation efficacy, cryptic diversity and geographic patterns of divergence. PloS one, 12(10), e0186845.spa
dc.relation.referencesLomolino, M.; Riddle, B. & Brown, J. 2006.Biogeography.3 Ed. Lybrary of Congress Cataloging in Publication Data. 821 p. U.S.Aspa
dc.relation.referencesLukhtanov, V. A., Dantchenko, A. V., Vishnevskaya, M. S., & Saifitdinova, A. F. 2015. Detecting cryptic species in sympatry and allopatry: analysis of hidden diversity in Polyommatus (Agrodiaetus) butterflies (Lepidoptera: Lycaenidae). Biological Journal of the Linnean Society, 116(2), 468-485.spa
dc.relation.referencesMallet, J. 2001.Species, concepts of.Encyclopedia of biodiversity, 5, 427-440.spa
dc.relation.referencesMallet J, Beltrán M, Neukirchen W, Linares M. 2007. Natural hybridization in heliconiine butterflies: the species boundary as a continuum. BMC Evol. Biol. 7: 28. doi:10.1186/1471-2148-7-28.spa
dc.relation.referencesMallet, J. 2013.Species, Concepts of. Elsevier Inc. All rights reserved. 679-691 p.spa
dc.relation.referencesMedina, C. D., Avila, L. J., & Morando, M. 2013. Hacia una Taxonomía Integral: poniendo a prueba especies candidatas relacionadas a Liolaemus buergeri Werner 1907 (Iguania: Liolaemini) mediante análisis morfológicos. Cuadernos de herpetología, 27(1), 27-34.spa
dc.relation.referencesMarín, M.A., Cadavid, I.C., Valdés, L., Álvarez, C.F., Uribe, S.I., Vila, R. & Pyrcz, T.W. (2017) DNA Barcoding of an Assembly of Montane Andean Butterflies (Satyrinae): Geographical Scale and Identification Performance. Neotropical Entomology, 46, 514–523.spa
dc.relation.referencesMeleg, IN, Zaksek, V, Fiser, C, Kelemen BS, Moldovan, OT. 2013. Can environment predict cryptic diversity? The case of Niphargus inhabiting Western Carpathian groundwater. PLoS ONE 8, ARTN e76760. (doi:10.1371/journal.pone.0076760).spa
dc.relation.referencesMiller, L. D. 1968. The higher classification, phylogeny and zoogeography of the Satyridae (Lepidoptera). Memoirs of the American Entomological Society, 24: [6] + iii + 174 pp.spa
dc.relation.referencesMorrone JJ. 2014a. On biotas and their names. Systematicsand Biodiversity, 12: 386– 392. Pérez-Portela, R, Arranz, V, Rius, M, Turon X. 2013.Cryptic speciation or global spread? The case of a cosmopolitan marine invertebrate with limited dispersal capabilities.Sci. Rep.-UK , 3, 3197. (doi:10. 1038/srep03197).spa
dc.relation.referencesMyers, N.; R. Mittermeier; C. Mittermeier; G. Da Fonseca & J. Kent. 2000. Biodiversity hotspots for conservation priorities. Nature, 43: 853-858.spa
dc.relation.referencesNelson, G. J. and N. I. Platnick. 1981. Systematics and Biogeography: Cladistics and Vicariance. New York: Columbia University Press.spa
dc.relation.referencesNixon, K. C. and Q. D. Wheeler. 1990. An amplification of the phylogenetic species concept. Cladistics, 6:211–223.spa
dc.relation.referencesPadial, J.M. & De La Riva, I. 2007.Integrative taxonomists should use and produce DNA barcodes. Philosophical Transactions of the Royal Society of London, 68: 67-68.spa
dc.relation.referencesPeña, C., Nylin, S. & Wahlberg, N. (2011) The radiation of Satyrini butterflies (Nymphalidae: Satyrinae): a challenge for phylogenetic methods. Zoological Journal of the Linnean Societ, 161(1), 64-87.spa
dc.relation.referencesPyrcz, T. 1999. The E. Krüger collection of pronophiline butterflies, Part II: genera Manerebia to Thiemeia (Lepidoptera: Nymphalidae: Satyrinae). Lambillionea, 99(3): 351-376.spa
dc.relation.referencesPyrcz, T. W., Willmott, K. R., Hall, J. P., & Viloria, A. L. 2006. A review of the genus Manerebia Staudinger (Lepidoptera: Nymphalidae: Satyrinae) in the northern Andes. Journal of Research on the Lepidoptera, 39, 37-79.spa
dc.relation.referencesPyrcz, T. W., Prieto, C., Viloria, A. L., & Andrade-C, G. 2013. New species of high elevation cloud forest butterflies of the genus Pedaliodes Butler from the northern Colombian Andes (Lepidoptera, Nymphalidae, Satyrinae). Zootaxa, 3716(4), 528-538.spa
dc.relation.referencesRatnasingham S, Hebert PDN. 2013. A DNA-based registry for all animal species: the Barcode Index Number (BIN) system. PLoS ONE 8: e66213.spa
dc.relation.referencesRonquist, F. 1994. Ancestral Areas and Parsimony. Systematic Biology, 43:267–274.spa
dc.relation.referencesRosen BR. 1992.Empiricism and the biogeographical blackbox– concepts and methods in marine paleobiogeography. Palaeogeography Palaeoclimatology Palaeoecology, 92: 171–205.spa
dc.relation.referencesS-Brown, K. 1977. Geographical patterns of evolution in Neotropical Lepidoptera: differentiation of the species of Melinaea and Mechanitis (Nymphalidae, Ithomiinae). Systematic Entomology, 2(3), 161-197.spa
dc.relation.referencesSalazar CA, Jiggins CD, Arias CF, Tobler A, Bermingham E, Linares M. 2005.Hybrid incompatibility is consistent with a hybrid origin of Heliconius heurippa Hewitson from its close relatives, Heliconius cydno Doubleday and Heliconius melpomene. Linnaeus. J. Evol. Biol. 18 (2): 247–56. doi:10.1111/j.1420- 9101.2004.00839.xspa
dc.relation.referencesSandoval ML, Ferro I. 2014. Biogeographical analysis ofrodent endemism and distributional congruence in thesouthern-central Andes (north-western Argentina). Biological Journal of the Linnean Society, 112: 163–179.spa
dc.relation.referencesSites Jr, J.W. & Marshall, J.C. 2003. Delimiting species: a renaissance issue in systematic biology. Evolution, 18: 462-470.spa
dc.relation.referencesStaudinger, O. 1897.Neue südamerikanische Tagfalter. Deutsche 75 Entomologische Zeitschrift “Iris”, 10(1): 123-151.spa
dc.relation.referencesSzumik CA, Cuezzo F, Goloboff PA, Chalup AE. 2002. An optimality criterion to determine areas of endemism.Systematic Biology, 51: 806–816.spa
dc.relation.referencesTamura K, Peterson D, Peterson N, Stecher G, Nei M, et al.2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 28: 2731–2739.spa
dc.relation.referencesTorretti, R. 2010. La proliferación de los conceptos de especie en la biología evolucionista. Theoria, 69:325-377.spa
dc.relation.referencesTrontelj, P., & Fišer, C. 2009. Perspectives: cryptic species diversity should not be trivialised. Systematics and Biodiversity, 7(1), 1-3.spa
dc.relation.referencesViloria, A. L. 2001. Studies on the systematics and biogeography of some montane satyrid butterflies (Lepidoptera).Unpublished Ph. D. dissertation.spa
dc.relation.referencesVuilleumier, F. 1999. Biogeography on the eve ofthe twenty-first century: towards an epistemology.Ostrich, 70 (1): 89-103.spa
dc.relation.referencesWheeler, D and Meier, R. 2000. Species concepts and phylogenetic theory: a debate. Columbia University Press.NewYork.239 p. ISBN 0–231–10142–2.spa
dc.relation.referencesWheeler, Q. D. 1995a. Systematics, the scientific basis for inventories of biodiversity.Biodiversity and Conservation, 4:476–489spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc570 - Biología::577 - Ecologíaspa
dc.subject.lembOBSERVACION DE MARIPOSAS
dc.subject.lembButterfly watching
dc.subject.lembBIOLOGIA-TRABAJO DE CAMPO
dc.subject.lembBiology - Field work
dc.subject.proposalDelimitación de especiesspa
dc.subject.proposalCódigo de barrasspa
dc.subject.proposalPleistocenospa
dc.subject.proposalDiversificaciónspa
dc.subject.proposalEspeciaciónspa
dc.subject.proposalTiempos de divergenciaspa
dc.subject.proposalÁreas ancestralesspa
dc.subject.proposalSatyrinispa
dc.subject.proposalSpecies delimitationeng
dc.subject.proposalBarcodeeng
dc.subject.proposalPleistoceneeng
dc.subject.proposalSpeciation and diversificationeng
dc.subject.proposalDivergence timeseng
dc.subject.proposalAncestral areaseng
dc.subject.proposalSatyrinieng
dc.titleDiversidad criptica, sistemática y biogeografía histórica del genero Manerebia Staudinger, 1897 (Satyrinae: Pronophilina) en el neotrópicospa
dc.title.translatedCryptic diversity, systematic and historical biogeography of the genus Manerebia Staudinger, 1897 (Satyrinae: Pronophilina) in the neotropicseng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentResponsables políticosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleEvolutionary biogeography and diversification of the predominantly Andean butterfly subtribe Pronophilina (Nymphalidae, Satyrinae) based on phylogenetic data generated using modern molecular methodsspa
oaire.fundernameResearch Grant of the Institute of Zoology and Biomedical Research of the Jagiellonian University, BW/IZ/ADD/2005, y NCN grant Harmonia-10 2018/30/M/NZ8/00293spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
80770570.2021.2022.pdf
Tamaño:
9.07 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ciencias - Biología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: