Evolución de los genes de regulación meristemática de la angiosperma holoparásita Pilostyles boyacensis (Apodanthaceae)
dc.contributor.advisor | González Garavito, Favio Antonio | spa |
dc.contributor.advisor | Pabón Mora, Natalia Lucía | spa |
dc.contributor.author | González Galindo, Angie Daniela | spa |
dc.contributor.cvlac | https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001365166 | spa |
dc.contributor.datacurator | Alzate, Juan Fernando | spa |
dc.contributor.googlescholar | https://scholar.google.com.co/citations?user=1Yvc6mMAAAAJ&hl=es&oi=ao | spa |
dc.contributor.orcid | http://orcid.org/0000-0002-1772-2152 | spa |
dc.contributor.researchgate | https://www.researchgate.net/profile/Angie-Gonzalez-16 | spa |
dc.contributor.researchgroup | Evo-Devo en Plantas | spa |
dc.contributor.scopus | https://www.scopus.com/authid/detail.uri?authorId=55816773900 | spa |
dc.date.accessioned | 2024-01-15T20:28:11Z | |
dc.date.available | 2024-01-15T20:28:11Z | |
dc.date.issued | 2023-11-16 | |
dc.description | ilustraciones, diagramas | spa |
dc.description.abstract | Las especies de Apodanthaceae presentan una morfología excepcional dentro de las angiospermas, ya que son holoparásitas endofíticas, que viven totalmente a expensas de otras plantas con flor, y que han perdido la capacidad de fotosintetizar. Esta condición de parasitismo extremo ha causado la pérdida total de raíces, tallos y hojas, y que el desarrollo vegetativo se reduzca a la formación de un tejido filamentoso poco diferenciado que entra en contacto directo con el tejido vascular del hospedero. La fase no críptica ocurre cuando las flores emergen del tallo hospedero y completan su ciclo de vida al formar frutos y semillas viables. Este estudio evaluó la evolución de los linajes de genes regulatorios de meristemas primarios, embriogénesis temprana y diferenciación de células vasculares en la holoparásita Pilostyles boyacensis (Apodanthaceae). Esto, mediante una búsqueda dirigida de genes homólogos en P. boyacensis a los ya documentados en la especie modelo Arabidopsis thaliana, y finalmente se propone una red genética mínima funcional para el desarrollo vegetativo de en Pilostyles. Se generaron cuatro transcriptomas por RNA-seq para (a) flores; (b) frutos de P. boyacensis; (c) endófito y botones florales jóvenes en tallos de la hospedera Dalea cuatrecasasii (Fabaceae); y (d) tallo no infectado de D. cuatrecasasii. Como resultado, se encontraron genes en 10 de las doce familias de genes evaluadas. En total, se encontró aproximadamente una tercera parte de los genes conocidos en la especie modelo, aunque la mayoría de los pocos que se mantienen en la holoparásita presentaron dominios funcionales conservados. Se infiere que la reducción morfológica vegetativa y embrionaria extrema de Pilostyles está evolutivamente vinculada con la reducción de genes expresados como parte de las redes genéticas asociadas a estos procesos. Se mantienen los módulos de interacción mínimos para el desarrollo del embrión y los factores de transcripción asociados al crecimiento del endófito y a una diferenciación vascular incipiente. Los genes asociados al desarrollo de raíz en otras especies no se encontraron siendo expresados, mientras que los relacionados con el inicio de meristemas florales permanecen. (Texto tomado de la fuente). | spa |
dc.description.abstract | The species of Apodanthaceae have a unique morphology among angiosperms. They are endophytic holoparasites that thrive exclusively at the expense of other flowering plants and have lost their photosynthetic capacity. The extreme parasitic condition has resulted in a complete loss of roots, shoots, and leaves, leading to a limited vegetative development that forms a filamentous tissue differentiating poorly and directly contacting the host's vascular tissue. The non-cryptic phase commences when flowers emerge from the host stem, eventually producing viable fruits and seeds. This study investigated the evolution of gene lineages regulating primary meristems, early embryogenesis and vascular differentiation in the holoparasitic plant Pilostyles boyacensis (Apodanthaceae). A focused search was conducted to identify homologous genes in P. boyacensis that have been documented in the model species Arabidopsis thaliana. Finally, a minimum functional genetic network for Pilostyles development is proposed. Transcriptomes from four sources were generated through RNA-seq: (a) flowers, (b) fruits of P. boyacensis, (c) endophyte and young flower buds on stems of the host Dalea cuatrecasasii (Fabaceae), and (d) uninfected stems of D. cuatrecasasii. The results of evaluating the twelve families showed genes from ten families. In total, Pilostyles contained only about one-third of the model species' known genes, although most of the few genes that remain in the holoparasite had conserved functional domains. It is inferred that Pilostyles' extreme vegetative and embryonic morphological reduction is evolutionarily linked to a reduction of expressed genes associated with genetic networks of those processes. The minimum interaction modules for embryo development and transcription factors linked to endophytic growth and incipient vascular differentiation remain conserved. No genes related to root development were found expressed, however, genes related to the initiation of floral meristems remain. | eng |
dc.description.degreelevel | Doctorado | spa |
dc.description.degreename | Doctor en Ciencias - Biología | spa |
dc.description.researcharea | Biología evolutiva y del desarrollo en plantas | spa |
dc.format.extent | xx, 207 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/85300 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Doctorado en Ciencias - Biología | spa |
dc.relation.indexed | Agrosavia | spa |
dc.relation.indexed | Agrovoc | spa |
dc.relation.references | Amaral, M. M. do, & Ceccantini, G. (2011). The endoparasite Pilostyles ulei (Apodanthaceae – Cucurbitales) influences wood structure in three host species of Mimosa. IAWA Journal, 32(1), 1-13. https://doi.org/10.1163/22941932-90000038 | spa |
dc.relation.references | Amini, S., Rosli, K., Abu-Bakar, M.-F., Alias, H., Mat-Isa, M.-N., Juhari, M.-A.-A., Haji-Adam, J., Goh, H.-H., & Wan, K.-L. (2019). Transcriptome landscape of Rafflesia cantleyi floral buds reveals insights into the roles of transcription factors and phytohormones in flower development. PLOS ONE, 14(12), e0226338. https://doi.org/10.1371/journal.pone.0226338 | spa |
dc.relation.references | Barkman, T. J., McNeal, J. R., Lim, S.-H., Coat, G., Croom, H. B., Young, N. D., & dePamphilis, C. W. (2007). Mitochondrial DNA suggests at least 11 origins of parasitism in angiosperms and reveals genomic chimerism in parasitic plants. BMC Evolutionary Biology, 7, 248. https://doi.org/10.1186/1471-2148-7-248 | spa |
dc.relation.references | Bellot, S., & Renner, S. S. (2014). The systematics of the worldwide endoparasite family Apodanthaceae (Cucurbitales), with a key, a map, and color photos of most species. PhytoKeys, 36, 41-57. https://doi.org/10.3897/phytokeys.36.7385 | spa |
dc.relation.references | Adamowski, M., & Friml, J. (2015). PIN-dependent auxin transport: Action, Regulation, and evolution. The Plant Cell, 27(1), 20–32. https://doi.org/10.1105/tpc.114.134874 | spa |
dc.relation.references | Afgan, E., Baker, D., Batut, B., van den Beek, M., Bouvier, D., Čech, M., Chilton, J., Clements, D., Coraor, N., Grüning, B. A., Guerler, A., Hillman-Jackson, J., Hiltemann, S., Jalili, V., Rasche, H., Soranzo, N., Goecks, J., Taylor, J., Nekrutenko, A., & Blankenberg, D. (2018). The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Research, 46(W1), W537-W544. https://doi.org/10.1093/nar/gky379 | spa |
dc.relation.references | Amaral, M. M. do. (2007). A estrutura da angiosperma endoparasita Pilostyles ulei (Apodanthaceae): Interface e impacto no lenho de Mimosa spp [Master thesis, Universidade de São Paulo]. http://www.teses.usp.br/teses/disponiveis/41/41132/tde-05112007-095018/ | spa |
dc.relation.references | Arias-Agudelo, L. M., González, F., Isaza, J. P., Alzate, J. F., & Pabón-Mora, N. (2019). Plastome reduction and gene content in New World Pilostyles (Apodanthaceae) unveils high similarities to African and Australian congeners. Molecular Phylogenetics and Evolution, 135, 193-202. https://doi.org/10.1016/j.ympev.2019.03.014 | spa |
dc.relation.references | Ariel, F. D., Manavella, P. A., Dezar, C. A., & Chan, R. L. (2007). The true story of the HD-Zip family. Trends in Plant Science, 12(9), 419–426. https://doi.org/10.1016/j.tplants.2007.08.003 | spa |
dc.relation.references | Bailey, T. L., Boden, M., Buske, F. A., Frith, M., Grant, C. E., Clementi, L., Ren, J., Li, W. W., & Noble, W. S. (2009). MEME SUITE: Tools for motif discovery and searching. Nucleic Acids Research, 37(Web Server issue), W202-208. https://doi.org/10.1093/nar/gkp335 | spa |
dc.relation.references | Baskin, J. M., & Baskin, C. C. (2022). Germination and seed/embryo size in holoparasitic flowering plants with “dust seeds” and an undifferentiated embryo. The Botanical Review, 88(1), 1–49. https://doi.org/10.1007/s12229-020-09242-y | spa |
dc.relation.references | Bellot, S., & Renner, S. S. (2013). Pollination and mating systems of Apodanthaceae and the distribution of reproductive traits in parasitic angiosperms. American Journal of Botany, 100(6), 1083–1094. https://doi.org/10.3732/ajb.1200627 | spa |
dc.relation.references | Bennett, T. (2015). PIN proteins and the evolution of plant development. Trends in Plant Science, 20(8), 498-507. https://doi.org/10.1016/j.tplants.2015.05.005 | spa |
dc.relation.references | Bennett, T., & Scheres, B. (2010). Root development two meristems for the price of one? En M. C. Timmermans (Ed.), Plant development (pp. 67-102). Elsevier. https://doi.org/10.1016/S0070-2153(10)91003-X | spa |
dc.relation.references | Blarer, A., Nickrent, D. L., & Endress, P. K. (2004). Comparative floral structure and systematics in Apodanthaceae (Rafflesiales). Plant Systematics and Evolution, 245(1), 119-142. https://doi.org/10.1007/s00606-003-0090-2 | spa |
dc.relation.references | Bouman, F., & Meijer, W. (1994). Comparative structure of ovules and seeds in Rafflesiaceae. Plant Systematics and Evolution, 193(1-4), 187-212. https://doi.org/10.1007/BF00983550 | spa |
dc.relation.references | Brasil, B. de A. (2010). Ciclo de vida, fenologia e anatomia floral de Pilostyles (Apodanthaceae—Rafflesiaceae s.l.): Subsídios para um posicionamento filogenético da família Apodanthaceae [Master thesis, Universidade de São Paulo]. http://www.teses.usp.br/teses/disponiveis/41/41132/tde-10122010-105707/ | spa |
dc.relation.references | Bryan, A. C., Obaidi, A., Wierzba, M., & Tax, F. E. (2012). XYLEM INTERMIXED WITH PHLOEM1, a leucine-rich repeat receptor-like kinase required for stem growth and vascular development in Arabidopsis thaliana. Planta, 235(1), 111-122. https://doi.org/10.1007/s00425-011-1489-6 | spa |
dc.relation.references | Cai, L., Arnold, B. J., Xi, Z., Khost, D. E., Patel, N., Hartmann, C. B., Manickam, S., Sasirat, S., Nikolov, L. A., Mathews, S., Sackton, T. B., & Davis, C. C. (2021). Deeply altered genome architecture in the endoparasitic flowering plant Sapria himalayana Griff. (Rafflesiaceae). Current Biology, 31(5), 1002-1011.e9. https://doi.org/10.1016/j.cub.2020.12.045 | spa |
dc.relation.references | Cammarata, J., & Scanlon, M. J. (2020). A functionally informed evolutionary framework for the study of LRR-RLKs during stem cell maintenance. Journal of Plant Research, 133(3), 331–342. https://doi.org/10.1007/s10265-020-01197-w | spa |
dc.relation.references | Capron, A., Chatfield, S., Provart, N., & Berleth, T. (2009). Embryogenesis: Pattern formation from a single cell. The Arabidopsis Book, 7, e0126. https://doi.org/10.1199/tab.0126 | spa |
dc.relation.references | Carbonell, A. (2017). Plant ARGONAUTEs: Features, functions, and unknowns. En A. Carbonell (Ed.), Plant Argonaute Proteins (Vol. 1640, pp. 1–21). Springer New York. https://doi.org/10.1007/978-1-4939-7165-7_1 | spa |
dc.relation.references | Carpenter, E. J., Matasci, N., Ayyampalayam, S., Wu, S., Sun, J., Yu, J., Jimenez Vieira, F. R., Bowler, C., Dorrell, R. G., Gitzendanner, M. A., Li, L., Du, W., K. Ullrich, K., Wickett, N. J., Barkmann, T. J., Barker, M. S., Leebens-Mack, J. H., & Wong, G. K.-S. (2019). Access to RNA-sequencing data from 1,173 plant species: The 1000 Plant transcriptomes initiative (1KP). GigaScience, 8(10), giz126. https://doi.org/10.1093/gigascience/giz126 | spa |
dc.relation.references | Cederholm, H. M., Iyer-Pascuzzi, A. S., & Benfey, P. N. (2012). Patterning the primary root in Arabidopsis. Wiley Interdisciplinary Reviews: Developmental Biology, 1(5), 675-691. https://doi.org/10.1002/wdev.49 | spa |
dc.relation.references | Cernac, A., Andre, C., Hoffmann-Benning, S., & Benning, C. (2006). WRI1 is required for seed germination and seedling establishment. Plant Physiology, 141(2), 745–757. https://doi.org/10.1104/pp.106.079574 | spa |
dc.relation.references | Chandler, J. W. (2016). Auxin response factors. Plant, Cell & Environment, 39(5), 1014-1028. https://doi.org/10.1111/pce.12662 | spa |
dc.relation.references | Chandler, J. W., & Werr, W. (2015). Cytokinin–auxin crosstalk in cell type specification. Trends in Plant Science, 20(5), 291-300. https://doi.org/10.1016/j.tplants.2015.02.003 | spa |
dc.relation.references | Chandler, J. W., & Werr, W. (2019). Histology versus phylogeny: Viewing plant embryogenesis from an evo-devo perspective. En Current Topics in Developmental Biology (Vol. 131, pp. 545-564). Elsevier. https://doi.org/10.1016/bs.ctdb.2018.11.009 | spa |
dc.relation.references | Chang, W., Guo, Y., Zhang, H., Liu, X., & Guo, L. (2020). Same actor in different stages: Genes in shoot apical meristem maintenance and floral meristem determinacy in Arabidopsis. Frontiers in Ecology and Evolution, 8, 89. https://doi.org/10.3389/fevo.2020.00089 | spa |
dc.relation.references | Costanzo, E., Trehin, C., & Vandenbussche, M. (2014). The role of WOX genes in flower development. Annals of Botany, 114(7), 1545-1553. https://doi.org/10.1093/aob/mcu123 | spa |
dc.relation.references | Cronk, Q. C. B. (2009). Evolution in reverse gear: The molecular basis of loss and reversal. Cold Spring Harbor Symposia on Quantitative Biology, 74(0), 259-266. https://doi.org/10.1101/sqb.2009.74.034 | spa |
dc.relation.references | Czyzewicz, N., Nikonorova, N., Meyer, M. R., Sandal, P., Shah, S., Vu, L. D., Gevaert, K., Rao, A. G., & De Smet, I. (2016). The growing story of (ARABIDOPSIS) CRINKLY 4. Journal of Experimental Botany, 67(16), 4835–4847. https://doi.org/10.1093/jxb/erw192 | spa |
dc.relation.references | Darriba, D., Posada, D., Kozlov, A. M., Stamatakis, A., Morel, B., & Flouri, T. (2019). ModelTest-NG: A new and scalable tool for the selection of DNA and protein evolutionary models. Molecular Biology and Evolution, msz189. https://doi.org/10.1093/molbev/msz189 | spa |
dc.relation.references | De Vega, C., Ortiz, P. L., Arista, M., & Talavera, S. (2007). The endophytic system of mediterranean Cytinus (Cytinaceae) Developing on five host Cistaceae species. Annals of Botany, 100(6), 1209–1217. https://doi.org/10.1093/aob/mcm217 | spa |
dc.relation.references | Dell, B., Kuo, J., & Burbidge, A. H. (1982). Anatomy of Pilostyles hamiltonii C. A. Gardner (Rafflesiaceae) in stems of Daviesia. Australian Journal of Botany, 30(1), 1-9. | spa |
dc.relation.references | Denay, G., Chahtane, H., Tichtinsky, G., & Parcy, F. (2017). A flower is born: An update on Arabidopsis floral meristem formation. Current Opinion in Plant Biology, 35, 15-22. https://doi.org/10.1016/j.pbi.2016.09.003 | spa |
dc.relation.references | Deveaux, Y., Toffano-Nioche, C., Claisse, G., Thareau, V., Morin, H., Laufs, P., Moreau, H., Kreis, M., & Lecharny, A. (2008). Genes of the most conserved WOX clade in plants affect root and flower development in Arabidopsis. BMC Evolutionary Biology, 8(1), 291. https://doi.org/10.1186/1471-2148-8-291 | spa |
dc.relation.references | DeYoung, B. J., & Clark, S. E. (2008). BAM receptors regulate stem cell specification and organ development through complex interactions with CLAVATA signaling. Genetics, 180(2), 895-904. https://doi.org/10.1534/genetics.108.091108 | spa |
dc.relation.references | DeYoung, B. J., Bickle, K. L., Schrage, K. J., Muskett, P., Patel, K., & Clark, S. E. (2006). The CLAVATA1-related BAM1, BAM2 and BAM3 receptor kinase-like proteins are required for meristem function in Arabidopsis: BAM receptor kinases regulate meristem function. The Plant Journal, 45(1), 1-16. https://doi.org/10.1111/j.1365-313X.2005.02592.x | spa |
dc.relation.references | Du, Q., & Wang, H. (2015). The role of HD-ZIP III transcription factors and miR165/166 in vascular development and secondary cell wall formation. Plant Signaling & Behavior, 10(10), e1078955. https://doi.org/10.1080/15592324.2015.1078955 | spa |
dc.relation.references | El Ouakfaoui, S., Schnell, J., Abdeen, A., Colville, A., Labbé, H., Han, S., Baum, B., Laberge, S., & Miki, B. (2010). Control of somatic embryogenesis and embryo development by AP2 transcription factors. Plant Molecular Biology, 74(4–5), 313–326. https://doi.org/10.1007/s11103-010-9674-8 | spa |
dc.relation.references | El-Showk, S., Taylor-Teeples, M., Helariutta, Y., & Brady, S. M. (2013). Gene regulatory networks during Arabidopsis root vascular development. International Journal of Plant Sciences, 174(7), 1090-1097. https://doi.org/10.1086/671449 | spa |
dc.relation.references | Endriss, W. (1902). Monographie von Pilostyles ingae Karst. (Pilostyles ulei SolmsLaub.). Flora, 91, 209-236. | spa |
dc.relation.references | Ernst, A., & Schmid, E. (1913). Über Blüte und Frucht von Rafflesiaceae. Annales du Jardin Botanique de Buitenzorg, 12, 1–58. | spa |
dc.relation.references | Eshed, Y., Baum, S. F., Perea, J. V., & Bowman, J. L. (2001). Establishment of polarity in lateral organs of plants. Current Biology, 11(16), 1251-1260. https://doi.org/10.1016/S0960-9822(01)00392-X | spa |
dc.relation.references | Fang, X., & Qi, Y. (2016). RNAi in Plants: An Argonaute-centered view. The Plant Cell, 28(2), 272–285. https://doi.org/10.1105/tpc.15.00920 | spa |
dc.relation.references | Finet, C., Berne-Dedieu, A., Scutt, C. P., & Marlétaz, F. (2013). Evolution of the ARF gene family in land plants: Old domains, new tricks. Molecular Biology and Evolution, 30(1), 45-56. https://doi.org/10.1093/molbev/mss220 | spa |
dc.relation.references | Fiume, E., & Fletcher, J. C. (2012). Regulation of Arabidopsis embryo and endosperm development by the polypeptide signaling molecule CLE8. The Plant Cell, 24(3), 1000-1012. https://doi.org/10.1105/tpc.111.094839 | spa |
dc.relation.references | Fletcher, J. C. (1999). Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science, 283(5409), 1911-1914. https://doi.org/10.1126/science.283.5409.1911 | spa |
dc.relation.references | Gaillochet, C., & Lohmann, J. U. (2015). The never-ending story: From pluripotency to plant developmental plasticity. Development, 142(13), 2237-2249. https://doi.org/10.1242/dev.117614 | spa |
dc.relation.references | González, A. D., Pabón-Mora, N., Alzate, J. F., & González, F. (2020). Meristem Genes in the Highly Reduced Endoparasitic Pilostyles boyacensis (Apodanthaceae). Frontiers in Ecology and Evolution, 8, 209. https://doi.org/10.3389/fevo.2020.00209 | spa |
dc.relation.references | González, F., & Pabón-Mora, N. (2014). First reports and generic descriptions of the achlorophyllous holoparasites Apodanthaceae (Cucurbitales) of Colombia. Actualidades Biológicas, 36(101), 123-135. | spa |
dc.relation.references | González, F., & Pabón-Mora, N. (2014). Pilostyles boyacensis a new species of Apodanthaceae (Cucurbitales) from Colombia. Phytotaxa, 178(2), 138. https://doi.org/10.11646/phytotaxa.178.2.5 | spa |
dc.relation.references | González, F., & Pabón-Mora, N. (2017). Floral development and morphoanatomy in the holoparasitic Pilostyles boyacensis (Apodanthaceae, Cucurbitales) reveal chimeric half-staminate and half-carpellate flowers. International Journal of Plant Sciences, 178(7), 522-536. https://doi.org/10.1086/692505 | spa |
dc.relation.references | Goodstein, D. M., Shu, S., Howson, R., Neupane, R., Hayes, R. D., Fazo, J., Mitros, T., Dirks, W., Hellsten, U., Putnam, N., & Rokhsar, D. S. (2012). Phytozome: A comparative platform for green plant genomics. Nucleic Acids Research, 40 (Database issue), D1178-D1186. https://doi.org/10.1093/nar/gkr944 | spa |
dc.relation.references | Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I., Adiconis, X., Fan, L., Raychowdhury, R., Zeng, Q., Chen, Z., Mauceli, E., Hacohen, N., Gnirke, A., Rhind, N., di Palma, F., Birren, B. W., Nusbaum, C., Lindblad-Toh, K., … Regev, A. (2011). Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology, 29(7), 644-652. https://doi.org/10.1038/nbt.1883 | spa |
dc.relation.references | Groppo, M., Amaral, M. M., & Ceccantini, G. C. T. (2007). Flora da Serra do Cipó, Minas Gerais: Apodanthaceae (Rafflesiaceae s.l.), e notas sobre a anatomia de Pilostyles. Boletim de Botânica, 25(1), 81-86. https://doi.org/10.11606/issn.2316-9052.v25i1p81-86 | spa |
dc.relation.references | Guyomarc’h, S., Bertrand, C., Delarue, M., & Zhou, D.-X. (2005). Regulation of meristem activity by chromatin remodelling. Trends in Plant Science, 10(7), 332-338. https://doi.org/10.1016/j.tplants.2005.05.003 | spa |
dc.relation.references | Ha, C. M., Jun, J. H., & Fletcher, J. C. (2010). Chapter four—Shoot apical meristem form and function. En M. C. P. Timmermans (Ed.), Current Topics in Developmental Biology (Vol. 91, pp. 103-140). Academic Press. https://doi.org/10.1016/S0070-2153(10)91004-1 | spa |
dc.relation.references | Haecker, A., Groß-Hardt, R., Geiges, B., Sarkar, A., Breuninger, H., Herrmann, M., & Laux, T. (2004). Expression dynamics of WOX genes mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana. Development, 131(3), 657-668. https://doi.org/10.1242/dev.00963 | spa |
dc.relation.references | Hall, T. A. (1999). BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser, 41, 95-98. | spa |
dc.relation.references | Hall, T. M. T. (2005). Structure and function of Argonaute proteins. Structure, 13(10), 1403–1408. https://doi.org/10.1016/j.str.2005.08.005 | spa |
dc.relation.references | Hardtke, C. S., Ckurshumova, W., Vidaurre, D. P., Singh, S. A., Stamatiou, G., Tiwari, S. B., Hagen, G., Guilfoyle, T. J., & Berleth, T. (2004). Overlapping and non-redundant functions of the Arabidopsis auxin response factors MONOPTEROS and NONPHOTOTROPIC HYPOCOTYL 4. Development (Cambridge, England), 131(5), 1089-1100. https://doi.org/10.1242/dev.00925 | spa |
dc.relation.references | Hazak, O., & Hardtke, C. S. (2016). CLAVATA 1-type receptors in plant development. Journal of Experimental Botany, 67(16), 4827-4833. https://doi.org/10.1093/jxb/erw247 | spa |
dc.relation.references | Heide-Jørgensen, H. (2008). Parasitic flowering plants. Brill. | spa |
dc.relation.references | Horstman, A., Willemsen, V., Boutilier, K., & Heidstra, R. (2014). AINTEGUMENTA-LIKE proteins: Hubs in a plethora of networks. Trends in Plant Science, 19(3), 146-157. https://doi.org/10.1016/j.tplants.2013.10.010 | spa |
dc.relation.references | Hove, C. A. ten, Lu, K.-J., & Weijers, D. (2015). Building a plant: Cell fate specification in the early Arabidopsis embryo. Development, 142(3), 420–430. https://doi.org/10.1242/dev.111500 | spa |
dc.relation.references | Johri, B. (1992). Aristolochiales. En B. Johri, K. Ambegaokar, & P. Srivastava, Comparative embryology of angiosperms (Vol. 1, pp. 316-323). Springer. http://www.springer.com/la/book/9783540536338 | spa |
dc.relation.references | Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A., & Jermiin, L. S. (2017). ModelFinder: Fast model selection for accurate phylogenetic estimates. Nature Methods, 14(6), 587–589. https://doi.org/10.1038/nmeth.4285 | spa |
dc.relation.references | Kamata, N., Okada, H., Komeda, Y., & Takahashi, T. (2013). Mutations in epidermis-specific HD-ZIP IV genes affect floral organ identity in Arabidopsis thaliana. The Plant Journal, 75(3), 430–440. https://doi.org/10.1111/tpj.12211 | spa |
dc.relation.references | Kapoor, M., Arora, R., Lama, T., Nijhawan, A., Khurana, J. P., Tyagi, A. K., & Kapoor, S. (2008). Genome-wide identification, organization and phylogenetic analysis of Dicer-like, Argonaute and RNA-dependent RNA Polymerase gene families and their expression analysis during reproductive development and stress in rice. BMC Genomics, 9(1), 451. https://doi.org/10.1186/1471-2164-9-451 | spa |
dc.relation.references | Katoh, K., & Standley, D. M. (2013). MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Molecular Biology and Evolution, 30(4), 772-780. https://doi.org/10.1093/molbev/mst010 | spa |
dc.relation.references | Katoh, K., Misawa, K., Kuma, K., & Miyata, T. (2002). MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research, 30(14), 3059–3066. | spa |
dc.relation.references | Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N., & Sternberg, M. J. E. (2015). The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols, 10(6), 845–858. https://doi.org/10.1038/nprot.2015.053 | spa |
dc.relation.references | Kerstens, M. H. L., Schranz, M. E., & Bouwmeester, K. (2020). Phylogenomic analysis of the APETALA2 transcription factor subfamily across angiosperms reveals both deep conservation and lineage‐specific patterns. The Plant Journal, 103(4), 1516–1524. https://doi.org/10.1111/tpj.14843 | spa |
dc.relation.references | Khosla, A., Paper, J. M., Boehler, A. P., Bradley, A. M., Neumann, T. R., & Schrick, K. (2014). HD-Zip Proteins GL2 and HDG11 Have Redundant Functions in Arabidopsis Trichomes, and GL2 Activates a Positive Feedback Loop via MYB23. The Plant Cell, 26(5), 2184–2200. https://doi.org/10.1105/tpc.113.120360 | spa |
dc.relation.references | Kieffer, M., Stern, Y., Cook, H., Clerici, E., Maulbetsch, C., Laux, T., & Davies, B. (2006). Analysis of the transcription factor WUSCHEL and its functional homologue in Antirrhinum reveals a potential mechanism for their roles in meristem maintenance. The Plant Cell, 18(3), 560-573. https://doi.org/10.1105/tpc.105.039107 | spa |
dc.relation.references | Kinoshita, A., Betsuyaku, S., Osakabe, Y., Mizuno, S., Nagawa, S., Stahl, Y., Simon, R., Yamaguchi-Shinozaki, K., Fukuda, H., & Sawa, S. (2010). RPK2 is an essential receptor-like kinase that transmits the CLV3 signal in Arabidopsis. Development, 137(22), 3911–3920. https://doi.org/10.1242/dev.048199 | spa |
dc.relation.references | Kondo, Y., & Fukuda, H. (2015). The TDIF signaling network. Current Opinion in Plant Biology, 28, 106–110. https://doi.org/10.1016/j.pbi.2015.10.002 | spa |
dc.relation.references | Korasick, D. A., Westfall, C. S., Lee, S. G., Nanao, M. H., Dumas, R., Hagen, G., Guilfoyle, T. J., Jez, J. M., & Strader, L. C. (2014). Molecular basis for AUXIN RESPONSE FACTOR protein interaction and the control of auxin response repression. Proceedings of the National Academy of Sciences, 111(14), 5427-5432. https://doi.org/10.1073/pnas.1400074111 | spa |
dc.relation.references | Křeček, P., Skůpa, P., Libus, J., Naramoto, S., Tejos, R., Friml, J., & Zažímalová, E. (2009). The PIN-FORMED (PIN) protein family of auxin transporters. Genome Biology, 10(12), 249. https://doi.org/10.1186/gb-2009-10-12-249 | spa |
dc.relation.references | Krizek, B. A., Bantle, A. T., Heflin, J. M., Han, H., Freese, N. H., & Loraine, A. E. (2021). AINTEGUMENTA and AINTEGUMENTA-LIKE6 directly regulate floral homeotic, growth, and vascular development genes in young Arabidopsis flowers. Journal of Experimental Botany, 72(15), 5478–5493. https://doi.org/10.1093/jxb/erab223 | spa |
dc.relation.references | Kuijt, J. (1969). The biology of parasitic flowering plants (Central 582.13/k96b). University of California Press. | spa |
dc.relation.references | Kuijt, J., Bray, D., & Olson, A. R. (1985). Anatomy and ultrastructure of the endophytic system of Pilostyles thurberi (Rafflesiaceae). Canadian Journal of Botany, 63(7), 1231-1240. https://doi.org/10.1139/b85-170 | spa |
dc.relation.references | Laux, T., Mayer, K. F., Berger, J., & Jürgens, G. (1996). The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development (Cambridge, England), 122(1), 87-96. | spa |
dc.relation.references | Li, H., Shi, Q., Zhang, Z.-B., Zeng, L.-P., Qi, J., & Ma, H. (2016). Evolution of the leucine-rich repeat receptor-like protein kinase gene family: Ancestral copy number and functional divergence of BAM1 and BAM2 in Brassicaceae: Evolution of the LRR-RLK gene family. Journal of Systematics and Evolution, 54(3), 204-218. https://doi.org/10.1111/jse.12206 | spa |
dc.relation.references | Lu, S., Wang, J., Chitsaz, F., Derbyshire, M. K., Geer, R. C., Gonzales, N. R., Gwadz, M., Hurwitz, D. I., Marchler, G. H., Song, J. S., Thanki, N., Yamashita, R. A., Yang, M., Zhang, D., Zheng, C., Lanczycki, C. J., & Marchler-Bauer, A. (2020). CDD/SPARCLE: The conserved domain database in 2020. Nucleic Acids Research, 48(D1), D265–D268. https://doi.org/10.1093/nar/gkz991 | spa |
dc.relation.references | Maeo, K., Tokuda, T., Ayame, A., Mitsui, N., Kawai, T., Tsukagoshi, H., Ishiguro, S., & Nakamura, K. (2009). An AP2-type transcription factor, WRINKLED1, of Arabidopsis thaliana binds to the AW-box sequence conserved among proximal upstream regions of genes involved in fatty acid synthesis. The Plant Journal, 60(3), 476–487. https://doi.org/10.1111/j.1365-313X.2009.03967.x | spa |
dc.relation.references | Maeo, K., Tokuda, T., Ayame, A., Mitsui, N., Kawai, T., Tsukagoshi, H., Ishiguro, S., & Nakamura, K. (2009). An AP2-type transcription factor, WRINKLED1, of Arabidopsis thaliana binds to the AW-box sequence conserved among proximal upstream regions of genes involved in fatty acid synthesis. The Plant Journal, 60(3), 476–487. https://doi.org/10.1111/j.1365-313X.2009.03967.x | spa |
dc.relation.references | Maizel, A., Busch, M. A., Tanahashi, T., Perkovic, J., Kato, M., Hasebe, M., & Weigel, D. (2005). The floral regulator LEAFY evolves by substitutions in the DNA binding domain. Science (New York, N.Y.), 308(5719), 260-263. https://doi.org/10.1126/science.1108229 | spa |
dc.relation.references | Matasci, N., Hung, L.-H., Yan, Z., Carpenter, E. J., Wickett, N. J., Mirarab, S., Nguyen, N., Warnow, T., Ayyampalayam, S., Barker, M., Burleigh, J. G., Gitzendanner, M. A., Wafula, E., Der, J. P., dePamphilis, C. W., Roure, B., Philippe, H., Ruhfel, B. R., Miles, N. W., … Wong, G. K.-S. (2014). Data access for the 1,000 Plants (1KP) project. GigaScience, 3, 17. https://doi.org/10.1186/2047-217X-3-17 | spa |
dc.relation.references | Matsushima, N., & Miyashita, H. (2012). Leucine-Rich Repeat (LRR) domains containing intervening motifs in plants. Biomolecules, 2(2), 288–311. https://doi.org/10.3390/biom2020288 | spa |
dc.relation.references | Meijer, W. (1993). Rafflesiaceae. En K. Kubitzki, J. G. Rohwer, & V. Bittrich (Eds.), Flowering plants, dicotyledons: Magnoliid, hamamelid, and caryophyllid families (Vol. 2, pp. 557-562). Springer. http://dx.doi.org/10.1007/978-3-662-02899-5 | spa |
dc.relation.references | Meyer, M. R., Lichti, C. F., Townsend, R. R., & Rao, A. G. (2011). Identification of in vitro autophosphorylation sites and effects of phosphorylation on the Arabidopsis CRINKLY4 (ACR4) Receptor-like Kinase intracellular domain: Insights into conformation, oligomerization, and activity. Biochemistry, 50(12), 2170–2186. https://doi.org/10.1021/bi101935x | spa |
dc.relation.references | Michael, T. P., Ernst, E., Hartwick, N., Chu, P., Bryant, D., Gilbert, S., Ortleb, S., Baggs, E. L., Sree, K. S., Appenroth, K. J., Fuchs, J., Jupe, F., Sandoval, J. P., Krasileva, K. V., Borisjuk, L., Mockler, T. C., Ecker, J. R., Martienssen, R. A., & Lam, E. (2021). Genome and time-of-day transcriptome of Wolffia australiana link morphological minimization with gene loss and less growth control. Genome Research, 31(2), 225-238. https://doi.org/10.1101/gr.266429.120 | spa |
dc.relation.references | Miller, M. A., Pfeiffer, W., & Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Gateway Computing Environments Workshop (GCE), 2010, 1-8. http://dx.doi.org/10.1109/GCE.2010.5676129 | spa |
dc.relation.references | Minh, B. Q., Nguyen, M. A. T., & von Haeseler, A. (2013). Ultrafast approximation for phylogenetic bootstrap. Molecular Biology and Evolution, 30(5), 1188–1195. https://doi.org/10.1093/molbev/mst024 | spa |
dc.relation.references | Mistry, J., Chuguransky, S., Williams, L., Qureshi, M., Salazar, G. A., Sonnhammer, E. L. L., Tosatto, S. C. E., Paladin, L., Raj, S., Richardson, L. J., Finn, R. D., & Bateman, A. (2021). Pfam: The protein families database in 2021. Nucleic Acids Research, 49(D1), D412–D419. https://doi.org/10.1093/nar/gkaa913 | spa |
dc.relation.references | Miyashima, S., Sebastian, J., Lee, J.-Y., & Helariutta, Y. (2013). Stem cell function during plant vascular development. The EMBO Journal, 32(2), 178-193. https://doi.org/10.1038/emboj.2012.301 | spa |
dc.relation.references | Mizuno, S., Osakabe, Y., Maruyama, K., Ito, T., Osakabe, K., Sato, T., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2007). Receptor-like protein kinase 2 (RPK 2) is a novel factor controlling anther development in Arabidopsis thaliana: RPK2 controls anther development. The Plant Journal, 50(5), 751-766. https://doi.org/10.1111/j.1365-313X.2007.03083.x | spa |
dc.relation.references | Moyroud, E., Kusters, E., Monniaux, M., Koes, R., & Parcy, F. (2010). LEAFY blossoms. Trends in Plant Science, 15(6), 346-352. https://doi.org/10.1016/j.tplants.2010.03.007 | spa |
dc.relation.references | Mursidawati, S., & Wicaksono, A. (2021). A preliminary study of in vivo injection of auxin and cytokinin into Rafflesia patma Blume flower buds. Buletin Kebun Raya, 24(2). https://doi.org/10.14203/bkr.v24i2.670 | spa |
dc.relation.references | Nakamura, M., Katsumata, H., Abe, M., Yabe, N., Komeda, Y., Yamamoto, K. T., & Takahashi, T. (2006). Characterization of the Class IV Homeodomain-Leucine Zipper gene family in Arabidopsis. Plant Physiology, 141(4), 1363–1375. https://doi.org/10.1104/pp.106.077388 | spa |
dc.relation.references | Nardmann, J., Zimmermann, R., Durantini, D., Kranz, E., & Werr, W. (2007). WOX gene phylogeny in Poaceae: A comparative approach addressing leaf and embryo development. Molecular Biology and Evolution, 24(11), 2474-2484. https://doi.org/10.1093/molbev/msm182 | spa |
dc.relation.references | Nguyen, L.-T., Schmidt, H. A., von Haeseler, A., & Minh, B. Q. (2015). IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 32(1), 268–274. https://doi.org/10.1093/molbev/msu300 | spa |
dc.relation.references | Nickrent, D. L. (2020). Parasitic angiosperms: How often and how many? TAXON, 69(1), 5-27. https://doi.org/10.1002/tax.12195 | spa |
dc.relation.references | Nikolov, L. A., Endress, P. K., Sugumaran, M., Sasirat, S., Vessabutr, S., Kramer, E. M., & Davis, C. C. (2013). Developmental origins of the world’s largest flowers, Rafflesiaceae. Proceedings of the National Academy of Sciences, 110(46), 18578-18583. https://doi.org/10.1073/pnas.1310356110 | spa |
dc.relation.references | Nikolov, L. A., Tomlinson, P. B., Manickam, S., Endress, P. K., Kramer, E. M., & Davis, C. C. (2014). Holoparasitic Rafflesiaceae possess the most reduced endophytes and yet give rise to the world’s largest flowers. Annals of Botany, 114(2), 233-242. https://doi.org/10.1093/aob/mcu114 | spa |
dc.relation.references | Nikonorova, N., Vu, L. D., Czyzewicz, N., Gevaert, K., & De Smet, I. (2015). A phylogenetic approach to study the origin and evolution of the CRINKLY4 family. Frontiers in Plant Science, 6. https://doi.org/10.3389/fpls.2015.00880 | spa |
dc.relation.references | Nodine, M. D., Yadegari, R., & Tax, F. E. (2007). RPK1 and TOAD2 are two receptor-like kinases redundantly required for Arabidopsis embryonic pattern formation. Developmental Cell, 12(6), 943-956. https://doi.org/10.1016/j.devcel.2007.04.003 | spa |
dc.relation.references | Nole-Wilson, S., Tranby, T. L., & Krizek, B. A. (2005). AINTEGUMENTA-like (AIL) genes are expressed in young tissues and may specify meristematic or division-competent states. Plant Molecular Biology, 57(5), 613–628. https://doi.org/10.1007/s11103-005-0955-6 | spa |
dc.relation.references | Ó’Maoiléidigh, D. S., Graciet, E., & Wellmer, F. (2014). Gene networks controlling Arabidopsis thaliana flower development. New Phytologist, 201(1), 16-30. https://doi.org/10.1111/nph.12444 | spa |
dc.relation.references | Ohtani, M., Akiyoshi, N., Takenaka, Y., Sano, R., & Demura, T. (2017). Evolution of plant conducting cells: Perspectives from key regulators of vascular cell differentiation. Journal of Experimental Botany, 68(1), 17-26. https://doi.org/10.1093/jxb/erw473 | spa |
dc.relation.references | Ortega-González, P. F., Rios-Carrasco, S., González-Martínez, C. A., Bonilla-Cruz, N., & Vázquez-Santana, S. (2020). Pilostyles maya, a novel species from Mexico and the first cleistogamous species in Apodanthaceae (Cucurbitales). Phytotaxa, 440(4), 255–267. https://doi.org/10.11646/phytotaxa.440.4.1 | spa |
dc.relation.references | Pabon-Mora, N., Ambrose, B. A., & Litt, A. (2012). Poppy APETALA1/FRUITFULL orthologs control flowering time, branching, perianth identity, and fruit development. Plant Physiology, 158(4), 1685-1704. https://doi.org/10.1104/pp.111.192104 | spa |
dc.relation.references | Palovaara, J., De Zeeuw, T., & Weijers, D. (2016). Tissue and organ initiation in the plant embryo: A first time for everything. Annual Review of Cell and Developmental Biology, 32(1), 47–75. https://doi.org/10.1146/annurev-cellbio-111315-124929 | spa |
dc.relation.references | Palovaara, J., Hallberg, H., Stasolla, C., & Hakman, I. (2010). Comparative expression pattern analysis of WUSCHEL-related homeobox 2 (WOX2) and WOX8/9 in developing seeds and somatic embryos of the gymnosperm Picea abies. New Phytologist, 188(1), 122-135. https://doi.org/10.1111/j.1469-8137.2010.03336.x | spa |
dc.relation.references | Palovaara, J., Saiga, S., & Weijers, D. (2013). Transcriptomics approaches in the early Arabidopsis embryo. Trends in Plant Science, 18(9), 514-521. https://doi.org/10.1016/j.tplants.2013.04.011 | spa |
dc.relation.references | Pan, L., Lv, S., Yang, N., Lv, Y., Liu, Z., Wu, J., & Wang, G. (2016). The multifunction of CLAVATA2 in plant development and immunity. Frontiers in Plant Science, 7. https://doi.org/10.3389/fpls.2016.01573 | spa |
dc.relation.references | Pawełkowicz, M., Pryszcz, L., Skarzyńska, A., Wóycicki, R. K., Posyniak, K., Rymuszka, J., Przybecki, Z., & Pląder, W. (2019). Comparative transcriptome analysis reveals new molecular pathways for cucumber genes related to sex determination. Plant Reproduction, 32(2), 193-216. https://doi.org/10.1007/s00497-019-00362-z | spa |
dc.relation.references | Paysan-Lafosse, T., Blum, M., Chuguransky, S., Grego, T., Pinto, B. L., Salazar, G. A., Bileschi, M. L., Bork, P., Bridge, A., Colwell, L., Gough, J., Haft, D. H., Letunić, I., Marchler-Bauer, A., Mi, H., Natale, D. A., Orengo, C. A., Pandurangan, A. P., Rivoire, C., … Bateman, A. (2023). InterPro in 2022. Nucleic Acids Research, 51(D1), D418-D427. https://doi.org/10.1093/nar/gkac993 | spa |
dc.relation.references | Pellissari, L. C. O., Teixeira-Costa, L., Ceccantini, G., Tamaio, N., Cardoso, L. J. T., Braga, J. M. A., & Barros, C. F. (2022). Parasitic plant, from inside out: Endophytic development in Lathrophytum peckoltii (Balanophoraceae) in host liana roots from tribe Paullineae (Sapindaceae). Annals of Botany, 129(3), 331–342. https://doi.org/10.1093/aob/mcab148 | spa |
dc.relation.references | Peris, C. I. L., Rademacher, E. H., & Weijers, D. (2010). Green beginnings pattern formation in the early plant embryo. En M. C. P. Timmermans (Ed.), Current Topics in Developmental Biology (Vol. 91, pp. 1-27). Academic Press. https://doi.org/10.1016/S0070-2153(10)91001-6 | spa |
dc.relation.references | Petrášek, J., & Friml, J. (2009). Auxin transport routes in plant development. Development, 136(16), 2675-2688. https://doi.org/10.1242/dev.030353 | spa |
dc.relation.references | Poole, R. L. (2007). The TAIR database. Methods in Molecular Biology (Clifton, N.J.), 406, 179-212. https://doi.org/10.1007/978-1-59745-535-0_8 | spa |
dc.relation.references | Prigge, M. J., & Clark, S. E. (2006). Evolution of the class III HD-Zip gene family in land plants. Evolution Development, 8(4), 350–361. https://doi.org/10.1111/j.1525-142X.2006.00107.x | spa |
dc.relation.references | Prigge, M. J., Otsuga, D., Alonso, J. M., Ecker, J. R., Drews, G. N., & Clark, S. E. (2005). Class III Homeodomain-Leucine Zipper gene family members have overlapping, antagonistic, and distinct roles in Arabidopsis development. The Plant Cell, 17(1), 61-76. https://doi.org/10.1105/tpc.104.026161 | spa |
dc.relation.references | Ramamoorthy, R., Phua, E. E.-K., Lim, S.-H., Tan, H. T.-W., & Kumar, P. P. (2013). Identification and characterization of RcMADS1, an AGL24 ortholog from the holoparasitic plant Rafflesia cantleyi Solms-Laubach (Rafflesiaceae). PLoS ONE, 8(6), e67243. https://doi.org/10.1371/journal.pone.0067243 | spa |
dc.relation.references | Rambaut, A. (2009). FigTree v1. 4.0: Tree figure drawing tool. Institute of Evolutionary Biology, University of Edinburgh. http://tree.bio.ed.ac.uk/software/figtree/ | spa |
dc.relation.references | Rebocho, A. B., Bliek, M., Kusters, E., Castel, R., Procissi, A., Roobeek, I., Souer, E., & Koes, R. (2008). Role of EVERGREEN in the development of the cymose petunia inflorescence. Developmental Cell, 15(3), 437-447. https://doi.org/10.1016/j.devcel.2008.08.007 | spa |
dc.relation.references | Rigal, A., Yordanov, Y. S., Perrone, I., Karlberg, A., Tisserant, E., Bellini, C., Busov, V. B., Martin, F., Kohler, A., Bhalerao, R., & Legué, V. (2012). The AINTEGUMENTA LIKE1 homeotic transcription factor PtAIL1 controls the formation of adventitious root primordia in poplar. Plant Physiology, 160(4), 1996–2006. https://doi.org/10.1104/pp.112.204453 | spa |
dc.relation.references | Rodríguez-Leal, D., Castillo-Cobián, A., Rodríguez-Arévalo, I., & Vielle-Calzada, J.-P. (2016). A primary sequence analysis of the ARGONAUTE protein family in plants. Frontiers in Plant Science, 7. https://doi.org/10.3389/fpls.2016.01347 | spa |
dc.relation.references | Romera-Branchat, M., Ripoll, J. J., Yanofsky, M. F., & Pelaz, S. (2013). The WOX13 homeobox gene promotes replum formation in the Arabidopsis thaliana fruit. The Plant Journal, 73(1), 37–49. https://doi.org/10.1111/tpj.12010 | spa |
dc.relation.references | Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A., & Huelsenbeck, J. P. (2012). MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61(3), 539-542. https://doi.org/10.1093/sysbio/sys029 | spa |
dc.relation.references | Roodbarkelari, F., & Groot, E. P. (2017). Regulatory function of homeodomain‐leucine zipper HD‐ZIP family proteins during embryogenesis. New Phytologist, 213(1), 95–104. https://doi.org/10.1111/nph.14132 | spa |
dc.relation.references | Rutherford, R. J. (1970). The anatomy and cytology of Pilostyles thurberi Gray (Rafflesiaceae). Aliso, 7(2), 263-288. | spa |
dc.relation.references | Rybel, B. D., Mähönen, A. P., Helariutta, Y., & Weijers, D. (2016). Plant vascular development: From early specification to differentiation. Nature Reviews Molecular Cell Biology, 17(1), 30-40. https://doi.org/10.1038/nrm.2015.6 | spa |
dc.relation.references | Sakakibara, K., Reisewitz, P., Aoyama, T., Friedrich, T., Ando, S., Sato, Y., Tamada, Y., Nishiyama, T., Hiwatashi, Y., Kurata, T., Ishikawa, M., Deguchi, H., Rensing, S. A., Werr, W., Murata, T., Hasebe, M., & Laux, T. (2014). WOX13—Like genes are required for reprogramming of leaf and protoplast cells into stem cells in the moss Physcomitrella patens. Development, 141(8), 1660–1670. https://doi.org/10.1242/dev.097444 | spa |
dc.relation.references | Sato, H. A., & Gonzalez, A. M. (2022). Anatomy, embryology and life cycle of Lophophytum, a root-holoparasitic plant. En A. M. Gonzalez & H. A. Sato (Eds.), Parasitic Plants. IntechOpen. https://doi.org/10.5772/intechopen.99981 | spa |
dc.relation.references | Schmieder, R., & Edwards, R. (2011). Quality control and preprocessing of metagenomic datasets. Bioinformatics, 27(6), 863–864. https://doi.org/10.1093/bioinformatics/btr026 | spa |
dc.relation.references | Shimizu, K., Hozumi, A., & Aoki, K. (2018). Organization of vascular cells in the haustorium of the parasitic flowering plant Cuscuta japonica. Plant and Cell Physiology, 59(4), 720–728. https://doi.org/10.1093/pcp/pcx197 | spa |
dc.relation.references | Shimizu, N., Ishida, T., Yamada, M., Shigenobu, S., Tabata, R., Kinoshita, A., Yamaguchi, K., Hasebe, M., Mitsumasu, K., & Sawa, S. (2015). BAM 1 and RECEPTOR‐ LIKE PROTEIN KINASE 2 constitute a signaling pathway and modulate CLE peptide‐triggered growth inhibition in Arabidopsis root. New Phytologist, 208(4), 1104–1113. https://doi.org/10.1111/nph.13520 | spa |
dc.relation.references | Skylar, A., Hong, F., Chory, J., Weigel, D., & Wu, X. (2010). STIMPY mediates cytokinin signaling during shoot meristem establishment in Arabidopsis seedlings. Development (Cambridge, England), 137(4), 541-549. https://doi.org/10.1242/dev.041426 | spa |
dc.relation.references | Sparks, E., Wachsman, G., & Benfey, P. N. (2013). Spatiotemporal signalling in plant development. Nature Reviews Genetics, 14(9), 631-644. https://doi.org/10.1038/nrg3541 | spa |
dc.relation.references | Stamatakis, A., Hoover, P., & Rougemont, J. (2008). A rapid bootstrap algorithm for the RAxML web servers. Systematic Biology, 57(5), 758-771. https://doi.org/10.1080/10635150802429642 | spa |
dc.relation.references | Tajima, D., Kaneko, A., Sakamoto, M., Ito, Y., Hue, N. T., Miyazaki, M., Ishibashi, Y., Yuasa, T., & Iwaya-Inoue, M. (2013). Wrinkled1 (WRI1) Homologs, AP2-Type transcription factors involving master regulation of seed storage oil synthesis in castor bean Ricinus communis. American Journal of Plant Sciences, 04(02), 333–339. https://doi.org/10.4236/ajps.2013.42044 | spa |
dc.relation.references | Taylor-Teeples, M., Lanctot, A., & Nemhauser, J. L. (2016). As above, so below: Auxin’s role in lateral organ development. Developmental Biology, 419(1), 156-164. https://doi.org/10.1016/j.ydbio.2016.03.020 | spa |
dc.relation.references | Teixeira-Costa, L., & Davis, C. C. (2021). Life history, diversity, and distribution in parasitic flowering plants. Plant Physiology, 187(1), 32–51. https://doi.org/10.1093/plphys/kiab279 | spa |
dc.relation.references | Tsuda, K., & Hake, S. (2016). Homeobox transcription factors and the regulation of meristem development and maintenance. En Plant Transcription Factors (pp. 215-228). Elsevier. https://doi.org/10.1016/B978-0-12-800854-6.00014-2 | spa |
dc.relation.references | Turchi, L., Baima, S., Morelli, G., & Ruberti, I. (2015). Interplay of HD-Zip II and III transcription factors in auxin-regulated plant development. Journal of Experimental Botany, 66(16), 5043–5053. https://doi.org/10.1093/jxb/erv174 | spa |
dc.relation.references | Tvorogova, V. E., & Lutova, L. A. (2018). Genetic regulation of zygotic embryogenesis in Angiosperm plants. Russian Journal of Plant Physiology, 65(1), 1-14. https://doi.org/10.1134/S1021443718010107 | spa |
dc.relation.references | van der Graaff, E., Laux, T., & Rensing, S. A. (2009). The WUS homeobox-containing (WOX) protein family. Genome Biology, 10(12), 248. https://doi.org/10.1186/gb-2009-10-12-248 | spa |
dc.relation.references | Vattimo, I. (1971). Contribuição ao conhecimento da tribo Apodantheae R. Br. Parte I – Conspecto das especies (Rafflesiaceae). Rodriguésia, 26(38), 37-62. | spa |
dc.relation.references | Wang, H., Shao, W., Yan, M., Xu, Y., Liu, S., & Wang, R. (2021). Genome-wide analysis and expression profiling of HD-ZIP III genes in three Brassica species. Diversity, 13(12), 684. https://doi.org/10.3390/d13120684 | spa |
dc.relation.references | Watanabe, M., Tanaka, H., Watanabe, D., Machida, C., & Machida, Y. (2004). The ACR4 receptor-like kinase is required for surface formation of epidermis-related tissues in Arabidopsis thaliana. The Plant Journal, 39(3), 298-308. https://doi.org/10.1111/j.1365-313X.2004.02132.x | spa |
dc.relation.references | Weigel, D., Alvarez, J., Smyth, D. R., Yanofsky, M. F., & Meyerowitz, E. M. (1992). LEAFY controls floral meristem identity in Arabidopsis. Cell, 69(5), 843-859. https://doi.org/10.1016/0092-8674(92)90295-N | spa |
dc.relation.references | Wernersson, R., & Pedersen, A. G. (2003). RevTrans: Multiple alignment of coding DNA from aligned amino acid sequences. Nucleic Acids Research, 31(13), 3537-3539. | spa |
dc.relation.references | Westwood, J. H., Yoder, J. I., Timko, M. P., & dePamphilis, C. W. (2010). The evolution of parasitism in plants. Trends in Plant Science, 15(4), 227-235. https://doi.org/10.1016/j.tplants.2010.01.004 | spa |
dc.relation.references | Wils, C. R., & Kaufmann, K. (2017). Gene-regulatory networks controlling inflorescence and flower development in Arabidopsis thaliana. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 1860(1), 95-105. https://doi.org/10.1016/j.bbagrm.2016.07.014 | spa |
dc.relation.references | Wu, C.-C., Li, F.-W., & Kramer, E. M. (2019). Large-scale phylogenomic analysis suggests three ancient superclades of the WUSCHEL-RELATED HOMEOBOX transcription factor family in plants. PLOS ONE, 14(10), e0223521. https://doi.org/10.1371/journal.pone.0223521 | spa |
dc.relation.references | Wu, Q., Xu, F., & Jackson, D. (2018). All together now, a magical mystery tour of the maize shoot meristem. Current Opinion in Plant Biology, 45, 26-35. https://doi.org/10.1016/j.pbi.2018.04.010 | spa |
dc.relation.references | Wu, X., Dabi, T., & Weigel, D. (2005). Requirement of homeobox gene STIMPY/WOX9 for Arabidopsis meristem growth and maintenance. Current Biology: CB, 15(5), 436-440. https://doi.org/10.1016/j.cub.2004.12.079 | spa |
dc.relation.references | Xu, C., & Shanklin, J. (2016). Triacylglycerol metabolism, function, and accumulation in plant vegetative tissues. Annual Review of Plant Biology, 67(1), 179–206. https://doi.org/10.1146/annurev-arplant-043015-111641 | spa |
dc.relation.references | Yamaguchi, N., Wu, M.-F., Winter, C. M., Berns, M. C., Nole-Wilson, S., Yamaguchi, A., Coupland, G., Krizek, B. A., & Wagner, D. (2013). A Molecular framework for auxin-mediated initiation of flower primordia. Developmental Cell, 24(3), 271-282. https://doi.org/10.1016/j.devcel.2012.12.017 | spa |
dc.relation.references | Ye, J., Coulouris, G., Zaretskaya, I., Cutcutache, I., Rozen, S., & Madden, T. L. (2012). Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics, 13(1), 134. https://doi.org/10.1186/1471-2105-13-134 | spa |
dc.relation.references | Zalewski, C. S., Floyd, S. K., Furumizu, C., Sakakibara, K., Stevenson, D. W., & Bowman, J. L. (2013). Evolution of the Class IV HD-Zip Gene Family in Streptophytes. Molecular Biology and Evolution, 30(10), 2347–2365. https://doi.org/10.1093/molbev/mst132 | spa |
dc.relation.references | Zhang, H., Xia, R., Meyers, B. C., & Walbot, V. (2015). Evolution, functions, and mysteries of plant ARGONAUTE proteins. Current Opinion in Plant Biology, 27, 84–90. https://doi.org/10.1016/j.pbi.2015.06.011 | spa |
dc.relation.references | Zheng, Y., Wu, S., Bai, Y., Sun, H., Jiao, C., Guo, S., Zhao, K., Blanca, J., Zhang, Z., Huang, S., Xu, Y., Weng, Y., Mazourek, M., K Reddy, U., Ando, K., McCreight, J. D., Schaffer, A. A., Burger, J., Tadmor, Y., … Fei, Z. (2019). Cucurbit Genomics Database (CuGenDB): A central portal for comparative and functional genomics of cucurbit crops. Nucleic Acids Research, 47(D1), D1128-D1136. https://doi.org/10.1093/nar/gky944 | spa |
dc.relation.references | Zhou, X., Guo, Y., Zhao, P., & Sun, M. (2018). Comparative analysis of WUSCHEL-Related Homeobox genes revealed their parent-of-origin and cell type-specific expression pattern during early embryogenesis in Tobacco. Frontiers in Plant Science, 9, 311. https://doi.org/10.3389/fpls.2018.00311 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.agrovoc | Biología evolutiva | spa |
dc.subject.agrovoc | evolutionary biology | eng |
dc.subject.agrovoc | Tejidos vegetales | spa |
dc.subject.agrovoc | plant tissues | eng |
dc.subject.agrovoc | Angiospermas | spa |
dc.subject.agrovoc | angiosperms | eng |
dc.subject.ddc | 570 - Biología::576 - Genética y evolución | spa |
dc.subject.proposal | Holoparásita endofítica | spa |
dc.subject.proposal | Apical meristem | eng |
dc.subject.proposal | Factores de transcripción | spa |
dc.subject.proposal | Meristema apical | spa |
dc.subject.proposal | Procambium | spa |
dc.subject.proposal | Transcriptoma | spa |
dc.subject.proposal | Endophytic holoparasite | eng |
dc.subject.proposal | Procambium | eng |
dc.subject.proposal | Transcription factors | eng |
dc.subject.proposal | Transcriptome | eng |
dc.title | Evolución de los genes de regulación meristemática de la angiosperma holoparásita Pilostyles boyacensis (Apodanthaceae) | spa |
dc.title.translated | Evolution of meristem regulatory genes in the holoparasitic angiosperm Pilostyles boyacensis (Apodanthaceae) | eng |
dc.type | Trabajo de grado - Doctorado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_db06 | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/doctoralThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TD | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.awardtitle | Genómica y transcriptómica comparada de Pilostyles boyacensis (Apodanthaceae), una extraordinaria planta con flor holoparásita de bosques secos de Colombia | spa |
oaire.awardtitle | Evolución de los genes asociados a embriogénesis temprana de la endoparásita Pilostyles boyacensis (Apodanthaceae) | spa |
oaire.fundername | Vicerrectoría de Investigaciones Universidad Nacional de Colombia | spa |
oaire.fundername | Facultad de Ciencias sede Bogotá de la Universidad Nacional de Colombia | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1032432374.2023.pdf
- Tamaño:
- 25.98 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Doctorado en Ciencias - Biología
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: