Evolución de los genes de regulación meristemática de la angiosperma holoparásita Pilostyles boyacensis (Apodanthaceae)

dc.contributor.advisorGonzález Garavito, Favio Antoniospa
dc.contributor.advisorPabón Mora, Natalia Lucíaspa
dc.contributor.authorGonzález Galindo, Angie Danielaspa
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001365166spa
dc.contributor.datacuratorAlzate, Juan Fernandospa
dc.contributor.googlescholarhttps://scholar.google.com.co/citations?user=1Yvc6mMAAAAJ&hl=es&oi=aospa
dc.contributor.orcidhttp://orcid.org/0000-0002-1772-2152spa
dc.contributor.researchgatehttps://www.researchgate.net/profile/Angie-Gonzalez-16spa
dc.contributor.researchgroupEvo-Devo en Plantasspa
dc.contributor.scopushttps://www.scopus.com/authid/detail.uri?authorId=55816773900spa
dc.date.accessioned2024-01-15T20:28:11Z
dc.date.available2024-01-15T20:28:11Z
dc.date.issued2023-11-16
dc.descriptionilustraciones, diagramasspa
dc.description.abstractLas especies de Apodanthaceae presentan una morfología excepcional dentro de las angiospermas, ya que son holoparásitas endofíticas, que viven totalmente a expensas de otras plantas con flor, y que han perdido la capacidad de fotosintetizar. Esta condición de parasitismo extremo ha causado la pérdida total de raíces, tallos y hojas, y que el desarrollo vegetativo se reduzca a la formación de un tejido filamentoso poco diferenciado que entra en contacto directo con el tejido vascular del hospedero. La fase no críptica ocurre cuando las flores emergen del tallo hospedero y completan su ciclo de vida al formar frutos y semillas viables. Este estudio evaluó la evolución de los linajes de genes regulatorios de meristemas primarios, embriogénesis temprana y diferenciación de células vasculares en la holoparásita Pilostyles boyacensis (Apodanthaceae). Esto, mediante una búsqueda dirigida de genes homólogos en P. boyacensis a los ya documentados en la especie modelo Arabidopsis thaliana, y finalmente se propone una red genética mínima funcional para el desarrollo vegetativo de en Pilostyles. Se generaron cuatro transcriptomas por RNA-seq para (a) flores; (b) frutos de P. boyacensis; (c) endófito y botones florales jóvenes en tallos de la hospedera Dalea cuatrecasasii (Fabaceae); y (d) tallo no infectado de D. cuatrecasasii. Como resultado, se encontraron genes en 10 de las doce familias de genes evaluadas. En total, se encontró aproximadamente una tercera parte de los genes conocidos en la especie modelo, aunque la mayoría de los pocos que se mantienen en la holoparásita presentaron dominios funcionales conservados. Se infiere que la reducción morfológica vegetativa y embrionaria extrema de Pilostyles está evolutivamente vinculada con la reducción de genes expresados como parte de las redes genéticas asociadas a estos procesos. Se mantienen los módulos de interacción mínimos para el desarrollo del embrión y los factores de transcripción asociados al crecimiento del endófito y a una diferenciación vascular incipiente. Los genes asociados al desarrollo de raíz en otras especies no se encontraron siendo expresados, mientras que los relacionados con el inicio de meristemas florales permanecen. (Texto tomado de la fuente).spa
dc.description.abstractThe species of Apodanthaceae have a unique morphology among angiosperms. They are endophytic holoparasites that thrive exclusively at the expense of other flowering plants and have lost their photosynthetic capacity. The extreme parasitic condition has resulted in a complete loss of roots, shoots, and leaves, leading to a limited vegetative development that forms a filamentous tissue differentiating poorly and directly contacting the host's vascular tissue. The non-cryptic phase commences when flowers emerge from the host stem, eventually producing viable fruits and seeds. This study investigated the evolution of gene lineages regulating primary meristems, early embryogenesis and vascular differentiation in the holoparasitic plant Pilostyles boyacensis (Apodanthaceae). A focused search was conducted to identify homologous genes in P. boyacensis that have been documented in the model species Arabidopsis thaliana. Finally, a minimum functional genetic network for Pilostyles development is proposed. Transcriptomes from four sources were generated through RNA-seq: (a) flowers, (b) fruits of P. boyacensis, (c) endophyte and young flower buds on stems of the host Dalea cuatrecasasii (Fabaceae), and (d) uninfected stems of D. cuatrecasasii. The results of evaluating the twelve families showed genes from ten families. In total, Pilostyles contained only about one-third of the model species' known genes, although most of the few genes that remain in the holoparasite had conserved functional domains. It is inferred that Pilostyles' extreme vegetative and embryonic morphological reduction is evolutionarily linked to a reduction of expressed genes associated with genetic networks of those processes. The minimum interaction modules for embryo development and transcription factors linked to endophytic growth and incipient vascular differentiation remain conserved. No genes related to root development were found expressed, however, genes related to the initiation of floral meristems remain.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ciencias - Biologíaspa
dc.description.researchareaBiología evolutiva y del desarrollo en plantasspa
dc.format.extentxx, 207 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85300
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Biologíaspa
dc.relation.indexedAgrosaviaspa
dc.relation.indexedAgrovocspa
dc.relation.referencesAmaral, M. M. do, & Ceccantini, G. (2011). The endoparasite Pilostyles ulei (Apodanthaceae – Cucurbitales) influences wood structure in three host species of Mimosa. IAWA Journal, 32(1), 1-13. https://doi.org/10.1163/22941932-90000038spa
dc.relation.referencesAmini, S., Rosli, K., Abu-Bakar, M.-F., Alias, H., Mat-Isa, M.-N., Juhari, M.-A.-A., Haji-Adam, J., Goh, H.-H., & Wan, K.-L. (2019). Transcriptome landscape of Rafflesia cantleyi floral buds reveals insights into the roles of transcription factors and phytohormones in flower development. PLOS ONE, 14(12), e0226338. https://doi.org/10.1371/journal.pone.0226338spa
dc.relation.referencesBarkman, T. J., McNeal, J. R., Lim, S.-H., Coat, G., Croom, H. B., Young, N. D., & dePamphilis, C. W. (2007). Mitochondrial DNA suggests at least 11 origins of parasitism in angiosperms and reveals genomic chimerism in parasitic plants. BMC Evolutionary Biology, 7, 248. https://doi.org/10.1186/1471-2148-7-248spa
dc.relation.referencesBellot, S., & Renner, S. S. (2014). The systematics of the worldwide endoparasite family Apodanthaceae (Cucurbitales), with a key, a map, and color photos of most species. PhytoKeys, 36, 41-57. https://doi.org/10.3897/phytokeys.36.7385spa
dc.relation.referencesAdamowski, M., & Friml, J. (2015). PIN-dependent auxin transport: Action, Regulation, and evolution. The Plant Cell, 27(1), 20–32. https://doi.org/10.1105/tpc.114.134874spa
dc.relation.referencesAfgan, E., Baker, D., Batut, B., van den Beek, M., Bouvier, D., Čech, M., Chilton, J., Clements, D., Coraor, N., Grüning, B. A., Guerler, A., Hillman-Jackson, J., Hiltemann, S., Jalili, V., Rasche, H., Soranzo, N., Goecks, J., Taylor, J., Nekrutenko, A., & Blankenberg, D. (2018). The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Research, 46(W1), W537-W544. https://doi.org/10.1093/nar/gky379spa
dc.relation.referencesAmaral, M. M. do. (2007). A estrutura da angiosperma endoparasita Pilostyles ulei (Apodanthaceae): Interface e impacto no lenho de Mimosa spp [Master thesis, Universidade de São Paulo]. http://www.teses.usp.br/teses/disponiveis/41/41132/tde-05112007-095018/spa
dc.relation.referencesArias-Agudelo, L. M., González, F., Isaza, J. P., Alzate, J. F., & Pabón-Mora, N. (2019). Plastome reduction and gene content in New World Pilostyles (Apodanthaceae) unveils high similarities to African and Australian congeners. Molecular Phylogenetics and Evolution, 135, 193-202. https://doi.org/10.1016/j.ympev.2019.03.014spa
dc.relation.referencesAriel, F. D., Manavella, P. A., Dezar, C. A., & Chan, R. L. (2007). The true story of the HD-Zip family. Trends in Plant Science, 12(9), 419–426. https://doi.org/10.1016/j.tplants.2007.08.003spa
dc.relation.referencesBailey, T. L., Boden, M., Buske, F. A., Frith, M., Grant, C. E., Clementi, L., Ren, J., Li, W. W., & Noble, W. S. (2009). MEME SUITE: Tools for motif discovery and searching. Nucleic Acids Research, 37(Web Server issue), W202-208. https://doi.org/10.1093/nar/gkp335spa
dc.relation.referencesBaskin, J. M., & Baskin, C. C. (2022). Germination and seed/embryo size in holoparasitic flowering plants with “dust seeds” and an undifferentiated embryo. The Botanical Review, 88(1), 1–49. https://doi.org/10.1007/s12229-020-09242-yspa
dc.relation.referencesBellot, S., & Renner, S. S. (2013). Pollination and mating systems of Apodanthaceae and the distribution of reproductive traits in parasitic angiosperms. American Journal of Botany, 100(6), 1083–1094. https://doi.org/10.3732/ajb.1200627spa
dc.relation.referencesBennett, T. (2015). PIN proteins and the evolution of plant development. Trends in Plant Science, 20(8), 498-507. https://doi.org/10.1016/j.tplants.2015.05.005spa
dc.relation.referencesBennett, T., & Scheres, B. (2010). Root development two meristems for the price of one? En M. C. Timmermans (Ed.), Plant development (pp. 67-102). Elsevier. https://doi.org/10.1016/S0070-2153(10)91003-Xspa
dc.relation.referencesBlarer, A., Nickrent, D. L., & Endress, P. K. (2004). Comparative floral structure and systematics in Apodanthaceae (Rafflesiales). Plant Systematics and Evolution, 245(1), 119-142. https://doi.org/10.1007/s00606-003-0090-2spa
dc.relation.referencesBouman, F., & Meijer, W. (1994). Comparative structure of ovules and seeds in Rafflesiaceae. Plant Systematics and Evolution, 193(1-4), 187-212. https://doi.org/10.1007/BF00983550spa
dc.relation.referencesBrasil, B. de A. (2010). Ciclo de vida, fenologia e anatomia floral de Pilostyles (Apodanthaceae—Rafflesiaceae s.l.): Subsídios para um posicionamento filogenético da família Apodanthaceae [Master thesis, Universidade de São Paulo]. http://www.teses.usp.br/teses/disponiveis/41/41132/tde-10122010-105707/spa
dc.relation.referencesBryan, A. C., Obaidi, A., Wierzba, M., & Tax, F. E. (2012). XYLEM INTERMIXED WITH PHLOEM1, a leucine-rich repeat receptor-like kinase required for stem growth and vascular development in Arabidopsis thaliana. Planta, 235(1), 111-122. https://doi.org/10.1007/s00425-011-1489-6spa
dc.relation.referencesCai, L., Arnold, B. J., Xi, Z., Khost, D. E., Patel, N., Hartmann, C. B., Manickam, S., Sasirat, S., Nikolov, L. A., Mathews, S., Sackton, T. B., & Davis, C. C. (2021). Deeply altered genome architecture in the endoparasitic flowering plant Sapria himalayana Griff. (Rafflesiaceae). Current Biology, 31(5), 1002-1011.e9. https://doi.org/10.1016/j.cub.2020.12.045spa
dc.relation.referencesCammarata, J., & Scanlon, M. J. (2020). A functionally informed evolutionary framework for the study of LRR-RLKs during stem cell maintenance. Journal of Plant Research, 133(3), 331–342. https://doi.org/10.1007/s10265-020-01197-wspa
dc.relation.referencesCapron, A., Chatfield, S., Provart, N., & Berleth, T. (2009). Embryogenesis: Pattern formation from a single cell. The Arabidopsis Book, 7, e0126. https://doi.org/10.1199/tab.0126spa
dc.relation.referencesCarbonell, A. (2017). Plant ARGONAUTEs: Features, functions, and unknowns. En A. Carbonell (Ed.), Plant Argonaute Proteins (Vol. 1640, pp. 1–21). Springer New York. https://doi.org/10.1007/978-1-4939-7165-7_1spa
dc.relation.referencesCarpenter, E. J., Matasci, N., Ayyampalayam, S., Wu, S., Sun, J., Yu, J., Jimenez Vieira, F. R., Bowler, C., Dorrell, R. G., Gitzendanner, M. A., Li, L., Du, W., K. Ullrich, K., Wickett, N. J., Barkmann, T. J., Barker, M. S., Leebens-Mack, J. H., & Wong, G. K.-S. (2019). Access to RNA-sequencing data from 1,173 plant species: The 1000 Plant transcriptomes initiative (1KP). GigaScience, 8(10), giz126. https://doi.org/10.1093/gigascience/giz126spa
dc.relation.referencesCederholm, H. M., Iyer-Pascuzzi, A. S., & Benfey, P. N. (2012). Patterning the primary root in Arabidopsis. Wiley Interdisciplinary Reviews: Developmental Biology, 1(5), 675-691. https://doi.org/10.1002/wdev.49spa
dc.relation.referencesCernac, A., Andre, C., Hoffmann-Benning, S., & Benning, C. (2006). WRI1 is required for seed germination and seedling establishment. Plant Physiology, 141(2), 745–757. https://doi.org/10.1104/pp.106.079574spa
dc.relation.referencesChandler, J. W. (2016). Auxin response factors. Plant, Cell & Environment, 39(5), 1014-1028. https://doi.org/10.1111/pce.12662spa
dc.relation.referencesChandler, J. W., & Werr, W. (2015). Cytokinin–auxin crosstalk in cell type specification. Trends in Plant Science, 20(5), 291-300. https://doi.org/10.1016/j.tplants.2015.02.003spa
dc.relation.referencesChandler, J. W., & Werr, W. (2019). Histology versus phylogeny: Viewing plant embryogenesis from an evo-devo perspective. En Current Topics in Developmental Biology (Vol. 131, pp. 545-564). Elsevier. https://doi.org/10.1016/bs.ctdb.2018.11.009spa
dc.relation.referencesChang, W., Guo, Y., Zhang, H., Liu, X., & Guo, L. (2020). Same actor in different stages: Genes in shoot apical meristem maintenance and floral meristem determinacy in Arabidopsis. Frontiers in Ecology and Evolution, 8, 89. https://doi.org/10.3389/fevo.2020.00089spa
dc.relation.referencesCostanzo, E., Trehin, C., & Vandenbussche, M. (2014). The role of WOX genes in flower development. Annals of Botany, 114(7), 1545-1553. https://doi.org/10.1093/aob/mcu123spa
dc.relation.referencesCronk, Q. C. B. (2009). Evolution in reverse gear: The molecular basis of loss and reversal. Cold Spring Harbor Symposia on Quantitative Biology, 74(0), 259-266. https://doi.org/10.1101/sqb.2009.74.034spa
dc.relation.referencesCzyzewicz, N., Nikonorova, N., Meyer, M. R., Sandal, P., Shah, S., Vu, L. D., Gevaert, K., Rao, A. G., & De Smet, I. (2016). The growing story of (ARABIDOPSIS) CRINKLY 4. Journal of Experimental Botany, 67(16), 4835–4847. https://doi.org/10.1093/jxb/erw192spa
dc.relation.referencesDarriba, D., Posada, D., Kozlov, A. M., Stamatakis, A., Morel, B., & Flouri, T. (2019). ModelTest-NG: A new and scalable tool for the selection of DNA and protein evolutionary models. Molecular Biology and Evolution, msz189. https://doi.org/10.1093/molbev/msz189spa
dc.relation.referencesDe Vega, C., Ortiz, P. L., Arista, M., & Talavera, S. (2007). The endophytic system of mediterranean Cytinus (Cytinaceae) Developing on five host Cistaceae species. Annals of Botany, 100(6), 1209–1217. https://doi.org/10.1093/aob/mcm217spa
dc.relation.referencesDell, B., Kuo, J., & Burbidge, A. H. (1982). Anatomy of Pilostyles hamiltonii C. A. Gardner (Rafflesiaceae) in stems of Daviesia. Australian Journal of Botany, 30(1), 1-9.spa
dc.relation.referencesDenay, G., Chahtane, H., Tichtinsky, G., & Parcy, F. (2017). A flower is born: An update on Arabidopsis floral meristem formation. Current Opinion in Plant Biology, 35, 15-22. https://doi.org/10.1016/j.pbi.2016.09.003spa
dc.relation.referencesDeveaux, Y., Toffano-Nioche, C., Claisse, G., Thareau, V., Morin, H., Laufs, P., Moreau, H., Kreis, M., & Lecharny, A. (2008). Genes of the most conserved WOX clade in plants affect root and flower development in Arabidopsis. BMC Evolutionary Biology, 8(1), 291. https://doi.org/10.1186/1471-2148-8-291spa
dc.relation.referencesDeYoung, B. J., & Clark, S. E. (2008). BAM receptors regulate stem cell specification and organ development through complex interactions with CLAVATA signaling. Genetics, 180(2), 895-904. https://doi.org/10.1534/genetics.108.091108spa
dc.relation.referencesDeYoung, B. J., Bickle, K. L., Schrage, K. J., Muskett, P., Patel, K., & Clark, S. E. (2006). The CLAVATA1-related BAM1, BAM2 and BAM3 receptor kinase-like proteins are required for meristem function in Arabidopsis: BAM receptor kinases regulate meristem function. The Plant Journal, 45(1), 1-16. https://doi.org/10.1111/j.1365-313X.2005.02592.xspa
dc.relation.referencesDu, Q., & Wang, H. (2015). The role of HD-ZIP III transcription factors and miR165/166 in vascular development and secondary cell wall formation. Plant Signaling & Behavior, 10(10), e1078955. https://doi.org/10.1080/15592324.2015.1078955spa
dc.relation.referencesEl Ouakfaoui, S., Schnell, J., Abdeen, A., Colville, A., Labbé, H., Han, S., Baum, B., Laberge, S., & Miki, B. (2010). Control of somatic embryogenesis and embryo development by AP2 transcription factors. Plant Molecular Biology, 74(4–5), 313–326. https://doi.org/10.1007/s11103-010-9674-8spa
dc.relation.referencesEl-Showk, S., Taylor-Teeples, M., Helariutta, Y., & Brady, S. M. (2013). Gene regulatory networks during Arabidopsis root vascular development. International Journal of Plant Sciences, 174(7), 1090-1097. https://doi.org/10.1086/671449spa
dc.relation.referencesEndriss, W. (1902). Monographie von Pilostyles ingae Karst. (Pilostyles ulei SolmsLaub.). Flora, 91, 209-236.spa
dc.relation.referencesErnst, A., & Schmid, E. (1913). Über Blüte und Frucht von Rafflesiaceae. Annales du Jardin Botanique de Buitenzorg, 12, 1–58.spa
dc.relation.referencesEshed, Y., Baum, S. F., Perea, J. V., & Bowman, J. L. (2001). Establishment of polarity in lateral organs of plants. Current Biology, 11(16), 1251-1260. https://doi.org/10.1016/S0960-9822(01)00392-Xspa
dc.relation.referencesFang, X., & Qi, Y. (2016). RNAi in Plants: An Argonaute-centered view. The Plant Cell, 28(2), 272–285. https://doi.org/10.1105/tpc.15.00920spa
dc.relation.referencesFinet, C., Berne-Dedieu, A., Scutt, C. P., & Marlétaz, F. (2013). Evolution of the ARF gene family in land plants: Old domains, new tricks. Molecular Biology and Evolution, 30(1), 45-56. https://doi.org/10.1093/molbev/mss220spa
dc.relation.referencesFiume, E., & Fletcher, J. C. (2012). Regulation of Arabidopsis embryo and endosperm development by the polypeptide signaling molecule CLE8. The Plant Cell, 24(3), 1000-1012. https://doi.org/10.1105/tpc.111.094839spa
dc.relation.referencesFletcher, J. C. (1999). Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science, 283(5409), 1911-1914. https://doi.org/10.1126/science.283.5409.1911spa
dc.relation.referencesGaillochet, C., & Lohmann, J. U. (2015). The never-ending story: From pluripotency to plant developmental plasticity. Development, 142(13), 2237-2249. https://doi.org/10.1242/dev.117614spa
dc.relation.referencesGonzález, A. D., Pabón-Mora, N., Alzate, J. F., & González, F. (2020). Meristem Genes in the Highly Reduced Endoparasitic Pilostyles boyacensis (Apodanthaceae). Frontiers in Ecology and Evolution, 8, 209. https://doi.org/10.3389/fevo.2020.00209spa
dc.relation.referencesGonzález, F., & Pabón-Mora, N. (2014). First reports and generic descriptions of the achlorophyllous holoparasites Apodanthaceae (Cucurbitales) of Colombia. Actualidades Biológicas, 36(101), 123-135.spa
dc.relation.referencesGonzález, F., & Pabón-Mora, N. (2014). Pilostyles boyacensis a new species of Apodanthaceae (Cucurbitales) from Colombia. Phytotaxa, 178(2), 138. https://doi.org/10.11646/phytotaxa.178.2.5spa
dc.relation.referencesGonzález, F., & Pabón-Mora, N. (2017). Floral development and morphoanatomy in the holoparasitic Pilostyles boyacensis (Apodanthaceae, Cucurbitales) reveal chimeric half-staminate and half-carpellate flowers. International Journal of Plant Sciences, 178(7), 522-536. https://doi.org/10.1086/692505spa
dc.relation.referencesGoodstein, D. M., Shu, S., Howson, R., Neupane, R., Hayes, R. D., Fazo, J., Mitros, T., Dirks, W., Hellsten, U., Putnam, N., & Rokhsar, D. S. (2012). Phytozome: A comparative platform for green plant genomics. Nucleic Acids Research, 40 (Database issue), D1178-D1186. https://doi.org/10.1093/nar/gkr944spa
dc.relation.referencesGrabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I., Adiconis, X., Fan, L., Raychowdhury, R., Zeng, Q., Chen, Z., Mauceli, E., Hacohen, N., Gnirke, A., Rhind, N., di Palma, F., Birren, B. W., Nusbaum, C., Lindblad-Toh, K., … Regev, A. (2011). Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology, 29(7), 644-652. https://doi.org/10.1038/nbt.1883spa
dc.relation.referencesGroppo, M., Amaral, M. M., & Ceccantini, G. C. T. (2007). Flora da Serra do Cipó, Minas Gerais: Apodanthaceae (Rafflesiaceae s.l.), e notas sobre a anatomia de Pilostyles. Boletim de Botânica, 25(1), 81-86. https://doi.org/10.11606/issn.2316-9052.v25i1p81-86spa
dc.relation.referencesGuyomarc’h, S., Bertrand, C., Delarue, M., & Zhou, D.-X. (2005). Regulation of meristem activity by chromatin remodelling. Trends in Plant Science, 10(7), 332-338. https://doi.org/10.1016/j.tplants.2005.05.003spa
dc.relation.referencesHa, C. M., Jun, J. H., & Fletcher, J. C. (2010). Chapter four—Shoot apical meristem form and function. En M. C. P. Timmermans (Ed.), Current Topics in Developmental Biology (Vol. 91, pp. 103-140). Academic Press. https://doi.org/10.1016/S0070-2153(10)91004-1spa
dc.relation.referencesHaecker, A., Groß-Hardt, R., Geiges, B., Sarkar, A., Breuninger, H., Herrmann, M., & Laux, T. (2004). Expression dynamics of WOX genes mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana. Development, 131(3), 657-668. https://doi.org/10.1242/dev.00963spa
dc.relation.referencesHall, T. A. (1999). BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser, 41, 95-98.spa
dc.relation.referencesHall, T. M. T. (2005). Structure and function of Argonaute proteins. Structure, 13(10), 1403–1408. https://doi.org/10.1016/j.str.2005.08.005spa
dc.relation.referencesHardtke, C. S., Ckurshumova, W., Vidaurre, D. P., Singh, S. A., Stamatiou, G., Tiwari, S. B., Hagen, G., Guilfoyle, T. J., & Berleth, T. (2004). Overlapping and non-redundant functions of the Arabidopsis auxin response factors MONOPTEROS and NONPHOTOTROPIC HYPOCOTYL 4. Development (Cambridge, England), 131(5), 1089-1100. https://doi.org/10.1242/dev.00925spa
dc.relation.referencesHazak, O., & Hardtke, C. S. (2016). CLAVATA 1-type receptors in plant development. Journal of Experimental Botany, 67(16), 4827-4833. https://doi.org/10.1093/jxb/erw247spa
dc.relation.referencesHeide-Jørgensen, H. (2008). Parasitic flowering plants. Brill.spa
dc.relation.referencesHorstman, A., Willemsen, V., Boutilier, K., & Heidstra, R. (2014). AINTEGUMENTA-LIKE proteins: Hubs in a plethora of networks. Trends in Plant Science, 19(3), 146-157. https://doi.org/10.1016/j.tplants.2013.10.010spa
dc.relation.referencesHove, C. A. ten, Lu, K.-J., & Weijers, D. (2015). Building a plant: Cell fate specification in the early Arabidopsis embryo. Development, 142(3), 420–430. https://doi.org/10.1242/dev.111500spa
dc.relation.referencesJohri, B. (1992). Aristolochiales. En B. Johri, K. Ambegaokar, & P. Srivastava, Comparative embryology of angiosperms (Vol. 1, pp. 316-323). Springer. http://www.springer.com/la/book/9783540536338spa
dc.relation.referencesKalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A., & Jermiin, L. S. (2017). ModelFinder: Fast model selection for accurate phylogenetic estimates. Nature Methods, 14(6), 587–589. https://doi.org/10.1038/nmeth.4285spa
dc.relation.referencesKamata, N., Okada, H., Komeda, Y., & Takahashi, T. (2013). Mutations in epidermis-specific HD-ZIP IV genes affect floral organ identity in Arabidopsis thaliana. The Plant Journal, 75(3), 430–440. https://doi.org/10.1111/tpj.12211spa
dc.relation.referencesKapoor, M., Arora, R., Lama, T., Nijhawan, A., Khurana, J. P., Tyagi, A. K., & Kapoor, S. (2008). Genome-wide identification, organization and phylogenetic analysis of Dicer-like, Argonaute and RNA-dependent RNA Polymerase gene families and their expression analysis during reproductive development and stress in rice. BMC Genomics, 9(1), 451. https://doi.org/10.1186/1471-2164-9-451spa
dc.relation.referencesKatoh, K., & Standley, D. M. (2013). MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Molecular Biology and Evolution, 30(4), 772-780. https://doi.org/10.1093/molbev/mst010spa
dc.relation.referencesKatoh, K., Misawa, K., Kuma, K., & Miyata, T. (2002). MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research, 30(14), 3059–3066.spa
dc.relation.referencesKelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N., & Sternberg, M. J. E. (2015). The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols, 10(6), 845–858. https://doi.org/10.1038/nprot.2015.053spa
dc.relation.referencesKerstens, M. H. L., Schranz, M. E., & Bouwmeester, K. (2020). Phylogenomic analysis of the APETALA2 transcription factor subfamily across angiosperms reveals both deep conservation and lineage‐specific patterns. The Plant Journal, 103(4), 1516–1524. https://doi.org/10.1111/tpj.14843spa
dc.relation.referencesKhosla, A., Paper, J. M., Boehler, A. P., Bradley, A. M., Neumann, T. R., & Schrick, K. (2014). HD-Zip Proteins GL2 and HDG11 Have Redundant Functions in Arabidopsis Trichomes, and GL2 Activates a Positive Feedback Loop via MYB23. The Plant Cell, 26(5), 2184–2200. https://doi.org/10.1105/tpc.113.120360spa
dc.relation.referencesKieffer, M., Stern, Y., Cook, H., Clerici, E., Maulbetsch, C., Laux, T., & Davies, B. (2006). Analysis of the transcription factor WUSCHEL and its functional homologue in Antirrhinum reveals a potential mechanism for their roles in meristem maintenance. The Plant Cell, 18(3), 560-573. https://doi.org/10.1105/tpc.105.039107spa
dc.relation.referencesKinoshita, A., Betsuyaku, S., Osakabe, Y., Mizuno, S., Nagawa, S., Stahl, Y., Simon, R., Yamaguchi-Shinozaki, K., Fukuda, H., & Sawa, S. (2010). RPK2 is an essential receptor-like kinase that transmits the CLV3 signal in Arabidopsis. Development, 137(22), 3911–3920. https://doi.org/10.1242/dev.048199spa
dc.relation.referencesKondo, Y., & Fukuda, H. (2015). The TDIF signaling network. Current Opinion in Plant Biology, 28, 106–110. https://doi.org/10.1016/j.pbi.2015.10.002spa
dc.relation.referencesKorasick, D. A., Westfall, C. S., Lee, S. G., Nanao, M. H., Dumas, R., Hagen, G., Guilfoyle, T. J., Jez, J. M., & Strader, L. C. (2014). Molecular basis for AUXIN RESPONSE FACTOR protein interaction and the control of auxin response repression. Proceedings of the National Academy of Sciences, 111(14), 5427-5432. https://doi.org/10.1073/pnas.1400074111spa
dc.relation.referencesKřeček, P., Skůpa, P., Libus, J., Naramoto, S., Tejos, R., Friml, J., & Zažímalová, E. (2009). The PIN-FORMED (PIN) protein family of auxin transporters. Genome Biology, 10(12), 249. https://doi.org/10.1186/gb-2009-10-12-249spa
dc.relation.referencesKrizek, B. A., Bantle, A. T., Heflin, J. M., Han, H., Freese, N. H., & Loraine, A. E. (2021). AINTEGUMENTA and AINTEGUMENTA-LIKE6 directly regulate floral homeotic, growth, and vascular development genes in young Arabidopsis flowers. Journal of Experimental Botany, 72(15), 5478–5493. https://doi.org/10.1093/jxb/erab223spa
dc.relation.referencesKuijt, J. (1969). The biology of parasitic flowering plants (Central 582.13/k96b). University of California Press.spa
dc.relation.referencesKuijt, J., Bray, D., & Olson, A. R. (1985). Anatomy and ultrastructure of the endophytic system of Pilostyles thurberi (Rafflesiaceae). Canadian Journal of Botany, 63(7), 1231-1240. https://doi.org/10.1139/b85-170spa
dc.relation.referencesLaux, T., Mayer, K. F., Berger, J., & Jürgens, G. (1996). The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development (Cambridge, England), 122(1), 87-96.spa
dc.relation.referencesLi, H., Shi, Q., Zhang, Z.-B., Zeng, L.-P., Qi, J., & Ma, H. (2016). Evolution of the leucine-rich repeat receptor-like protein kinase gene family: Ancestral copy number and functional divergence of BAM1 and BAM2 in Brassicaceae: Evolution of the LRR-RLK gene family. Journal of Systematics and Evolution, 54(3), 204-218. https://doi.org/10.1111/jse.12206spa
dc.relation.referencesLu, S., Wang, J., Chitsaz, F., Derbyshire, M. K., Geer, R. C., Gonzales, N. R., Gwadz, M., Hurwitz, D. I., Marchler, G. H., Song, J. S., Thanki, N., Yamashita, R. A., Yang, M., Zhang, D., Zheng, C., Lanczycki, C. J., & Marchler-Bauer, A. (2020). CDD/SPARCLE: The conserved domain database in 2020. Nucleic Acids Research, 48(D1), D265–D268. https://doi.org/10.1093/nar/gkz991spa
dc.relation.referencesMaeo, K., Tokuda, T., Ayame, A., Mitsui, N., Kawai, T., Tsukagoshi, H., Ishiguro, S., & Nakamura, K. (2009). An AP2-type transcription factor, WRINKLED1, of Arabidopsis thaliana binds to the AW-box sequence conserved among proximal upstream regions of genes involved in fatty acid synthesis. The Plant Journal, 60(3), 476–487. https://doi.org/10.1111/j.1365-313X.2009.03967.xspa
dc.relation.referencesMaeo, K., Tokuda, T., Ayame, A., Mitsui, N., Kawai, T., Tsukagoshi, H., Ishiguro, S., & Nakamura, K. (2009). An AP2-type transcription factor, WRINKLED1, of Arabidopsis thaliana binds to the AW-box sequence conserved among proximal upstream regions of genes involved in fatty acid synthesis. The Plant Journal, 60(3), 476–487. https://doi.org/10.1111/j.1365-313X.2009.03967.xspa
dc.relation.referencesMaizel, A., Busch, M. A., Tanahashi, T., Perkovic, J., Kato, M., Hasebe, M., & Weigel, D. (2005). The floral regulator LEAFY evolves by substitutions in the DNA binding domain. Science (New York, N.Y.), 308(5719), 260-263. https://doi.org/10.1126/science.1108229spa
dc.relation.referencesMatasci, N., Hung, L.-H., Yan, Z., Carpenter, E. J., Wickett, N. J., Mirarab, S., Nguyen, N., Warnow, T., Ayyampalayam, S., Barker, M., Burleigh, J. G., Gitzendanner, M. A., Wafula, E., Der, J. P., dePamphilis, C. W., Roure, B., Philippe, H., Ruhfel, B. R., Miles, N. W., … Wong, G. K.-S. (2014). Data access for the 1,000 Plants (1KP) project. GigaScience, 3, 17. https://doi.org/10.1186/2047-217X-3-17spa
dc.relation.referencesMatsushima, N., & Miyashita, H. (2012). Leucine-Rich Repeat (LRR) domains containing intervening motifs in plants. Biomolecules, 2(2), 288–311. https://doi.org/10.3390/biom2020288spa
dc.relation.referencesMeijer, W. (1993). Rafflesiaceae. En K. Kubitzki, J. G. Rohwer, & V. Bittrich (Eds.), Flowering plants, dicotyledons: Magnoliid, hamamelid, and caryophyllid families (Vol. 2, pp. 557-562). Springer. http://dx.doi.org/10.1007/978-3-662-02899-5spa
dc.relation.referencesMeyer, M. R., Lichti, C. F., Townsend, R. R., & Rao, A. G. (2011). Identification of in vitro autophosphorylation sites and effects of phosphorylation on the Arabidopsis CRINKLY4 (ACR4) Receptor-like Kinase intracellular domain: Insights into conformation, oligomerization, and activity. Biochemistry, 50(12), 2170–2186. https://doi.org/10.1021/bi101935xspa
dc.relation.referencesMichael, T. P., Ernst, E., Hartwick, N., Chu, P., Bryant, D., Gilbert, S., Ortleb, S., Baggs, E. L., Sree, K. S., Appenroth, K. J., Fuchs, J., Jupe, F., Sandoval, J. P., Krasileva, K. V., Borisjuk, L., Mockler, T. C., Ecker, J. R., Martienssen, R. A., & Lam, E. (2021). Genome and time-of-day transcriptome of Wolffia australiana link morphological minimization with gene loss and less growth control. Genome Research, 31(2), 225-238. https://doi.org/10.1101/gr.266429.120spa
dc.relation.referencesMiller, M. A., Pfeiffer, W., & Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Gateway Computing Environments Workshop (GCE), 2010, 1-8. http://dx.doi.org/10.1109/GCE.2010.5676129spa
dc.relation.referencesMinh, B. Q., Nguyen, M. A. T., & von Haeseler, A. (2013). Ultrafast approximation for phylogenetic bootstrap. Molecular Biology and Evolution, 30(5), 1188–1195. https://doi.org/10.1093/molbev/mst024spa
dc.relation.referencesMistry, J., Chuguransky, S., Williams, L., Qureshi, M., Salazar, G. A., Sonnhammer, E. L. L., Tosatto, S. C. E., Paladin, L., Raj, S., Richardson, L. J., Finn, R. D., & Bateman, A. (2021). Pfam: The protein families database in 2021. Nucleic Acids Research, 49(D1), D412–D419. https://doi.org/10.1093/nar/gkaa913spa
dc.relation.referencesMiyashima, S., Sebastian, J., Lee, J.-Y., & Helariutta, Y. (2013). Stem cell function during plant vascular development. The EMBO Journal, 32(2), 178-193. https://doi.org/10.1038/emboj.2012.301spa
dc.relation.referencesMizuno, S., Osakabe, Y., Maruyama, K., Ito, T., Osakabe, K., Sato, T., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2007). Receptor-like protein kinase 2 (RPK 2) is a novel factor controlling anther development in Arabidopsis thaliana: RPK2 controls anther development. The Plant Journal, 50(5), 751-766. https://doi.org/10.1111/j.1365-313X.2007.03083.xspa
dc.relation.referencesMoyroud, E., Kusters, E., Monniaux, M., Koes, R., & Parcy, F. (2010). LEAFY blossoms. Trends in Plant Science, 15(6), 346-352. https://doi.org/10.1016/j.tplants.2010.03.007spa
dc.relation.referencesMursidawati, S., & Wicaksono, A. (2021). A preliminary study of in vivo injection of auxin and cytokinin into Rafflesia patma Blume flower buds. Buletin Kebun Raya, 24(2). https://doi.org/10.14203/bkr.v24i2.670spa
dc.relation.referencesNakamura, M., Katsumata, H., Abe, M., Yabe, N., Komeda, Y., Yamamoto, K. T., & Takahashi, T. (2006). Characterization of the Class IV Homeodomain-Leucine Zipper gene family in Arabidopsis. Plant Physiology, 141(4), 1363–1375. https://doi.org/10.1104/pp.106.077388spa
dc.relation.referencesNardmann, J., Zimmermann, R., Durantini, D., Kranz, E., & Werr, W. (2007). WOX gene phylogeny in Poaceae: A comparative approach addressing leaf and embryo development. Molecular Biology and Evolution, 24(11), 2474-2484. https://doi.org/10.1093/molbev/msm182spa
dc.relation.referencesNguyen, L.-T., Schmidt, H. A., von Haeseler, A., & Minh, B. Q. (2015). IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 32(1), 268–274. https://doi.org/10.1093/molbev/msu300spa
dc.relation.referencesNickrent, D. L. (2020). Parasitic angiosperms: How often and how many? TAXON, 69(1), 5-27. https://doi.org/10.1002/tax.12195spa
dc.relation.referencesNikolov, L. A., Endress, P. K., Sugumaran, M., Sasirat, S., Vessabutr, S., Kramer, E. M., & Davis, C. C. (2013). Developmental origins of the world’s largest flowers, Rafflesiaceae. Proceedings of the National Academy of Sciences, 110(46), 18578-18583. https://doi.org/10.1073/pnas.1310356110spa
dc.relation.referencesNikolov, L. A., Tomlinson, P. B., Manickam, S., Endress, P. K., Kramer, E. M., & Davis, C. C. (2014). Holoparasitic Rafflesiaceae possess the most reduced endophytes and yet give rise to the world’s largest flowers. Annals of Botany, 114(2), 233-242. https://doi.org/10.1093/aob/mcu114spa
dc.relation.referencesNikonorova, N., Vu, L. D., Czyzewicz, N., Gevaert, K., & De Smet, I. (2015). A phylogenetic approach to study the origin and evolution of the CRINKLY4 family. Frontiers in Plant Science, 6. https://doi.org/10.3389/fpls.2015.00880spa
dc.relation.referencesNodine, M. D., Yadegari, R., & Tax, F. E. (2007). RPK1 and TOAD2 are two receptor-like kinases redundantly required for Arabidopsis embryonic pattern formation. Developmental Cell, 12(6), 943-956. https://doi.org/10.1016/j.devcel.2007.04.003spa
dc.relation.referencesNole-Wilson, S., Tranby, T. L., & Krizek, B. A. (2005). AINTEGUMENTA-like (AIL) genes are expressed in young tissues and may specify meristematic or division-competent states. Plant Molecular Biology, 57(5), 613–628. https://doi.org/10.1007/s11103-005-0955-6spa
dc.relation.referencesÓ’Maoiléidigh, D. S., Graciet, E., & Wellmer, F. (2014). Gene networks controlling Arabidopsis thaliana flower development. New Phytologist, 201(1), 16-30. https://doi.org/10.1111/nph.12444spa
dc.relation.referencesOhtani, M., Akiyoshi, N., Takenaka, Y., Sano, R., & Demura, T. (2017). Evolution of plant conducting cells: Perspectives from key regulators of vascular cell differentiation. Journal of Experimental Botany, 68(1), 17-26. https://doi.org/10.1093/jxb/erw473spa
dc.relation.referencesOrtega-González, P. F., Rios-Carrasco, S., González-Martínez, C. A., Bonilla-Cruz, N., & Vázquez-Santana, S. (2020). Pilostyles maya, a novel species from Mexico and the first cleistogamous species in Apodanthaceae (Cucurbitales). Phytotaxa, 440(4), 255–267. https://doi.org/10.11646/phytotaxa.440.4.1spa
dc.relation.referencesPabon-Mora, N., Ambrose, B. A., & Litt, A. (2012). Poppy APETALA1/FRUITFULL orthologs control flowering time, branching, perianth identity, and fruit development. Plant Physiology, 158(4), 1685-1704. https://doi.org/10.1104/pp.111.192104spa
dc.relation.referencesPalovaara, J., De Zeeuw, T., & Weijers, D. (2016). Tissue and organ initiation in the plant embryo: A first time for everything. Annual Review of Cell and Developmental Biology, 32(1), 47–75. https://doi.org/10.1146/annurev-cellbio-111315-124929spa
dc.relation.referencesPalovaara, J., Hallberg, H., Stasolla, C., & Hakman, I. (2010). Comparative expression pattern analysis of WUSCHEL-related homeobox 2 (WOX2) and WOX8/9 in developing seeds and somatic embryos of the gymnosperm Picea abies. New Phytologist, 188(1), 122-135. https://doi.org/10.1111/j.1469-8137.2010.03336.xspa
dc.relation.referencesPalovaara, J., Saiga, S., & Weijers, D. (2013). Transcriptomics approaches in the early Arabidopsis embryo. Trends in Plant Science, 18(9), 514-521. https://doi.org/10.1016/j.tplants.2013.04.011spa
dc.relation.referencesPan, L., Lv, S., Yang, N., Lv, Y., Liu, Z., Wu, J., & Wang, G. (2016). The multifunction of CLAVATA2 in plant development and immunity. Frontiers in Plant Science, 7. https://doi.org/10.3389/fpls.2016.01573spa
dc.relation.referencesPawełkowicz, M., Pryszcz, L., Skarzyńska, A., Wóycicki, R. K., Posyniak, K., Rymuszka, J., Przybecki, Z., & Pląder, W. (2019). Comparative transcriptome analysis reveals new molecular pathways for cucumber genes related to sex determination. Plant Reproduction, 32(2), 193-216. https://doi.org/10.1007/s00497-019-00362-zspa
dc.relation.referencesPaysan-Lafosse, T., Blum, M., Chuguransky, S., Grego, T., Pinto, B. L., Salazar, G. A., Bileschi, M. L., Bork, P., Bridge, A., Colwell, L., Gough, J., Haft, D. H., Letunić, I., Marchler-Bauer, A., Mi, H., Natale, D. A., Orengo, C. A., Pandurangan, A. P., Rivoire, C., … Bateman, A. (2023). InterPro in 2022. Nucleic Acids Research, 51(D1), D418-D427. https://doi.org/10.1093/nar/gkac993spa
dc.relation.referencesPellissari, L. C. O., Teixeira-Costa, L., Ceccantini, G., Tamaio, N., Cardoso, L. J. T., Braga, J. M. A., & Barros, C. F. (2022). Parasitic plant, from inside out: Endophytic development in Lathrophytum peckoltii (Balanophoraceae) in host liana roots from tribe Paullineae (Sapindaceae). Annals of Botany, 129(3), 331–342. https://doi.org/10.1093/aob/mcab148spa
dc.relation.referencesPeris, C. I. L., Rademacher, E. H., & Weijers, D. (2010). Green beginnings pattern formation in the early plant embryo. En M. C. P. Timmermans (Ed.), Current Topics in Developmental Biology (Vol. 91, pp. 1-27). Academic Press. https://doi.org/10.1016/S0070-2153(10)91001-6spa
dc.relation.referencesPetrášek, J., & Friml, J. (2009). Auxin transport routes in plant development. Development, 136(16), 2675-2688. https://doi.org/10.1242/dev.030353spa
dc.relation.referencesPoole, R. L. (2007). The TAIR database. Methods in Molecular Biology (Clifton, N.J.), 406, 179-212. https://doi.org/10.1007/978-1-59745-535-0_8spa
dc.relation.referencesPrigge, M. J., & Clark, S. E. (2006). Evolution of the class III HD-Zip gene family in land plants. Evolution Development, 8(4), 350–361. https://doi.org/10.1111/j.1525-142X.2006.00107.xspa
dc.relation.referencesPrigge, M. J., Otsuga, D., Alonso, J. M., Ecker, J. R., Drews, G. N., & Clark, S. E. (2005). Class III Homeodomain-Leucine Zipper gene family members have overlapping, antagonistic, and distinct roles in Arabidopsis development. The Plant Cell, 17(1), 61-76. https://doi.org/10.1105/tpc.104.026161spa
dc.relation.referencesRamamoorthy, R., Phua, E. E.-K., Lim, S.-H., Tan, H. T.-W., & Kumar, P. P. (2013). Identification and characterization of RcMADS1, an AGL24 ortholog from the holoparasitic plant Rafflesia cantleyi Solms-Laubach (Rafflesiaceae). PLoS ONE, 8(6), e67243. https://doi.org/10.1371/journal.pone.0067243spa
dc.relation.referencesRambaut, A. (2009). FigTree v1. 4.0: Tree figure drawing tool. Institute of Evolutionary Biology, University of Edinburgh. http://tree.bio.ed.ac.uk/software/figtree/spa
dc.relation.referencesRebocho, A. B., Bliek, M., Kusters, E., Castel, R., Procissi, A., Roobeek, I., Souer, E., & Koes, R. (2008). Role of EVERGREEN in the development of the cymose petunia inflorescence. Developmental Cell, 15(3), 437-447. https://doi.org/10.1016/j.devcel.2008.08.007spa
dc.relation.referencesRigal, A., Yordanov, Y. S., Perrone, I., Karlberg, A., Tisserant, E., Bellini, C., Busov, V. B., Martin, F., Kohler, A., Bhalerao, R., & Legué, V. (2012). The AINTEGUMENTA LIKE1 homeotic transcription factor PtAIL1 controls the formation of adventitious root primordia in poplar. Plant Physiology, 160(4), 1996–2006. https://doi.org/10.1104/pp.112.204453spa
dc.relation.referencesRodríguez-Leal, D., Castillo-Cobián, A., Rodríguez-Arévalo, I., & Vielle-Calzada, J.-P. (2016). A primary sequence analysis of the ARGONAUTE protein family in plants. Frontiers in Plant Science, 7. https://doi.org/10.3389/fpls.2016.01347spa
dc.relation.referencesRomera-Branchat, M., Ripoll, J. J., Yanofsky, M. F., & Pelaz, S. (2013). The WOX13 homeobox gene promotes replum formation in the Arabidopsis thaliana fruit. The Plant Journal, 73(1), 37–49. https://doi.org/10.1111/tpj.12010spa
dc.relation.referencesRonquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A., & Huelsenbeck, J. P. (2012). MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61(3), 539-542. https://doi.org/10.1093/sysbio/sys029spa
dc.relation.referencesRoodbarkelari, F., & Groot, E. P. (2017). Regulatory function of homeodomain‐leucine zipper HD‐ZIP family proteins during embryogenesis. New Phytologist, 213(1), 95–104. https://doi.org/10.1111/nph.14132spa
dc.relation.referencesRutherford, R. J. (1970). The anatomy and cytology of Pilostyles thurberi Gray (Rafflesiaceae). Aliso, 7(2), 263-288.spa
dc.relation.referencesRybel, B. D., Mähönen, A. P., Helariutta, Y., & Weijers, D. (2016). Plant vascular development: From early specification to differentiation. Nature Reviews Molecular Cell Biology, 17(1), 30-40. https://doi.org/10.1038/nrm.2015.6spa
dc.relation.referencesSakakibara, K., Reisewitz, P., Aoyama, T., Friedrich, T., Ando, S., Sato, Y., Tamada, Y., Nishiyama, T., Hiwatashi, Y., Kurata, T., Ishikawa, M., Deguchi, H., Rensing, S. A., Werr, W., Murata, T., Hasebe, M., & Laux, T. (2014). WOX13—Like genes are required for reprogramming of leaf and protoplast cells into stem cells in the moss Physcomitrella patens. Development, 141(8), 1660–1670. https://doi.org/10.1242/dev.097444spa
dc.relation.referencesSato, H. A., & Gonzalez, A. M. (2022). Anatomy, embryology and life cycle of Lophophytum, a root-holoparasitic plant. En A. M. Gonzalez & H. A. Sato (Eds.), Parasitic Plants. IntechOpen. https://doi.org/10.5772/intechopen.99981spa
dc.relation.referencesSchmieder, R., & Edwards, R. (2011). Quality control and preprocessing of metagenomic datasets. Bioinformatics, 27(6), 863–864. https://doi.org/10.1093/bioinformatics/btr026spa
dc.relation.referencesShimizu, K., Hozumi, A., & Aoki, K. (2018). Organization of vascular cells in the haustorium of the parasitic flowering plant Cuscuta japonica. Plant and Cell Physiology, 59(4), 720–728. https://doi.org/10.1093/pcp/pcx197spa
dc.relation.referencesShimizu, N., Ishida, T., Yamada, M., Shigenobu, S., Tabata, R., Kinoshita, A., Yamaguchi, K., Hasebe, M., Mitsumasu, K., & Sawa, S. (2015). BAM 1 and RECEPTOR‐ LIKE PROTEIN KINASE 2 constitute a signaling pathway and modulate CLE peptide‐triggered growth inhibition in Arabidopsis root. New Phytologist, 208(4), 1104–1113. https://doi.org/10.1111/nph.13520spa
dc.relation.referencesSkylar, A., Hong, F., Chory, J., Weigel, D., & Wu, X. (2010). STIMPY mediates cytokinin signaling during shoot meristem establishment in Arabidopsis seedlings. Development (Cambridge, England), 137(4), 541-549. https://doi.org/10.1242/dev.041426spa
dc.relation.referencesSparks, E., Wachsman, G., & Benfey, P. N. (2013). Spatiotemporal signalling in plant development. Nature Reviews Genetics, 14(9), 631-644. https://doi.org/10.1038/nrg3541spa
dc.relation.referencesStamatakis, A., Hoover, P., & Rougemont, J. (2008). A rapid bootstrap algorithm for the RAxML web servers. Systematic Biology, 57(5), 758-771. https://doi.org/10.1080/10635150802429642spa
dc.relation.referencesTajima, D., Kaneko, A., Sakamoto, M., Ito, Y., Hue, N. T., Miyazaki, M., Ishibashi, Y., Yuasa, T., & Iwaya-Inoue, M. (2013). Wrinkled1 (WRI1) Homologs, AP2-Type transcription factors involving master regulation of seed storage oil synthesis in castor bean Ricinus communis. American Journal of Plant Sciences, 04(02), 333–339. https://doi.org/10.4236/ajps.2013.42044spa
dc.relation.referencesTaylor-Teeples, M., Lanctot, A., & Nemhauser, J. L. (2016). As above, so below: Auxin’s role in lateral organ development. Developmental Biology, 419(1), 156-164. https://doi.org/10.1016/j.ydbio.2016.03.020spa
dc.relation.referencesTeixeira-Costa, L., & Davis, C. C. (2021). Life history, diversity, and distribution in parasitic flowering plants. Plant Physiology, 187(1), 32–51. https://doi.org/10.1093/plphys/kiab279spa
dc.relation.referencesTsuda, K., & Hake, S. (2016). Homeobox transcription factors and the regulation of meristem development and maintenance. En Plant Transcription Factors (pp. 215-228). Elsevier. https://doi.org/10.1016/B978-0-12-800854-6.00014-2spa
dc.relation.referencesTurchi, L., Baima, S., Morelli, G., & Ruberti, I. (2015). Interplay of HD-Zip II and III transcription factors in auxin-regulated plant development. Journal of Experimental Botany, 66(16), 5043–5053. https://doi.org/10.1093/jxb/erv174spa
dc.relation.referencesTvorogova, V. E., & Lutova, L. A. (2018). Genetic regulation of zygotic embryogenesis in Angiosperm plants. Russian Journal of Plant Physiology, 65(1), 1-14. https://doi.org/10.1134/S1021443718010107spa
dc.relation.referencesvan der Graaff, E., Laux, T., & Rensing, S. A. (2009). The WUS homeobox-containing (WOX) protein family. Genome Biology, 10(12), 248. https://doi.org/10.1186/gb-2009-10-12-248spa
dc.relation.referencesVattimo, I. (1971). Contribuição ao conhecimento da tribo Apodantheae R. Br. Parte I – Conspecto das especies (Rafflesiaceae). Rodriguésia, 26(38), 37-62.spa
dc.relation.referencesWang, H., Shao, W., Yan, M., Xu, Y., Liu, S., & Wang, R. (2021). Genome-wide analysis and expression profiling of HD-ZIP III genes in three Brassica species. Diversity, 13(12), 684. https://doi.org/10.3390/d13120684spa
dc.relation.referencesWatanabe, M., Tanaka, H., Watanabe, D., Machida, C., & Machida, Y. (2004). The ACR4 receptor-like kinase is required for surface formation of epidermis-related tissues in Arabidopsis thaliana. The Plant Journal, 39(3), 298-308. https://doi.org/10.1111/j.1365-313X.2004.02132.xspa
dc.relation.referencesWeigel, D., Alvarez, J., Smyth, D. R., Yanofsky, M. F., & Meyerowitz, E. M. (1992). LEAFY controls floral meristem identity in Arabidopsis. Cell, 69(5), 843-859. https://doi.org/10.1016/0092-8674(92)90295-Nspa
dc.relation.referencesWernersson, R., & Pedersen, A. G. (2003). RevTrans: Multiple alignment of coding DNA from aligned amino acid sequences. Nucleic Acids Research, 31(13), 3537-3539.spa
dc.relation.referencesWestwood, J. H., Yoder, J. I., Timko, M. P., & dePamphilis, C. W. (2010). The evolution of parasitism in plants. Trends in Plant Science, 15(4), 227-235. https://doi.org/10.1016/j.tplants.2010.01.004spa
dc.relation.referencesWils, C. R., & Kaufmann, K. (2017). Gene-regulatory networks controlling inflorescence and flower development in Arabidopsis thaliana. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 1860(1), 95-105. https://doi.org/10.1016/j.bbagrm.2016.07.014spa
dc.relation.referencesWu, C.-C., Li, F.-W., & Kramer, E. M. (2019). Large-scale phylogenomic analysis suggests three ancient superclades of the WUSCHEL-RELATED HOMEOBOX transcription factor family in plants. PLOS ONE, 14(10), e0223521. https://doi.org/10.1371/journal.pone.0223521spa
dc.relation.referencesWu, Q., Xu, F., & Jackson, D. (2018). All together now, a magical mystery tour of the maize shoot meristem. Current Opinion in Plant Biology, 45, 26-35. https://doi.org/10.1016/j.pbi.2018.04.010spa
dc.relation.referencesWu, X., Dabi, T., & Weigel, D. (2005). Requirement of homeobox gene STIMPY/WOX9 for Arabidopsis meristem growth and maintenance. Current Biology: CB, 15(5), 436-440. https://doi.org/10.1016/j.cub.2004.12.079spa
dc.relation.referencesXu, C., & Shanklin, J. (2016). Triacylglycerol metabolism, function, and accumulation in plant vegetative tissues. Annual Review of Plant Biology, 67(1), 179–206. https://doi.org/10.1146/annurev-arplant-043015-111641spa
dc.relation.referencesYamaguchi, N., Wu, M.-F., Winter, C. M., Berns, M. C., Nole-Wilson, S., Yamaguchi, A., Coupland, G., Krizek, B. A., & Wagner, D. (2013). A Molecular framework for auxin-mediated initiation of flower primordia. Developmental Cell, 24(3), 271-282. https://doi.org/10.1016/j.devcel.2012.12.017spa
dc.relation.referencesYe, J., Coulouris, G., Zaretskaya, I., Cutcutache, I., Rozen, S., & Madden, T. L. (2012). Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics, 13(1), 134. https://doi.org/10.1186/1471-2105-13-134spa
dc.relation.referencesZalewski, C. S., Floyd, S. K., Furumizu, C., Sakakibara, K., Stevenson, D. W., & Bowman, J. L. (2013). Evolution of the Class IV HD-Zip Gene Family in Streptophytes. Molecular Biology and Evolution, 30(10), 2347–2365. https://doi.org/10.1093/molbev/mst132spa
dc.relation.referencesZhang, H., Xia, R., Meyers, B. C., & Walbot, V. (2015). Evolution, functions, and mysteries of plant ARGONAUTE proteins. Current Opinion in Plant Biology, 27, 84–90. https://doi.org/10.1016/j.pbi.2015.06.011spa
dc.relation.referencesZheng, Y., Wu, S., Bai, Y., Sun, H., Jiao, C., Guo, S., Zhao, K., Blanca, J., Zhang, Z., Huang, S., Xu, Y., Weng, Y., Mazourek, M., K Reddy, U., Ando, K., McCreight, J. D., Schaffer, A. A., Burger, J., Tadmor, Y., … Fei, Z. (2019). Cucurbit Genomics Database (CuGenDB): A central portal for comparative and functional genomics of cucurbit crops. Nucleic Acids Research, 47(D1), D1128-D1136. https://doi.org/10.1093/nar/gky944spa
dc.relation.referencesZhou, X., Guo, Y., Zhao, P., & Sun, M. (2018). Comparative analysis of WUSCHEL-Related Homeobox genes revealed their parent-of-origin and cell type-specific expression pattern during early embryogenesis in Tobacco. Frontiers in Plant Science, 9, 311. https://doi.org/10.3389/fpls.2018.00311spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.agrovocBiología evolutivaspa
dc.subject.agrovocevolutionary biologyeng
dc.subject.agrovocTejidos vegetalesspa
dc.subject.agrovocplant tissueseng
dc.subject.agrovocAngiospermasspa
dc.subject.agrovocangiospermseng
dc.subject.ddc570 - Biología::576 - Genética y evoluciónspa
dc.subject.proposalHoloparásita endofíticaspa
dc.subject.proposalApical meristemeng
dc.subject.proposalFactores de transcripciónspa
dc.subject.proposalMeristema apicalspa
dc.subject.proposalProcambiumspa
dc.subject.proposalTranscriptomaspa
dc.subject.proposalEndophytic holoparasiteeng
dc.subject.proposalProcambiumeng
dc.subject.proposalTranscription factorseng
dc.subject.proposalTranscriptomeeng
dc.titleEvolución de los genes de regulación meristemática de la angiosperma holoparásita Pilostyles boyacensis (Apodanthaceae)spa
dc.title.translatedEvolution of meristem regulatory genes in the holoparasitic angiosperm Pilostyles boyacensis (Apodanthaceae)eng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleGenómica y transcriptómica comparada de Pilostyles boyacensis (Apodanthaceae), una extraordinaria planta con flor holoparásita de bosques secos de Colombiaspa
oaire.awardtitleEvolución de los genes asociados a embriogénesis temprana de la endoparásita Pilostyles boyacensis (Apodanthaceae)spa
oaire.fundernameVicerrectoría de Investigaciones Universidad Nacional de Colombiaspa
oaire.fundernameFacultad de Ciencias sede Bogotá de la Universidad Nacional de Colombiaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032432374.2023.pdf
Tamaño:
25.98 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ciencias - Biología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: