Diseño in silico de una plataforma biológica para la producción de etilenglicol a partir de glicerol crudo mediante herramientas de ingeniería metabólica y principios de la termodinámica

dc.contributor.advisorSuárez Méndez, Camilo Alberto
dc.contributor.authorCano Zapata, Edgar Alejandro
dc.contributor.orcidSuárez Méndez, Camilo Alberto [0000-0002-5345-9662]spa
dc.contributor.researchgroupBioprocesos y Flujos Reactivosspa
dc.date.accessioned2023-07-21T14:45:23Z
dc.date.available2023-07-21T14:45:23Z
dc.date.issued2022
dc.descriptionilustraciones, diagramasspa
dc.description.abstractEl objetivo del presente estudio es diseñar una plataforma biológica in silico para la producción de etilenglicol a partir de glicerol crudo a través de un análisis termodinámico, el cual permitirá establecer la máxima producción teórica que sería posible obtener, y herramientas de la ingeniería metabólica, las cuales permiten evaluar e implementar las diferentes rutas metabólicas y genes heterólogos relacionados para llevar a cabo este proceso. Inicialmente se construyeron modelos de caja negra que representaran la producción biológica de etilenglicol a partir de las principales fuentes de carbono que se encuentran en el glicerol crudo, glicerol y metanol. Estos modelos se construyeron primero para cada sustrato por separado, considerando diferentes aceptores de electrones incluido el etilenglicol. Debido a que se tiene un interés en realizar este proceso utilizando ambos sustratos al mismo tiempo, se resalta la importancia de implementar una metodología que permita construir modelos de caja negra para múltiples sustratos. Más adelante, se construyeron diferentes modelos metabólicos para tres diferentes microorganismos (E. coli, S. cerevisiae, P. pastoris) con el fin de representar la producción de etilenglicol a través de diferentes rutas de biosíntesis (SDP y P1PDP), y las diferentes rutas de asimilación de glicerol y metanol. Estos modelos se utilizaron para estudiar el rendimiento por mol de carbono utilizado y la cantidad de intermediarios energéticos (ATP, NADH, NADPH) generados por mol de etilenglicol producido a partir de diferentes proporciones de glicerol y metanol. Finalmente, se selecciona uno de estos modelos para estudiar el efecto de la velocidad de crecimiento en la síntesis de etilenglicol, y cómo las condiciones intracelulares afectan la viabilidad termodinámica de las rutas de biosíntesis consideradas. En el presente estudio se observó cómo el etilenglicol no resulta adecuado cómo aceptor de electrones en el catabolismo debido la baja cantidad de energía libre obtenida a partir de cada sustrato. Por lo tanto, se consideró el uso de otros aceptores de electrones y se plantean otras reacciones catabólicas alternas que permitan la producción de etilenglicol a partir de un consumo parcial de oxígeno para la obtención de energía. Posteriormente, se presenta una propuesta preliminar para la construcción de un modelo de caja negra para un proceso con múltiples sustratos partiendo de una metodología ya propuesta para un único sustrato. En esta se resalta la presencia de nuevos parámetros que consideran el efecto de la presencia de múltiples sustratos en los diferentes procesos celulares. Estos, sin embargo, quedan pendientes por determinar dado a que no se logró establecer una correlación matemática que permitiera calcularlos. Por otra parte, se observó a partir del análisis de los modelos metabólicos cómo el modelo para E. coli proporciona el mejor escenario para la obtención de etilenglicol dado el mayor rendimiento obtenido y a la cantidad de intermediarios energéticos generados durante el proceso. Para este modelo, se encontró cómo la producción de etilenglicol se da principalmente a bajas velocidades de crecimiento de la biomasa, demostrando que ambos procesos compiten directamente por el flujo de carbono que entra al metabolismo. Finalmente, se encontró que algunas reacciones dentro de las rutas de síntesis de etilenglicol son sensibles a las variaciones de concentración intracelulares, lo que provocaría la generación de cuellos de botella en el proceso disminuyendo el rendimiento en la producción de etilenglicol. Mediante estos análisis se pudo validar que la producción biológica de etilenglicol es posible a partir de las principales fuentes de carbono del glicerol crudo. Para llevar a cabo este proceso, se deben cumplir determinadas condiciones a nivel del metabolismo para dirigir el flujo de carbono hacia el producto de interés y hacer el factible el proceso. Sin embargo, es necesario seguir realizando estudios posteriores para determinar a profundidad las modificaciones a nivel genético que permitan acoplar la producción de biomasa con la síntesis de etilenglicol, implementar otras rutas de síntesis alternas, y finalizar la construcción del modelo de caja negra para múltiples sustratos para evaluar con más detalle que tiene la presencia de cada uno de estos en los diferentes procesos celulares de interés. (Texto tomado de la fuente)spa
dc.description.abstractThis study aims at designing an in silico biological platform to produce ethylene glycol from crude glycerol through a thermodynamic analysis to determine the maximum theoretical yield, and the use of metabolic engineering approaches to assess and implementing different metabolic pathways and the associated heterologous genes to carry out this process. Initially, black-box models were constructed to represent the biological production of ethylene glycol from primary carbon sources present in crude glycerol, glycerol, and methanol. These models were first built separately for each substrate while considering different electron acceptors including ethylene glycol. The significance of establishing a methodology that permits the construction of black box models for multiple substrates is highlighted because there is an interest in carrying out this procedure using both substrates at the same time. To depict the formation of ethylene glycol through several biosynthetic routes (SDP and P1PDP), as well as the various routes of glycerol and methanol assimilation, several metabolic models were created for three distinct microorganisms (E. coli, S. cerevisiae, and P. pastoris). Here, a study was performed by using these models to estimate the yield per mole of carbon consumed and the quantity of energy intermediates (ATP, NADH, and NADPH) generated per mole of produced ethylene glycol under different glycerol to methanol ratios. Finally, one of these models is chosen to investigate the impact of growth rate on the production of ethylene glycol. Likewise, the impact of intracellular conditions on the thermodynamic feasibility was assessed for the biosynthetic pathways under consideration. In the present study, it was observed how ethylene glycol is not suitable as an electron acceptor for catabolism due to the low amount of free energy obtained. Therefore, the use of alternative electron acceptors was considered, and alternative catabolic reactions allowing the production of ethylene glycol from a partial consumption of oxygen for energy production are proposed. Following that, a preliminary proposal is suggested for the construction of a black-box model for a process using multiple substrates based on a sound methodology already proposed for a single substrate. Emphasis is made on the use of new parameters considering the effect of each substrate on the different cellular processes. However, these parameters have yet to be determined because a mathematical correlation to calculate them could not yet be developed here. The analysis of the metabolic models, on the other hand, revealed that the model for E. coli provides the best scenario for obtaining ethylene glycol due to a higher yield obtained and the amount of energy intermediates generated during the process. It was found that ethylene glycol production occurred primarily at low biomass growth rates in this model, demonstrating that both processes compete directly for the carbon flow into the metabolism. Finally, it was found that some reactions within the pathways for ethylene glycol synthesis are sensitive to intracellular concentration variations, resulting in the development of bottlenecks in the process as well as a reduction in the ethylene glycol production yield. These analyses showed that biological production of ethylene glycol is possible from the main carbon sources derived from crude glycerol. Certain conditions must be met at the metabolic level to redirect the carbon flow to the product of interest, and to make the process feasible. However, more research is still needed to determine in depth the required genetic modifications to couple biomass production with ethylene glycol synthesis, to implement other alternative synthesis routes, and to complete the construction of the blackbox model for multiple substrates in order to evaluate in greater detail the effects of each of these substrates on the various cellular processes of interest.eng
dc.description.curricularareaÁrea curricular de Ingeniería Química e Ingeniería de Petróleosspa
dc.description.degreelevelMaestríaspa
dc.description.researchareaDiseño Racional e Intensificación de Bioprocesosspa
dc.format.extentxxiv, 104 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84239
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Ingeniería Químicaspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesJ. B. Mariano and E. R. la Rovere, “Environmental impacts of the oil industry,” Encyclopedia of Life Support Systems (EOLSS), 2010, [Online]. Available: https://www.eolss.net/Eolss-SampleAllChapter.aspxspa
dc.relation.referencesAcciona, “What is sustainability?” https://www.activesustainability.com/sustainabledevelopment/what-is sustainability/ (accessed Jul. 28, 2019).spa
dc.relation.referencesUniversity of Alberta, “What is sustainability?,” p. 3spa
dc.relation.referencesJ. Korhonen, A. Honkasalo, and J. Seppälä, “Circular Economy: The Concept and its Limitations,” Ecological Economics, vol. 143, pp. 37–46, 2018, doi: 10.1016/j.ecolecon.2017.06.041.spa
dc.relation.referencesAcciona, “¿En qué consiste la economía circular? | Sostenibilidad para todos,” 16 January, 2017. https://www.sostenibilidad.com/desarrollo-sostenible/en-queconsiste-la-economia-circular/ (accessed Jul. 28, 2019).spa
dc.relation.referencesFundación para la Economía Circular, “Economía Circular.” https://economiacircular.org/wp/?page_id=62 (accessed Jul. 28, 2019).spa
dc.relation.referencesI. Issa, S. Delbrück, and U. Hamm, “Bioeconomy from experts’ perspectives – Results of a global expert survey,” PLoS One, vol. 14, no. 5, pp. 1–22, 2019, doi: 10.1371/journal.pone.0215917.spa
dc.relation.referencesBioökonomie BW, “What is a bioeconomy?,” 2012. https://www.biooekonomiebw.de/en/bw/definition/ (accessed Jul. 29, 2019).spa
dc.relation.referencesBIOSTEP, “What is bioeconomy ?,” 2013. http://www.bio-step.eu/background/whatis-bioeconomy/ (accessed Jul. 28, 2019).spa
dc.relation.referencesF. Cherubini, “The biorefinery concept: Using biomass instead of oil for producing energy and chemicals,” Energy Convers Manag, vol. 51, no. 7, pp. 1412–1421, 2010, doi: 10.1016/j.enconman.2010.01.015.spa
dc.relation.referencesG. A. Płaza and D. Wandzich, “Biorefineries – New Green Strategy For Development Of Smart And Innovative Industry,” Management Systems in Production Engineering, vol. 23, no. 3, pp. 150–155, Sep. 2016, doi: 10.2478/mspe-02-03-2016.spa
dc.relation.referencesG. J. Suppes, “Glycerol Technology Options for Biodiesel Industry,” in The Biodiesel Handbook: Second Edition, Second Edi., AOCS Press, 2010, pp. 439–455. doi:10.1016/B978-1-893997-62-2.50016-4.spa
dc.relation.referencesS. K. Yeong, Z. Idris, and H. A. Hassan, Palm Oleochemicals in Non-food Applications. AOCS Press, 2012. doi: 10.1016/B978-0-9818936-9-3.50023-Xspa
dc.relation.referencesD. Puerta, “Diseño in silico de una red metabólica, a partir de cultivos microbianos mixtos, para un microorganismo chasís capaz de producir ácido propiónico a partir de glicerol crudo: aproximación desde la termodinámica y la ingeniería metabólica,” 2019.spa
dc.relation.referencesS. Nomanbhay, R. Hussein, and M. Y. Ong, “Sustainability of biodiesel production in Malaysia by production of bio-oil from crude glycerol using microwave pyrolysis: A review,” Green Chem Lett Rev, vol. 11, no. 2, pp. 135–157, 2018, doi: 10.1080/17518253.2018.1444795spa
dc.relation.referencesA. Dias da Silva Ruy, A. Luíza Freitas Ferreira, A. Ésio Bresciani, R. Maria de Brito Alves, and L. Antônio Magalhães Pontes, “Market Prospecting and Assessment of the Economic Potential of Glycerol from Biodiesel,” in Biomass [Working Title], no. tourism, IntechOpen, 2020, p. 13. doi: 10.5772/intechopen.93965.spa
dc.relation.referencesOCDE/FAO, OCDE-FAO Perspectivas Agrícolas 2017-2026. OECD, 2017. doi: 10.1787/agr_outlook-2017-es.spa
dc.relation.referencesFedebiocombustibles, “Información Estadística Sector Biocombustibles.” http://www.fedebiocombustibles.com/v3/estadistica-produccion-tituloBiodiesel.html (accessed Aug. 11, 2019).spa
dc.relation.referencesC. Len and R. Luque, “Continuous flow transformations of glycerol to valuable products: an overview,” Sustainable Chemical Processes, vol. 2, no. 1, pp. 1–10, 2014, doi: 10.1186/2043-7129-2-1.spa
dc.relation.referencesCORPODIB, “Programa estratégico para la biotransformación sostenible de glicerina cruda en 1,3-propanodiol y prospectiva para desarrollar una biorefinería en ECODIESEL COLOMBIA S.A,” vol. 3529. 2016spa
dc.relation.referencesH. Yue, Y. Zhao, X. Ma, and J. Gong, “Ethylene glycol: Properties, synthesis, and applications,” Chem Soc Rev, vol. 41, no. 11, pp. 4218–4244, 2012, doi: 10.1039/c2cs15359aspa
dc.relation.referencesB. Pereira, H. Zhang, M. de Mey, C. G. Lim, Z. J. Li, and G. Stephanopoulos, “Engineering a novel biosynthetic pathway in Escherichia coli for production of renewable ethylene glycol,” Biotechnol Bioeng, vol. 113, no. 2, pp. 376–383, 2016, doi: 10.1002/bit.25717.spa
dc.relation.referencesT. U. Chae, S. Y. Choi, J. Y. Ryu, and S. Y. Lee, “Production of ethylene glycol from xylose by metabolically engineered Escherichia coli,” AIChE Journal, vol. 64, no. 12, pp. 4193–4200, 2018, doi: 10.1002/aic.16339.spa
dc.relation.referencesL. Salusjärvi, S. Havukainen, O. Koivistoinen, and M. Toivari, “Biotechnological production of glycolic acid and ethylene glycol: current state and perspectives,” Appl Microbiol Biotechnol, vol. 103, no. 6, pp. 2525–2535, 2019, doi: 10.1007/s00253- 019-09640-2.spa
dc.relation.referencesH. Liu, K. R. M. Ramos, K. N. G. Valdehuesa, G. M. Nisola, W. K. Lee, and W. J. Chung, “Biosynthesis of ethylene glycol in Escherichia coli,” Appl Microbiol Biotechnol, vol. 97, no. 8, pp. 3409–3417, 2013, doi: 10.1007/s00253-012-4618-7.spa
dc.relation.referencesL. Salusjärvi et al., “Production of ethylene glycol or glycolic acid from D-xylose in Saccharomyces cerevisiae,” Appl Microbiol Biotechnol, vol. 101, no. 22, pp. 8151– 8163, 2017, doi: 10.1007/s00253-017-8547-3.spa
dc.relation.referencesS. Kandasamy, S. P. Samudrala, and S. Bhattacharya, “The route towards sustainable production of ethylene glycol from a renewable resource, biodiesel waste: A review,” Catal Sci Technol, vol. 9, no. 3, pp. 567–577, 2019, doi: 10.1039/c8cy02035c.spa
dc.relation.referencesB. Pereira et al., “Efficient utilization of pentoses for bioproduction of the renewable two-carbon compounds ethylene glycol and glycolate,” Metab Eng, vol. 34, pp. 80– 87, 2016, doi: 10.1016/j.ymben.2015.12.004.spa
dc.relation.referencesChemical Engineering, “Ethylene Glycol Production - Chemical Engineering,” Ethylene Glycol Production, 2015. https://www.chemengonline.com/ethylene-glycolproductio /?printmode=1%0Ahttp://www.chemengonline.com/ethylene-glycolproduction/?printmode=1 (accessed Aug. 14, 2019).spa
dc.relation.referencesJ. Sun and H. Liu, “Selective hydrogenolysis of biomass-derived xylitol to ethylene glycol and propylene glycol on supported Ru catalysts,” Green Chemistry, vol. 13, no. 1, pp. 135–142, 2011, doi: 10.1039/c0gc00571a.spa
dc.relation.referencesJ. Pang, M. Zheng, A. Wang, and T. Zhang, “Catalytic Hydrogenation of Corn Stalk to Ethylene Glycol and 1,2-Propylene Glycol,” Ind Eng Chem Res, vol. 50, pp. 6601– 6608, 2011.spa
dc.relation.referencesN. Ji et al., “Catalytic conversion of cellulose into ethylene glycol over supported carbide catalysts,” Catal Today, vol. 147, no. 2, pp. 77–85, 2009, doi: 10.1016/j.cattod.2009.03.012.spa
dc.relation.referencesV. Siracusa and I. Blanco, “Bio-polyethylene (Bio-PE), Bio-polypropylene (Bio-PP) and Bio-poly(ethylene terephthalate) (Bio-PET): Recent developments in bio-based polymers analogous to petroleum-derived ones for packaging and engineering applications,” Polymers (Basel), vol. 12, no. 8, 2020, doi: 10.3390/APP10155029.spa
dc.relation.referencesC. Wittmann and J. C. Liao, Industrial Biotechnology. Weinheim, Germany: Wiley;VCH Verlag GmbH & Co. KGaA, 2017. doi: 10.1002/9783527807833.spa
dc.relation.referencesD. Kuhn, L. M. Blank, A. Schmid, and B. Bühler, “Systems biotechnology - Rational whole-cell biocatalyst and bioprocess design,” Eng Life Sci, vol. 10, no. 5, pp. 384– 397, 2010, doi: 10.1002/elsc.201000009.spa
dc.relation.referencesB. Palsson, “The challenges of in silico biology,” Nat Biotechnol, vol. 18, no. 11, pp. 1147–1150, 2000, doi: 10.1038/81125.spa
dc.relation.referencesU. von Stockar, Biothermodynamics. CRC Press, 2013.spa
dc.relation.referencesR. Mahadevan, A. P. Burgard, I. Famili, S. van Dien, and C. H. Schilling, “Applications of metabolic modeling to drive bioprocess development for the production of value-added chemicals,” Biotechnology and Bioprocess Engineering, vol. 10, no. 5, pp. 408–417, Oct. 2005, doi: 10.1007/BF02989823spa
dc.relation.referencesP. Tufvesson, J. Lima-Ramos, N. al Haque, K. v. Gernaey, and J. M. Woodley, “Advances in the process development of biocatalytic processes,” Org Process Res Dev, vol. 17, no. 10, pp. 1233–1238, 2013, doi: 10.1021/op4001675.spa
dc.relation.referencesJ. J. Heijnen and R. Kleerebezem, “Bioenergetics of Microbial Growth,” Encyclopedia of Industrial Biotechnology, pp. 1–24, 2010, doi: 10.1002/9780470054581.eib084.spa
dc.relation.referencesL. Tijhuis, M. van Loosdrecht, and J. Heijnen, “A thermodynamically based correlation for maintenance Gibbs energy requirements in …,” Biotechnol Bioeng, vol. 42, no. 4, pp. 509–519, 1993, [Online]. Available: http://www3.interscience.wiley.com/journal/107623668/abstract%5Cnpapers2://pub lication/uuid/FA5791A7-1589-4B3D-97D2-6E9DCC92FD90spa
dc.relation.referencesM. E. Poccia, A. J. Beccaria, and R. G. Dondo, “Modeling the microbial growth of two escherichia coli strains in a multi-substrate environment,” Brazilian Journal of Chemical Engineering, vol. 31, no. 2, pp. 347–354, 2014, doi: 10.1590/0104- 6632.20140312s00002587.spa
dc.relation.referencesA. Narang, “The steady states of microbial growth on mixtures of substitutable substrates in a chemostat,” J Theor Biol, vol. 190, no. 3, pp. 241–261, 1998, doi: 10.1006/jtbi.1997.0552.spa
dc.relation.referencesK. Kovarova, “Growth Kinetics of Escherichia coli: Effect of Temperature, Mixed Substrate Utilization and Adaptation to Carbon-Limited Growth.,” Swiss Federal Institute of technology, Zürich., 1996.spa
dc.relation.referencesT. Egli, C. Bosshard, and G. Hamer, “Simultaneous utilization of methanol–glucose mixtures by Hansenula polymorpha in chemostat: Influence of dilution rate and mixture composition on utilization pattern,” Biotechnol Bioeng, vol. 28, no. 11, pp. 1735–1741, 1986, doi: 10.1002/bit.260281118.spa
dc.relation.referencesT. Egli, U. Lendenmann, and M. Snozzi, “Kinetics of microbial growth with mixtures of carbon sources,” Antonie Van Leeuwenhoek, vol. 63, no. 3–4, pp. 289–298, 1993, doi: 10.1007/BF00871224spa
dc.relation.referencesW. Harder and L. Dijkhuizen, “Strategies of mixed substrate utilization in microorganisms.,” Philos Trans R Soc Lond B Biol Sci, vol. 297, no. 1088, pp. 459– 480, 1982, doi: 10.1098/rstb.1982.0055.spa
dc.relation.referencesA. Narang, A. Konopka, and D. Ramkrishna, “The dynamics of microbial growth on mixtures of substrates in batch reactors,” J Theor Biol, vol. 184, no. 3, pp. 301–317, 1997, doi: 10.1006/jtbi.1996.0275.spa
dc.relation.referencesT. Egli, C. Bosshard, and G. Hamer, “Simultaneous utilization of methanol–glucose mixtures by Hansenula polymorpha in chemostat: Influence of dilution rate and mixture composition on utilization pattern,” Biotechnol Bioeng, vol. 28, no. 11, pp. 1735–1741, 1986, doi: 10.1002/bit.260281118.spa
dc.relation.referencesW. Babel and R. H. Muller, “Mixed substrate utilization in micro-organisms: Biochemical aspects and energetics,” J Gen Microbiol, vol. 131, no. 1, pp. 39–45, 1985, doi: 10.1099/00221287-131-1-39.spa
dc.relation.referencesP. J. F. Gommers, B. J. van Schie, J. P. van Dijken, and J. G. Kuenen, “Biochemical limits to microbial growth yields: An analysis of mixed substrate utilization,” Biotechnol Bioeng, vol. 33, no. 6, pp. 799–799, 1989, doi: 10.1002/bit.260330620.spa
dc.relation.referencesL. Dijkhuizen and W. Harder, “Regulation of Autotrophic and Heterotrophic Metabolism in Pseudumunas uxalaticus 0x1. Growth on Fructose and on Mixtures of Fructose and Formate in Batch and Continuous Cultures,” Arch Microbiol, vol. 123, no. 1, p. [1] L. Dijkhuizen and W. Harder, “Regulation of au, 1979.spa
dc.relation.referencesL. Dijkhuizen and W. Harder, “Regulation of autotrophic and heterotrophic metabolism in Pseudomonas oxalaticus OX1: Growth on mixtures of oxalate and formate in continuous culture,” Arch Microbiol, vol. 123, no. 1, pp. 55–63, Oct. 1979, doi: 10.1007/BF00403502spa
dc.relation.referencesL. Dijkhuizen and W. Harder, “Regulation of autotrophic and heterotrophic metabolism in Pseudomonas oxalaticus OX1: Growth on mixtures of acetate and formate in continuous culture,” Arch Microbiol, vol. 123, no. 1, pp. 47–53, 1979, doi: 10.1007/BF00403501.spa
dc.relation.referencesX. Wang, K. Xia, X. Yang, and C. Tang, “Growth strategy of microbes on mixed carbon sources,” Nat Commun, vol. 10, no. 1, pp. 1–7, 2019, doi: 10.1038/s41467- 019-09261-3.spa
dc.relation.referencesA. Litsios, Á. D. Ortega, E. C. Wit, and M. Heinemann, “Metabolic-flux dependent regulation of microbial physiology,” Curr Opin Microbiol, vol. 42, pp. 71–78, 2018, doi: 10.1016/j.mib.2017.10.029.spa
dc.relation.referencesK. Zhuang, G. N. Vemuri, and R. Mahadevan, “Economics of membrane occupancy and respiro‐fermentation,” Mol Syst Biol, vol. 7, no. 1, p. 500, Jan. 2011, doi: 10.1038/msb.2011.34.spa
dc.relation.referencesM. Szenk, K. A. Dill, and A. M. R. de Graff, “Why Do Fast-Growing Bacteria Enter Overflow Metabolism? Testing the Membrane Real Estate Hypothesis,” Cell Syst, vol. 5, no. 2, pp. 95–104, Aug. 2017, doi: 10.1016/j.cels.2017.06.005.spa
dc.relation.referencesX. Yang et al., “Physical bioenergetics: Energy fluxes, budgets, and constraints in cells,” Proceedings of the National Academy of Sciences, vol. 118, no. 26, Jun. 2021, doi: 10.1073/pnas.2026786118.spa
dc.relation.referencesB. Niebel, S. Leupold, and M. Heinemann, “An upper limit on Gibbs energy dissipation governs cellular metabolism,” Nat Metab, vol. 1, no. 1, pp. 125–132, 2019, doi: 10.1038/s42255-018-0006-7.spa
dc.relation.referencesC. Wittmann and S. Y. Lee, Systems Metabolic Engineering. Dordrecht: Springer Netherlands, 2012. doi: 10.1007/978-94-007-4534-6spa
dc.relation.referencesR. Kulkarni, “Metabolic engineering: Biological art of producing useful chemicals,”Resonance, vol. 21, no. 3, pp. 233–237, 2016, doi: 10.1007/s12045-016-0318-4.spa
dc.relation.referencesY. T. Yang, G. N. Bennett, and K. Y. San, “Genetic and metabolic engineering,” Electronic Journal of Biotechnology, vol. 1, no. 3, pp. 49–60, 1998.spa
dc.relation.referencesW. Niu, J. Guo, and S. van Dien, Metabolic Engineering for Bioprocess Commercialization. Cham: Springer International Publishing, 2016. doi: 10.1007/978-3-319-41966-4.spa
dc.relation.referencesM. Kanehisa, “KEGG: Kyoto Encyclopedia of Genes and Genomes,” Nucleic Acids Research, 2000. https://www.kegg.jp/spa
dc.relation.referencesTechnische Universitat Braunschweig, “Enzyme Database - BRENDA,” Bglucosidase information, 2018. https://www.brenda-enzymes.org/spa
dc.relation.referencesR. Caspi et al., “The MetaCyc database of metabolic pathways and enzymes - a 2019 update,” Nucleic Acids Res, vol. 48, no. D1, pp. D445–D453, Jan. 2020, doi: 10.1093/nar/gkz862.spa
dc.relation.referencesE. Klipp, R. Herwig, A. Kowald, C. Wierling, and H. Lehraach, Systems Biology in Practice. 2005.spa
dc.relation.referencesE. Noor, A. Bar-Even, A. Flamholz, E. Reznik, W. Liebermeister, and R. Milo, “Pathway Thermodynamics Highlights Kinetic Obstacles in Central Metabolism,” PLoS Comput Biol, vol. 10, no. 2, 2014, doi: 10.1371/journal.pcbi.1003483.spa
dc.relation.referencesH. Liu, K. R. M. Ramos, K. N. G. Valdehuesa, G. M. Nisola, W. K. Lee, and W. J. Chung, “Biosynthesis of ethylene glycol in Escherichia coli,” Appl Microbiol Biotechnol, vol. 97, no. 8, pp. 3409–3417, 2013, doi: 10.1007/s00253-012-4618-7.spa
dc.relation.referencesZ. Chen, J. Huang, Y. Wu, and D. Liu, “Metabolic engineering of Corynebacterium glutamicum for the de novo production of ethylene glycol from glucose,” Metab Eng, vol. 33, pp. 12–18, 2016, doi: 10.1016/j.ymben.2015.10.013.spa
dc.relation.referencesB. Uranukul, B. M. Woolston, G. R. Fink, and G. Stephanopoulos, “Biosynthesis of monoethylene glycol in Saccharomyces cerevisiae utilizing native glycolytic enzymes,” Metab Eng, vol. 51, pp. 20–31, 2019, doi: 10.1016/j.ymben.2018.09.012.spa
dc.relation.referencesJ. M. Monk et al., “iML1515, a knowledgebase that computes Escherichia coli traits,” Nat Biotechnol, vol. 35, no. 10, pp. 8–12, 2017.spa
dc.relation.referencesN. C. Duarte, M. J. Herrgård, and B. Ø. Palsson, “Reconstruction and Validation of Saccharomyces cerevisiae iND750, a Fully Compartmentalized Genome-Scale Metabolic Model,” Genome Res, vol. 14, no. 7, pp. 1298–1309, Jul. 2004, doi: 10.1101/gr.2250904.spa
dc.relation.referencesM. Tomàs-Gamisans, P. Ferrer, and J. Albiol, “Fine-tuning the P. pastoris iMT1026 genome-scale metabolic model for improved prediction of growth on methanol or glycerol as sole carbon sources,” Microb Biotechnol, vol. 11, no. 1, pp. 224–237, 2018, doi: 10.1111/1751-7915.12871.spa
dc.relation.referencesP. D. Karp et al., “The BioCyc collection of microbial genomes and metabolic pathways,” Brief Bioinform, vol. 20, no. 4, pp. 1085–1093, Jul. 2019, doi: 10.1093/bib/bbx085spa
dc.relation.referencesI. M. Keseler et al., “The EcoCyc Database in 2021,” Front Microbiol, vol. 12, Jul. 2021, doi: 10.3389/fmicb.2021.711077.spa
dc.relation.referencesZ. A. King et al., “BiGG Models: A platform for integrating, standardizing and sharing genome-scale models,” Nucleic Acids Res, vol. 44, no. D1, pp. D515–D522, Jan. 2016, doi: 10.1093/nar/gkv1049.spa
dc.relation.referencesUniProt consortium, “UniProt.” https://www.uniprot.org/spa
dc.relation.referencesM. E. Beber et al., “eQuilibrator 3.0: a database solution for thermodynamic constant estimation,” Nucleic Acids Res, vol. 50, no. D1, pp. D603–D609, Jan. 2022, doi: 10.1093/nar/gkab1106.spa
dc.relation.referencesL. Heirendt et al., “Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v.3.0,” Nat Protoc, vol. 14, no. 3, pp. 639–702, Mar. 2019, doi: 10.1038/s41596-018-0098-2.spa
dc.relation.referencesE. Noor, H. S. Haraldsdóttir, R. Milo, and R. M. T. Fleming, “Consistent Estimation of Gibbs Energy Using Component Contributions,” PLoS Comput Biol, vol. 9, no. 7, p. e1003098, Jul. 2013, doi: 10.1371/journal.pcbi.1003098spa
dc.relation.referencesF. Meyer, P. Keller, J. Hartl, O. G. Gröninger, P. Kiefer, and J. A. Vorholt, “Methanolessential growth of Escherichia coli,” Nat Commun, vol. 9, no. 1, p. 1508, Dec. 2018, doi: 10.1038/s41467-018-03937-yspa
dc.relation.referencesC. T. Chen et al., “Synthetic methanol auxotrophy of Escherichia coli for methanoldependent growth and production,” Metab Eng, vol. 49, no. June, pp. 257–266, 2018, doi: 10.1016/j.ymben.2018.08.010spa
dc.relation.referencesB. M. Woolston, J. R. King, M. Reiter, B. van Hove, and G. Stephanopoulos, “Improving formaldehyde consumption drives methanol assimilation in engineered E. coli,” Nat Commun, vol. 9, no. 1, 2018, doi: 10.1038/s41467-018-04795-4.spa
dc.relation.referencesZ. Dai et al., “Metabolic construction strategies for direct methanol utilization in Saccharomyces cerevisiae,” Bioresour Technol, 2017, doi: 10.1016/j.biortech.2017.05.100.spa
dc.relation.referencesH. O. Kammen and R. Koo, “Phosphopentomutases,” Journal of Biological Chemistry, vol. 244, no. 18, pp. 4888–4893, 1969, doi: 10.1016/s0021- 9258(18)94286-9.spa
dc.relation.referencesK. Hammer-Jespersen and A. Munch-Petersem, “Phosphodeoxyribomutase from Escharichia coli.,” Eur J Biochem, vol. 17, pp. 9–25, 2019.spa
dc.relation.referencesR. K. Murray, D. A. Bender, K. M. Botham, P. J. Kennelly, V. W. Rodwell, and P. A. Weil, Harper. Bioquímica ilustrada. Mc Graw Hill Education, 2010.spa
dc.relation.referencesA. Kümmel, S. Panke, and M. Heinemann, “Putative regulatory sites unraveled by network-embedded thermodynamic analysis of metabolome data,” Mol Syst Biol, vol. 2, pp. 1–10, 2006, doi: 10.1038/msb4100074.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/spa
dc.subject.ddc540 - Química y ciencias afines::547 - Química orgánicaspa
dc.subject.lembSynthetic productseng
dc.subject.lembProductos sintéticosspa
dc.subject.proposalAnálisis de balance de flujosspa
dc.subject.proposalEtilenglicolspa
dc.subject.proposalGlicerolspa
dc.subject.proposalMetanolspa
dc.subject.proposalModelo metabólicospa
dc.subject.proposalTermodinámicaspa
dc.subject.proposalFlux balance analysiseng
dc.subject.proposalEthylene glycoleng
dc.subject.proposalGlyceroleng
dc.subject.proposalMethanoleng
dc.subject.proposalMetabolic modeleng
dc.subject.proposalThermodynamicseng
dc.titleDiseño in silico de una plataforma biológica para la producción de etilenglicol a partir de glicerol crudo mediante herramientas de ingeniería metabólica y principios de la termodinámicaspa
dc.title.translatedIn silico design of a biological platform to produce Ethylene Glycol from crude Glycerol using tools of the metabolic engineering and thermodynamicseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1152703489.2022.pdf
Tamaño:
1.81 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería Química

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: