Estudio de la regulación de la función de la barrera hematoencefálica por vesículas extracelulares provenientes de células infectadas con virus Zika
| dc.contributor.advisor | Castellanos Parra, Jaime Eduardo | |
| dc.contributor.advisor | Velandia Romero, Myriam Lucía | |
| dc.contributor.author | Calderón Peláez, María Angélica | |
| dc.contributor.googlescholar | Calderón Peláez, María Angélica [P5oBYn0AAAAJ&hl=es] | |
| dc.contributor.orcid | Calderón Peláez, María Angélica [0000000307880795] | |
| dc.contributor.researchgate | Calderón Peláez, María Angélica [Maria-Angelica-Calderon] | |
| dc.contributor.researchgroup | Virologia | |
| dc.date.accessioned | 2026-01-22T20:38:52Z | |
| dc.date.available | 2026-01-22T20:38:52Z | |
| dc.date.issued | 2025 | |
| dc.description | ilustraciones a color, diagramas | spa |
| dc.description.abstract | El virus del Zika (ZIKV) induce alteraciones neurológicas severas tanto prenatales como postnatales, incluso tras la resolución de la infección. Esta persistencia sugiere la existencia de reservorios virales, donde las vesículas extracelulares (EVs) podrían desempeñar un papel clave como mediadoras de la diseminación viral y la disfunción del tejido nervioso. En este estudio se infectaron con ZIKV cultivos primarios de astrocitos, neuronas y células endoteliales cerebrales microvasculares (MBEC) de ratones Balb/c neonatos. A partir de estos se aislaron EVs, y se evaluó su participación en la neuropatogénesis mediante un enfoque integral que combinó un modelo in vitro de barrera hematoencefálica (BHE) con cultivos primarios de neuronas corticales. Las EVs fueron caracterizadas (NTA, inmunoblot, microscopía electrónica, transcriptómica y proteómica) y el contenido viral se analizó por PCR digital y ensayos de infectividad (in vitro e in vivo), encontrando que las EVs de neuronas y MBEC transportaron RNA viral infeccioso. Además, las EVs de MBEC infectadas alteraron la integridad del modelo de BHE de manera dependiente de la topología de contacto (luminal o abluminal), sugiriendo un mecanismo que favorece el establecimiento del ZIKV en el tejido para alcanzar las neuronas. Por otro lado, el pretratamiento de las neuronas con estas EVs, contrarrestó la disfunción mitocondrial inducida por el virus, preservó la arborización neuronal y promovió un fenotipo mitocondrial funcional, asociado con el aumento de transcritos de SOD y CAT. En conjunto, estos hallazgos demuestran la participación dual de las EVs en la neuropatogénesis del ZIKV, como vectores de diseminación viral y como moduladores de la respuesta celular en el tejido nervioso. (Texto tomado de la fuente) | spa |
| dc.description.abstract | Zika virus (ZIKV) is associated with severe neurological alterations, both prenatal and postnatal, which can occur even after viral clearance. This persistence suggests the existence of viral reservoirs, in which extracellular vesicles (EVs) may play a key role as mediators of viral dissemination and neurovascular dysfunction. In this study, primary cultures of astrocytes, neurons, and brain microvascular endothelial cells (MBEC) derived from neonatal Balb/c mice were infected with ZIKV. EVs were isolated from these cultures to assess their involvement in ZIKV neuropathogenesis. An integrated experimental approach was employed, combining an in vitro blood–brain barrier (BBB) model with primary cortical neuron cultures. EVs were characterized by nanoparticle tracking analysis (NTA), immunoblotting, electron microscopy, transcriptomics, and proteomics. Their viral content was evaluated by digital PCR and infectivity assays (in vitro and in vivo), revealing that EVs derived from neurons and MBEC carried replication-competent viral genomes capable of inducing infection in neonatal mice. Additionally, EVs from infected MBEC disrupted the integrity of the BBB model depending on the topological site of contact (luminal vs. abluminal), suggesting a mechanism that favor ZIKV establishment in the nervous tissue, aiming to gain access to neurons. Notably, neuronal pretreatment with EVs —particularly those from infected cells— counteracted virus-induced mitochondrial dysfunction, preserved dendritic arborization, and promoted a filamentous mitochondrial phenotype associated with increased expression of antioxidant enzymes SOD and CAT. Together, these findings demonstrated a dual role for EVs in ZIKV neuropathogenesis, acting both as vectors of viral dissemination and as modulators of cellular responses. | eng |
| dc.description.degreelevel | Doctorado | |
| dc.description.degreename | Doctor en Ciencias-Bioquímica | |
| dc.description.methods | Investigación en ciencias básicas | |
| dc.description.researcharea | Patogénesis Viral y Biología Celular | |
| dc.format.extent | 279 páginas | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.instname | Universidad Nacional de Colombia | spa |
| dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
| dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/89302 | |
| dc.language.iso | spa | |
| dc.publisher | Universidad Nacional de Colombia | |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | |
| dc.publisher.faculty | Facultad de Ciencias | |
| dc.publisher.place | Bogotá, Colombia | |
| dc.publisher.program | Bogotá - Ciencias - Doctorado en Ciencias - Bioquímica | |
| dc.relation.references | Åberg C. Kinetics of nanoparticle uptake into and distribution in human cells. Nanoscale Adv. 2021;3: 2196–2212. doi:10.1039/D0NA00716A | |
| dc.relation.references | Acoba MG, Senoo N, Claypool SM. Phospholipid ebb and flow makes mitochondria go. Journal of Cell Biology. 2020;219. doi:10.1083/jcb.202003131 | |
| dc.relation.references | Adams DR, Ron D, Kiely PA. RACK1, A multifaceted scaffolding protein: Structure and function. Cell Communication and Signaling. 2011;9: 22. doi:10.1186/1478-811X-9-22 | |
| dc.relation.references | Adebayo M, Singh S, Singh AP, Dasgupta S. Mitochondrial fusion and fission: The fine‐tune balance for cellular homeostasis. The FASEB Journal. 2021;35. doi:10.1096/fj.202100067R | |
| dc.relation.references | Agarwal A, Alam MohdF, Basu B, Pattanayak S, Asthana S, Syed GH, et al. Japanese Encephalitis Virus NS4A Protein Interacts with PTEN-Induced Kinase 1 (PINK1) and Promotes Mitophagy in Infected Cells. Microbiol Spectr. 2022;10. doi:10.1128/spectrum.00830-22 | |
| dc.relation.references | Ahmad S, Christova T, Pye M, Narimatsu M, Song S, Wrana JL, et al. Small Extracellular Vesicles Promote Axon Outgrowth by Engaging the Wnt-Planar Cell Polarity Pathway. Cells. 2025;14: 56. doi:10.3390/cells14010056 | |
| dc.relation.references | Almeida LT, Ferraz AC, da Silva Caetano CC, da Silva Menegatto MB, dos Santos Pereira Andrade AC, Lima RLS, et al. Zika virus induces oxidative stress and decreases antioxidant enzyme activities in vitro and in vivo. Virus Res. 2020;286: 198084. doi:10.1016/j.virusres.2020.198084 | |
| dc.relation.references | Altan-Bonnet N, Perales C, Domingo E. Extracellular vesicles: Vehicles of en bloc viral transmission. Virus Research. Elsevier B.V.; 2019. pp. 143–149. doi:10.1016/j.virusres.2019.03.023 | |
| dc.relation.references | Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215: 403–410. doi:10.1016/S0022-2836(05)80360-2 | |
| dc.relation.references | Alvarez M, Rodriguez-Roche R, Bernardo L, Morier L, Guzman MG. Improved Dengue Virus Plaque Formation on BHK21 and LLCMK 2 Cells: Evaluation of Some Factors. Dengue Bull. 2005. | |
| dc.relation.references | Anastasio C, Donisi I, Colloca A, D’Onofrio N, Balestrieri ML. MiR-148a-3p/SIRT7 Axis Relieves Inflammatory-Induced Endothelial Dysfunction. Int J Mol Sci. 2024;25: 5087. doi:10.3390/ijms25105087 | |
| dc.relation.references | Anfasa F, Goeijenbier M, Widagdo W, Siegers JY, Mumtaz N, Okba N, et al. Zika Virus Infection Induces Elevation of Tissue Factor Production and Apoptosis on Human Umbilical Vein Endothelial Cells. Front Microbiol. 2019;10. doi:10.3389/fmicb.2019.00817 | |
| dc.relation.references | Angelova PR, Abramov AY. Role of mitochondrial ROS in the brain: from physiology to neurodegeneration. FEBS Lett. 2018;592: 692–702. doi:10.1002/1873-3468.12964 | |
| dc.relation.references | Archer SL. Mitochondrial Dynamics — Mitochondrial Fission and Fusion in Human Diseases. New England Journal of Medicine. 2013;369: 2236–2251. doi:10.1056/NEJMra1215233 | |
| dc.relation.references | Arshadi C, Günther U, Eddison M, Harrington KIS, Ferreira TA. SNT: a unifying toolbox for quantification of neuronal anatomy. Nat Methods. 2021;18: 374–377. doi:10.1038/s41592-021-01105-7 | |
| dc.relation.references | Atkin-Smith GK, Santavanond JP, Light A, Rimes JS, Samson AL, Er J, et al. In situ visualization of endothelial cell-derived extracellular vesicle formation in steady state and malignant conditions. Nat Commun. 2024;15: 8802. doi:10.1038/s41467-024-52867-5 | |
| dc.relation.references | Ayala-Nunez NV, Follain G, Delalande F, Hirschler A, Partiot E, Hale GL, et al. Zika virus enhances monocyte adhesion and transmigration favoring viral dissemination to neural cells. Nat Commun. 2019;10: 1–16. doi:10.1038/s41467-019-12408-x | |
| dc.relation.references | Aydin Y, Koksal AR, Reddy V, Lin D, Osman H, Heidari Z, et al. Extracellular vesicle release promotes viral replication during persistent hcv infection. Cells. 2021;10. doi:10.3390/cells10050984 | |
| dc.relation.references | Backes S, Herrmann JM. Protein Translocation into the Intermembrane Space and Matrix of Mitochondria: Mechanisms and Driving Forces. Front Mol Biosci. 2017;4. doi:10.3389/fmolb.2017.00083 | |
| dc.relation.references | Banizs AB, Huang T, Nakamoto RK, Shi W, He J. Endocytosis Pathways of Endothelial Cell Derived Exosomes. Mol Pharm. 2018;15: 5585–5590. doi:10.1021/acs.molpharmaceut.8b00765 | |
| dc.relation.references | Bao M, Li J-M, Luo H, Tang L, Lv Q, Li G, et al. NF- κB-Regulated miR-99a Modulates Endothelial Cell Inflammation. Mediators Inflamm. 2016;2016: 1–9. doi:10.1155/2016/5308170 | |
| dc.relation.references | Bappy SS, Haque Asim MdM, Ahasan MM, Ahsan A, Sultana S, Khanam R, et al. Virus‐induced host cell metabolic alteration. Rev Med Virol. 2024;34. doi:10.1002/rmv.2505 | |
| dc.relation.references | Barbier V, Lang D, Valois S, Rothman AL, Medin CL. Dengue virus induces mitochondrial elongation through impairment of Drp1-triggered mitochondrial fission. Virology. 2017;500: 149–160. doi:10.1016/j.virol.2016.10.022 | |
| dc.relation.references | Barrows NJ, Campos RK, Liao KC, Prasanth KR, Soto-Acosta R, Yeh SC, et al. Biochemistry and Molecular Biology of Flaviviruses. Chem Rev. 2018;118: 4448–4482. doi:10.1021/acs.chemrev.7b00719 | |
| dc.relation.references | Bayer A, Lennemann NJ, Ouyang Y, Sadovsky E, Sheridan A, Roberts RM, et al. Chromosome 19 microRNAs exert antiviral activity independent from type III interferon signaling. Placenta. 2018;61: 33–38. doi:10.1016/j.placenta.2017.11.004.Chromosome | |
| dc.relation.references | Beaudoin GMJ, Lee SH, Singh D, Yuan Y, Ng YG, Reichardt LF, et al. Culturing pyramidal neurons from the early postnatal mouse hippocampus and cortex. Nat Protoc. 2012;7: 1741–1754. doi:10.1038/nprot.2012.099 | |
| dc.relation.references | Bello-Morales R, Ripa I, López-Guerrero JA. Extracellular vesicles in viral spread and antiviral response. Viruses. 2020;12: 1–20. doi:10.3390/v12060623 | |
| dc.relation.references | Belosludtseva N V., Dubinin M V., Belosludtsev KN. Pore-Forming VDAC Proteins of the Outer Mitochondrial Membrane: Regulation and Pathophysiological Role. Biochemistry (Moscow). 2024;89: 1061–1078. doi:10.1134/S0006297924060075 | |
| dc.relation.references | Berthet A, Margolis EB, Zhang J, Hsieh I, Zhang J, Hnasko TS, et al. Loss of Mitochondrial Fission Depletes Axonal Mitochondria in Midbrain Dopamine Neurons. The Journal of Neuroscience. 2014;34: 14304–14317. doi:10.1523/JNEUROSCI.0930-14.2014 | |
| dc.relation.references | Bhardwaj U, Pandey N, Rastogi M, Singh SK. Gist of Zika Virus pathogenesis. Virology. 2021;560: 86–95. doi:10.1016/j.virol.2021.04.008 | |
| dc.relation.references | Bhat AA, Younes SN, Raza SS, Zarif L, Nisar S, Ahmed I, et al. Role of non-coding RNA networks in leukemia progression, metastasis and drug resistance. Mol Cancer. 2020;19: 1–22. doi:10.1186/s12943-020-01303-5 | |
| dc.relation.references | Bischoff JP, Schulz A, Morrison H. The role of exosomes in intercellular and inter‐organ communication of the peripheral nervous system. FEBS Lett. 2022;596: 655–664. doi:10.1002/1873-3468.14274 | |
| dc.relation.references | Bitto NJ, Chapman R, Pidot S, Costin A, Lo C, Choi J, et al. Bacterial membrane vesicles transport their DNA cargo into host cells. Sci Rep. 2017;7: 1–11. doi:10.1038/s41598-017-07288-4 | |
| dc.relation.references | Blackmon K, Waechter R, Landon B, Noël T, Macpherson C, Donald T, et al. Epilepsy surveillance in normocephalic children with and without prenatal zika virus exposure. PLoS Negl Trop Dis. 2020;14: 1–15. doi:10.1371/journal.pntd.0008874 | |
| dc.relation.references | Bodega G, Alique M, Bohórquez L, Ciordia S, Mena MC, Ramírez MR. The Antioxidant Machinery of Young and Senescent Human Umbilical Vein Endothelial Cells and Their Microvesicles. Oxid Med Cell Longev. 2017;2017. doi:10.1155/2017/7094781 | |
| dc.relation.references | Bodega G, Alique M, Puebla L, Carracedo J, Ramírez RM. Microvesicles: ROS scavengers and ROS producers. J Extracell Vesicles. 2019;8. doi:10.1080/20013078.2019.1626654 | |
| dc.relation.references | Borja-Gonzalez M, Casas-Martinez JC, McDonagh B, Goljanek-Whysall K. Aging Science Talks: The role of miR-181a in age-related loss of muscle mass and function. Transl Med Aging. 2020;4: 81–85. doi:10.1016/j.tma.2020.07.001 | |
| dc.relation.references | Bosma EK, Darwesh S, Zheng JY, van Noorden CJF, Schlingemann RO, Klaassen I. Quantitative Assessment of the Apical and Basolateral Membrane Expression of VEGFR2 and NRP2 in VEGF-A-stimulated Cultured Human Umbilical Vein Endothelial Cells. Journal of Histochemistry & Cytochemistry. 2022;70: 557–569. doi:10.1369/00221554221115767 | |
| dc.relation.references | Boytz R, Keita K, Pawlak JB, Laurent-Rolle M. Flaviviruses manipulate mitochondrial processes to evade the innate immune response. npj Viruses. 2024;2: 47. doi:10.1038/s44298-024-00057-x | |
| dc.relation.references | Brugier A, Hafirrassou ML, Pourcelot M, Baldaccini M, Kril V, Couture L, et al. RACK1 Associates with RNA-Binding Proteins Vigilin and SERBP1 to Facilitate Dengue Virus Replication. J Virol. 2022;96. doi:10.1128/jvi.01962-21 | |
| dc.relation.references | Buckley S, Byrnes S, Cochrane C, Roche M, Estes JD, Selemidis S, et al. The role of oxidative stress in HIV-associated neurocognitive disorders. Brain Behav Immun Health. 2021;13: 100235. doi:10.1016/j.bbih.2021.100235 | |
| dc.relation.references | Cai W, Person S, DebRoy C, Gu B. Functional regions and structural features of the gB glycoprotein of herpes simplex virus type 1. J Mol Biol. 1988;201: 575–588. doi:10.1016/0022-2836(88)90639-0 | |
| dc.relation.references | Calderón-Peláez MA, Castellanos JE, Velandia-Romero ML. A protocol for loading Calcein-AM into extracellular vesicles from mammalian cells for clear visualization with a fluorescence microscope coupled to a deconvolution system. PLoS One. 2025;20. doi:10.1371/journal.pone.0317689 | |
| dc.relation.references | Calderón-Peláez M-A, Castellanos JE, Velandia-Romero ML. Extracellular vesicles in ZIKV infection: Carriers and facilitators of viral pathogenesis? Sci Prog. 2025;108. doi:10.1177/00368504241312073 | |
| dc.relation.references | Calderón-Peláez M-A, Madroñero LJ, Castellanos JE, Velandia-Romero ML. Small extracellular vesicles from the human endothelial cell line EA.hy 926 exert a self-cell activation and modulate DENV-2 genome replication and infection in naïve endothelial cells. PLoS One. 2024;19: e0310735. doi:10.1371/journal.pone.0310735 | |
| dc.relation.references | Caobi A, Nair M, Raymond AD. Extracellular Vesicles in the Pathogenesis of Viral Infections in Humans. Viruses. 2020;12. doi:10.3390/v12101200 | |
| dc.relation.references | Cardona-Ospina JA, Zapata MF, Grajales M, Arias MA, Grajales J, Bedoya-Rendón HD, et al. Physical Growth and Neurodevelopment of a Cohort of Children after 3.5 Years of Follow-up from Mothers with Zika Infection during Pregnancy - Third Report of the ZIKERNCOL Study. J Trop Pediatr. 2021;67: 1–10. doi:10.1093/tropej/fmab032 | |
| dc.relation.references | Carles-Fontana R, Heaton N, Palma E, Khorsandi S. Extracellular Vesicle-Mediated Mitochondrial Reprogramming in Cancer. Cancers (Basel). 2022;14: 1865. doi:10.3390/cancers14081865 | |
| dc.relation.references | Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature. 2011;473: 298–307. doi:10.1038/nature10144 | |
| dc.relation.references | Carrella S, Barbato S, D’Agostino Y, Salierno FG, Manfredi A, Banfi S, et al. TGF-β Controls miR-181/ERK Regulatory Network during Retinal Axon Specification and Growth. PLoS One. 2015;10: e0144129. doi:10.1371/journal.pone.0144129 | |
| dc.relation.references | Carrella S, D’Agostino Y, Barbato S, Huber‐Reggi SP, Salierno FG, Manfredi A, et al. miR‐181a/b control the assembly of visual circuitry by regulating retinal axon specification and growth. Dev Neurobiol. 2015;75: 1252–1267. doi:10.1002/dneu.22282 | |
| dc.relation.references | Carrella S, Massa F, Indrieri A. The Role of MicroRNAs in Mitochondria-Mediated Eye Diseases. Front Cell Dev Biol. 2021;9. doi:10.3389/fcell.2021.653522 | |
| dc.relation.references | Cash A, Theus MH. Mechanisms of Blood–Brain Barrier Dysfunction in Traumatic Brain Injury. Int J Mol Sci. 2020;21: 3344. doi:10.3390/ijms21093344 | |
| dc.relation.references | Catalano M, O’Driscoll L. Inhibiting extracellular vesicles formation and release: a review of EV inhibitors. J Extracell Vesicles. 2020;9. doi:10.1080/20013078.2019.1703244 | |
| dc.relation.references | Cervantes‐Silva MP, Cox SL, Curtis AM. Alterations in mitochondrial morphology as a key driver of immunity and host defence. EMBO Rep. 2021;22. doi:10.15252/embr.202153086 | |
| dc.relation.references | Chan DC. Mitochondrial Dynamics and Its Involvement in Disease. Annual Review of Pathology: Mechanisms of Disease. 2020;15: 235–259. doi:10.1146/annurev-pathmechdis-012419-032711 | |
| dc.relation.references | Chandra PK, Rutkai I, Kim H, Braun SE, Abdel-Mageed AB, Mondal D, et al. Latent HIV-Exosomes Induce Mitochondrial Hyperfusion Due to Loss of Phosphorylated Dynamin-Related Protein 1 in Brain Endothelium. Mol Neurobiol. 2021;58: 2974–2989. doi:10.1007/s12035-021-02319-8 | |
| dc.relation.references | Chang C-R, Manlandro CM, Arnoult D, Stadler J, Posey AE, Hill RB, et al. A Lethal de Novo Mutation in the Middle Domain of the Dynamin-related GTPase Drp1 Impairs Higher Order Assembly and Mitochondrial Division. Journal of Biological Chemistry. 2010;285: 32494–32503. doi:10.1074/jbc.M110.142430 | |
| dc.relation.references | Chatel-Chaix L, Cortese M, Romero-Brey I, Bender S, Neufeldt CJ, Fischl W, et al. Dengue Virus Perturbs Mitochondrial Morphodynamics to Dampen Innate Immune Responses. Cell Host Microbe. 2016;20: 342–356. doi:10.1016/j.chom.2016.07.008 | |
| dc.relation.references | Chatterjee S, Kordbacheh R, Sin J. Extracellular Vesicles: A Novel Mode of Viral Propagation Exploited by Enveloped and Non-Enveloped Viruses. Microorganisms. Multidisciplinary Digital Publishing Institute (MDPI); 2024. doi:10.3390/microorganisms12020274 | |
| dc.relation.references | Chaudhry A, Shi R, Luciani DS. A pipeline for multidimensional confocal analysis of mitochondrial morphology, function, and dynamics in pancreatic β-cells. Am J Physiol Endocrinol Metab. 2020;318: E87–E101. doi:10.1152/ajpendo.00457.2019 | |
| dc.relation.references | Chen P, Yao L, Yuan M, Wang Z, Zhang Q, Jiang Y, et al. Mitochondrial dysfunction: A promising therapeutic target for liver diseases. Genes Dis. 2024;11: 101115. doi:10.1016/j.gendis.2023.101115 | |
| dc.relation.references | Chen S, Chang Y, Chou C, Juan C, Lee H, Chen L, et al. Circulating microRNAsAssociated With Reversible Cerebral Vasoconstriction Syndrome. Ann Neurol. 2021;89: 459–473. doi:10.1002/ana.25965 | |
| dc.relation.references | Chen W, Zhao H, Li Y. Mitochondrial dynamics in health and disease: mechanisms and potential targets. Signal Transduction and Targeted Therapy. Springer Nature; 2023. doi:10.1038/s41392-023-01547-9 | |
| dc.relation.references | Chen Y, Yu L. Extracellular vesicles: from bench to bedside. Current Medicine. 2022;1: 1–12. doi:10.1007/s44194-022-00001-2 | |
| dc.relation.references | Chen Z, Li Z, Jiang C, Jiang X, Zhang J. MiR‐92b‐3p promotes neurite growth and functional recovery via the PTEN/AKT pathway in acute spinal cord injury. J Cell Physiol. 2019;234: 23043–23052. doi:10.1002/jcp.28864 | |
| dc.relation.references | Chiaradia E, Tancini B, Emiliani C, Delo F, Pellegrino RM, Tognoloni A, et al. Extracellular Vesicles under Oxidative Stress Conditions: Biological Properties and Physiological Roles. Cells. 2021;10: 1763. doi:10.3390/cells10071763 | |
| dc.relation.references | Chimelli L, Avvad-Portari E. Congenital Zika virus infection: a neuropathological review. Childs Nerv Syst. 2018;34: 95–99. doi:10.1007/s00381-017-3651-3 | |
| dc.relation.references | Chiu C, Chu L, Liao I, Simanjuntak Y, Lin Y. The Mechanism of the Zika Virus Crossing the Placental Barrier and the Blood-Brain Barrier. Front Immunol. 2020;11: 1–15. doi:10.3389/fmicb.2020.00214 | |
| dc.relation.references | Chivet M, Hemming F, Pernet-Gallay K, Fraboulet S, Sadoul R. Emerging Role of Neuronal Exosomes in the Central Nervous System. Front Physiol. 2012;3. doi:10.3389/fphys.2012.00145 | |
| dc.relation.references | Cho H, Cho Y-Y, Shim MS, Lee JY, Lee HS, Kang HC. Mitochondria-targeted drug delivery in cancers. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 2020;1866: 165808. doi:10.1016/j.bbadis.2020.165808 | |
| dc.relation.references | Chong MK, Ng ML. Significance of Cell Cycle Manipulation in the Establishment of Dengue Virus and West Nile Virus Infection. International Journal of Infectious Diseases. 2008;12: e168. doi:10.1016/j.ijid.2008.05.418 | |
| dc.relation.references | Christoff RR, Quintanilha JH, Ferreira RO, Ferreira JCCG, Guimarães DM, Valério-Gomes B, et al. Congenital Zika Virus Infection Impairs Corpus Callosum Development. Viruses. 2023;15: 2336. doi:10.3390/v15122336 | |
| dc.relation.references | Chun C, Smith AST, Kim H, Kamenz DS, Lee JH, Lee JB, et al. Astrocyte-derived extracellular vesicles enhance the survival and electrophysiological function of human cortical neurons in vitro. Biomaterials. 2021;271: 120700. doi:10.1016/j.biomaterials.2021.120700 | |
| dc.relation.references | Clancy JW, Schmidtmann M. The ins and outs of microvesicles. FASEB Bioadv. 2021;3: 399–406. doi:10.1096/fba.2020-00127 | |
| dc.relation.references | Clé M, Desmetz C, Barthelemy J, Martin M-F, Constant O, Maarifi G, et al. Zika Virus Infection Promotes Local Inflammation, Cell Adhesion Molecule Upregulation, and Leukocyte Recruitment at the Blood-Brain Barrier. mBio. 2020;11. doi:10.1128/mBio.01183-20 | |
| dc.relation.references | Cocucci E, Meldolesi J. Ectosomes and exosomes : shedding the confusion between extracellular vesicles. Trends Cell Biol. 2015;25: 364–372. doi:10.1016/j.tcb.2015.01.004 | |
| dc.relation.references | Colina‐Tenorio L, Horten P, Pfanner N, Rampelt H. Shaping the mitochondrial inner membrane in health and disease. J Intern Med. 2020;287: 645–664. doi:10.1111/joim.13031 | |
| dc.relation.references | Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 2014;30: 255–289. doi:10.1146/annurev-cellbio-101512-122326 | |
| dc.relation.references | Colpitts CC, Baumert TF. Claudins in viral infection: from entry to spread. Pflugers Arch. 2017;469: 27–34. doi:10.1007/s00424-016-1908-4 | |
| dc.relation.references | Colpman P, Dasgupta A, Archer SL. The Role of Mitochondrial Dynamics and Mitotic Fission in Regulating the Cell Cycle in Cancer and Pulmonary Arterial Hypertension: Implications for Dynamin-Related Protein 1 and Mitofusin2 in Hyperproliferative Diseases. Cells. 2023;12: 1897. doi:10.3390/cells12141897 | |
| dc.relation.references | Comfort N, Cai K, Bloomquist TR, Strait MD, Ferrante AW, Baccarelli AA. Nanoparticle Tracking Analysis for the Quantification and Size Determination of Extracellular Vesicles. J Vis Exp. 2021;169. doi:10.3791/62447 | |
| dc.relation.references | Conzelmann C, Groß R, Zou M, Krüger F, Görgens A, Gustafsson MO, et al. Salivary extracellular vesicles inhibit Zika virus but not SARS-CoV-2 infection. J Extracell Vesicles. 2020;9. doi:10.1080/20013078.2020.1808281 | |
| dc.relation.references | Crabtree A, Neikirk K, Marshall AG, Vang L, Whiteside AJ, Williams Q, et al. Defining Mitochondrial Cristae Morphology Changes Induced by Aging in Brown Adipose Tissue. Adv Biol. 2024;8. doi:10.1002/adbi.202300186 | |
| dc.relation.references | Culley S, Towers GJ, Selwood DL, Henriques R, Grove J. Infection counter: Automated quantification of in vitro virus replication by fluorescence microscopy. Viruses. 2016;8. doi:10.3390/v8070201 | |
| dc.relation.references | Cuntz H, Forstner F, Borst A, Häusser M. One Rule to Grow Them All: A General Theory of Neuronal Branching and Its Practical Application. PLoS Comput Biol. 2010;6: e1000877. doi:10.1371/journal.pcbi.1000877 | |
| dc.relation.references | Czpakowska J, Głąbiński A, Szpakowski P. The Potential Role of Exosomes in Communication Between Astrocytes and Endothelial Cells. Int J Mol Sci. 2025;26: 4676. doi:10.3390/ijms26104676 | |
| dc.relation.references | D’Orléans-Juste P, Akide Ndunge OB, Desbiens L, Tanowitz HB, Desruisseaux MS. Endothelins in inflammatory neurological diseases. Pharmacol Ther. 2019;194: 145–160. doi:10.1016/j.pharmthera.2018.10.001 | |
| dc.relation.references | D’Souza A, Burch A, Dave KM, Sreeram A, Reynolds MJ, Dobbins DX, et al. Microvesicles transfer mitochondria and increase mitochondrial function in brain endothelial cells. Journal of Controlled Release. 2021;338: 505–526. doi:10.1016/j.jconrel.2021.08.038 | |
| dc.relation.references | Dahm T, Rudolph H, Schwerk C, Schroten H, Tenenbaum T. Neuroinvasion and Inflammation in Viral Central Nervous System Infections. Mediators Inflamm. 2016;2016: 1–16. doi:10.1155/2016/8562805 | |
| dc.relation.references | Das M, Smith ML, Furihata T, Sarker S, O’shea R, Helbig KJ. Astrocyte Control of Zika Infection Is Independent of Interferon Type I and Type III Expression. Biology (Basel). 2022;11. doi:10.3390/biology11010143 | |
| dc.relation.references | de Almeida W, Deniz BF, Souza dos Santos A, Faustino AM, Ramires Junior OV, Schmitz F, et al. Zika Virus affects neurobehavioral development, and causes oxidative stress associated to blood–brain barrier disruption in a rat model of congenital infection. Brain Behav Immun. 2023;112: 29–41. doi:10.1016/j.bbi.2023.04.014 | |
| dc.relation.references | de Jesus JG, Giovanetti M, Rodrigues Faria N, Alcantara LCJ. Acute Vector-Borne Viral Infection: Zika and MinION Surveillance. Microbiol Spectr. 2019;7. doi:10.1128/microbiolspec.ame-0008-2019 | |
| dc.relation.references | de Noronha L, Zanluca C, Azevedo MLV, Luz KG, dos Santos CND. Zika virus damages the human placental barrier and presents marked fetal neurotropism. Mem Inst Oswaldo Cruz. 2016;111: 287–293. doi:10.1590/0074-02760160085 | |
| dc.relation.references | Delgado da Hora LC, Muniz LF, Gleygson L, Ven A, Paes K, Babini D, et al. Cortical Auditory Evoked Potentials in Children with Prenatal Exposure to Zika Virus. 2022; 14(9), 1–11. doi:10.3390/v14091923 | |
| dc.relation.references | Dellar ER, Baena-Lopez LA, Hill C, Melling GE, Carter DRF. Unpacking extracellular vesicles: RNA cargo loading and function. J Extracell Vesicles. 2022;1. doi:10.1002/jex2.40 | |
| dc.relation.references | Deng Z, Poliakov A, Hardy RW, Clements R, Liu C, Liu Y, et al. Adipose Tissue Exosome-Like Vesicles Mediate Activation of Macrophage-Induced Insulin Resistance. Diabetes. 2009;58: 2498–2505. doi:10.2337/db09-0216 | |
| dc.relation.references | Deng Z, Wei Y, Yao Y, Gao S, Wang X. Let-7f promotes the differentiation of neural stem cells in rats. Am J Transl Res. 2020;12: 5752–5761. | |
| dc.relation.references | Deo P, Chow SH, Han M-L, Speir M, Huang C, Schittenhelm RB, et al. Mitochondrial dysfunction caused by outer membrane vesicles from Gram-negative bacteria activates intrinsic apoptosis and inflammation. Nat Microbiol. 2020;5: 1418–1427. doi:10.1038/s41564-020-0773-2 | |
| dc.relation.references | Deschamps T, Kalamvoki M. Extracellular Vesicles Released by Herpes Simplex Virus 1-Infected Cells Block Virus Replication in Recipient Cells in a STING-Dependent Manner. J Virol. 2018;92. doi:10.1128/jvi.01102-18 | |
| dc.relation.references | Ding F, Wu H, Han X, Jiang X, Xiao Y, Tu Y, et al. The miR-148/152 family contributes to angiogenesis of human pluripotent stem cell- derived endothelial cells by inhibiting MEOX2. Mol Ther Nucleic Acids. 2023;32: 582–593. doi:10.1016/j.omtn.2023.04.020 | |
| dc.relation.references | Diosa-Toro M, Prasanth KR, Bradrick SS, Garcia Blanco MA. Role of RNA-binding proteins during the late stages of Flavivirus replication cycle. Virol J. 2020;17: 1–14. doi:10.1186/s12985-020-01329-7 | |
| dc.relation.references | Dong D, Xie W, Liu M. Alteration of cell junctions during viral infection. Thorac Cancer. 2020;11: 519–525. doi:10.1111/1759-7714.13344 | |
| dc.relation.references | Doyle LM, Wang M. Overview of Extracellular Vesicles, Their Origin, Composition, Purpose, and Methods for Exosome Isolation and Analysis. Cells. 2019;8: 1–24. doi:10.1016/b978-0-12-386050-7.50008-3 | |
| dc.relation.references | Dringen R. Metabolism and functions of glutathione in brain. Prog Neurobiol. 2000;62: 649–671. doi:10.1016/S0301-0082(99)00060-X | |
| dc.relation.references | Duan X, Liu R, Lan W, Liu S. The Essential Role of Mitochondrial Dynamics in Viral Infections. Int J Mol Sci. 2025;26: 1955. doi:10.3390/ijms26051955 | |
| dc.relation.references | Dutra Silva J, Su Y, Calfee CS, Delucchi KL, Weiss D, McAuley DF, et al. Mesenchymal stromal cell extracellular vesicles rescue mitochondrial dysfunction and improve barrier integrity in clinically relevant models of ARDS. European Respiratory Journal. 2021;58: 2002978. doi:10.1183/13993003.02978-2020 | |
| dc.relation.references | Edwards R, Eaglesfield R, Tokatlidis K. The mitochondrial intermembrane space: the most constricted mitochondrial sub-compartment with the largest variety of protein import pathways. Open Biol. 2021;11. doi:10.1098/rsob.210002 | |
| dc.relation.references | Elahimanesh M, Najafi M. Differentially expressed genes of RNA-seq data are suggested on the intersections of normalization techniques. Biochem Biophys Rep. 2024;37. doi:10.1016/j.bbrep.2023.101618 | |
| dc.relation.references | El-Bacha T, Midlej V, Pereira da Silva AP, Silva da Costa L, Benchimol M, Galina A, et al. Mitochondrial and bioenergetic dysfunction in human hepatic cells infected with dengue 2 virus. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 2007;1772: 1158–1166. doi:10.1016/j.bbadis.2007.08.003 | |
| dc.relation.references | Eldh M, Ekström K, Valadi H, Sjöstrand M, Olsson B, Jernås M, et al. Exosomes Communicate Protective Messages during Oxidative Stress; Possible Role of Exosomal Shuttle RNA. PLoS One. 2010;5: e15353. doi:10.1371/journal.pone.0015353 | |
| dc.relation.references | Elesela S, Lukacs NW. Role of mitochondria in viral infections. Life. MDPI AG; 2021. doi:10.3390/life11030232 | |
| dc.relation.references | Ellenrieder L, Mårtensson CU, Becker T. Biogenesis of mitochondrial outer membrane proteins, problems and diseases. Biol Chem. 2015;396: 1199–1213. doi:10.1515/hsz-2015-0170 | |
| dc.relation.references | Elliott RO, He M. Unlocking the power of exosomes for crossing biological barriers in drug delivery. Pharmaceutics. 2021;13: 1–20. doi:10.3390/pharmaceutics13010122 | |
| dc.relation.references | Escartin C, Galea E, Lakatos A, O’Callaghan JP, Petzold GC, Serrano-Pozo A, et al. Reactive astrocyte nomenclature, definitions, and future directions. Nat Neurosci. 2021;24: 312–325. doi:10.1038/s41593-020-00783-4 | |
| dc.relation.references | Faiçal AV, De Oliveira JC, Oliveira JVV, De Almeida BL, Agra IA, Alcantara LCJ, et al. Neurodevelopmental delay in normocephalic children with in utero exposure to Zika virus. BMJ Paediatr Open. 2019;3: 9–11. doi:10.1136/bmjpo-2019-000486 | |
| dc.relation.references | Fang X, Zhang Y, Zhang Y, Guan H, Huang X, Miao R, et al. Endothelial extracellular vesicles: their possible function and clinical significance in diabetic vascular complications. J Transl Med. 2024;22: 944. doi:10.1186/s12967-024-05760-0 | |
| dc.relation.references | Ferrari M, Zevini A, Palermo E, Muscolini M, Alexandridi M, Etna MP, et al. Dengue Virus Targets Nrf2 for NS2B3-Mediated Degradation Leading to Enhanced Oxidative Stress and Viral Replication. J Virol. 2020;94. doi:10.1128/JVI.01551-20 | |
| dc.relation.references | Ferreira TA, Blackman A V, Oyrer J, Jayabal S, Chung AJ, Watt AJ, et al. Neuronal morphometry directly from bitmap images. Nat Methods. 2014;11: 982–984. doi:10.1038/nmeth.3125 | |
| dc.relation.references | Figueiredo CP, Barros-Aragão FGQ, Neris RLS, Frost PS, Soares C, Souza INO, et al. Zika virus replicates in adult human brain tissue and impairs synapses and memory in mice. Nat Commun. 2019;10: 3890. doi:10.1038/s41467-019-11866-7 | |
| dc.relation.references | Fikatas A, Dehairs J, Noppen S, Doijen J, Vanderhoydonc F, Meyen E, et al. Deciphering the role of extracellular vesicles derived from ZIKV-infected hcMEC/D3 cells on the blood–brain barrier system. Viruses. 2021;13. doi:10.3390/v13122363 | |
| dc.relation.references | Freppel W, Barragan Torres VA, Uyar O, Anton A, Nouhi Z, Broquière M, et al. Dengue virus and Zika virus alter endoplasmic reticulum-mitochondria contact sites to regulate respiration and apoptosis. iScience. 2025;28: 111599. doi:10.1016/j.isci.2024.111599 | |
| dc.relation.references | Frolov I, Akhrymuk M, Akhrymuk I, Atasheva S, Frolova EI. Early Events in Alphavirus Replication Determine the Outcome of Infection. J Virol. 2012;86: 5055–5066. doi:10.1128/JVI.07223-11 | |
| dc.relation.references | Fuchs A, Samovski D, Smith GI, Cifarelli V, Farabi SS, Yoshino J, et al. Associations Among Adipose Tissue Immunology, Inflammation, Exosomes and Insulin Sensitivity in People With Obesity and Nonalcoholic Fatty Liver Disease. Gastroenterology. 2021;161: 968-981.e12. doi:10.1053/j.gastro.2021.05.008 | |
| dc.relation.references | Gan N, Zhou Y, Li J, Wang A, Cao Y. Propofol Suppresses LPS-induced BBB Damage by Regulating miR-130a-5p/ZO-1 Axis. Mol Biotechnol. 2024;66: 2007–2015. doi:10.1007/s12033-023-00835-7 | |
| dc.relation.references | Gao S, Gao L, Yuan D, Lin X, van der Veen S. Gonococcal OMV-delivered PorB induces epithelial cell mitophagy. Nat Commun. 2024;15: 1669. doi:10.1038/s41467-024-45961-1 | |
| dc.relation.references | Garcez PP, Loiola EC, Madeiro da Costa R, Higa LM, Trindade P, Delvecchio R, et al. Zika virus impairs growth in human neurospheres and brain organoids. Science (1979). 2016;352: 816–818. doi:10.1126/science.aaf6116 | |
| dc.relation.references | García CC, Vázquez CA, Giovannoni F, Russo CA, Cordo SM, Alaimo A, et al. Cellular Organelles Reorganization During Zika Virus Infection of Human Cells. Front Microbiol. 2020;11. doi:10.3389/fmicb.2020.01558 | |
| dc.relation.references | García-Bujalance S, Gutiérrez-Arroyo A, De la Calle F, Díaz-Menéndez M, Arribas JR, García-Rodríguez J, et al. Persistence and infectivity of Zika virus in semen after returning from endemic areas: Report of 5 cases. Journal of Clinical Virology. 2017;96: 110–115. doi:10.1016/j.jcv.2017.10.006 | |
| dc.relation.references | Ghosh S, Id TS, Riotti J, Ramachandran A, Gonzalez A, Bandstra ES, et al. Brain MRI segmentation of Zika-Exposed normocephalic infants shows smaller amygdala volumes. PLoS One. 2023;18: e0289227. doi:10.1371/journal.pone.0289227 | |
| dc.relation.references | Giacomello M, Pyakurel A, Glytsou C, Scorrano L. The cell biology of mitochondrial membrane dynamics. Nat Rev Mol Cell Biol. 2020;21: 204–224. doi:10.1038/s41580-020-0210-7 | |
| dc.relation.references | Gilkerson R, De La Torre P, St. Vallier S. Mitochondrial OMA1 and OPA1 as Gatekeepers of Organellar Structure/Function and Cellular Stress Response. Front Cell Dev Biol. 2021;9. doi:10.3389/fcell.2021.626117 | |
| dc.relation.references | Glancy B, Kim Y, Katti P, Willingham TB. The Functional Impact of Mitochondrial Structure Across Subcellular Scales. Front Physiol. 2020;11. doi:10.3389/fphys.2020.541040 | |
| dc.relation.references | Godoi JTAM, Negrini SFBM, Aragon DC, Rocha PRH, Amaral FR, Negrini BVM, et al. Normocephalic Children Exposed to Maternal Zika Virus Infection Do Not Have a Higher Risk of Neurodevelopmental Abnormalities around 24 Months of Age than Unexposed Children : A Controlled Study. Pathogens. 2023;12. doi:10.3390/pathogens12101219 | |
| dc.relation.references | Göertz GP, Abbo SR, Fros JJ, Pijlman GP. Functional RNA during Zika virus infection. Virus Research. Elsevier B.V.; 2018. pp. 41–53. doi:10.1016/j.virusres.2017.08.015 | |
| dc.relation.references | Golmakani H, Azimian A, Golmakani E. Newly discovered functions of miRNAs in neuropathic pain: Transitioning from recent discoveries to innovative underlying mechanisms. Mol Pain. 2024;20. doi:10.1177/17448069231225845 | |
| dc.relation.references | Gomez R, Tomatis C, L MS, Thomas P, Aquila S, Calderone M, et al. Yellow Fever Virus Infection Alters Mitochondrial Network Dynamics. Authorea. 2023. doi:10.22541/au.167407899.97892667/v1 | |
| dc.relation.references | Gong Y, Wu M, Huang Y, He X, Yuan J, Dang B. Research developments in the neurovascular unit and the blood brain barrier (Review). Biomed Rep. 2025;22: 1–14. doi:10.3892/br.2025.1966 | |
| dc.relation.references | Goodfellow FT, Willard KA, Wu X, Scoville S, Stice SL, Brindley MA. Strain-Dependent Consequences of Zika Virus Infection and Differential Impact on Neural Development. Viruses. 2018;10: 550. doi:10.3390/v10100550 | |
| dc.relation.references | Göran Ronquist K. Extracellular vesicles and energy metabolism. Clinica Chimica Acta. 2019;488: 116–121. doi:10.1016/j.cca.2018.10.044 | |
| dc.relation.references | Goryunov K, Ivanov M, Kulikov A, Shevtsova Y, Burov A, Podurovskaya Y, et al. A Review of the Use of Extracellular Vesicles in the Treatment of Neonatal Diseases: Current State and Problems with Translation to the Clinic. International Journal of Molecular Sciences. Multidisciplinary Digital Publishing Institute (MDPI); 2024. doi:10.3390/ijms25052879 | |
| dc.relation.references | Grant JR, Enns E, Marinier E, Mandal A, Herman EK, Chen CY, et al. Proksee: In-depth characterization and visualization of bacterial genomes. Nucleic Acids Res. 2023;51: W484–W492. doi:10.1093/nar/gkad326 | |
| dc.relation.references | Grant R, Fléchelles O, Tressières B, Dialo M, Elenga N, Mediamolle N, et al. In utero Zika virus exposure and neurodevelopment at 24 months in toddlers normocephalic at birth: a cohort study. BMC Med. 2021;19: 1–11. doi:10.1186/s12916-020-01888-0 | |
| dc.relation.references | Gray WD, Mitchell AJ, Searles CD. An accurate, precise method for general labeling of extracellular vesicles. MethodsX. 2015;2: 360–367. doi:10.1016/j.mex.2015.08.002 | |
| dc.relation.references | Griffin DE. Immune responses to RNA-virus infections of the CNS. Nat Rev Immunol. 2003;3: 493–502. doi:10.1038/nri1105 | |
| dc.relation.references | Groot M, Lee H. Sorting Mechanisms for MicroRNAs into Extracellular Vesicles and Their Associated Diseases. Cells. 2020;9: 1–16. doi:10.3390/cells9041044 | |
| dc.relation.references | Guo C, Sun L, Chen X, Zhang D. Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen Res . 2013;8: 2003–2014 | |
| dc.relation.references | Gupta A, Becker T. Mechanisms and pathways of mitochondrial outer membrane protein biogenesis. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 2021;1862: 148323. doi:10.1016/j.bbabio.2020.148323 | |
| dc.relation.references | Gurunathan S, Kang MH, Kim JH. Diverse Effects of Exosomes on COVID-19: A Perspective of Progress From Transmission to Therapeutic Developments. Front Immunol. 2021;12: 1–20. doi:10.3389/fimmu.2021.716407 | |
| dc.relation.references | Gurung S, Perocheau D, Touramanidou L, Baruteau J. The exosome journey: from biogenesis to uptake and intracellular signalling. Cell Commun Signal. 2021;19: 1–19. doi:10.1186/s12964-021-00730-1 | |
| dc.relation.references | Gvozdjakova A, Klauco F, Kucharska J, Sumbalova Z. Is mitochondrial bioenergetics and coenzyme Q10 the target of a virus causing COVID-19? Bratislava Medical Journal. 2020;121: 775–778. doi:10.4149/BLL_2020_126 | |
| dc.relation.references | Haastrup MO, Vikramdeo KS, Singh S, Singh AP, Dasgupta S. The Journey of Mitochondrial Protein Import and the Roadmap to Follow. Int J Mol Sci. 2023;24: 2479. doi:10.3390/ijms24032479 | |
| dc.relation.references | Hallal S, Grau GE, Buckland ME, Alexander KL. Understanding the extracellular vesicle surface for clinical. J Extracell Vesicles. 2022;11. doi:10.1002/jev2.12260 | |
| dc.relation.references | Hammack C, Ogden SC, Madden JC, Medina A, Xu C, Phillips E, et al. Zika Virus Infection Induces DNA Damage Response in Human Neural Progenitors That Enhances Viral Replication. J Virol. 2019;93. doi:10.1128/JVI.00638-19 | |
| dc.relation.references | Hara Y, Yuk F, Puri R, Janssen WGM, Rapp PR, Morrison JH. Presynaptic mitochondrial morphology in monkey prefrontal cortex correlates with working memory and is improved with estrogen treatment. Proceedings of the National Academy of Sciences. 2014;111: 486–491. doi:10.1073/pnas.1311310110 | |
| dc.relation.references | He Z, An S, Chen J, Zhang S, Tan C, Yu J, et al. Neural progenitor cell pyroptosis contributes to Zika virus-induced brain atrophy and represents a therapeutic target. Proceedings of the National Academy of Sciences. 2020;117: 23869–23878. doi:10.1073/pnas.2007773117 | |
| dc.relation.references | Hernáez B, Viejo-Borbolla A, Cabrera JR. Editorial: Neuronal and Glial Alterations Caused by Viral Infections. Front Cell Neurosci. 2022;16. doi:10.3389/fncel.2022.883221 | |
| dc.relation.references | Ho CY, Ames HM, Tipton A, Vezina G, Liu JS, Scafidi J, et al. Differential neuronal susceptibility and apoptosis in congenital Zika virus infection. Ann Neurol. 2017;82: 121–127. doi:10.1002/ana.24968 | |
| dc.relation.references | Hoen EN, Cremer T, Gallo RC, Margolis LB. Extracellular vesicles and viruses: Are they close relatives? Proc Natl Acad Sci U S A. 2016;113: 9155–9161. doi:10.1073/pnas.1605146113 | |
| dc.relation.references | Höhr AIC, Straub SP, Warscheid B, Becker T, Wiedemann N. Assembly of β-barrel proteins in the mitochondrial outer membrane. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 2015;1853: 74–88. doi:10.1016/j.bbamcr.2014.10.006 | |
| dc.relation.references | Holder B, Jones T, Shimizu VS, Rice TF, Donaldson B, Bouqueau M, et al. Inflammatory Cytokines: A Novel Mode of Maternal – Placental Messaging. Traffic. 2016;17: 168–178. doi:10.1111/tra.12352 | |
| dc.relation.references | Holliday LS, Faria LP de, Rody WJ. Actin and Actin-Associated Proteins in Extracellular Vesicles Shed by Osteoclasts. Int J Mol Sci. 2019;21: 158. doi:10.3390/ijms21010158 | |
| dc.relation.references | Hooglugt A, Klatt O, Huveneers S. Vascular stiffening and endothelial dysfunction in atherosclerosis. Curr Opin Lipidol. 2022;33: 353–363. doi:10.1097/MOL.0000000000000852 | |
| dc.relation.references | Horbay R, Bilyy R. Mitochondrial dynamics during cell cycling. Apoptosis. 2016;21: 1327–1335. doi:10.1007/s10495-016-1295-5 | |
| dc.relation.references | Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. 2013;14: 3156. doi:10.1186/gb-2013-14-10-r115 | |
| dc.relation.references | Hu HT, Nishimura T, Kawana H, Dante RAS, D’Angelo G, Suetsugu S. The cellular protrusions for inter-cellular material transfer: similarities between filopodia, cytonemes, tunneling nanotubes, viruses, and extracellular vesicles. Front Cell Dev Biol. 2024;12. doi:10.3389/fcell.2024.1422227 | |
| dc.relation.references | Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4: 44–57. doi:10.1038/nprot.2008.211 | |
| dc.relation.references | Huang Y, Li Y, Zhang H, Zhao R, Jing R, Xu Y, et al. Zika virus propagation and release in human fetal astrocytes can be suppressed by neutral sphingomyelinase-2 inhibitor GW4869. Cell Discov. 2018;4. doi:10.1038/s41421-018-0017-2 | |
| dc.relation.references | Hung S-L, Lee P-L, Chen H-W, Chen L-K, Kao C-L, King C-C. Analysis of the Steps Involved in Dengue Virus Entry into Host Cells. Virology. 1999;257: 156–167. doi:10.1006/viro.1999.9633 | |
| dc.relation.references | Hutchison ER, Kawamoto EM, Taub DD, Lal A, Abdelmohsen K, Zhang Y, et al. Evidence for miR‐181 involvement in neuroinflammatory responses of astrocytes. Glia. 2013;61: 1018–1028. doi:10.1002/glia.22483 | |
| dc.relation.references | Iannotta D, A A, Kijas AW, Rowan AE, Wolfram J. Entry and exit of extracellular vesicles to and from the blood circulation. Nat Nanotechnol. 2024;19: 13–20. doi:10.1038/s41565-023-01522-z | |
| dc.relation.references | Indrieri A, Carrella S, Carotenuto P, Banfi S, Franco B. The Pervasive Role of the miR-181 Family in Development, Neurodegeneration, and Cancer. Int J Mol Sci. 2020;21: 2092. doi:10.3390/ijms21062092 | |
| dc.relation.references | Indrieri A, Carrella S, Romano A, Spaziano A, Marrocco E, Fernandez‐Vizarra E, et al. miR‐181a/b downregulation exerts a protective action on mitochondrial disease models. EMBO Mol Med. 2019;11. doi:10.15252/emmm.201708734 | |
| dc.relation.references | Inoue J, Ninomiya M, Umetsu T, Nakamura T, Kogure T, Kakazu E, et al. Small Interfering RNA Screening for the Small GTPase Rab Proteins Identifies Rab5B as a Major Regulator of Hepatitis B Virus Production. J Virol. 2019;93: 1–19. doi:10.1128/jvi.00621-19 | |
| dc.relation.references | Ishikawa T, Narita K, Matsuyama K, Masuda M. Dissemination of the Flavivirus Subgenomic Replicon Genome and Viral Proteins by Extracellular Vesicles. Viruses. 2024;16. doi:10.3390/v16040524 | |
| dc.relation.references | Javed F, Manzoor KN, Ali M, Haq IU, Khan AA, Zaib A, et al. Zika virus: what we need to know? J Basic Microbiol. 2018;58: 3–16. doi:10.1002/jobm.201700398 | |
| dc.relation.references | Jenkins BC, Neikirk K, Katti P, Claypool SM, Kirabo A, McReynolds MR, et al. Mitochondria in disease: changes in shapes and dynamics. Trends Biochem Sci. 2024;49: 346–360. doi:10.1016/j.tibs.2024.01.011 | |
| dc.relation.references | Jeppesen DK, Zhang Q, Franklin JL, Coffey RJ. Extracellular vesicles and nanoparticles: emerging complexities. Trends Cell Biol. 2023;33: 667–681. doi:10.1016/j.tcb.2023.01.002 | |
| dc.relation.references | Jewett CE, Prekeris R. Insane in the apical membrane: Trafficking events mediating apicobasal epithelial polarity during tube morphogenesis. Traffic. 2018;19: 666–678. doi:10.1111/tra.12579 | |
| dc.relation.references | Jia X, Yin Y, Chen Y, Mao L. The Role of Viral Proteins in the Regulation of Exosomes Biogenesis. Frontiers in Cellular and Infection Microbiology. Frontiers Media S.A.; 2021. doi:10.3389/fcimb.2021.671625 | |
| dc.relation.references | Jiang Q, Lagos-Quintana M, Liu D, Shi Y, Helker C, Herzog W, et al. miR-30a Regulates Endothelial Tip Cell Formation and Arteriolar Branching. Hypertension. 2013;62: 592–598. doi:10.1161/HYPERTENSIONAHA.113.01767 | |
| dc.relation.references | Jin Y, Ma L, Zhang W, Yang W, Feng Q, Wang H. Extracellular signals regulate the biogenesis of extracellular vesicles. Biol Res. 2022;55: 1–16. doi:10.1186/s40659-022-00405-2 | |
| dc.relation.references | Joshi PU, Meingast CL, Xu X, Holstein M, Feroz H, Ranjan S, et al. Virus inactivation at moderately low pH varies with virus and buffer properties. Biotechnol J. 2022;17. doi:10.1002/biot.202100320 | |
| dc.relation.references | Juan T, Fürthauer M. Biogenesis and function of ESCRT-dependent extracellular vesicles. Semin Cell Dev Biol. 2018;74: 66–77. doi:10.1016/j.semcdb.2017.08.022 | |
| dc.relation.references | Kawano I, Bazila B, Ježek P, Dlasková A. Mitochondrial Dynamics and Cristae Shape Changes During Metabolic Reprogramming. Antioxid Redox Signal. 2023;39: 684–707. doi:10.1089/ars.2023.0268 | |
| dc.relation.references | Kazmi SS, Ali W, Bibi N, Nouroz F. A review on Zika virus outbreak, epidemiology, transmission and infection dynamics. J Biol Res (Thessalon. 2020;27: 1–11. doi:10.1186/s40709-020-00115-4 | |
| dc.relation.references | Khaiboullina SF, Ribeiro FM, Uppal T, Martynova E V., Rizvanov AA, Verma SC. Zika Virus Transmission Through Blood Tissue Barriers. Front Microbiol. 2019;10. doi:10.3389/fmicb.2019.01465 | |
| dc.relation.references | Khan M, Syed GH, Kim S-J, Siddiqui A. Mitochondrial dynamics and viral infections: A close nexus. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 2015;1853: 2822–2833. doi:10.1016/j.bbamcr.2014.12.040 | |
| dc.relation.references | Khatua AK, Taylor HE, Hildreth JEK, Popik W. Exosomes Packaging APOBEC3G Confer Human Immunodeficiency Virus Resistance to Recipient Cells. J Virol. 2009;83: 512–521. doi:10.1128/JVI.01658-08 | |
| dc.relation.references | Kim J, Alejandro B, Hetman M, Hattab EM, Joiner J, Schroten H, et al. Zika virus infects pericytes in the choroid plexus and enters the central nervous system through the blood-cerebrospinal fluid barrier. PLoS Pathog. 2020;16: e1008204. doi:10.1371/journal.ppat.1008204 | |
| dc.relation.references | Kim JY, Park SY, Lyoo HR, Koo ES, Kim MS, Jeong YS. Extended stability of cyclin D1 contributes to limited cell cycle arrest at G1-phase in BHK-21 cells with Japanese encephalitis virus persistent infection. Journal of Microbiology. 2015;53: 77–83. doi:10.1007/s12275-015-4661-z | |
| dc.relation.references | Kim KM, Abdelmohsen K, Mustapic M, Kapogiannis D, Gorospe M. RNA in extracellular vesicles. Wiley Interdiscip Rev RNA. 2017;8: 1–14. doi:10.1002/wrna.1413 | |
| dc.relation.references | Kim N, Choi H, Kim U, Kim S, Kim YB, Shin HY. Sustained Microglial Activation Promotes Synaptic Loss and Neuronal Dysfunction after Recovery from ZIKV Infection. Int J Mol Sci. 2024;25: 9451. doi:10.3390/ijms25179451 | |
| dc.relation.references | Kim SJ, Khan M, Quan J, Till A, Subramani S, Siddiqui A. Hepatitis B Virus Disrupts Mitochondrial Dynamics: Induces Fission and Mitophagy to Attenuate Apoptosis. PLoS Pathog. 2013;9: 1–12. doi:10.1371/journal.ppat.1003722 | |
| dc.relation.references | Kim SJ, Syed GH, Khan M, Chiu WW, Sohail MA, Gish RG, et al. Hepatitis C virus triggers mitochondrial fission and attenuates apoptosis to promote viral persistence. Proc Natl Acad Sci U S A. 2014;111: 6413–6418. doi:10.1073/pnas.1321114111 | |
| dc.relation.references | Kindler E, Gil-Cruz C, Spanier J, Li Y, Wilhelm J, Rabouw HH, et al. Early endonuclease-mediated evasion of RNA sensing ensures efficient coronavirus replication. PLoS Pathog. 2017;13: e1006195. doi:10.1371/journal.ppat.1006195 | |
| dc.relation.references | King EL. Zika Virus and Neuropathogenesis: The Unanswered Question of Which Strain Is More Prone to Causing Microcephaly and Other Neurological Defects. Front Cell Neurosci. 2021;15: 1–14. doi:10.3389/fncel.2021.695106 | |
| dc.relation.references | Kizmaz B, Nutz A, Egeler A, Herrmann JM. Protein insertion into the inner membrane of mitochondria: routes and mechanisms. FEBS Open Bio. 2024;14: 1627–1639. doi:10.1002/2211-5463.13806 | |
| dc.relation.references | Kolberg L, Raudvere U, Kuzmin I, Adler P, Vilo J, Peterson H. g:Profiler—interoperable web service for functional enrichment analysis and gene identifier mapping (2023 update). Nucleic Acids Res. 2023;51: W207–W212. doi:10.1093/nar/gkad347 | |
| dc.relation.references | Komarasamy TV, Adnan NAA, James W, Balasubramaniam VRMT. Zika Virus Neuropathogenesis: The Different Brain Cells, Host Factors and Mechanisms Involved. Front Immunol. 2022;13: 1–16. doi:10.3389/fimmu.2022.773191 | |
| dc.relation.references | Kondadi AK, Reichert AS. Mitochondrial Dynamics at Different Levels: From Cristae Dynamics to Interorganellar Cross Talk. Annu Rev Biophys. 2024;53: 147–168. doi:10.1146/annurev-biophys-030822-020736 | |
| dc.relation.references | Konoshenko MYu, Lekchnov EA, Vlassov A V., Laktionov PP. Isolation of Extracellular Vesicles: General Methodologies and Latest Trends. Biomed Res Int. 2018;2018: 1–27. doi:10.1155/2018/8545347 | |
| dc.relation.references | Kopp F, Mendell JT. Functional Classification and Experimental Dissection of Long Noncoding RNAs. Cell. 2018;172: 393–407. doi:10.1016/j.cell.2018.01.011 | |
| dc.relation.references | Kowal J, Arras G, Colombo M, Jouve M, Morath JP, Primdal-Bengtson B, et al. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proceedings of the National Academy of Sciences. 2016;113. doi:10.1073/pnas.1521230113 | |
| dc.relation.references | Kulkarni VA, Firestein BL. The dendritic tree and brain disorders. Molecular and Cellular Neuroscience. 2012;50: 10–20. doi:10.1016/j.mcn.2012.03.005 | |
| dc.relation.references | Kumar A, Kodidela S, Tadrous E, Cory TJ, Walker CM, Smith AM, et al. Extracellular vesicles in viral replication and pathogenesis and their potential role in therapeutic intervention. Viruses. MDPI AG; 2020. doi:10.3390/v12080887 | |
| dc.relation.references | Kumar MA, Baba SK, Sadida HQ, Marzooqi SAl, Jerobin J, Altemani FH, et al. Extracellular vesicles as tools and targets in therapy for diseases. Signal Transduct Target Ther. 2024;9: 27. doi:10.1038/s41392-024-01735-1 | |
| dc.relation.references | Kumar S, Misra UK, Kalita J, Khanna VK, Khan MY. Imbalance in oxidant/antioxidant system in different brain regions of rat after the infection of Japanese encephalitis virus. Neurochem Int. 2009;55: 648–654. doi:10.1016/j.neuint.2009.06.008 | |
| dc.relation.references | Kutchy NA, Peeples ES, Sil S, Liao K, Chivero ET, Hu G, et al. Extracellular vesicles in viral infections of the nervous system. Viruses. 2020;12: 1–28. doi:10.3390/v12070700 | |
| dc.relation.references | Lackritz EM, Ng L-C, Marques ETA, Rabe IB, Bourne N, Staples JE, et al. Zika virus: advancing a priority research agenda for preparedness and response. Lancet Infect Dis. 2025;25: e390–e401. doi:10.1016/S1473-3099(24)00794-1 | |
| dc.relation.references | Lanciotti RS, Kosoy OL, Laven JJ, Velez JO, Lambert AJ, Johnson AJ, et al. Genetic and serologic properties of Zika virus associated with an epidemic, Yap State, Micronesia, 2007. Emerg Infect Dis. 2008;14: 1232–1239. doi:10.3201/eid1408.080287 | |
| dc.relation.references | Lazar C, Gatto L, Ferro M, Bruley C, Burger T. Accounting for the Multiple Natures of Missing Values in Label-Free Quantitative Proteomics Data Sets to Compare Imputation Strategies. J Proteome Res. 2016;15: 1116–1125. doi:10.1021/acs.jproteome.5b00981 | |
| dc.relation.references | Leda AR, Bertrand L, Andras IE, El-Hage N, Nair M, Toborek M. Selective Disruption of the Blood–Brain Barrier by Zika Virus. Front Microbiol. 2019;10. doi:10.3389/fmicb.2019.02158 | |
| dc.relation.references | Ledur PF, Karmirian K, Pedrosa C da SG, Souza LRQ, Assis-de-Lemos G, Martins TM, et al. Zika virus infection leads to mitochondrial failure, oxidative stress and DNA damage in human iPSC-derived astrocytes. Sci Rep. 2020;10: 1–14. doi:10.1038/s41598-020-57914-x | |
| dc.relation.references | Lee JK, Shin OS. Zika virus modulates mitochondrial dynamics, mitophagy, and mitochondria-derived vesicles to facilitate viral replication in trophoblast cells. Front Immunol. 2023;14. doi:10.3389/fimmu.2023.1203645 | |
| dc.relation.references | Lee YJ, Shin KJ, Chae YC. Regulation of cargo selection in exosome biogenesis and its biomedical applications in cancer. Exp Mol Med. 2024;56: 877–889. doi:10.1038/s12276-024-01209-y | |
| dc.relation.references | Levy-Myers R, Daudelin D, Na CH, Sockanathan S. An independent regulator of global release pathways in astrocytes generates a subtype of extracellular vesicles required for postsynaptic function. Sci Adv. 2023;9. doi:10.1126/sciadv.adg2067 | |
| dc.relation.references | Li B, Wen M, Gao F, Wang Y, Wei G, Duan Y. Regulation of HNRNP family by post-translational modifications in cancer. Cell Death Discov. 2024;10: 427. doi:10.1038/s41420-024-02198-7 | |
| dc.relation.references | Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25: 1754–1760. doi:10.1093/bioinformatics/btp324 | |
| dc.relation.references | Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25: 2078–2079. doi:10.1093/bioinformatics/btp352 | |
| dc.relation.references | Li J, Wang T, Hou X, Li Y, Zhang J, Bai W, et al. Extracellular vesicles: opening up a new perspective for the diagnosis and treatment of mitochondrial dysfunction. J Nanobiotechnology. 2024;22: 487. doi:10.1186/s12951-024-02750-8 | |
| dc.relation.references | Li N, Shu J, Yang X, Wei W, Yan A. Exosomes Derived From M2 Microglia Cells Attenuates Neuronal Impairment and Mitochondrial Dysfunction in Alzheimer’s Disease Through the PINK1/Parkin Pathway. Front Cell Neurosci. 2022;16. doi:10.3389/fncel.2022.874102 | |
| dc.relation.references | Li X, Wu K, Zeng S, Zhao F, Fan J, Li Z, et al. Viral Infection Modulates Mitochondrial Function. Int J Mol Sci. 2021;22: 4260. doi:10.3390/ijms22084260 | |
| dc.relation.references | Liao Y, Smyth GK, Shi W. Feature Counts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30: 923–930. doi:10.1093/bioinformatics/btt656 | |
| dc.relation.references | Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature. 2017;541: 481–487. doi:10.1038/nature21029 | |
| dc.relation.references | Lin Y, Deng W, Pang J, Kemper T, Hu J, Yin J, et al. The microRNA-99 family modulates hepatitis B virus replication by promoting IGF-1R/PI3K/Akt/mTOR/ULK1 signaling-induced autophagy. Cell Microbiol. 2017;19: e12709. doi:10.1111/cmi.12709 | |
| dc.relation.references | Lin Y, Zhang C, Xiang P, Shen J, Sun W, Yu H. Exosomes derived from HeLa cells break down vascular integrity by triggering endoplasmic reticulum stress in endothelial cells. J Extracell Vesicles. 2020;9. doi:10.1080/20013078.2020.1722385 | |
| dc.relation.references | Liu F, Liu Y, Du Y, Li Y. MiRNA-130a promotes inflammation to accelerate atherosclerosis via the regulation of proliferator-activated receptor γ (PPARγ) expression. The Anatolian Journal of Cardiology. 2021;25: 630–637. doi:10.5152/AnatolJCardiol.2021.56721 | |
| dc.relation.references | Liu X, Meng Q, Shi S, Geng X, Wang E, Li Y, et al. Cardiac-derived extracellular vesicles improve mitochondrial function to protect the heart against ischemia/reperfusion injury by delivering ATP5a1. J Nanobiotechnology. 2024;22: 385. doi:10.1186/s12951-024-02618-x | |
| dc.relation.references | Liu Y-J, Wang C. A review of the regulatory mechanisms of extracellular vesicles-mediated intercellular communication. Cell Communication and Signaling. 2023;21: 77. doi:10.1186/s12964-023-01103-6 | |
| dc.relation.references | Liu Y-M, Tseng C-H, Chen Y-C, Yu W-Y, Ho M-Y, Ho C-Y, et al. Exosome-delivered and Y RNA-derived small RNA suppresses influenza virus replication. J Biomed Sci. 2019;26: 58. doi:10.1186/s12929-019-0553-6 | |
| dc.relation.references | Lizarraga-Valderrama LR, Sheridan GK. Extracellular vesicles and intercellular communication in the central nervous system. FEBS Lett. 2021;595: 1391–1410. doi:10.1002/1873-3468.14074 | |
| dc.relation.references | Logsdon AF, Meabon JS, Cline MM, Bullock KM, Raskind MA, Peskind ER, et al. Blast exposure elicits blood-brain barrier disruption and repair mediated by tight junction integrity and nitric oxide dependent processes. Sci Rep. 2018;8: 11344. doi:10.1038/s41598-018-29341-6 | |
| dc.relation.references | Lombardo G, Dentelli P, Togliatto G, Rosso A, Gili M, Gallo S, et al. Activated Stat5 trafficking Via Endothelial Cell-derived Extracellular Vesicles Controls IL-3 Pro-angiogenic Paracrine Action. Sci Rep. 2016;6: 25689. doi:10.1038/srep25689 | |
| dc.relation.references | Longatti A, Boyd B, Chisari F V. Virion-Independent Transfer of Replication-Competent Hepatitis C Virus RNA between Permissive Cells. J Virol. 2015;89: 2956–2961. doi:10.1128/jvi.02721-14 | |
| dc.relation.references | Losarwar S, Pancholi B, Babu R, Garabadu D. Mitochondria-dependent innate immunity: A potential therapeutic target in Flavivirus infection. Int Immunopharmacol. 2025;154: 114551. doi:10.1016/j.intimp.2025.114551 | |
| dc.relation.references | Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15: 550. doi:10.1186/s13059-014-0550-8 | |
| dc.relation.references | Luo Q, Xian P, Wang T, Wu S, Sun T, Wang W, et al. Antioxidant activity of mesenchymal stem cell-derived extracellular vesicles restores hippocampal neurons following seizure damage. Theranostics. 2021;11: 5986–6005. doi:10.7150/thno.58632 | |
| dc.relation.references | Ma N, Wu C, Meng Z. In vivoimaging and tracking of exosomes for theranostics. J Innov Opt Health Sci. 2021;14. doi:10.1142/S1793545821300056 | |
| dc.relation.references | Madan S, Uttekar B, Chowdhary S, Rikhy R. Mitochondria Lead the Way: Mitochondrial Dynamics and Function in Cellular Movements in Development and Disease. Front Cell Dev Biol. 2022;9. doi:10.3389/fcell.2021.781933 | |
| dc.relation.references | Maguire CM, Rösslein M, Wick P, Prina-Mello A. Characterization of particles in solution–a perspective on light scattering and comparative technologies. Science and Technology of Advanced Materials. Taylor and Francis Ltd.; 2018. pp. 732–745. doi:10.1080/14686996.2018.1517587 | |
| dc.relation.references | Manet C, Mansuroglu Z, Conquet L, Bortolin V, Comptdaer T, Segrt H, et al. Zika virus infection of mature neurons from immunocompetent mice generates a disease-associated microglia and a tauopathy-like phenotype in link with a delayed interferon beta response. J Neuroinflammation. 2022;19: 307. doi:10.1186/s12974-022-02668-8 | |
| dc.relation.references | Manganas P, MacPherson L, Tokatlidis K. Oxidative protein biogenesis and redox regulation in the mitochondrial intermembrane space. Cell Tissue Res. 2017;367: 43–57. doi:10.1007/s00441-016-2488-5 | |
| dc.relation.references | Mantel P-Y, Hjelmqvist D, Walch M, Kharoubi-Hess S, Nilsson S, Ravel D, et al. Infected erythrocyte-derived extracellular vesicles alter vascular function via regulatory Ago2-miRNA complexes in malaria. Nat Commun. 2016;7: 12727. doi:10.1038/ncomms12727 | |
| dc.relation.references | Marbán-Castro E, Vazquez Guillamet LJ, Pantoja PE, Casellas A, Maxwell L, Mulkey SB, et al. Neurodevelopment in Normocephalic Children Exposed to Zika Virus in Utero with No Observable Defects at Birth: A Systematic Review with Meta-Analysis. Int J Environ Res Public Health. 2022;19: 1–24. doi:10.3390/ijerph19127319 | |
| dc.relation.references | Martin C, Ligat G, Malnou CE. The Yin and the Yang of extracellular vesicles during viral infections. Biomed J. 2024;47: 100659. doi:10.1016/j.bj.2023.100659 | |
| dc.relation.references | Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17: 10. doi:10.14806/ej.17.1.200 | |
| dc.relation.references | Martínez-Rojas PP, Quiroz-García E, Monroy-Martínez V, Agredano-Moreno LT, Jiménez-García LF, Ruiz-Ordaz BH. Participation of Extracellular Vesicles from Zika-Virus-Infected Mosquito Cells in the Modification of Naïve Cells’ Behavior by Mediating Cell-to-Cell Transmission of Viral Elements. Cells. 2020;9: 123. doi:10.3390/cells9010123 | |
| dc.relation.references | Martins S de T, Alves LR. Extracellular Vesicles in Viral Infections: Two Sides of the Same Coin? Front Cell Infect Microbiol. 2020;10. doi:10.3389/fcimb.2020.593170 | |
| dc.relation.references | Martins S de T, Kuczera D, Lötvall J, Bordignon J, Alves LR. Characterization of dendritic cell-derived extracellular vesicles during dengue virus infection. Front Microbiol. 2018;9: 1–19. doi:10.3389/fmicb.2018.01792 | |
| dc.relation.references | Masmejan S, Musso D, Vouga M, Pomar L, Dashraath P, Stojanov M, et al. Zika Virus. Pathogens. 2020;9: 1–14. doi:10.3390/pathogens9110898 | |
| dc.relation.references | Mateo M, Generous A, Sinn PL, Cattaneo R. Connections matter − how viruses use cell–cell adhesion components. J Cell Sci. 2015;128: 431–439. doi:10.1242/jcs.159400 | |
| dc.relation.references | Mathieu M, Martin-Jaular L, Lavieu G, Théry C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat Cell Biol. 2019;21: 9–17. doi:10.1038/s41556-018-0250-9 | |
| dc.relation.references | Mazure NM. VDAC in cancer. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 2017;1858: 665–673. doi:10.1016/j.bbabio.2017.03.002 | |
| dc.relation.references | McAllister AK, Katz LC, Lo DC. Neurotrophin Regulation of Cortical Dendritic Growth Requires Activity. Neuron. 1996;17: 1057–1064. doi:10.1016/S0896-6273(00)80239-1 | |
| dc.relation.references | McCarron JG, Wilson C, Sandison ME, Olson ML, Girkin JM, Saunter C, et al. From Structure to Function: Mitochondrial Morphology, Motion and Shaping in Vascular Smooth Muscle. J Vasc Res. 2013;50: 357–371. doi:10.1159/000353883 | |
| dc.relation.references | McConnell HL, Kersch CN, Woltjer RL, Neuwelt EA. The Translational Significance of the Neurovascular Unit. Journal of Biological Chemistry. 2017;292: 762–770. doi:10.1074/jbc.R116.760215 | |
| dc.relation.references | Mead PS, Duggal NK, Hook SA, Delorey M, Fischer M, Olzenak McGuire D, et al. Zika Virus Shedding in Semen of Symptomatic Infected Men. New England Journal of Medicine. 2018;378: 1377–1385. doi:10.1056/nejmoa1711038 | |
| dc.relation.references | Mehrotra S, Lynam D, Liu C, Shahriari D, Lee I, Tuszynski M, et al. Time Controlled Release of Arabinofuranosylcytosine (Ara-C) from Agarose Hydrogels using Layer-by-Layer Assembly: An In Vitro Study. J Biomater Sci Polym Ed. 2012;23: 439–463. doi:10.1163/092050610X552221 | |
| dc.relation.references | Metsky HC, Matranga CB, Wohl S, Schaffner SF, Freije CA, Winnicki SM, et al. Zika virus evolution and spread in the Americas. Nature. 2017;546: 411–415. doi:10.1038/nature22402 | |
| dc.relation.references | Michlmayr D, Andrade P, Gonzalez K, Balmaseda A, Harris E. CD14+CD16+ monocytes are the main target of Zika virus infection in peripheral blood mononuclear cells in a pediatric study in Nicaragua. Nat Microbiol. 2017;2: 1462–1470. doi:10.1038/s41564-017-0035-0 | |
| dc.relation.references | Miner JJ, Diamond MS. Zika Virus Pathogenesis and Tissue Tropism. Cell Host Microbe. 2017;21: 134–142. doi:10.1016/j.chom.2017.01.004 | |
| dc.relation.references | Mishra MK, Ghosh D, Duseja R, Basu A. Antioxidant potential of Minocycline in Japanese Encephalitis Virus infection in murine neuroblastoma cells: Correlation with membrane fluidity and cell death. Neurochem Int. 2009;54: 464–470. doi:10.1016/j.neuint.2009.01.022 | |
| dc.relation.references | Mishra P, Chan DC. Metabolic regulation of mitochondrial dynamics. Journal of Cell Biology. 2016;212: 379–387. doi:10.1083/jcb.201511036 | |
| dc.relation.references | Mishra R, Lata S, Ali A, Banerjea AC. Dengue haemorrhagic fever: a job done via exosomes? Emerg Microbes Infect. 2019;8: 1626–1635. doi:10.1080/22221751.2019.1685913 | |
| dc.relation.references | Miyazono Y, Hirashima S, Ishihara N, Kusukawa J, Nakamura K, Ohta K. Uncoupled mitochondria quickly shorten along their long axis to form indented spheroids, instead of rings, in a fission-independent manner. Sci Rep. 2018;8: 350. doi:10.1038/s41598-017-18582-6 | |
| dc.relation.references | Mladinich MC, Schwedes J, Mackow ER. Zika Virus Persistently Infects and Is Basolaterally Released from Primary Human Brain Microvascular Endothelial Cells. mBio. 2017;8. doi:10.1128/mBio.00952-17 | |
| dc.relation.references | Mori Y, Koike M, Moriishi E, Kawabata A, Tang H, Oyaizu H, et al. Human herpesvirus-6 induces MVB formation, and virus egress occurs by an exosomal release pathway. Traffic. 2008;9: 1728–1742. doi:10.1111/j.1600-0854.2008.00796.x | |
| dc.relation.references | Moulin C, Crupi MJF, Ilkow CS, Bell JC, Boulton S. Extracellular Vesicles and Viruses: Two Intertwined Entities. Int J Mol Sci. 2023;24: 1–33. doi:10.3390/ijms24021036 | |
| dc.relation.references | Mulcahy LA, Pink RC, Carter DRF. Routes and mechanisms of extracellular vesicle uptake. J Extracell Vesicles. 2014;3. doi:10.3402/jev.v3.24641 | |
| dc.relation.references | Mustafá YM, Meuren LM, Coelho SVA, de Arruda LB. Pathways Exploited by Flaviviruses to Counteract the Blood-Brain Barrier and Invade the Central Nervous System. Front Microbiol. 2019;10. doi:10.3389/fmicb.2019.00525 | |
| dc.relation.references | Mwaliko C, Nyaruaba R, Zhao L, Atoni E, Karungu S, Mwau M, et al. Zika virus pathogenesis and current therapeutic advances. Pathog Glob Health. 2021;115: 21–39. doi:10.1080/20477724.2020.1845005 | |
| dc.relation.references | Narayanareddy BRJ, Vartiainen S, Hariri N, O’Dowd DK, Gross SP. A Biophysical Analysis of Mitochondrial Movement: Differences Between Transport in Neuronal Cell Bodies Versus Processes. Traffic. 2014;15: 762–771. doi:10.1111/tra.12171 | |
| dc.relation.references | Ng WC, Soto-Acosta R, Bradrick SS, Garcia-Blanco MA, Ooi EE. The 5ʹ and 3ʹ untranslated regions of the flaviviral genome. Viruses. MDPI AG; 2017. doi:10.3390/v9060137 | |
| dc.relation.references | Nuebel E, Manganas P, Tokatlidis K. Orphan proteins of unknown function in the mitochondrial intermembrane space proteome: New pathways and metabolic cross-talk. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 2016;1863: 2613–2623. doi:10.1016/j.bbamcr.2016.07.004 | |
| dc.relation.references | O’Brien K, Breyne K, Ughetto S, Laurent LC, Breakefield XO. RNA delivery by extracellular vesicles in mammalian cells and its applications. Nat Rev Mol Cell Biol. 2020;21: 585–606. doi:10.1038/s41580-020-0251-y | |
| dc.relation.references | O’Brien K, Ughetto S, Mahjoum S, Nair A V., Breakefield XO. Uptake, functionality, and re-release of extracellular vesicle-encapsulated cargo. Cell Rep. 2022;39: 110651. doi:10.1016/j.celrep.2022.110651 | |
| dc.relation.references | Oberholster L, Du Pasquier R, Mathias A. Exploring the role of brain-derived extracellular vesicles in viral infections: from pathological insights to biomarker potential. Frontiers in Cellular and Infection Microbiology. Frontiers Media SA; 2024. doi:10.3389/fcimb.2024.1423394 | |
| dc.relation.references | Ocaña SD, Magaquian D, Banchio C. Neural stem cell-derived extracellular vesicles favour neuronal differentiation and plasticity under stress conditions. Front Mol Neurosci. 2023;16. doi:10.3389/fnmol.2023.1146592 | |
| dc.relation.references | Oliveira Souto I, Alejo-Cancho I, Gascón Brustenga J, Peiró Mestres A, Muñoz Gutiérrez J, Martínez Yoldi MJ. Persistence of Zika virus in semen 93 days after the onset of symptoms. Enferm Infecc Microbiol Clin. 2018;36: 21–23. doi:10.1016/j.eimc.2016.10.009 | |
| dc.relation.references | Oliveri H, Goriely A. Mathematical models of neuronal growth. Biomech Model Mechanobiol. 2022;21: 89–118. doi:10.1007/s10237-021-01539-0 | |
| dc.relation.references | Olmo IG, Carvalho TG, Costa V V., Alves-Silva J, Ferrari CZ, Izidoro-Toledo TC, et al. Zika Virus Promotes Neuronal Cell Death in a Non-Cell Autonomous Manner by Triggering the Release of Neurotoxic Factors. Front Immunol. 2017;8. doi:10.3389/fimmu.2017.01016 | |
| dc.relation.references | Oswald MCW, Garnham N, Sweeney ST, Landgraf M. Regulation of neuronal development and function by ROS. FEBS Lett. 2018;592: 679–691. doi:10.1002/1873-3468.12972 | |
| dc.relation.references | Palus M, Bílý T, Elsterová J, Langhansová H, Salát J, Vancová M, et al. Infection and injury of human astrocytes by tick-borne encephalitis virus. Journal of General Virology. 2014;95: 2411–2426. doi:10.1099/vir.0.068411-0 | |
| dc.relation.references | Pandit R, Chen L, Götz J. The blood-brain barrier: Physiology and strategies for drug delivery. Adv Drug Deliv Rev. 2020;166: 1–14. doi:10.1016/j.addr.2019.11.009 | |
| dc.relation.references | Pantazopoulou M, Lamprokostopoulou A, Karampela DS, Alexaki A, Delis A, Coens A, et al. Differential intracellular trafficking of extracellular vesicles in microglia and astrocytes. Cellular and Molecular Life Sciences. 2023;80. doi:10.1007/s00018-023-04841-5 | |
| dc.relation.references | Papa MP, Meuren LM, Coelho SVA, de Oliveira Lucas CG, Mustafá YM, Matassoli FL, et al. Zika virus infects, activates, and crosses brain microvascular endothelial cells, without barrier disruption. Front Microbiol. 2017;8. doi:10.3389/fmicb.2017.02557 | |
| dc.relation.references | Pascua-Maestro R, González E, Lillo C, Ganfornina MD, Falcón-Pérez JM, Sanchez D. Extracellular Vesicles Secreted by Astroglial Cells Transport Apolipoprotein D to Neurons and Mediate Neuronal Survival Upon Oxidative Stress. Front Cell Neurosci. 2019;12. doi:10.3389/fncel.2018.00526 | |
| dc.relation.references | Paz-Bailey G, Rosenberg ES, Doyle K, Munoz-Jordan J, Santiago GA, Klein L, et al. Persistence of Zika Virus in Body Fluids — Final Report. New England Journal of Medicine. 2018;379: 1234–1243. doi:10.1056/NEJMoa1613108 | |
| dc.relation.references | Pegtel DM, Cosmopoulos K, Thorley-Lawson DA, van Eijndhoven MAJ, Hopmans ES, Lindenberg JL, et al. Functional delivery of viral miRNAs via exosomes. Proceedings of the National Academy of Sciences. 2010;107: 6328–6333. doi:10.1073/pnas.0914843107 | |
| dc.relation.references | Peixoto L d. FA d. A, Abtibol-Bernardino MR, Guerra CVC, de Oliveira GA, B.C.S. C, de Souza Rodrigues C, et al. Growth Velocity and Nutritional Status in Children Exposed to Zika Virus during Pregnancy from Amazonas Cohort , Brazil. Viruses. 2023;15: 1–12. doi:https://doi.org/10.3390/v15030662 | |
| dc.relation.references | Peng H, Wang H, Kong W, Li J, Goh WW Bin. Optimizing differential expression analysis for proteomics data via high-performing rules and ensemble inference. Nat Commun. 2024;15: 3922. doi:10.1038/s41467-024-47899-w | |
| dc.relation.references | Perl A, Gergely P, Nagy G, Koncz A, Banki K. Mitochondrial hyperpolarization: a checkpoint of T-cell life, death and autoimmunity. Trends Immunol. 2004;25: 360–367. doi:10.1016/j.it.2004.05.001 | |
| dc.relation.references | Perrière N, Demeuse PH, Garcia E, Regina A, Debray M, Andreux J ‐P., et al. Puromycin‐based purification of rat brain capillary endothelial cell cultures. Effect on the expression of blood–brain barrier‐specific properties. J Neurochem. 2005;93: 279–289. doi:10.1111/j.1471-4159.2004.03020.x | |
| dc.relation.references | Polonio CM, de Freitas CL, Zanluqui NG, Peron JPS. Zika virus congenital syndrome: experimental models and clinical aspects. Journal of Venomous Animals and Toxins including Tropical Diseases. 2017;23: 41. doi:10.1186/s40409-017-0131-x | |
| dc.relation.references | Poulaki A, Giannouli S. Mitochondrial Lipids: From Membrane Organization to Apoptotic Facilitation. Int J Mol Sci. 2022;23: 3738. doi:10.3390/ijms23073738 | |
| dc.relation.references | QI D, WANG W, ZHANG Y, ZHANG T. MiR-99b regulates cerebral ischemia neuronal injury through targeting IGF1R. Panminerva Med. 2023;65. doi:10.23736/S0031-0808.20.03920-8 | |
| dc.relation.references | Qian Y, Li X, Li G, Liu H, Li Q, Liu X, et al. Astrocyte-Derived Exosomal miR-148a-3p Suppresses Neuroinflammation and Restores Neurological Function in Traumatic Brain Injury by Regulating the Microglial Phenotype. eNeuro. 2024;11: ENEURO.0336-23.2024. doi:10.1523/ENEURO.0336-23.2024 | |
| dc.relation.references | Qing L, Chen H, Tang J, Jia X. Exosomes and Their MicroRNA Cargo: New Players in Peripheral Nerve Regeneration. Neurorehabil Neural Repair. 2018;32: 765–776. doi:10.1177/1545968318798955 | |
| dc.relation.references | Qiu M, Zhao L, Li X, Fan Y, Liu M, Hua D, et al. Decoding dengue’s neurological assault: insights from single-cell CNS analysis in an immunocompromised mouse model. J Neuroinflammation. 2025;22: 62. doi:10.1186/s12974-025-03383-w | |
| dc.relation.references | Quintana-Cabrera R, Scorrano L. Determinants and outcomes of mitochondrial dynamics. Mol Cell. 2023;83: 857–876. doi:10.1016/j.molcel.2023.02.012 | |
| dc.relation.references | Rädler J, Gupta D, Zickler A, Andaloussi S EL. Exploiting the biogenesis of extracellular vesicles for bioengineering and therapeutic cargo loading. Mol Ther. 2023;31: 1231–1250. doi:10.1016/j.ymthe.2023.02.013 | |
| dc.relation.references | Ramakrishnaiah V, Thumann C, Fofana I, Habersetzer F, Pan Q, De Ruiter PE, et al. Exosome-mediated transmission of hepatitis C virus between human hepatoma Huh7.5 cells. Proc Natl Acad Sci U S A. 2013;110: 13109–13113. doi:10.1073/pnas.1221899110 | |
| dc.relation.references | Reddy PH, Tripathi R, Troung Q, Tirumala K, Reddy TP, Anekonda V, et al. Abnormal mitochondrial dynamics and synaptic degeneration as early events in Alzheimer’s disease: Implications to mitochondria-targeted antioxidant therapeutics. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 2012;1822: 639–649. doi:10.1016/j.bbadis.2011.10.011 | |
| dc.relation.references | Reid S, Kathryn R, Kiran T. Zika Virus and Neurologic Disease. Neurol Clinics of NA. 2018;36: 767–787. doi:10.1016/j.ncl.2018.06.003 | |
| dc.relation.references | Ren Z, Zhang X, Ding T, Zhong Z, Hu H, Xu Z, et al. Mitochondrial Dynamics Imbalance: A Strategy for Promoting Viral Infection. Frontiers in Microbiology. Frontiers Media S.A.; 2020. doi:10.3389/fmicb.2020.01992 | |
| dc.relation.references | Reshi L, Wang H-V, Hong J-R. Modulation of Mitochondria During Viral Infections. Mitochondrial Diseases. InTech; 2018. doi:10.5772/intechopen.73036 | |
| dc.relation.references | Rey-Cadilhac F, Rachenne F, Missé D, Pompon J. Viral Components Trafficking with(in) Extracellular Vesicles. Viruses. 2023;15: 2333. doi:10.3390/v15122333 | |
| dc.relation.references | Reyes-Ruiz JM, Osuna-Ramos JF, De Jesús-González LA, Hurtado-Monzón AM, Farfan-Morales CN, Cervantes-Salazar M, et al. Isolation and characterization of exosomes released from mosquito cells infected with dengue virus. Virus Res. 2019;266: 1–14. doi:10.1016/j.virusres.2019.03.015 | |
| dc.relation.references | Rivera AL, Pelloski CE, Gilbert MR, Colman H, De La Cruz C, Sulman EP, et al. MGMT promoter methylation is predictive of response to radiotherapy and prognostic in the absence of adjuvant alkylating chemotherapy for glioblastoma. Neuro Oncol. 2010;12: 116–121. doi:10.1093/neuonc/nop020 | |
| dc.relation.references | Roberts RC. Mitochondrial dysfunction in schizophrenia: With a focus on postmortem studies. Mitochondrion. 2021;56: 91–101. doi:10.1016/j.mito.2020.11.009 | |
| dc.relation.references | Rozzi SJ, Avdoshina V, Fields JA, Trejo M, Ton HT, Ahern GP, et al. Human Immunodeficiency Virus Promotes Mitochondrial Toxicity. Neurotox Res. 2017;32: 723–733. doi:10.1007/s12640-017-9776-z | |
| dc.relation.references | Ruan J, Miao X, Schlüter D, Lin L, Wang X. Extracellular vesicles in neuroinflammation: Pathogenesis, diagnosis, and therapy. Mol Ther. 2021;29: 1946–1957. doi:10.1016/j.ymthe.2021.04.020 | |
| dc.relation.references | Rubio-Hernández EI, Comas-García M, Coronado-Ipiña MA, Colunga-Saucedo M, Sánchez HMG, Castillo CG. Astrocytes derived from neural progenitor cells are susceptible to Zika virus infection. PLoS One. 2023;18: 1–25. doi:10.1371/journal.pone.0283429 | |
| dc.relation.references | Russo FB, Jungmann P, Beltrão-Braga PCB. Zika infection and the development of neurological defects. Cellular Microbiology. Blackwell Publishing Ltd; 2017. doi:10.1111/cmi.12744 | |
| dc.relation.references | Rusu AD, Georgiou M. The multifarious regulation of the apical junctional complex. Open Biol. 2020;10. doi:10.1098/rsob.190278 | |
| dc.relation.references | Růžek D, Vancová M, Tesařová M, Ahantarig A, Kopecký J, Grubhoffer L. Morphological changes in human neural cells following tick-borne encephalitis virus infection. Journal of General Virology. 2009;90: 1649–1658. doi:10.1099/vir.0.010058-0 | |
| dc.relation.references | Ryu J-Y, Zhang J, Tirado S-R, Dagen S, Frerichs KU, Patel NJ, et al. MiRNA expression profiling reveals a potential role of microRNA-148b-3p in cerebral vasospasm in subarachnoid hemorrhage. Sci Rep. 2024;14: 22539. doi:10.1038/s41598-024-73579-2 | |
| dc.relation.references | Safadi D El, Lebeau G, Lagrave A, Mélade J, Grondin L, Rosanaly S, et al. Extracellular Vesicles Are Conveyors of the NS1 Toxin during Dengue Virus and Zika Virus Infection. Viruses. 2023;15. doi:10.3390/v15020364 | |
| dc.relation.references | Saint-Pol J, Gosselet F, Duban-Deweer S, Pottiez G, Karamanos Y. Targeting and Crossing the Blood-Brain Barrier with Extracellular Vesicles. Cells. 2020;9: 851. doi:10.3390/cells9040851 | |
| dc.relation.references | Salminen AT, Tithof J, Izhiman Y, Masters EA, McCloskey MC, Gaborski TR, et al. Endothelial cell apicobasal polarity coordinates distinct responses to luminally versus abluminally delivered TNF-α in a microvascular mimetic. Integrative Biology. 2020;12: 275–289. doi:10.1093/intbio/zyaa022 | |
| dc.relation.references | Santana S, Sastre I, Recuero M, Bullido MJ, Aldudo J. Oxidative Stress Enhances Neurodegeneration Markers Induced by Herpes Simplex Virus Type 1 Infection in Human Neuroblastoma Cells. PLoS One. 2013;8: e75842. doi:10.1371/journal.pone.0075842 | |
| dc.relation.references | Santana-Román ME, Maycotte P, Uribe-Carvajal S, Uribe-Alvarez C, Alvarado-Medina N, Khan M, et al. Monitoring Mitochondrial Function in Aedes albopictus C6/36 Cell Line during Dengue Virus Infection. Insects. 2021;12: 934. doi:10.3390/insects12100934 | |
| dc.relation.references | Schäfer A, Brooke CB, Whitmore AC, Johnston RE. The Role of the Blood-Brain Barrier during Venezuelan Equine Encephalitis Virus Infection. J Virol. 2011;85: 10682–10690. doi:10.1128/JVI.05032-11 | |
| dc.relation.references | Schefe JH, Lehmann KE, Buschmann IR, Unger T, Funke-Kaiser H. Quantitative real-time RT-PCR data analysis: Current concepts and the novel “gene expression’s C T difference” formula. J Mol Med. 2006;84: 901–910. doi:10.1007/s00109-006-0097-6 | |
| dc.relation.references | Schiera G, Di Liegro CM, Schirò G, Sorbello G, Di Liegro I. Involvement of Astrocytes in the Formation, Maintenance, and Function of the Blood–Brain Barrier. Cells. 2024;13: 150. doi:10.3390/cells13020150 | |
| dc.relation.references | Schultz V, Cumberworth SL, Gu Q, Johnson N, Donald CL, McCanney GA, et al. Zika virus infection leads to demyelination and axonal injury in mature CNS cultures. Viruses. 2021;13. doi:10.3390/v13010091 | |
| dc.relation.references | Sedgwick AE, D’Souza-Schorey C. The biology of extracellular microvesicles. Traffic. 2018;19: 319–327. doi:10.1111/tra.12558 | |
| dc.relation.references | Sena LA, Chandel NS. Physiological Roles of Mitochondrial Reactive Oxygen Species. Mol Cell. 2012;48: 158–167. doi:10.1016/j.molcel.2012.09.025 | |
| dc.relation.references | Seong R-K, Lee JK, Cho GJ, Kumar M, Shin OS. mRNA and miRNA profiling of Zika virus-infected human umbilical cord mesenchymal stem cells identifies miR-142-5p as an antiviral factor. Emerg Microbes Infect. 2020;9: 2061–2075. doi:10.1080/22221751.2020.1821581 | |
| dc.relation.references | Shang F, Wang S-C, Hsu C-Y, Miao Y, Martin M, Yin Y, et al. MicroRNA-92a Mediates Endothelial Dysfunction in CKD. Journal of the American Society of Nephrology. 2017;28: 3251–3261. doi:10.1681/ASN.2016111215 | |
| dc.relation.references | Shao Q, Herrlinger S, Yang SL, Lai F, Moore JM, Brindley MA, et al. Zika virus infection disrupts neurovascular development and results in postnatal microcephaly with brain damage. Development (Cambridge). 2016;143: 4127–4136. doi:10.1242/dev.143768 | |
| dc.relation.references | Sharma V, Sharma M, Dhull D, Sharma Y, Kaushik S, Kaushik S. Zika virus: an emerging challenge to public health worldwide. Can J Microbiol. 2020;66: 87–98. doi:10.1139/cjm-2019-0331 | |
| dc.relation.references | Shelke G V, Jang SC, Yin Y, Lässer C, Lötvall J. Human mast cells release vesicle-associated DNA extracellular. Matters (Zur). 2016; 1–4. doi:10.19185/matters.201602000034 | |
| dc.relation.references | Sherman BT, Hao M, Qiu J, Jiao X, Baseler MW, Lane HC, et al. DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022;50: W216–W221. doi:10.1093/nar/gkac194 | |
| dc.relation.references | Shi Y, Li S, Wu Q, Sun L, Zhang J, Pan N, et al. Vertical Transmission of the Zika Virus Causes Neurological Disorders in Mouse Offspring. Sci Rep. 2018;8. doi:10.1038/s41598-018-21894-w | |
| dc.relation.references | Shue B, Chiramel AI, Cerikan B, To T-H, Frölich S, Pederson SM, et al. Genome-Wide CRISPR Screen Identifies RACK1 as a Critical Host Factor for Flavivirus Replication. J Virol. 2021;95. doi:10.1128/JVI.00596-21 | |
| dc.relation.references | Singh B, Avula K, Sufi SA, Parwin N, Das S, Alam MF, et al. Defective Mitochondrial Quality Control during Dengue Infection Contributes to Disease Pathogenesis. J Virol. 2022;96. doi:10.1128/jvi.00828-22 | |
| dc.relation.references | Singh G, Kumar A. Japanese Encephalitis Virus Infection Causes an Imbalance in the Activation of Mitochondrial Fusion/Fission Genes and Triggers the Activation of NOX2-mediated Oxidative Stress and Neuronal Cell Death. Neurochem Res. 2023;48: 2196–2205. doi:10.1007/s11064-023-03898-9 | |
| dc.relation.references | Singh PK, Guest J-M, Kanwar M, Boss J, Gao N, Juzych MS, et al. Zika virus infects cells lining the blood-retinal barrier and causes chorioretinal atrophy in mouse eyes. JCI Insight. 2017;2. doi:10.1172/jci.insight.92340 | |
| dc.relation.references | Singh S, Chen CC, Kim S, Singh A, Singh G. Role of Extracellular vesicle microRNAs and RNA binding proteins on glioblastoma dynamics and therapeutics development. Extracellular Vesicle. 2024;4: 100049. doi:10.1016/j.vesic.2024.100049 | |
| dc.relation.references | Singh SP, Amar S, Gehlot P, Patra SK, Kanwar N, Kanwal A. Mitochondrial Modulations, Autophagy Pathways Shifts in Viral Infections: Consequences of COVID-19. Int J Mol Sci. 2021;22: 8180. doi:10.3390/ijms22158180 | |
| dc.relation.references | Smith GM, Gallo G. The role of mitochondria in axon development and regeneration. Dev Neurobiol. 2018;78: 221–237. doi:10.1002/dneu.22546 | |
| dc.relation.references | Smith SM, Smith CJ. Capturing the mechanics of clathrin-mediated endocytosis. Curr Opin Struct Biol. 2022;75. doi:doi.org/10.1016/j.sbi.2022.102427 | |
| dc.relation.references | Soda Y, Marumoto T, Friedmann-Morvinski D, Soda M, Liu F, Michiue H, et al. Transdifferentiation of glioblastoma cells into vascular endothelial cells. Proceedings of the National Academy of Sciences. 2011;108: 4274–4280. doi:10.1073/pnas.1016030108 | |
| dc.relation.references | Solana‐Balaguer J, Campoy‐Campos G, Martín‐Flores N, Pérez‐Sisqués L, Sitjà‐Roqueta L, Kucukerden M, et al. Neuron‐derived extracellular vesicles contain synaptic proteins, promote spine formation, activate TrkB‐mediated signalling and preserve neuronal complexity. J Extracell Vesicles. 2023;12. doi:10.1002/jev2.12355 | |
| dc.relation.references | Solár P, Zamani A, Lakatosová K, Joukal M. The blood–brain barrier and the neurovascular unit in subarachnoid hemorrhage: molecular events and potential treatments. Fluids Barriers CNS. 2022;19: 29. doi:10.1186/s12987-022-00312-4 | |
| dc.relation.references | Song J, Yoon SR, Kim OY. miR‐Let7A Controls the Cell Death and Tight Junction Density of Brain Endothelial Cells under High Glucose Condition. Oxid Med Cell Longev. 2017;2017. doi:10.1155/2017/6051874 | |
| dc.relation.references | Soni N, Tripathi A, Mukherjee S, Gupta S, Mohanty S, Basu A, et al. Bone marrow‐derived extracellular vesicles modulate the abundance of infiltrating immune cells in the brain and exert an antiviral effect against the Japanese encephalitis virus. FASEB Bioadv. 2022;4: 798–815. doi:10.1096/fba.2022-00071 | |
| dc.relation.references | Sorouri M, Chang T, Hancks D. Mitochondria and Viral Infection: Advances and Emerging Battlefronts. mBio. 2022;13. doi:10.1128/mbio.02096 | |
| dc.relation.references | Souza INO, Barros-Aragão FGQ, Frost PS, Figueiredo CP, Clarke JR. Late Neurological Consequences of Zika Virus Infection: Risk Factors and Pharmaceutical Approaches. Pharmaceuticals. 2019;12: 60. doi:10.3390/ph12020060 | |
| dc.relation.references | Stefanik M, Formanova P, Bily T, Vancova M, Eyer L, Palus M, et al. Characterisation of Zika virus infection in primary human astrocytes. BMC Neurosci. 2018;19. doi:10.1186/s12868-018-0407-2 | |
| dc.relation.references | Stein J, Walkenfort B, Cihankaya H, Hasenberg M, Bader V, Winklhofer KF, et al. Increased ROS‐Dependent Fission of Mitochondria Causes Abnormal Morphology of the Cell Powerhouses in a Murine Model of Amyotrophic Lateral Sclerosis. Oxid Med Cell Longev. 2021;2021. doi:10.1155/2021/6924251 | |
| dc.relation.references | Su Y, Yuan J, Zhang F, Lei Q, Zhang T, Li K, et al. MicroRNA-181a-5p and microRNA-181a-3p cooperatively restrict vascular inflammation and atherosclerosis. Cell Death Dis. 2019;10: 365. doi:10.1038/s41419-019-1599-9 | |
| dc.relation.references | Tabak S, Schreiber-Avissar S, Beit-Yannai E. Crosstalk between MicroRNA and Oxidative Stress in Primary Open-Angle Glaucoma. Int J Mol Sci. 2021;22: 2421. doi:10.3390/ijms22052421 | |
| dc.relation.references | Tajik S, Farahani AV, Ardekani OS, Seyedi S, Tayebi Z, Kami M, et al. Zika virus tropism and pathogenesis: understanding clinical impacts and transmission dynamics. Virology journal. 2024. p. 271. doi:10.1186/s12985-024-02547-z | |
| dc.relation.references | Tan JJL, Balne PK, Leo Y-S, Tong L, Ng LFP, Agrawal R. Persistence of Zika virus in conjunctival fluid of convalescence patients. Sci Rep. 2017;7: 11194. doi:10.1038/s41598-017-09479-5 | |
| dc.relation.references | Tang H, Hammack C, Ogden SC, Wen Z, Qian X, Li Y, et al. Zika Virus Infects Human Cortical Neural Progenitors and Attenuates Their Growth. Cell Stem Cell. 2016;18: 587–590. doi:10.1016/j.stem.2016.02.016 | |
| dc.relation.references | Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018;7: 1–43. doi:10.1080/20013078.2018.1535750 | |
| dc.relation.references | Tiku V, Kofoed EM, Yan D, Kang J, Xu M, Reichelt M, et al. Outer membrane vesicles containing OmpA induce mitochondrial fragmentation to promote pathogenesis of Acinetobacter baumannii. Sci Rep. 2021;11: 618. doi:10.1038/s41598-020-79966-9 | |
| dc.relation.references | Tilokani L, Nagashima S, Paupe V, Prudent J. Mitochondrial dynamics: overview of molecular mechanisms. Essays Biochem. 2018;62: 341–360. doi:10.1042/EBC20170104 | |
| dc.relation.references | Ting S-Y, Schilke BA, Hayashi M, Craig EA. Architecture of the TIM23 Inner Mitochondrial Translocon and Interactions with the Matrix Import Motor. Journal of Biological Chemistry. 2014;289: 28689–28696. doi:10.1074/jbc.M114.588152 | |
| dc.relation.references | Tominaga N, Kosaka N, Ono M, Katsuda T, Yoshioka Y, Tamura K, et al. Brain metastatic cancer cells release microRNA-181c-containing extracellular vesicles capable of destructing blood–brain barrier. Nat Commun. 2015;6: 6716. doi:10.1038/ncomms7716 | |
| dc.relation.references | Troyer Z, Tilton JC. Extracellular vesicles as carriers of viruses. ExRNA. 2021;3: 13–13. doi:10.21037/exrna-21-24 | |
| dc.relation.references | Tsunoda I, Omura S, Sato F, Kusunoki S, Fujita M, Park A-M, et al. Neuropathogenesis of Zika Virus Infection : Potential Roles of Antibody-Mediated Pathology. Acta Med Kinki Univ. 2016;41: 37–52. | |
| dc.relation.references | Turner DL, Korneev D V., Purdy JG, de Marco A, Mathias RA. The host exosome pathway underpins biogenesis of the human cytomegalovirus virion. Elife. 2020;9: 1–29. doi:10.7554/ELIFE.58288 | |
| dc.relation.references | Urbanelli L, Buratta S, Tancini B, Sagini K, Delo F, Porcellati S, et al. The role of extracellular vesicles in viral infection and transmission. Vaccines (Basel). 2019;7: 1–20. doi:10.3390/vaccines7030102 | |
| dc.relation.references | Van Den Pol AN, Mao G, Yang Y, Ornaghi S, Davis JN. Zika virus targeting in the developing brain. Journal of Neuroscience. 2017;37: 2161–2175. doi:10.1523/JNEUROSCI.3124-16.2017 | |
| dc.relation.references | van Dongen HM, Masoumi N, Witwer KW, Pegtel DM. Extracellular Vesicles Exploit Viral Entry Routes for Cargo Delivery. Microbiol Mol Biol Rev. 2016;80: 369–386. doi:10.1128/mmbr.00063-15 | |
| dc.relation.references | Van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19: 213–228. doi:10.1038/nrm.2017.125 | |
| dc.relation.references | Velandia-Romero M, Calderón-Peláez MA, Balbas-Tepedino A, Marquez-Ortiz RA, Madroñero LJ, Prieto AB, et al. Extracellular vesicles of U937 macrophage cell line infected with DENV-2 induce activation in endothelial cells EA.hy926. PLoS One. 2020;15: 1–25. doi:10.1371/journal.pone.0227030 | |
| dc.relation.references | Velandia-Romero ML, Calderón-Peláez MA, Castellanos JE. In vitro infection with dengue virus induces changes in the structure and function of the mouse brain endothelium. PLoS One. 2016;11: 1–20. doi:10.1371/journal.pone.0157786 | |
| dc.relation.references | Velázquez-Cervantes MA, Flores-Pliego A, Benitez-Zeferino YR, Cruz-Holguín VJ, Herrera Moro-Huitron L, Helguera-Repetto AC, et al. Zika Virus Infection Modulates Extracellular Vesicle Biogenesis and Morphology in Human Umbilical Cord Endothelial Cells: A Proteomic and Microscopic Analysis. Microorganisms. 2025;13: 1402. doi:10.3390/microorganisms13061402 | |
| dc.relation.references | Vermillion MS, Lei J, Shabi Y, Baxter VK, Crilly NP, McLane M, et al. Intrauterine Zika virus infection of pregnant immunocompetent mice models transplacental transmission and adverse perinatal outcomes. Nat Commun. 2017;8. doi:10.1038/ncomms14575 | |
| dc.relation.references | Veziroglu EM, Mias GI. Characterizing Extracellular Vesicles and Their Diverse RNA Contents. Front Genet. 2020;11: 1–30. doi:10.3389/fgene.2020.00700 | |
| dc.relation.references | Villanueva RAM, Chen ZJ. ggplot2: Elegant Graphics for Data Analysis (2nd ed.). Measurement (Mahwah N J). 2019;17: 160–167. doi:10.1080/15366367.2019.1565254 | |
| dc.relation.references | Villarroya-Beltri C, Baixauli F, Mittelbrunn M, Fernández-Delgado I, Torralba D, Moreno-Gonzalo O, et al. ISGylation controls exosome secretion by promoting lysosomal degradation of MVB proteins. Nat Commun. 2016;7: 13588. doi:10.1038/ncomms13588 | |
| dc.relation.references | Villota SD, Toledo-Rodriguez M, Leach L. Compromised barrier integrity of human feto-placental vessels from gestational diabetic pregnancies is related to downregulation of occludin expression. Diabetologia. 2021;64: 195–210. doi:10.1007/s00125-020-05290-6 | |
| dc.relation.references | Vincent AE, Turnbull DM, Eisner V, Hajnóczky G, Picard M. Mitochondrial Nanotunnels. Trends Cell Biol. 2017;27: 787–799. doi:10.1016/j.tcb.2017.08.009 | |
| dc.relation.references | Vue Z, Neikirk K, Vang L, Garza-Lopez E, Christensen TA, Shao J, et al. Three-dimensional mitochondria reconstructions of murine cardiac muscle changes in size across aging. American Journal of Physiology-Heart and Circulatory Physiology. 2023;325: H965–H982. doi:10.1152/ajpheart.00202.2023 | |
| dc.relation.references | Walker CL, Little E, Roby JA, Armistead B, Gale MJ, Rajagopal L, et al. Zika virus and the nonmicrocephalic fetus: why we should still worry. Am J Obstet Gynecol. 2018;33976: 1–12. doi:10.1016/j.ajog.2018.08.035 | |
| dc.relation.references | Wan C, Stowell MHB, Shen J. Progress and gaps of extracellular vesicle-mediated intercellular cargo transfer in the central nervous system. Commun Biol. 2022;5: 1–5. doi:10.1038/s42003-022-04050-z | |
| dc.relation.references | Wang A, Thurmond S, Islas L, Hui K, Hai R. Zika virus genome biology and molecular pathogenesis. Emerg Microbes Infect. 2017;6. doi:10.1038/emi.2016.141 | |
| dc.relation.references | Wang B, Huang M, Shang D, Yan X, Zhao B, Zhang X. Mitochondrial Behavior in Axon Degeneration and Regeneration. Front Aging Neurosci. 2021;13. doi:10.3389/fnagi.2021.650038 | |
| dc.relation.references | Wang C, Qu K, Wang J, Qin R, Li B, Qiu J, et al. Biomechanical regulation of planar cell polarity in endothelial cells. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 2022;1868: 166495. doi:10.1016/j.bbadis.2022.166495 | |
| dc.relation.references | Wang F, Han H, Wang C, Wang J, Peng Y, Chen Y, et al. SARS-CoV-2 membrane protein induces neurodegeneration via affecting Golgi-mitochondria interaction. Transl Neurodegener. 2024;13: 68. doi:10.1186/s40035-024-00458-1 | |
| dc.relation.references | Wang J, Fröhlich H, Torres FB, Silva RL, Poschet G, Agarwal A, et al. Mitochondrial dysfunction and oxidative stress contribute to cognitive and motor impairment in FOXP1 syndrome. Proceedings of the National Academy of Sciences. 2022;119. doi:10.1073/pnas.2112852119 | |
| dc.relation.references | Wang J, Sun D, Wang M, Cheng A, Zhu Y, Mao S, et al. Multiple functions of heterogeneous nuclear ribonucleoproteins in the positive single-stranded RNA virus life cycle. Front Immunol. 2022;13. doi:10.3389/fimmu.2022.989298 | |
| dc.relation.references | Wang K, Zou S, Chen H, Higazy D, Gao X, Zhang Y, et al. Zika virus replication on endothelial cells and invasion into the central nervous system by inhibiting interferon β translation. Virology. 2023;582: 23–34. doi:10.1016/j.virol.2023.03.006 | |
| dc.relation.references | Wang M, Wang W, Chopp M, Zhang ZG, Zhang Y. Therapeutic and diagnostic potential of extracellular vesicle (EV)-mediated intercellular transfer of mitochondria and mitochondrial components. Journal of Cerebral Blood Flow & Metabolism. 2025. doi:10.1177/0271678X251338971 | |
| dc.relation.references | Wang S, Khan A, Huang R, Ye S, Di K, Xiong T, et al. Recent advances in single extracellular vesicle detection methods. Biosens Bioelectron. 2020;154: 112056. doi:10.1016/j.bios.2020.112056 | |
| dc.relation.references | Wang S, Tan J, Miao Y, Zhang Q. Mitochondrial Dynamics, Mitophagy, and Mitochondria–Endoplasmic Reticulum Contact Sites Crosstalk Under Hypoxia. Front Cell Dev Biol. 2022;10. doi:10.3389/fcell.2022.848214 | |
| dc.relation.references | Wang S, Zhou H, Wu D, Ni H, Chen Z, Chen C, et al. MicroRNA let‐7a regulates angiogenesis by targeting TGFBR-3 mRNA. J Cell Mol Med. 2019;23: 556–567. doi:10.1111/jcmm.13960 | |
| dc.relation.references | Wang WM, Lu G, Su XW, Lyu H, Poon WS. MicroRNA-182 Regulates Neurite Outgrowth Involving the PTEN/AKT Pathway. Front Cell Neurosci. 2017;11. doi:10.3389/fncel.2017.00096 | |
| dc.relation.references | Wang X, Li H, Wang J, Xu H, Xue K, Liu X, et al. Staphylococcus aureus extracellular vesicles induce apoptosis and restrain mitophagy-mediated degradation of damaged mitochondria. Microbiol Res. 2023;273: 127421. doi:10.1016/j.micres.2023.127421 | |
| dc.relation.references | Wang Y, Han T, Guo R, Song P, Liu Y, Wu Z, et al. Micro-RNA let-7a-5p Derived From Mesenchymal Stem Cell-Derived Extracellular Vesicles Promotes the Regrowth of Neurons in Spinal-Cord-Injured Rats by Targeting the HMGA2/SMAD2 Axis. Front Mol Neurosci. 2022;15. doi:10.3389/fnmol.2022.850364 | |
| dc.relation.references | Wang Y, Wang M, Xia Y, Gao Y, Zhu Y, Chen S, et al. MicroRNA‐130a regulates cerebral ischemia–induced blood–brain barrier permeability by targeting Homeobox A5. The FASEB Journal. 2018;32: 935–944. doi:10.1096/fj.201700139RRR | |
| dc.relation.references | Welsh JA, Goberdhan DCI, O’Driscoll L, Buzas EI, Blenkiron C, Bussolati B, et al. Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches. J Extracell Vesicles. 2024;13: e12404. doi:10.1002/jev2.12404 | |
| dc.relation.references | Wen X, Cao W, Ding H, Chen A, Sun Z, Wang Y, et al. Extracellular Vesicles Derived from FGF2-Primed Astrocytes Against Mitochondrial and Synaptic Toxicities in Parkinson’s Disease. Int J Nanomedicine. 2025;Volume 20: 4627–4644. doi:10.2147/IJN.S511474 | |
| dc.relation.references | Westin JE, Lindgren HS, Gardi J, Nyengaard JR, Brundin P, Mohapel P, et al. Endothelial Proliferation and Increased Blood–Brain Barrier Permeability in the Basal Ganglia in a Rat Model of 3,4-Dihydroxyphenyl-l-Alanine-Induced Dyskinesia. The Journal of Neuroscience. 2006;26: 9448–9461. doi:10.1523/JNEUROSCI.0944-06.2006 | |
| dc.relation.references | White MK, Wollebo HS, David Beckham J, Tyler KL, Khalili K. Zika virus: An emergent neuropathological agent. Ann Neurol. 2016;80: 479–489. doi:10.1002/ana.24748 | |
| dc.relation.references | Wiedemann N, Pfanner N. Mitochondrial Machineries for Protein Import and Assembly. Annu Rev Biochem. 2017;86: 685–714. doi:10.1146/annurev-biochem-060815-014352 | |
| dc.relation.references | Wolpe AG, Ruddiman CA, Hall PJ, Isakson BE. Polarized Proteins in Endothelium and Their Contribution to Function. J Vasc Res. 2021;58: 65–91. doi:10.1159/000512618 | |
| dc.relation.references | Wu D, Chen Q, Chen X, Han F, Chen Z, Wang Y. The blood–brain barrier: structure, regulation, and drug delivery. Signal Transduction and Targeted Therapy. Springer Nature; 2023. doi:10.1038/s41392-023-01481-w | |
| dc.relation.references | Wu F, Yang Z, Li G. Role of specific microRNAs for endothelial function and angiogenesis. Biochem Biophys Res Commun. 2009;386: 549–553. doi:10.1016/j.bbrc.2009.06.075 | |
| dc.relation.references | Wu S, Yang T, Ma M, Fan L, Ren L, Liu G, et al. Extracellular vesicles meet mitochondria: Potential roles in regenerative medicine. Pharmacol Res. 2024;206: 107307. doi:10.1016/j.phrs.2024.107307 | |
| dc.relation.references | Xin H, Li Y, Buller B, Katakowski M, Zhang Y, Wang X, et al. Exosome-Mediated Transfer of miR-133b from Multipotent Mesenchymal Stromal Cells to Neural Cells Contributes to Neurite Outgrowth. Stem Cells. 2012;30: 1556–1564. doi:10.1002/stem.1129 | |
| dc.relation.references | Xing Y, Xue S, Wu J, Zhou J, Xing F, Li T, et al. Serum Exosomes Derived from Irritable Bowel Syndrome Patient Increase Cell Permeability via Regulating miR-148b-5p/RGS2 Signaling in Human Colonic Epithelium Cells. Gastroenterol Res Pract. 2021;2021: 1–8. doi:10.1155/2021/6655900 | |
| dc.relation.references | Xiong J, Ashraf U, Ye J, Cao S. Extracellular Vesicles in Pathogenic Infection, Transmission, and Immunity. Engineering. Elsevier Ltd; 2024. doi:10.1016/j.eng.2024.06.011 | |
| dc.relation.references | Xu W, Erzurum SC. Endothelial Cell Energy Metabolism, Proliferation, and Apoptosis in Pulmonary Hypertension. Comprehensive Physiology. Wiley; 2010. pp. 357–372. doi:10.1002/cphy.c090005 | |
| dc.relation.references | Yamaji-Hasegawa A, Tsujimoto M. Asymmetric Distribution of Phospholipids in Biomembranes. Biol Pharm Bull. 2006;29: 1547–1553. doi:10.1248/bpb.29.1547 | |
| dc.relation.references | Yan C, Duanmu X, Zeng L, Liu B, Song Z. Mitochondrial DNA: Distribution, Mutations, and Elimination. Cells. 2019;8: 379. doi:10.3390/cells8040379 | |
| dc.relation.references | Yang S, Gorshkov K, Lee EM, Xu M, Cheng Y-S, Sun N, et al. Zika Virus-Induced Neuronal Apoptosis via Increased Mitochondrial Fragmentation. Front Microbiol. 2020;11. doi:10.3389/fmicb.2020.598203 | |
| dc.relation.references | Yang Z, Wang L, Yang C, Pu S, Guo Z, Wu Q, et al. Mitochondrial Membrane Remodeling. Front Bioeng Biotechnol. 2022;9. doi:10.3389/fbioe.2021.786806 | |
| dc.relation.references | Yockey LJ, Varela L, Rakib T, Khoury-Hanold W, Fink SL, Stutz B, et al. Vaginal Exposure to Zika Virus during Pregnancy Leads to Fetal Brain Infection. Cell. 2016;166: 1247-1256.e4. doi:10.1016/j.cell.2016.08.004 | |
| dc.relation.references | York SB, Sun L, Cone AS, Duke LC, Cheerathodi MR, Meckes DG. Zika Virus Hijacks Extracellular Vesicle Tetraspanin Pathways for Cell-to-Cell Transmission. mSphere. 2021;6. doi:10.1128/msphere.00192-21 | |
| dc.relation.references | Youle RJ, van der Bliek AM. Mitochondrial Fission, Fusion, and Stress. Science (1979). 2012;337: 1062–1065. doi:10.1126/science.1219855 | |
| dc.relation.references | Yu C-Y, Liang J-J, Li J-K, Lee Y-L, Chang B-L, Su C-I, et al. Dengue Virus Impairs Mitochondrial Fusion by Cleaving Mitofusins. PLoS Pathog. 2015;11: e1005350. doi:10.1371/journal.ppat.1005350 | |
| dc.relation.references | Yu R, Lendahl U, Nistér M, Zhao J. Regulation of Mammalian Mitochondrial Dynamics: Opportunities and Challenges. Front Endocrinol (Lausanne). 2020;11. doi:10.3389/fendo.2020.00374 | |
| dc.relation.references | Yu T, Robotham JL, Yoon Y. Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology. Proceedings of the National Academy of Sciences. 2006;103: 2653–2658. doi:10.1073/pnas.0511154103 | |
| dc.relation.references | Yu X, Zuo Y. Spine plasticity in the motor cortex. Curr Opin Neurobiol. 2011;21: 169–174. doi:10.1016/j.conb.2010.07.010 | |
| dc.relation.references | Yu Y, Yu Y, Liu M, Yu P, Liu G, Liu Y, et al. Ethyl pyruvate attenuated coxsackievirus B3-induced acute viral myocarditis by suppression of HMGB1/RAGE/NF-ΚB pathway. Springerplus. 2016;5: 1–10. doi:10.1186/s40064-016-1857-6 | |
| dc.relation.references | Zai W, Hu K, Ye J, Ding J, Huang C, Li Y, et al. Long-Term Hepatitis B Virus Infection Induces Cytopathic Effects in Primary Human Hepatocytes, and Can Be Partially Reversed by Antiviral Therapy. Microbiol Spectr. 2022;10. doi:10.1128/spectrum.01328-21 | |
| dc.relation.references | Zappulli V, Friis KP, Fitzpatrick Z, Maguire CA, Breakefield XO. Extracellular vesicles and intercellular communication within the nervous system. Journal of Clinical Investigation. 2016;126: 1198–1207. doi:10.1172/JCI81134 | |
| dc.relation.references | Zeng W-Y, Gu Wen-Yan, Xyu L, Zhang Y, Han C. miR-99b-5p inhibits the activation of NLRP3 inflammasome to alleviate the neurotoxicity induced by paclitaxel chemotherapy. Zhongguo Ying Yong Sheng Li Xue Za Zhi. 2022;38: 438–442. doi:10.12047/j.cjap.6289.2022.082 | |
| dc.relation.references | Zhang Q, Jeppesen DK, Higginbotham JN, Graves-deal R, Trinh VQ, Ramirez MA, et al. Supermeres are functional extracellular nanoparticles replete with disease biomarkers and therapeutic targets. Nat Cell Biol. 2021;23: 1240–1254. doi:10.1038/s41556-021-00805-8 | |
| dc.relation.references | Zhang S, Chen J, Cao Y, Cui Y, Zhang M, Yue C, et al. Divergent Proteomic Profiles and Uptake Mechanisms of Exosomes Derived from Human Dental Pulp Stem Cells, Endothelial Cells, and Fibroblasts. Mol Pharm. 2024;21: 6353–6362. doi:10.1021/acs.molpharmaceut.4c00911 | |
| dc.relation.references | Zhang Y, Chen M, Qiu Z, Hu K, McGee W, Chen X, et al. MiR-130a regulates neurite outgrowth and dendritic spine density by targeting MeCP2. Protein Cell. 2016;7: 489–500. doi:10.1007/s13238-016-0272-7 | |
| dc.relation.references | Zhang Y, Qin Y, Chopp M, Li C, Kemper A, Liu X, et al. Ischemic Cerebral Endothelial Cell–Derived Exosomes Promote Axonal Growth. Stroke. 2020;51: 3701–3712. doi:10.1161/STROKEAHA.120.031728 | |
| dc.relation.references | Zhang Y, Tan J, Miao Y, Zhang Q. The effect of extracellular vesicles on the regulation of mitochondria under hypoxia. Cell Death Dis. 2021;12: 358. doi:10.1038/s41419-021-03640-9 | |
| dc.relation.references | Zhang Z, Rong L, Li Y-P. Flaviviridae Viruses and Oxidative Stress: Implications for Viral Pathogenesis. Oxid Med Cell Longev. 2019;2019: 1–17. doi:10.1155/2019/1409582 | |
| dc.relation.references | Zhao F, Xu Y, Liu N, Lv D, Chen Y, Liu Z, et al. Extracellular vesicles from Zika virus-infected cells display viral E protein that binds ZIKV-neutralizing antibodies to prevent infection enhancement. EMBO J. 2023;42: 1–17. doi:10.15252/embj.2022112096 | |
| dc.relation.references | Zhao Y, Gan L, Ren L, Lin Y, Ma C, Lin X. Factors influencing the blood-brain barrier permeability. Brain Res. 2022;1788: 147937. doi:10.1016/j.brainres.2022.147937 | |
| dc.relation.references | Zhou J, Guan M-Y, Li R-T, Qi Y-N, Yang G, Deng Y-Q, et al. Zika virus leads to olfactory disorders in mice by targeting olfactory ensheathing cells. EBioMedicine. 2023;89: 104457. doi:10.1016/j.ebiom.2023.104457 | |
| dc.relation.references | Zhou W, Woodson M, Neupane B, Bai F, Sherman MB, Choi KH, et al. Exosomes serve as novel modes of tick-borne flavivirus transmission from arthropod to human cells and facilitates dissemination of viral RNA and proteins to the vertebrate neuronal cells. PLoS Pathog. 2018;14: e1006764. doi:10.1371/journal.ppat.1006764 | |
| dc.relation.references | Zhou W, Woodson M, Sherman MB, Neelakanta G, Sultana H. Exosomes mediate Zika virus transmission through SMPD3 neutral Sphingomyelinase in cortical neurons. Emerg Microbes Infect. 2019;8: 307–326. doi:10.1080/22221751.2019.1578188 | |
| dc.relation.references | Zhu J, Wang Q, Zheng Z, Ma L, Guo J, Shi H, et al. MiR-181a protects the heart against myocardial infarction by regulating mitochondrial fission via targeting programmed cell death protein 4. Sci Rep. 2024;14: 6638. doi:10.1038/s41598-024-57206-8 | |
| dc.relation.references | Zhu L, Ma L, Du X, Jiang Y, Fan Z, Zheng H, et al. M2 Microglia-Derived Exosomes Protect Against Glutamate-Induced HT22 Cell Injury via Exosomal miR-124-3p. Mol Neurobiol . 2024; 7845–7861. | |
| dc.relation.references | Zhu X, Lu X. MiR‐423‐5p inhibition alleviates cardiomyocyte apoptosis and mitochondrial dysfunction caused by hypoxia/reoxygenation through activation of the wnt/β‐catenin signaling pathway via targeting MYBL2. J Cell Physiol. 2019;234: 22034–22043. doi:10.1002/jcp.28766 | |
| dc.relation.references | Zhuang Y, Peng H, Mastej V, Chen W. MicroRNA Regulation of Endothelial Junction Proteins and Clinical Consequence. Mediators Inflamm. 2016;2016: 1–6. doi:10.1155/2016/5078627 | |
| dc.relation.references | Zoccali C. Endothelial Dysfunction and the Kidney. Journal of the American Society of Nephrology. 2006;17: S61–S63. doi:10.1681/ASN.2005121344 | |
| dc.relation.references | Zoladek J, Nisole S. Mosquito-borne flaviviruses and type I interferon: catch me if you can! Front Microbiol. 2023;14. doi:10.3389/fmicb.2023.1257024 | |
| dc.relation.references | Zou M, Dong H, Meng X, Cai C, Li C, Cai S, et al. Store-operated Ca2+ entry plays a role in HMGB1-induced vascular endothelial cell hyperpermeability. PLoS One. 2015;10: 1–17. doi:10.1371/journal.pone.0123432 | |
| dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
| dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
| dc.subject.ddc | 570 - Biología::572 - Bioquímica | |
| dc.subject.ddc | 610 - Medicina y salud::616 - Enfermedades | |
| dc.subject.lemb | BARRERA HEMATOENCEFALICA | spa |
| dc.subject.lemb | Blood-Brain Barrier | eng |
| dc.subject.lemb | CEREBRO-VASOS SANGUINEOS | spa |
| dc.subject.lemb | Brain -blood-vessels | eng |
| dc.subject.lemb | CIRCULACION CEREBRAL | spa |
| dc.subject.lemb | Cerebral circulation | eng |
| dc.subject.lemb | VIRUS DE INSECTOS | spa |
| dc.subject.lemb | Insect viruses | eng |
| dc.subject.proposal | BHE | spa |
| dc.subject.proposal | EVs | spa |
| dc.subject.proposal | Disfunción mitocondrial | spa |
| dc.subject.proposal | Neuroinfección | spa |
| dc.subject.proposal | ZIKV | spa |
| dc.subject.proposal | Neuroinfección | spa |
| dc.subject.proposal | BBB | eng |
| dc.subject.proposal | Mitochondrial dysfunction | eng |
| dc.subject.proposal | Neuroinfection | eng |
| dc.title | Estudio de la regulación de la función de la barrera hematoencefálica por vesículas extracelulares provenientes de células infectadas con virus Zika | spa |
| dc.title.translated | Regulation of blood–brain barrier integrity by extracellular vesicles from ZIKV-infected neural cells | eng |
| dc.type | Trabajo de grado - Doctorado | |
| dc.type.coar | http://purl.org/coar/resource_type/c_db06 | |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
| dc.type.content | Text | |
| dc.type.driver | info:eu-repo/semantics/doctoralThesis | |
| dc.type.redcol | http://purl.org/redcol/resource_type/TD | |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | |
| dcterms.audience.professionaldevelopment | Estudiantes | |
| dcterms.audience.professionaldevelopment | Investigadores | |
| dcterms.audience.professionaldevelopment | Maestros | |
| dcterms.audience.professionaldevelopment | Público general | |
| oaire.accessrights | http://purl.org/coar/access_right/c_16ec | |
| oaire.awardtitle | Modificación de la función de la barrera hematoencefálica in vitro e in vivo inducida por vesículas extracelulares (EVs) derivadas de células infectadas por ZIKV | |
| oaire.fundername | Ministerio de Ciencia, Tecnología e Investigación (Minciencias) | |
| oaire.fundername | Universidad El Bosque |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Estudio de la regulación de la BHE por EVs de cultivos infectados con ZIKV.pdf
- Tamaño:
- 13.62 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Doctorado en Ciencias-Bioquímica

