Interacción de la estimulación somatosensorial periférica y cortical sobre el procesamiento de la información somatosensorial en la corteza motora primaria de las vibrisas en ratas

dc.contributor.advisorMúnera Galarza, Francisco Alejandro
dc.contributor.authorNiño Hernández, Angélica Beatriz
dc.contributor.cvlacAngelica Beatriz Niñospa
dc.contributor.researchgroupNeurofisiología comportamentalspa
dc.date.accessioned2024-07-31T16:51:40Z
dc.date.available2024-07-31T16:51:40Z
dc.date.issued2024
dc.descriptionilustraciones, diagramasspa
dc.description.abstractEl sistema de las vibrisas en roedores constituye un modelo de investigación de gran importancia para entender el proceso de integración sensoriomotora. Esto se debe a su bien definida representación somatotópica en la corteza somatosensorial de los barriles (S1b) y a la extensa investigación sobre las vías de transducción de estímulos táctiles a señales eléctricas. En este trabajo, se estudió la interacción de la estimulación somatosensorial periférica y cortical sobre el procesamiento de esta información en la corteza motora primaria de las vibrisas (vM1). Para ello, se emplearon protocolos de pares de pulsos, pre-estimulación y se evaluó el comportamiento oscilatorio en el dominio de tiempo y frecuencia. En este contexto, se amplió la caracterización de la respuesta en vM1 y S1b ante estímulos únicos en el parche de vibrisas (WP). Además, se caracterizó por primera vez en ratas la respuesta provocada en vM1 ante estimulación en S1b. Los hallazgos indican que la información somatosensorial de las vibrisas llega simultáneamente a S1b y vM1. Mediante protocolos de pares de pulsos en WP, se evidenció activación sostenida de circuitos inhibidores en vM1 y S1b por parte de las entradas tálamo-corticales, asociada con oscilaciones gamma. Al administrar pares de pulsos en S1b, se evidenció la naturaleza monosináptica de las proyecciones desde S1b a vM1, que tienen un efecto temprano excitador y uno tardío inhibidor. Finalmente, para evaluar las interacciones funcionales de vM1 con S1b, se utilizó el protocolo de pre-estimulación. La estimulación en S1b antecediendo la estimulación en WP, desfacilitó las oscilaciones lentas del potencial provocado en vM1 en dos ventanas de tiempo asociado con una actividad en la banda theta y gamma alta. Por otro lado, la administración de estímulos en WP antecediendo la estimulación en S1b, facilitó las oscilaciones lentas del potencial provocado en vM1 a intervalos entre estímulos (IEEs) cortos, relacionado con la coincidencia de entradas excitadoras cortico-corticales desde S1b con las entradas intracorticales de vM1 procedentes de la activación tálamo-cortical. Sin embargo, en IEEs mayores, esta pre-estimulación incrementa la actividad inhibitoria en la banda theta y gamma. Este estudio complementa el conocimiento previo sobre la respuesta provocada en vM1 ante estimulación periférica y revela, por primera vez en ratas, la caracterización de la respuesta provocada en vM1 ante estimulación en S1b mediante un enfoque electrofisiológico y de análisis espectral en el dominio del tiempo y frecuencia (Texto tomado de la fuente).spa
dc.description.abstractThe whisker system in rodents constitutes a research model of great importance for understanding the process of sensorimotor integration. Its significance lies in the well-defined somatotopic representation in the barrel cortex (S1b) and to the extensive research on the transduction pathways of tactile stimuli to electrical signals. In this study, the interaction of peripheral and cortical somatosensory stimulation on the processing of this information in the vibrissal primary motor cortex (vM1) was examined. For this aim, paired-pulse, pre-stimulation protocols and oscillatory behavior in the time and frequency domain were used. In this context, the characterization of the response in vM1 and S1b to single stimuli in the whisker pad (WP) was extended. In addition, the response evoked in vM1 to stimulation in S1b was characterized for the first time in rats. The findings indicate that somatosensory information from the whiskers simultaneously reaches both S1b and vM1. Using paired-pulse protocols in WP, sustained activation of inhibitory circuits in vM1 and S1b by thalamocortical inputs, associated with gamma oscillations, was evidenced. When administering paired pulses in S1b, the monosynaptic nature of the projections from S1b to vM1, which have an early excitatory and a late inhibitory effect, was evidenced. Finally, to evaluate the functional interactions of vM1 with S1b, the pre-stimulation protocol was used. S1b stimulation preceding WP stimulation defacilitated slow oscillations of the evoked potential in vM1 in two-time windows associated with theta and high gamma activity. On the other hand, WP stimulus preceding S1b stimulation facilitated slow oscillations of the evoked potential in vM1 at short interstimulus intervals (ISIs), related to the coincidence of cortico-cortical excitatory inputs from S1b and intracortical inputs vM1 from thalamocortical activation. However, at longer ISIs, this pre-stimulation increased inhibitory activity in the theta and gamma bands. This study complements prior knowledge on the evoked response in vM1 to peripheral stimulation and reveals, for the first time in rats, the characterization of the evoked response in vM1 to stimulation in S1b by an electrophysiological approach and spectral analysis in the time and frequency domain.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Ciencias - Biologíaspa
dc.description.methodsSe emplearon nueve ratas macho Wistar adultas, con un peso entre 300 g y 400 g. Estos animales fueron obtenidos del Bioterio Central de la Universidad Nacional de Colombia, sede Bogotá, en la Facultad de Medicina Veterinaria y Zootecnia. En el bioterio, los sujetos experimentales fueron mantenidos en una sala con atenuación de ruido, con control de humedad (40 ± 5%) y temperatura (20 ± 1 °C), con ciclo de luz / oscuridad de 12 horas y con suministro de alimento y agua fresca potable ad libitum. Minutos antes de iniciar cada experimento, el animal fue trasladado al laboratorio de Neurofisiología Comportamental de la Facultad de Medicina de la Universidad Nacional de Colombia. Para ello, se utilizaron cajas de policarbonato (38 x 32 x 18 cm) con una capa de viruta de madera en el fondo y cubierta de una tela negra para evitar estrés del animal durante su traslado.spa
dc.description.researchareaFisiología del control motor facialspa
dc.format.extent96 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86667
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Biologíaspa
dc.relation.referencesAbbott, L., & Regehr, W. (2004). Synaptic computation. Nature, 431, 796–803. https://doi.org/10.1038/nature03010spa
dc.relation.referencesAchury, M., & Múnera, A. (2015). Interacción funcional entre hipocampo y corteza motora primaria de las vibrisas en el procesamiento de información somatosensorial en ratas [Póster]. X Congreso Nacional - XI Seminario Internacional de Neurociencias.spa
dc.relation.referencesAdibi, M. (2019). Whisker-Mediated Touch System in Rodents: From Neuron to Behavior. Frontiers in Systems Neuroscience, 13. https://www.frontiersin.org/articles/10.3389/fnsys.2019.00040spa
dc.relation.referencesAhissar, E., & Knutsen, P. M. (2016). Vibrissal Location Coding. En T. Prescott, E. Ahissar, & E. Izhikevich (Eds.), Scholarpedia of Touch (pp. 725–735). Atlantis Press. https://doi.org/10.2991/978-94-6239-133-8_53spa
dc.relation.referencesAhrens, K. F., & Kleinfeld, D. (2004). Current Flow in Vibrissa Motor Cortex Can Phase-Lock With Exploratory Rhythmic Whisking in Rat. Journal of Neurophysiology, 92(3), 1700–1707. https://doi.org/10.1152/jn.00020.2004spa
dc.relation.referencesAkin, M. (2002). Comparison of Wavelet Transform and FFT Methods in the Analysis of EEG Signals. Journal of medical systems, 26, 241–247. https://doi.org/10.1023/A:1015075101937spa
dc.relation.referencesAlder, G., Signal, N., Olsen, S., & Taylor, D. (2019). A Systematic Review of Paired Associative Stimulation (PAS) to Modulate Lower Limb Corticomotor Excitability: Implications for Stimulation Parameter Selection and Experimental Design. Frontiers in Neuroscience, 13, 895. https://doi.org/10.3389/fnins.2019.00895spa
dc.relation.referencesArabzadeh, E., Heimendahl, M. von, & Diamond, M. (2016). Vibrissal Texture Decoding. En T. Prescott, E. Ahissar, & E. Izhikevich (Eds.), Scholarpedia of Touch (pp. 737–749). Atlantis Press. https://doi.org/10.2991/978-94-6239-133-8_54spa
dc.relation.referencesArkley, K., Grant, R. A., Mitchinson, B., & Prescott, T. J. (2014). Strategy Change in Vibrissal Active Sensing during Rat Locomotion. Current Biology, 24(13), 1507–1512. https://doi.org/10.1016/j.cub.2014.05.036spa
dc.relation.referencesBellingham, M. C., & Walmsley, B. (1999). A Novel Presynaptic Inhibitory Mechanism Underlies Paired Pulse Depression at a Fast Central Synapse. Neuron, 23(1), 159–170. https://doi.org/10.1016/S0896-6273(00)80762-Xspa
dc.relation.referencesBokor, H., Acsády, L., & Deschênes, M. (2008). Vibrissal Responses of Thalamic Cells That Project to the Septal Columns of the Barrel Cortex and to the Second Somatosensory Area. Journal of Neuroscience, 28(20), 5169–5177. https://doi.org/10.1523/JNEUROSCI.0490-08.2008spa
dc.relation.referencesBosman, L. W. J., Houweling, A. R., Owens, C. B., Tanke, N., Shevchouk, O. T., Rahmati, N., Teunissen, W. H. T., Ju, C., Gong, W., Koekkoek, S. K. E., & De Zeeuw, C. I. (2011). Anatomical Pathways Involved in Generating and Sensing Rhythmic Whisker Movements. Frontiers in Integrative Neuroscience, 5. https://doi.org/10.3389/fnint.2011.00053spa
dc.relation.referencesBray, I. E., Clarke, S. E., Casey, K., Nuyujukian, P., & Laboratory, the B. I. (2022). Neuroelectrophysiology-Compatible Electrolytic Lesioning (p. 2022.11.10.516056). bioRxiv. https://doi.org/10.1101/2022.11.10.516056spa
dc.relation.referencesBrecht, M., Grinevich, V., Jin, T.-E., Margrie, T., & Osten, P. (2006). Cellular mechanisms of motor control in the vibrissal system. Pflügers Archiv, 453(3), 269–281. https://doi.org/10.1007/s00424-006-0101-6spa
dc.relation.referencesBrecht, M., Schneider, M., Sakmann, B., & Margrie, T. W. (2004). Whisker movements evoked by stimulation of single pyramidal cells in rat motor cortex. Nature, 427(6976), 704–710. https://doi.org/10.1038/nature02266spa
dc.relation.referencesBuzsáki, G., & Draguhn, A. (2004). Neuronal Oscillations in Cortical Networks. Science (New York, N.Y.), 304, 1926–1929. https://doi.org/10.1126/science.1099745spa
dc.relation.referencesCarpenter, R. H. S. (1997). Sensorimotor processing: Charting the frontier. Current Biology, 7(6), R348–R351. https://doi.org/10.1016/S0960-9822(06)00171-0spa
dc.relation.referencesCastro-Alamancos, M. A. (2013). The motor cortex: A network tuned to 7-14 Hz. Frontiers in Neural Circuits, 7, 21. https://doi.org/10.3389/fncir.2013.00021spa
dc.relation.referencesCastro-Alamancos, M. A., & Rigas, P. (2002). Synchronized oscillations caused by disinhibition in rodent neocortex are generated by recurrent synaptic activity mediated by AMPA receptors. The Journal of Physiology, 542(2), 567–581. https://doi.org/10.1113/jphysiol.2002.019059spa
dc.relation.referencesCastro-Alamancos, M. A., & Tawara-Hirata, Y. (2007). Area-specific resonance of excitatory networks in neocortex: Control by outward currents. Epilepsia, 48(8), 1572–1584. https://doi.org/10.1111/j.1528-1167.2007.01113.xspa
dc.relation.referencesChakrabarti, S., & Schwarz, C. (2015). The Rodent Vibrissal System as a Model to Study Motor Cortex Function. En P. Krieger & A. Groh (Eds.), Sensorimotor Integration in the Whisker System (pp. 129–148). Springer. https://doi.org/10.1007/978-1-4939-2975-7_6spa
dc.relation.referencesCouncil, N. R. (2011). Guía para el cuidado y uso de animales de laboratorio. Ediciones UC.spa
dc.relation.referencesDavid-Jürgens, M., & Dinse, H. R. (2010). Effects of Aging on Paired-Pulse Behavior of Rat Somatosensory Cortical Neurons. Cerebral Cortex (New York, NY), 20(5), 1208–1216. https://doi.org/10.1093/cercor/bhp185spa
dc.relation.referencesDebanne, D., Guérineau, N. C., Gähwiler, B. H., & Thompson, S. M. (1996). Paired-pulse facilitation and depression at unitary synapses in rat hippocampus: Quantal fluctuation affects subsequent release. The Journal of Physiology, 491(Pt 1), 163–176.spa
dc.relation.referencesDeschênes, M., & Kleinfeld, D. (2022). The Vibrissa Sensorimotor System of Rodents: A View from the Sensory Thalamus. En M. M. Halassa (Ed.), The Thalamus (pp. 214–220). Cambridge University Press. https://doi.org/10.1017/9781108674287.012spa
dc.relation.referencesDeschênes, M., Takatoh, J., Kurnikova, A., Moore, J. D., Demers, M., Elbaz, M., Furuta, T., Wang, F., & Kleinfeld, D. (2016). Inhibition, Not Excitation, Drives Rhythmic Whisking. Neuron, 90(2), 374–387. https://doi.org/10.1016/j.neuron.2016.03.007spa
dc.relation.referencesDeschenes, M., & Urbain, N. (2016). Vibrissal Afferents from Trigeminus to Cortices. En T. Prescott, E. Ahissar, & E. Izhikevich (Eds.), Scholarpedia of Touch (pp. 657–672). Atlantis Press. https://doi.org/10.2991/978-94-6239-133-8_49spa
dc.relation.referencesDeschênes, M., Veinante, P., & Zhang, Z. W. (1998). The organization of corticothalamic projections: Reciprocity versus parity. Brain Research. Brain Research Reviews, 28(3), 286–308. https://doi.org/10.1016/s0165-0173(98)00017-4spa
dc.relation.referencesDiamond, M. E., von Heimendahl, M., Knutsen, P. M., Kleinfeld, D., & Ahissar, E. (2008). “Where” and “what” in the whisker sensorimotor system. Nature Reviews Neuroscience, 9(8), Article 8. https://doi.org/10.1038/nrn2411spa
dc.relation.referencesDobrunz, L. E., & Stevens, C. F. (1997). Heterogeneity of release probability, facilitation, and depletion at central synapses. Neuron, 18(6), 995–1008. https://doi.org/10.1016/s0896-6273(00)80338-4spa
dc.relation.referencesDomanski, A. P. F., Booker, S. A., Wyllie, D. J. A., Isaac, J. T. R., & Kind, P. C. (2019). Cellular and synaptic phenotypes lead to disrupted information processing in Fmr1-KO mouse layer 4 barrel cortex. Nature Communications, 10(1), Article 1. https://doi.org/10.1038/s41467-019-12736-yspa
dc.relation.referencesDörfl, J. (1985). The innervation of the mystacial region of the white mouse. Journal of Anatomy, 142, 173–184.spa
dc.relation.referencesEbara, S., Kumamoto, K., Matsuura, T., Mazurkiewicz, J., & Rice, F. (2002). Similarities and differences in the innervation of mystacial vibrissal follicle-sinus complexes in the rat and cat: A confocal microscopic study. The Journal of comparative neurology, 449, 103–119. https://doi.org/10.1002/cne.10277spa
dc.relation.referencesErzurumlu, R. S., & Gaspar, P. (2020). How the Barrel Cortex Became a Working Model for Developmental Plasticity: A Historical Perspective. The Journal of Neuroscience, 40(34), 6460–6473. https://doi.org/10.1523/JNEUROSCI.0582-20.2020spa
dc.relation.referencesFerezou, I., Haiss, F., Gentet, L. J., Aronoff, R., Weber, B., & Petersen, C. C. H. (2007). Spatiotemporal Dynamics of Cortical Sensorimotor Integration in Behaving Mice. Neuron, 56(5), 907–923. https://doi.org/10.1016/j.neuron.2007.10.007spa
dc.relation.referencesForero, A., & Múnera, A. (2016). Interaccion entre el estriado y la corteza motora primaria de las vibrisas durante el procesamiento de informacion somatosensorial [Póster]. X Congreso Nacional - XI Seminario Internacional de Neurociencias.spa
dc.relation.referencesFriedman, W. A., Jones, L. M., Cramer, N. P., Kwegyir-Afful, E. E., Zeigler, H. P., & Keller, A. (2006). Anticipatory Activity of Motor Cortex in Relation to Rhythmic Whisking. Journal of Neurophysiology, 95(2), 1274–1277. https://doi.org/10.1152/jn.00945.2005spa
dc.relation.referencesFukui, A., Osaki, H., Ueta, Y., Kobayashi, K., Muragaki, Y., Kawamata, T., & Miyata, M. (2020). Layer-specific sensory processing impairment in the primary somatosensory cortex after motor cortex infarction. Scientific Reports, 10(1), Article 1. https://doi.org/10.1038/s41598-020-60662-7spa
dc.relation.referencesGao, P., Hattox, A. M., Jones, L. M., Keller, A., & Zeigler, H. P. (2003). Whisker motor cortex ablation and whisker movement patterns. Somatosensory & Motor Research, 20(3–4), 191–198. https://doi.org/10.1080/08990220310001622924spa
dc.relation.referencesGauthier-Umaña, C., Valderrama, M., Múnera, A., & Nava-Mesa, M. O. (2023). BOARD-FTD-PACC: A graphical user interface for the synaptic and cross-frequency analysis derived from neural signals. Brain Informatics, 10(1), 12. https://doi.org/10.1186/s40708-023-00191-xspa
dc.relation.referencesGhanbari, A., Malyshev, A., Volgushev, M., & Stevenson, I. H. (2017). Estimating short-term synaptic plasticity from pre- and postsynaptic spiking (p. 156687). bioRxiv. https://doi.org/10.1101/156687spa
dc.relation.referencesGrinevich, V., Brecht, M., & Osten, P. (2005). Monosynaptic Pathway from Rat Vibrissa Motor Cortex to Facial Motor Neurons Revealed by Lentivirus-Based Axonal Tracing. The Journal of Neuroscience, 25(36), 8250–8258. https://doi.org/10.1523/JNEUROSCI.2235-05.2005spa
dc.relation.referencesGuic-Robles, E., Jenkins, W. M., & Bravo, H. (1992). Vibrissal roughness discrimination is barrelcortex-dependent. Behavioural Brain Research, 48(2), 145–152. https://doi.org/10.1016/S0166-4328(05)80150-0spa
dc.relation.referencesHaidarliu, S. (2016). Whisking Musculature. En T. Prescott, E. Ahissar, & E. Izhikevich (Eds.), Scholarpedia of Touch (pp. 627–639). Atlantis Press. https://doi.org/10.2991/978-94-6239-133-8_47spa
dc.relation.referencesHaiss, F., & Schwarz, C. (2005). Spatial Segregation of Different Modes of Movement Control in the Whisker Representation of Rat Primary Motor Cortex. The Journal of Neuroscience, 25(6), 1579–1587. https://doi.org/10.1523/JNEUROSCI.3760-04.2005spa
dc.relation.referencesHarding, S. (2017). Somatotopic Precision of Whisker Tuning in Layer 2/3 of Rat Barrel Cortex [Doctoral Thesis]. University of California.spa
dc.relation.referencesHartmann, M. (2016). Vibrissa Mechanical Properties. En T. Prescott, E. Ahissar, & E. Izhikevich (Eds.), Scholarpedia of Touch (pp. 591–614). Atlantis Press. https://doi.org/10.2991/978-94-6239-133-8_45spa
dc.relation.referencesHooks, B. M. (2017). Sensorimotor Convergence in Circuitry of the Motor Cortex. The Neuroscientist, 23(3), 251–263. https://doi.org/10.1177/1073858416645088spa
dc.relation.referencesHooks, B. M., Mao, T., Gutnisky, D. A., Yamawaki, N., Svoboda, K., & Shepherd, G. M. G. (2013). Organization of cortical and thalamic input to pyramidal neurons in mouse motor cortex. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 33(2), 748–760. https://doi.org/10.1523/JNEUROSCI.4338-12.2013spa
dc.relation.referencesHramov, A. E., Koronovskii, A. A., Makarov, V. A., Maksimenko, V. A., Pavlov, A. N., & Sitnikova, E. (2021). Wavelet Approach to the Study of Rhythmic Neuronal Activity. En A. E. Hramov, A. A. Koronovskii, V. A. Makarov, V. A. Maksimenko, A. N. Pavlov, & E. Sitnikova (Eds.), Wavelets in Neuroscience (pp. 211–242). Springer International Publishing. https://doi.org/10.1007/978-3-030-75992-6_6spa
dc.relation.referencesIbarra-Lecue, I., Haegens, S., & Harris, A. Z. (2022). Breaking Down a Rhythm: Dissecting the Mechanisms Underlying Task-Related Neural Oscillations. Frontiers in Neural Circuits, 16. https://doi.org/10.3389/fncir.2022.846905spa
dc.relation.referencesIgarashi, J., Isomura, Y., Arai, K., Harukuni, R., & Fukai, T. (2013). A θ–γ Oscillation Code for Neuronal Coordination during Motor Behavior. Journal of Neuroscience, 33(47), 18515–18530. https://doi.org/10.1523/JNEUROSCI.2126-13.2013spa
dc.relation.referencesIzraeli, R., & Porter, L. L. (1995). Vibrissal motor cortex in the rat: Connections with the barrel field. Experimental Brain Research, 104(1), 41–54. https://doi.org/10.1007/BF00229854spa
dc.relation.referencesJensen, O., & Mazaheri, A. (2010). Shaping Functional Architecture by Oscillatory Alpha Activity: Gating by Inhibition. Frontiers in Human Neuroscience, 4. https://doi.org/10.3389/fnhum.2010.00186spa
dc.relation.referencesJones, M. S., & Barth, D. S. (1999). Spatiotemporal Organization of Fast (>200 Hz) Electrical Oscillations in Rat Vibrissa/Barrel Cortex. Journal of Neurophysiology, 82(3), 1599–1609. https://doi.org/10.1152/jn.1999.82.3.1599spa
dc.relation.referencesKahanovitch, U., Berlin, S., & Dascal, N. (2017). Collision coupling in the GABAB receptor–G protein–GIRK signaling cascade. FEBS Letters, 591(18), 2816–2825. https://doi.org/10.1002/1873-3468.12756spa
dc.relation.referencesKatz, B., & Miledi, R. (1968). The role of calcium in neuromuscular facilitation. The Journal of Physiology, 195(2), Article 2. https://doi.org/10.1113/jphysiol.1968.sp008469spa
dc.relation.referencesKawaguchi, Y., & Kubota, Y. (1997). GABAergic cell subtypes and their synaptic connections in rat frontal cortex. Cerebral Cortex, 7(6), 476–486. https://doi.org/10.1093/cercor/7.6.476spa
dc.relation.referencesKirischuk, S., Clements, J. D., & Grantyn, R. (2002). Presynaptic and postsynaptic mechanisms underlie paired pulse depression at single GABAergic boutons in rat collicular cultures. The Journal of Physiology, 543(Pt 1), 99–116. https://doi.org/10.1113/jphysiol.2002.021576spa
dc.relation.referencesKleinfeld, D., Ahissar, E., & Diamond, M. E. (2006). Active sensation: Insights from the rodent vibrissa sensorimotor system. Current Opinion in Neurobiology, 16(4), 435–444. https://doi.org/10.1016/j.conb.2006.06.009spa
dc.relation.referencesKleinfeld, D., & Deschênes, M. (2011). Neuronal Basis for Object Location in the Vibrissa Scanning Sensorimotor System. Neuron, 72(3), 455–468. https://doi.org/10.1016/j.neuron.2011.10.009spa
dc.relation.referencesKnutsen, P. M. (2015). Whisking Kinematics. En Scholarpedia of Touch (pp. 615–625). https://doi.org/10.2991/978-94-6239-133-8_46spa
dc.relation.referencesLee, S., Kruglikov, I., Huang, Z. J., Fishell, G., & Rudy, B. (2013). A disinhibitory circuit mediates motor integration in the somatosensory cortex. Nature Neuroscience, 16(11), 1662–1670. https://doi.org/10.1038/nn.3544spa
dc.relation.referencesLefort, S., Tomm, C., Floyd Sarria, J.-C., & Petersen, C. C. H. (2009). The excitatory neuronal network of the C2 barrel column in mouse primary somatosensory cortex. Neuron, 61(2), 301–316. https://doi.org/10.1016/j.neuron.2008.12.020spa
dc.relation.referencesLi, L., Du, Y., Li, N., Wu, X., & Wu, Y. (2009). Top–down modulation of prepulse inhibition of the startle reflex in humans and rats. Neuroscience & Biobehavioral Reviews, 33(8), 1157–1167. https://doi.org/10.1016/j.neubiorev.2009.02.001spa
dc.relation.referencesLüscher, C., & Slesinger, P. A. (2010). Emerging concepts for G protein-gated inwardly rectifying potassium (GIRK) channels in health and disease. Nature reviews. Neuroscience, 11(5), 301–315. https://doi.org/10.1038/nrn2834spa
dc.relation.referencesMao, T., Kusefoglu, D., Hooks, B. M., Huber, D., Petreanu, L., & Svoboda, K. (2011). Long-Range Neuronal Circuits Underlying the Interaction between Sensory and Motor Cortex. Neuron, 72(1), 111–123. https://doi.org/10.1016/j.neuron.2011.07.029spa
dc.relation.referencesMartínez, A. (2024). Participación de las proyecciones comisurales en los potenciales provocados en la corteza motora primaria de las vibrisas por estimulación somatosensorial [Tesis de maestría]. Universidad Nacional de Colombia.spa
dc.relation.referencesMatyas, F., Sreenivasan, V., Marbach, F., Wacongne, C., Barsy, B., Mateo, C., Aronoff, R., & Petersen, C. C. H. (2010). Motor Control by Sensory Cortex. Science, 330(6008), 1240–1243. https://doi.org/10.1126/science.1195797spa
dc.relation.referencesMiller, M. N., Okaty, B. W., & Nelson, S. B. (2008). Region-Specific Spike-Frequency Acceleration in Layer 5 Pyramidal Neurons Mediated by Kv1 Subunits. The Journal of Neuroscience, 28(51), 13716–13726. https://doi.org/10.1523/JNEUROSCI.2940-08.2008spa
dc.relation.referencesMitchinson, B., Martin, C. J., Grant, R. A., & Prescott, T. J. (2007). Feedback control in active sensing: Rat exploratory whisking is modulated by environmental contact. Proceedings of the Royal Society B: Biological Sciences, 274(1613), 1035–1041. https://doi.org/10.1098/rspb.2006.0347spa
dc.relation.referencesMúnera, A. (2023). Interacciones funcionales de la corteza motora primaria de las vibrisas [Conferencia]. COLNE-XIII Congreso Nacional – XIV Seminario Internacional de Neurociencias, Cali, Colombia. https://colne.org.co/congreso-neurociencias-colne-ibro/spa
dc.relation.referencesMúnera, A., Nava-Mesa, M. O., Gauthier-Umaña, C., & M, V. (2018). Interacciones tálamo-corticales en el sistema motor de las vibrisas [Conferencia]. XI Congreso Nacional - XII Seminario Internacional de Neurociencias, Bogotá, Colombia.spa
dc.relation.referencesNava-Mesa, M. O., Jimenez-Diaz, L., Yajeya, J., & Navarro-Lopez, J. D. (2013). Amyloid-β induces synaptic dysfunction through G protein-gated inwardly rectifying potassium channels in the fimbria-CA3 hippocampal synapse. Frontiers in Cellular Neuroscience, 7. https://doi.org/10.3389/fncel.2013.00117spa
dc.relation.referencesNie, J. Z., Flint, R. D., Prakash, P., Hsieh, J. K., Mugler, E. M., Tate, M. C., Rosenow, J. M., & Slutzky, M. W. (2023). High-gamma activity is coupled to low-gamma oscillations in precentral cortices and modulates with movement and speech. bioRxiv, 2023.02.13.528325. https://doi.org/10.1101/2023.02.13.528325spa
dc.relation.referencesNolan, M., Scott, C., Hof, Patrick. R., & Ansorge, O. (2024). Betz cells of the primary motor cortex. Journal of Comparative Neurology, 532(1), e25567. https://doi.org/10.1002/cne.25567spa
dc.relation.referencesO’Connor, D. H., Krubitzer, L., & Bensmaia, S. (2021). Of mice and monkeys: Somatosensory processing in two prominent animal models. Progress in Neurobiology, 201, 102008. https://doi.org/10.1016/j.pneurobio.2021.102008spa
dc.relation.referencesOkun, M., & Lampl, I. (2016). Balance of Excitation and Inhibition. En T. Prescott, E. Ahissar, & E. Izhikevich (Eds.), Scholarpedia of Touch (pp. 577–590). Atlantis Press. https://doi.org/10.2991/978-94-6239-133-8_44spa
dc.relation.referencesOsipova, D., Hermes, D., & Jensen, O. (2008). Gamma power is phase-locked to posterior alpha activity. PloS One, 3(12), e3990. https://doi.org/10.1371/journal.pone.0003990spa
dc.relation.referencesPatestas, M. A., & Gartner, L. P. (2016). A Textbook of Neuroanatomy. John Wiley & Sons.spa
dc.relation.referencesPaxinos, G., & Watson, C. (2006). The Rat Brain in Stereotaxic Coordinates: Hard Cover Edition. Elsevier.spa
dc.relation.referencesPenttonen, M., & Buzsáki, G. (2003). Natural logarithmic relationship between brain oscillators. Thalamus & Related Systems, 2, 145–152. https://doi.org/10.1017/S1472928803000074spa
dc.relation.referencesPetersen, C. C. H. (2007). The Functional Organization of the Barrel Cortex. Neuron, 56(2), 339–355. https://doi.org/10.1016/j.neuron.2007.09.017spa
dc.relation.referencesPetersen, C. C. H. (2014). Cortical Control of Whisker Movement. Annual Review of Neuroscience, 37(Volume 37, 2014), 183–203. https://doi.org/10.1146/annurev-neuro-062012-170344spa
dc.relation.referencesPetersen, C. C. H. (2019). Sensorimotor processing in the rodent barrel cortex. Nature reviews. Neuroscience, 20(9), 533–546. https://doi.org/10.1038/s41583-019-0200-yspa
dc.relation.referencesPierret, T., Lavallée, P., & Deschênes, M. (2000). Parallel Streams for the Relay of Vibrissal Information through Thalamic Barreloids. Journal of Neuroscience, 20(19), 7455–7462. https://doi.org/10.1523/JNEUROSCI.20-19-07455.2000spa
dc.relation.referencesPrescott, T., Ahissar, E., & Izhikevich, E. (Eds.). (2016). Scholarpedia of Touch. Atlantis Press. https://doi.org/10.2991/978-94-6239-133-8spa
dc.relation.referencesRadnikow, G., Qi, G., & Feldmeyer, D. (2015). Synaptic Microcircuits in the Barrel Cortex. En P. Krieger & A. Groh (Eds.), Sensorimotor Integration in the Whisker System (pp. 59–108). Springer. https://doi.org/10.1007/978-1-4939-2975-7_4spa
dc.relation.referencesRamírez, E. (2021). Estimulación cortical motora contralateral como mecanismo para inducir plasticidad sinaptica en la corteza motora primaria de las vibrisas en ratas [Tesis de maestría]. Universidad Nacional de Colombia.spa
dc.relation.referencesSantschi, L. A., & Stanton, P. K. (2003). A paired-pulse facilitation analysis of long-term synaptic depression at excitatory synapses in rat hippocampal CA1 and CA3 regions. Brain Research, 962(1–2), Article 1–2. https://doi.org/10.1016/s0006-8993(02)03846-5spa
dc.relation.referencesSchwarz, C., & Chakrabarti, S. (2016). Whisking Control by Motor Cortex. En T. Prescott, E. Ahissar, & E. Izhikevich (Eds.), Scholarpedia of Touch (pp. 751–769). Atlantis Press. https://doi.org/10.2991/978-94-6239-133-8_55spa
dc.relation.referencesSert, N. P. du, Ahluwalia, A., Alam, S., Avey, M. T., Baker, M., Browne, W. J., Clark, A., Cuthill, I. C., Dirnagl, U., Emerson, M., Garner, P., Holgate, S. T., Howells, D. W., Hurst, V., Karp, N. A., Lazic, S. E., Lidster, K., MacCallum, C. J., Macleod, M., … Würbel, H. (2020). Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0. PLOS Biology, 18(7), e3000411. https://doi.org/10.1371/journal.pbio.3000411spa
dc.relation.referencesSreenivasan, V., Esmaeili, V., Kiritani, T., Galan, K., Crochet, S., & Petersen, C. (2016). Movement Initiation Signals in Mouse Whisker Motor Cortex. Neuron, 92, 1368–1382. https://doi.org/10.1016/j.neuron.2016.12.001spa
dc.relation.referencesStüttgen, M. C., Kullmann, S., & Schwarz, C. (2008). Responses of Rat Trigeminal Ganglion Neurons to Longitudinal Whisker Stimulation. Journal of Neurophysiology, 100(4), 1879–1884. https://doi.org/10.1152/jn.90511.2008spa
dc.relation.referencesTahmasebi, L., Komaki, A., Karamian, R., Shahidi, S., Sarihi, A., & Komaki, H. (2016). Interaction between paired-pulse facilitation and long-term potentiation during the stimulation of the cannabinoid and vanilloid systems in the dentate gyrus. Brain Research, 1643, 27–34. https://doi.org/10.1016/j.brainres.2016.04.058spa
dc.relation.referencesTremblay, R., Lee, S., & Rudy, B. (2016). GABAergic interneurons in the neocortex: From cellular properties to circuits. Neuron, 91(2), 260–292. https://doi.org/10.1016/j.neuron.2016.06.033spa
dc.relation.referencesTroncoso, J., Múnera, A., & Delgado-García, J. M. (2007). Learning-dependent potentiation in the vibrissal motor cortex is closely related to the acquisition of conditioned whisker responses in behaving mice. Learning & Memory, 14(1–2), 84–93. https://doi.org/10.1101/lm.341807spa
dc.relation.referencesTrussell, L. O., Zhang, S., & Ramant, I. M. (1993). Desensitization of AMPA receptors upon multiquantal neurotransmitter release. Neuron, 10(6), 1185–1196. https://doi.org/10.1016/0896-6273(93)90066-Zspa
dc.relation.referencesUrbain, N., & Deschênes, M. (2007). A New Thalamic Pathway of Vibrissal Information Modulated by the Motor Cortex. Journal of Neuroscience, 27(45), 12407–12412. https://doi.org/10.1523/JNEUROSCI.2914-07.2007spa
dc.relation.referencesVatsyayan, R., Lee, J., Bourhis, A., Tchoe, Y., Cleary, D., Tonsfeldt, K., Lee, K., Montgomery-Walsh, R., Paulk, A., U, H., Cash, S., & Dayeh, S. (2023). Electrochemical and electrophysiological considerations for clinical high channel count neural interfaces. MRS Bulletin, 48. https://doi.org/10.1557/s43577-023-00537-0spa
dc.relation.referencesVincent, S. B. (2010). The Functions Of The Vibrissae In The Behavior Of The White Rat. Kessinger Publishing.spa
dc.relation.referencesWagner, J., Makeig, S., Hoopes, D., & Gola, M. (2019). Can Oscillatory Alpha-Gamma Phase-Amplitude Coupling be Used to Understand and Enhance TMS Effects? Frontiers in Human Neuroscience, 13. https://doi.org/10.3389/fnhum.2019.00263spa
dc.relation.referencesWelker, W. I. (1964). Analysis of Sniffing of the Albino Rat. Behaviour, 22(3/4), 223–244.spa
dc.relation.referencesWilson, S. P., & Moore, C. (2016). S1 Somatotopic Maps. En T. Prescott, E. Ahissar, & E. Izhikevich (Eds.), Scholarpedia of Touch (pp. 565–576). Atlantis Press. https://doi.org/10.2991/978-94-6239-133-8_43spa
dc.relation.referencesYamashita, T., Vavladeli, A., Pala, A., Galan, K., Crochet, S., Petersen, S. S. A., & Petersen, C. C. H. (2018). Diverse Long-Range Axonal Projections of Excitatory Layer 2/3 Neurons in Mouse Barrel Cortex. Frontiers in Neuroanatomy, 12, 33. https://doi.org/10.3389/fnana.2018.00033spa
dc.relation.referencesYang, Y., & Calakos, N. (2013). Presynaptic long-term plasticity. Frontiers in Synaptic Neuroscience, 5. https://www.frontiersin.org/articles/10.3389/fnsyn.2013.00008spa
dc.relation.referencesZingg, B., Hintiryan, H., Gou, L., Song, M. Y., Bay, M., Bienkowski, M. S., Foster, N. N., Yamashita, S., Bowman, I., Toga, A. W., & Dong, H.-W. (2014). Neural Networks of the Mouse Neocortex. Cell, 156(5), 1096–1111. https://doi.org/10.1016/j.cell.2014.02.023spa
dc.relation.referencesZucker, R. S., & Regehr, W. G. (2002). Short-Term Synaptic Plasticity. Annual Review of Physiology, 64(1), 355–405. https://doi.org/10.1146/annurev.physiol.64.092501.114547spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc570 - Biología::571 - Fisiología y temas relacionadosspa
dc.subject.ddc570 - Biología::573 - Sistemas fisiológicos específicos en animales, histología regional y fisiología en los animalesspa
dc.subject.lembRECEPTORES SENSORIALESspa
dc.subject.lembSensory receptorseng
dc.subject.lembLOBULO PARIETALspa
dc.subject.lembParietal lobeseng
dc.subject.lembGENERALIZACION DEL ESTIMULOspa
dc.subject.lembStimulus generalizationeng
dc.subject.proposalSistema de las vibrisasspa
dc.subject.proposalCorteza motora de las vibrisasspa
dc.subject.proposalCorteza de los barrilesspa
dc.subject.proposalIntegración sensoriomotoraspa
dc.subject.proposalWhisker systemeng
dc.subject.proposalVibrissal motor cortexeng
dc.subject.proposalBarrel cortexeng
dc.subject.proposalSensorimotor integrationeng
dc.titleInteracción de la estimulación somatosensorial periférica y cortical sobre el procesamiento de la información somatosensorial en la corteza motora primaria de las vibrisas en ratasspa
dc.title.translatedInteraction of peripheral and cortical somatosensory stimulation on somatosensory information processing in the vibrissal primary motor cortex in ratseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1024543251.2024.pdf
Tamaño:
3.89 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Biología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: