Interacción de la estimulación somatosensorial periférica y cortical sobre el procesamiento de la información somatosensorial en la corteza motora primaria de las vibrisas en ratas
dc.contributor.advisor | Múnera Galarza, Francisco Alejandro | |
dc.contributor.author | Niño Hernández, Angélica Beatriz | |
dc.contributor.cvlac | Angelica Beatriz Niño | spa |
dc.contributor.researchgroup | Neurofisiología comportamental | spa |
dc.date.accessioned | 2024-07-31T16:51:40Z | |
dc.date.available | 2024-07-31T16:51:40Z | |
dc.date.issued | 2024 | |
dc.description | ilustraciones, diagramas | spa |
dc.description.abstract | El sistema de las vibrisas en roedores constituye un modelo de investigación de gran importancia para entender el proceso de integración sensoriomotora. Esto se debe a su bien definida representación somatotópica en la corteza somatosensorial de los barriles (S1b) y a la extensa investigación sobre las vías de transducción de estímulos táctiles a señales eléctricas. En este trabajo, se estudió la interacción de la estimulación somatosensorial periférica y cortical sobre el procesamiento de esta información en la corteza motora primaria de las vibrisas (vM1). Para ello, se emplearon protocolos de pares de pulsos, pre-estimulación y se evaluó el comportamiento oscilatorio en el dominio de tiempo y frecuencia. En este contexto, se amplió la caracterización de la respuesta en vM1 y S1b ante estímulos únicos en el parche de vibrisas (WP). Además, se caracterizó por primera vez en ratas la respuesta provocada en vM1 ante estimulación en S1b. Los hallazgos indican que la información somatosensorial de las vibrisas llega simultáneamente a S1b y vM1. Mediante protocolos de pares de pulsos en WP, se evidenció activación sostenida de circuitos inhibidores en vM1 y S1b por parte de las entradas tálamo-corticales, asociada con oscilaciones gamma. Al administrar pares de pulsos en S1b, se evidenció la naturaleza monosináptica de las proyecciones desde S1b a vM1, que tienen un efecto temprano excitador y uno tardío inhibidor. Finalmente, para evaluar las interacciones funcionales de vM1 con S1b, se utilizó el protocolo de pre-estimulación. La estimulación en S1b antecediendo la estimulación en WP, desfacilitó las oscilaciones lentas del potencial provocado en vM1 en dos ventanas de tiempo asociado con una actividad en la banda theta y gamma alta. Por otro lado, la administración de estímulos en WP antecediendo la estimulación en S1b, facilitó las oscilaciones lentas del potencial provocado en vM1 a intervalos entre estímulos (IEEs) cortos, relacionado con la coincidencia de entradas excitadoras cortico-corticales desde S1b con las entradas intracorticales de vM1 procedentes de la activación tálamo-cortical. Sin embargo, en IEEs mayores, esta pre-estimulación incrementa la actividad inhibitoria en la banda theta y gamma. Este estudio complementa el conocimiento previo sobre la respuesta provocada en vM1 ante estimulación periférica y revela, por primera vez en ratas, la caracterización de la respuesta provocada en vM1 ante estimulación en S1b mediante un enfoque electrofisiológico y de análisis espectral en el dominio del tiempo y frecuencia (Texto tomado de la fuente). | spa |
dc.description.abstract | The whisker system in rodents constitutes a research model of great importance for understanding the process of sensorimotor integration. Its significance lies in the well-defined somatotopic representation in the barrel cortex (S1b) and to the extensive research on the transduction pathways of tactile stimuli to electrical signals. In this study, the interaction of peripheral and cortical somatosensory stimulation on the processing of this information in the vibrissal primary motor cortex (vM1) was examined. For this aim, paired-pulse, pre-stimulation protocols and oscillatory behavior in the time and frequency domain were used. In this context, the characterization of the response in vM1 and S1b to single stimuli in the whisker pad (WP) was extended. In addition, the response evoked in vM1 to stimulation in S1b was characterized for the first time in rats. The findings indicate that somatosensory information from the whiskers simultaneously reaches both S1b and vM1. Using paired-pulse protocols in WP, sustained activation of inhibitory circuits in vM1 and S1b by thalamocortical inputs, associated with gamma oscillations, was evidenced. When administering paired pulses in S1b, the monosynaptic nature of the projections from S1b to vM1, which have an early excitatory and a late inhibitory effect, was evidenced. Finally, to evaluate the functional interactions of vM1 with S1b, the pre-stimulation protocol was used. S1b stimulation preceding WP stimulation defacilitated slow oscillations of the evoked potential in vM1 in two-time windows associated with theta and high gamma activity. On the other hand, WP stimulus preceding S1b stimulation facilitated slow oscillations of the evoked potential in vM1 at short interstimulus intervals (ISIs), related to the coincidence of cortico-cortical excitatory inputs from S1b and intracortical inputs vM1 from thalamocortical activation. However, at longer ISIs, this pre-stimulation increased inhibitory activity in the theta and gamma bands. This study complements prior knowledge on the evoked response in vM1 to peripheral stimulation and reveals, for the first time in rats, the characterization of the evoked response in vM1 to stimulation in S1b by an electrophysiological approach and spectral analysis in the time and frequency domain. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magister en Ciencias - Biología | spa |
dc.description.methods | Se emplearon nueve ratas macho Wistar adultas, con un peso entre 300 g y 400 g. Estos animales fueron obtenidos del Bioterio Central de la Universidad Nacional de Colombia, sede Bogotá, en la Facultad de Medicina Veterinaria y Zootecnia. En el bioterio, los sujetos experimentales fueron mantenidos en una sala con atenuación de ruido, con control de humedad (40 ± 5%) y temperatura (20 ± 1 °C), con ciclo de luz / oscuridad de 12 horas y con suministro de alimento y agua fresca potable ad libitum. Minutos antes de iniciar cada experimento, el animal fue trasladado al laboratorio de Neurofisiología Comportamental de la Facultad de Medicina de la Universidad Nacional de Colombia. Para ello, se utilizaron cajas de policarbonato (38 x 32 x 18 cm) con una capa de viruta de madera en el fondo y cubierta de una tela negra para evitar estrés del animal durante su traslado. | spa |
dc.description.researcharea | Fisiología del control motor facial | spa |
dc.format.extent | 96 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/86667 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Biología | spa |
dc.relation.references | Abbott, L., & Regehr, W. (2004). Synaptic computation. Nature, 431, 796–803. https://doi.org/10.1038/nature03010 | spa |
dc.relation.references | Achury, M., & Múnera, A. (2015). Interacción funcional entre hipocampo y corteza motora primaria de las vibrisas en el procesamiento de información somatosensorial en ratas [Póster]. X Congreso Nacional - XI Seminario Internacional de Neurociencias. | spa |
dc.relation.references | Adibi, M. (2019). Whisker-Mediated Touch System in Rodents: From Neuron to Behavior. Frontiers in Systems Neuroscience, 13. https://www.frontiersin.org/articles/10.3389/fnsys.2019.00040 | spa |
dc.relation.references | Ahissar, E., & Knutsen, P. M. (2016). Vibrissal Location Coding. En T. Prescott, E. Ahissar, & E. Izhikevich (Eds.), Scholarpedia of Touch (pp. 725–735). Atlantis Press. https://doi.org/10.2991/978-94-6239-133-8_53 | spa |
dc.relation.references | Ahrens, K. F., & Kleinfeld, D. (2004). Current Flow in Vibrissa Motor Cortex Can Phase-Lock With Exploratory Rhythmic Whisking in Rat. Journal of Neurophysiology, 92(3), 1700–1707. https://doi.org/10.1152/jn.00020.2004 | spa |
dc.relation.references | Akin, M. (2002). Comparison of Wavelet Transform and FFT Methods in the Analysis of EEG Signals. Journal of medical systems, 26, 241–247. https://doi.org/10.1023/A:1015075101937 | spa |
dc.relation.references | Alder, G., Signal, N., Olsen, S., & Taylor, D. (2019). A Systematic Review of Paired Associative Stimulation (PAS) to Modulate Lower Limb Corticomotor Excitability: Implications for Stimulation Parameter Selection and Experimental Design. Frontiers in Neuroscience, 13, 895. https://doi.org/10.3389/fnins.2019.00895 | spa |
dc.relation.references | Arabzadeh, E., Heimendahl, M. von, & Diamond, M. (2016). Vibrissal Texture Decoding. En T. Prescott, E. Ahissar, & E. Izhikevich (Eds.), Scholarpedia of Touch (pp. 737–749). Atlantis Press. https://doi.org/10.2991/978-94-6239-133-8_54 | spa |
dc.relation.references | Arkley, K., Grant, R. A., Mitchinson, B., & Prescott, T. J. (2014). Strategy Change in Vibrissal Active Sensing during Rat Locomotion. Current Biology, 24(13), 1507–1512. https://doi.org/10.1016/j.cub.2014.05.036 | spa |
dc.relation.references | Bellingham, M. C., & Walmsley, B. (1999). A Novel Presynaptic Inhibitory Mechanism Underlies Paired Pulse Depression at a Fast Central Synapse. Neuron, 23(1), 159–170. https://doi.org/10.1016/S0896-6273(00)80762-X | spa |
dc.relation.references | Bokor, H., Acsády, L., & Deschênes, M. (2008). Vibrissal Responses of Thalamic Cells That Project to the Septal Columns of the Barrel Cortex and to the Second Somatosensory Area. Journal of Neuroscience, 28(20), 5169–5177. https://doi.org/10.1523/JNEUROSCI.0490-08.2008 | spa |
dc.relation.references | Bosman, L. W. J., Houweling, A. R., Owens, C. B., Tanke, N., Shevchouk, O. T., Rahmati, N., Teunissen, W. H. T., Ju, C., Gong, W., Koekkoek, S. K. E., & De Zeeuw, C. I. (2011). Anatomical Pathways Involved in Generating and Sensing Rhythmic Whisker Movements. Frontiers in Integrative Neuroscience, 5. https://doi.org/10.3389/fnint.2011.00053 | spa |
dc.relation.references | Bray, I. E., Clarke, S. E., Casey, K., Nuyujukian, P., & Laboratory, the B. I. (2022). Neuroelectrophysiology-Compatible Electrolytic Lesioning (p. 2022.11.10.516056). bioRxiv. https://doi.org/10.1101/2022.11.10.516056 | spa |
dc.relation.references | Brecht, M., Grinevich, V., Jin, T.-E., Margrie, T., & Osten, P. (2006). Cellular mechanisms of motor control in the vibrissal system. Pflügers Archiv, 453(3), 269–281. https://doi.org/10.1007/s00424-006-0101-6 | spa |
dc.relation.references | Brecht, M., Schneider, M., Sakmann, B., & Margrie, T. W. (2004). Whisker movements evoked by stimulation of single pyramidal cells in rat motor cortex. Nature, 427(6976), 704–710. https://doi.org/10.1038/nature02266 | spa |
dc.relation.references | Buzsáki, G., & Draguhn, A. (2004). Neuronal Oscillations in Cortical Networks. Science (New York, N.Y.), 304, 1926–1929. https://doi.org/10.1126/science.1099745 | spa |
dc.relation.references | Carpenter, R. H. S. (1997). Sensorimotor processing: Charting the frontier. Current Biology, 7(6), R348–R351. https://doi.org/10.1016/S0960-9822(06)00171-0 | spa |
dc.relation.references | Castro-Alamancos, M. A. (2013). The motor cortex: A network tuned to 7-14 Hz. Frontiers in Neural Circuits, 7, 21. https://doi.org/10.3389/fncir.2013.00021 | spa |
dc.relation.references | Castro-Alamancos, M. A., & Rigas, P. (2002). Synchronized oscillations caused by disinhibition in rodent neocortex are generated by recurrent synaptic activity mediated by AMPA receptors. The Journal of Physiology, 542(2), 567–581. https://doi.org/10.1113/jphysiol.2002.019059 | spa |
dc.relation.references | Castro-Alamancos, M. A., & Tawara-Hirata, Y. (2007). Area-specific resonance of excitatory networks in neocortex: Control by outward currents. Epilepsia, 48(8), 1572–1584. https://doi.org/10.1111/j.1528-1167.2007.01113.x | spa |
dc.relation.references | Chakrabarti, S., & Schwarz, C. (2015). The Rodent Vibrissal System as a Model to Study Motor Cortex Function. En P. Krieger & A. Groh (Eds.), Sensorimotor Integration in the Whisker System (pp. 129–148). Springer. https://doi.org/10.1007/978-1-4939-2975-7_6 | spa |
dc.relation.references | Council, N. R. (2011). Guía para el cuidado y uso de animales de laboratorio. Ediciones UC. | spa |
dc.relation.references | David-Jürgens, M., & Dinse, H. R. (2010). Effects of Aging on Paired-Pulse Behavior of Rat Somatosensory Cortical Neurons. Cerebral Cortex (New York, NY), 20(5), 1208–1216. https://doi.org/10.1093/cercor/bhp185 | spa |
dc.relation.references | Debanne, D., Guérineau, N. C., Gähwiler, B. H., & Thompson, S. M. (1996). Paired-pulse facilitation and depression at unitary synapses in rat hippocampus: Quantal fluctuation affects subsequent release. The Journal of Physiology, 491(Pt 1), 163–176. | spa |
dc.relation.references | Deschênes, M., & Kleinfeld, D. (2022). The Vibrissa Sensorimotor System of Rodents: A View from the Sensory Thalamus. En M. M. Halassa (Ed.), The Thalamus (pp. 214–220). Cambridge University Press. https://doi.org/10.1017/9781108674287.012 | spa |
dc.relation.references | Deschênes, M., Takatoh, J., Kurnikova, A., Moore, J. D., Demers, M., Elbaz, M., Furuta, T., Wang, F., & Kleinfeld, D. (2016). Inhibition, Not Excitation, Drives Rhythmic Whisking. Neuron, 90(2), 374–387. https://doi.org/10.1016/j.neuron.2016.03.007 | spa |
dc.relation.references | Deschenes, M., & Urbain, N. (2016). Vibrissal Afferents from Trigeminus to Cortices. En T. Prescott, E. Ahissar, & E. Izhikevich (Eds.), Scholarpedia of Touch (pp. 657–672). Atlantis Press. https://doi.org/10.2991/978-94-6239-133-8_49 | spa |
dc.relation.references | Deschênes, M., Veinante, P., & Zhang, Z. W. (1998). The organization of corticothalamic projections: Reciprocity versus parity. Brain Research. Brain Research Reviews, 28(3), 286–308. https://doi.org/10.1016/s0165-0173(98)00017-4 | spa |
dc.relation.references | Diamond, M. E., von Heimendahl, M., Knutsen, P. M., Kleinfeld, D., & Ahissar, E. (2008). “Where” and “what” in the whisker sensorimotor system. Nature Reviews Neuroscience, 9(8), Article 8. https://doi.org/10.1038/nrn2411 | spa |
dc.relation.references | Dobrunz, L. E., & Stevens, C. F. (1997). Heterogeneity of release probability, facilitation, and depletion at central synapses. Neuron, 18(6), 995–1008. https://doi.org/10.1016/s0896-6273(00)80338-4 | spa |
dc.relation.references | Domanski, A. P. F., Booker, S. A., Wyllie, D. J. A., Isaac, J. T. R., & Kind, P. C. (2019). Cellular and synaptic phenotypes lead to disrupted information processing in Fmr1-KO mouse layer 4 barrel cortex. Nature Communications, 10(1), Article 1. https://doi.org/10.1038/s41467-019-12736-y | spa |
dc.relation.references | Dörfl, J. (1985). The innervation of the mystacial region of the white mouse. Journal of Anatomy, 142, 173–184. | spa |
dc.relation.references | Ebara, S., Kumamoto, K., Matsuura, T., Mazurkiewicz, J., & Rice, F. (2002). Similarities and differences in the innervation of mystacial vibrissal follicle-sinus complexes in the rat and cat: A confocal microscopic study. The Journal of comparative neurology, 449, 103–119. https://doi.org/10.1002/cne.10277 | spa |
dc.relation.references | Erzurumlu, R. S., & Gaspar, P. (2020). How the Barrel Cortex Became a Working Model for Developmental Plasticity: A Historical Perspective. The Journal of Neuroscience, 40(34), 6460–6473. https://doi.org/10.1523/JNEUROSCI.0582-20.2020 | spa |
dc.relation.references | Ferezou, I., Haiss, F., Gentet, L. J., Aronoff, R., Weber, B., & Petersen, C. C. H. (2007). Spatiotemporal Dynamics of Cortical Sensorimotor Integration in Behaving Mice. Neuron, 56(5), 907–923. https://doi.org/10.1016/j.neuron.2007.10.007 | spa |
dc.relation.references | Forero, A., & Múnera, A. (2016). Interaccion entre el estriado y la corteza motora primaria de las vibrisas durante el procesamiento de informacion somatosensorial [Póster]. X Congreso Nacional - XI Seminario Internacional de Neurociencias. | spa |
dc.relation.references | Friedman, W. A., Jones, L. M., Cramer, N. P., Kwegyir-Afful, E. E., Zeigler, H. P., & Keller, A. (2006). Anticipatory Activity of Motor Cortex in Relation to Rhythmic Whisking. Journal of Neurophysiology, 95(2), 1274–1277. https://doi.org/10.1152/jn.00945.2005 | spa |
dc.relation.references | Fukui, A., Osaki, H., Ueta, Y., Kobayashi, K., Muragaki, Y., Kawamata, T., & Miyata, M. (2020). Layer-specific sensory processing impairment in the primary somatosensory cortex after motor cortex infarction. Scientific Reports, 10(1), Article 1. https://doi.org/10.1038/s41598-020-60662-7 | spa |
dc.relation.references | Gao, P., Hattox, A. M., Jones, L. M., Keller, A., & Zeigler, H. P. (2003). Whisker motor cortex ablation and whisker movement patterns. Somatosensory & Motor Research, 20(3–4), 191–198. https://doi.org/10.1080/08990220310001622924 | spa |
dc.relation.references | Gauthier-Umaña, C., Valderrama, M., Múnera, A., & Nava-Mesa, M. O. (2023). BOARD-FTD-PACC: A graphical user interface for the synaptic and cross-frequency analysis derived from neural signals. Brain Informatics, 10(1), 12. https://doi.org/10.1186/s40708-023-00191-x | spa |
dc.relation.references | Ghanbari, A., Malyshev, A., Volgushev, M., & Stevenson, I. H. (2017). Estimating short-term synaptic plasticity from pre- and postsynaptic spiking (p. 156687). bioRxiv. https://doi.org/10.1101/156687 | spa |
dc.relation.references | Grinevich, V., Brecht, M., & Osten, P. (2005). Monosynaptic Pathway from Rat Vibrissa Motor Cortex to Facial Motor Neurons Revealed by Lentivirus-Based Axonal Tracing. The Journal of Neuroscience, 25(36), 8250–8258. https://doi.org/10.1523/JNEUROSCI.2235-05.2005 | spa |
dc.relation.references | Guic-Robles, E., Jenkins, W. M., & Bravo, H. (1992). Vibrissal roughness discrimination is barrelcortex-dependent. Behavioural Brain Research, 48(2), 145–152. https://doi.org/10.1016/S0166-4328(05)80150-0 | spa |
dc.relation.references | Haidarliu, S. (2016). Whisking Musculature. En T. Prescott, E. Ahissar, & E. Izhikevich (Eds.), Scholarpedia of Touch (pp. 627–639). Atlantis Press. https://doi.org/10.2991/978-94-6239-133-8_47 | spa |
dc.relation.references | Haiss, F., & Schwarz, C. (2005). Spatial Segregation of Different Modes of Movement Control in the Whisker Representation of Rat Primary Motor Cortex. The Journal of Neuroscience, 25(6), 1579–1587. https://doi.org/10.1523/JNEUROSCI.3760-04.2005 | spa |
dc.relation.references | Harding, S. (2017). Somatotopic Precision of Whisker Tuning in Layer 2/3 of Rat Barrel Cortex [Doctoral Thesis]. University of California. | spa |
dc.relation.references | Hartmann, M. (2016). Vibrissa Mechanical Properties. En T. Prescott, E. Ahissar, & E. Izhikevich (Eds.), Scholarpedia of Touch (pp. 591–614). Atlantis Press. https://doi.org/10.2991/978-94-6239-133-8_45 | spa |
dc.relation.references | Hooks, B. M. (2017). Sensorimotor Convergence in Circuitry of the Motor Cortex. The Neuroscientist, 23(3), 251–263. https://doi.org/10.1177/1073858416645088 | spa |
dc.relation.references | Hooks, B. M., Mao, T., Gutnisky, D. A., Yamawaki, N., Svoboda, K., & Shepherd, G. M. G. (2013). Organization of cortical and thalamic input to pyramidal neurons in mouse motor cortex. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 33(2), 748–760. https://doi.org/10.1523/JNEUROSCI.4338-12.2013 | spa |
dc.relation.references | Hramov, A. E., Koronovskii, A. A., Makarov, V. A., Maksimenko, V. A., Pavlov, A. N., & Sitnikova, E. (2021). Wavelet Approach to the Study of Rhythmic Neuronal Activity. En A. E. Hramov, A. A. Koronovskii, V. A. Makarov, V. A. Maksimenko, A. N. Pavlov, & E. Sitnikova (Eds.), Wavelets in Neuroscience (pp. 211–242). Springer International Publishing. https://doi.org/10.1007/978-3-030-75992-6_6 | spa |
dc.relation.references | Ibarra-Lecue, I., Haegens, S., & Harris, A. Z. (2022). Breaking Down a Rhythm: Dissecting the Mechanisms Underlying Task-Related Neural Oscillations. Frontiers in Neural Circuits, 16. https://doi.org/10.3389/fncir.2022.846905 | spa |
dc.relation.references | Igarashi, J., Isomura, Y., Arai, K., Harukuni, R., & Fukai, T. (2013). A θ–γ Oscillation Code for Neuronal Coordination during Motor Behavior. Journal of Neuroscience, 33(47), 18515–18530. https://doi.org/10.1523/JNEUROSCI.2126-13.2013 | spa |
dc.relation.references | Izraeli, R., & Porter, L. L. (1995). Vibrissal motor cortex in the rat: Connections with the barrel field. Experimental Brain Research, 104(1), 41–54. https://doi.org/10.1007/BF00229854 | spa |
dc.relation.references | Jensen, O., & Mazaheri, A. (2010). Shaping Functional Architecture by Oscillatory Alpha Activity: Gating by Inhibition. Frontiers in Human Neuroscience, 4. https://doi.org/10.3389/fnhum.2010.00186 | spa |
dc.relation.references | Jones, M. S., & Barth, D. S. (1999). Spatiotemporal Organization of Fast (>200 Hz) Electrical Oscillations in Rat Vibrissa/Barrel Cortex. Journal of Neurophysiology, 82(3), 1599–1609. https://doi.org/10.1152/jn.1999.82.3.1599 | spa |
dc.relation.references | Kahanovitch, U., Berlin, S., & Dascal, N. (2017). Collision coupling in the GABAB receptor–G protein–GIRK signaling cascade. FEBS Letters, 591(18), 2816–2825. https://doi.org/10.1002/1873-3468.12756 | spa |
dc.relation.references | Katz, B., & Miledi, R. (1968). The role of calcium in neuromuscular facilitation. The Journal of Physiology, 195(2), Article 2. https://doi.org/10.1113/jphysiol.1968.sp008469 | spa |
dc.relation.references | Kawaguchi, Y., & Kubota, Y. (1997). GABAergic cell subtypes and their synaptic connections in rat frontal cortex. Cerebral Cortex, 7(6), 476–486. https://doi.org/10.1093/cercor/7.6.476 | spa |
dc.relation.references | Kirischuk, S., Clements, J. D., & Grantyn, R. (2002). Presynaptic and postsynaptic mechanisms underlie paired pulse depression at single GABAergic boutons in rat collicular cultures. The Journal of Physiology, 543(Pt 1), 99–116. https://doi.org/10.1113/jphysiol.2002.021576 | spa |
dc.relation.references | Kleinfeld, D., Ahissar, E., & Diamond, M. E. (2006). Active sensation: Insights from the rodent vibrissa sensorimotor system. Current Opinion in Neurobiology, 16(4), 435–444. https://doi.org/10.1016/j.conb.2006.06.009 | spa |
dc.relation.references | Kleinfeld, D., & Deschênes, M. (2011). Neuronal Basis for Object Location in the Vibrissa Scanning Sensorimotor System. Neuron, 72(3), 455–468. https://doi.org/10.1016/j.neuron.2011.10.009 | spa |
dc.relation.references | Knutsen, P. M. (2015). Whisking Kinematics. En Scholarpedia of Touch (pp. 615–625). https://doi.org/10.2991/978-94-6239-133-8_46 | spa |
dc.relation.references | Lee, S., Kruglikov, I., Huang, Z. J., Fishell, G., & Rudy, B. (2013). A disinhibitory circuit mediates motor integration in the somatosensory cortex. Nature Neuroscience, 16(11), 1662–1670. https://doi.org/10.1038/nn.3544 | spa |
dc.relation.references | Lefort, S., Tomm, C., Floyd Sarria, J.-C., & Petersen, C. C. H. (2009). The excitatory neuronal network of the C2 barrel column in mouse primary somatosensory cortex. Neuron, 61(2), 301–316. https://doi.org/10.1016/j.neuron.2008.12.020 | spa |
dc.relation.references | Li, L., Du, Y., Li, N., Wu, X., & Wu, Y. (2009). Top–down modulation of prepulse inhibition of the startle reflex in humans and rats. Neuroscience & Biobehavioral Reviews, 33(8), 1157–1167. https://doi.org/10.1016/j.neubiorev.2009.02.001 | spa |
dc.relation.references | Lüscher, C., & Slesinger, P. A. (2010). Emerging concepts for G protein-gated inwardly rectifying potassium (GIRK) channels in health and disease. Nature reviews. Neuroscience, 11(5), 301–315. https://doi.org/10.1038/nrn2834 | spa |
dc.relation.references | Mao, T., Kusefoglu, D., Hooks, B. M., Huber, D., Petreanu, L., & Svoboda, K. (2011). Long-Range Neuronal Circuits Underlying the Interaction between Sensory and Motor Cortex. Neuron, 72(1), 111–123. https://doi.org/10.1016/j.neuron.2011.07.029 | spa |
dc.relation.references | Martínez, A. (2024). Participación de las proyecciones comisurales en los potenciales provocados en la corteza motora primaria de las vibrisas por estimulación somatosensorial [Tesis de maestría]. Universidad Nacional de Colombia. | spa |
dc.relation.references | Matyas, F., Sreenivasan, V., Marbach, F., Wacongne, C., Barsy, B., Mateo, C., Aronoff, R., & Petersen, C. C. H. (2010). Motor Control by Sensory Cortex. Science, 330(6008), 1240–1243. https://doi.org/10.1126/science.1195797 | spa |
dc.relation.references | Miller, M. N., Okaty, B. W., & Nelson, S. B. (2008). Region-Specific Spike-Frequency Acceleration in Layer 5 Pyramidal Neurons Mediated by Kv1 Subunits. The Journal of Neuroscience, 28(51), 13716–13726. https://doi.org/10.1523/JNEUROSCI.2940-08.2008 | spa |
dc.relation.references | Mitchinson, B., Martin, C. J., Grant, R. A., & Prescott, T. J. (2007). Feedback control in active sensing: Rat exploratory whisking is modulated by environmental contact. Proceedings of the Royal Society B: Biological Sciences, 274(1613), 1035–1041. https://doi.org/10.1098/rspb.2006.0347 | spa |
dc.relation.references | Múnera, A. (2023). Interacciones funcionales de la corteza motora primaria de las vibrisas [Conferencia]. COLNE-XIII Congreso Nacional – XIV Seminario Internacional de Neurociencias, Cali, Colombia. https://colne.org.co/congreso-neurociencias-colne-ibro/ | spa |
dc.relation.references | Múnera, A., Nava-Mesa, M. O., Gauthier-Umaña, C., & M, V. (2018). Interacciones tálamo-corticales en el sistema motor de las vibrisas [Conferencia]. XI Congreso Nacional - XII Seminario Internacional de Neurociencias, Bogotá, Colombia. | spa |
dc.relation.references | Nava-Mesa, M. O., Jimenez-Diaz, L., Yajeya, J., & Navarro-Lopez, J. D. (2013). Amyloid-β induces synaptic dysfunction through G protein-gated inwardly rectifying potassium channels in the fimbria-CA3 hippocampal synapse. Frontiers in Cellular Neuroscience, 7. https://doi.org/10.3389/fncel.2013.00117 | spa |
dc.relation.references | Nie, J. Z., Flint, R. D., Prakash, P., Hsieh, J. K., Mugler, E. M., Tate, M. C., Rosenow, J. M., & Slutzky, M. W. (2023). High-gamma activity is coupled to low-gamma oscillations in precentral cortices and modulates with movement and speech. bioRxiv, 2023.02.13.528325. https://doi.org/10.1101/2023.02.13.528325 | spa |
dc.relation.references | Nolan, M., Scott, C., Hof, Patrick. R., & Ansorge, O. (2024). Betz cells of the primary motor cortex. Journal of Comparative Neurology, 532(1), e25567. https://doi.org/10.1002/cne.25567 | spa |
dc.relation.references | O’Connor, D. H., Krubitzer, L., & Bensmaia, S. (2021). Of mice and monkeys: Somatosensory processing in two prominent animal models. Progress in Neurobiology, 201, 102008. https://doi.org/10.1016/j.pneurobio.2021.102008 | spa |
dc.relation.references | Okun, M., & Lampl, I. (2016). Balance of Excitation and Inhibition. En T. Prescott, E. Ahissar, & E. Izhikevich (Eds.), Scholarpedia of Touch (pp. 577–590). Atlantis Press. https://doi.org/10.2991/978-94-6239-133-8_44 | spa |
dc.relation.references | Osipova, D., Hermes, D., & Jensen, O. (2008). Gamma power is phase-locked to posterior alpha activity. PloS One, 3(12), e3990. https://doi.org/10.1371/journal.pone.0003990 | spa |
dc.relation.references | Patestas, M. A., & Gartner, L. P. (2016). A Textbook of Neuroanatomy. John Wiley & Sons. | spa |
dc.relation.references | Paxinos, G., & Watson, C. (2006). The Rat Brain in Stereotaxic Coordinates: Hard Cover Edition. Elsevier. | spa |
dc.relation.references | Penttonen, M., & Buzsáki, G. (2003). Natural logarithmic relationship between brain oscillators. Thalamus & Related Systems, 2, 145–152. https://doi.org/10.1017/S1472928803000074 | spa |
dc.relation.references | Petersen, C. C. H. (2007). The Functional Organization of the Barrel Cortex. Neuron, 56(2), 339–355. https://doi.org/10.1016/j.neuron.2007.09.017 | spa |
dc.relation.references | Petersen, C. C. H. (2014). Cortical Control of Whisker Movement. Annual Review of Neuroscience, 37(Volume 37, 2014), 183–203. https://doi.org/10.1146/annurev-neuro-062012-170344 | spa |
dc.relation.references | Petersen, C. C. H. (2019). Sensorimotor processing in the rodent barrel cortex. Nature reviews. Neuroscience, 20(9), 533–546. https://doi.org/10.1038/s41583-019-0200-y | spa |
dc.relation.references | Pierret, T., Lavallée, P., & Deschênes, M. (2000). Parallel Streams for the Relay of Vibrissal Information through Thalamic Barreloids. Journal of Neuroscience, 20(19), 7455–7462. https://doi.org/10.1523/JNEUROSCI.20-19-07455.2000 | spa |
dc.relation.references | Prescott, T., Ahissar, E., & Izhikevich, E. (Eds.). (2016). Scholarpedia of Touch. Atlantis Press. https://doi.org/10.2991/978-94-6239-133-8 | spa |
dc.relation.references | Radnikow, G., Qi, G., & Feldmeyer, D. (2015). Synaptic Microcircuits in the Barrel Cortex. En P. Krieger & A. Groh (Eds.), Sensorimotor Integration in the Whisker System (pp. 59–108). Springer. https://doi.org/10.1007/978-1-4939-2975-7_4 | spa |
dc.relation.references | Ramírez, E. (2021). Estimulación cortical motora contralateral como mecanismo para inducir plasticidad sinaptica en la corteza motora primaria de las vibrisas en ratas [Tesis de maestría]. Universidad Nacional de Colombia. | spa |
dc.relation.references | Santschi, L. A., & Stanton, P. K. (2003). A paired-pulse facilitation analysis of long-term synaptic depression at excitatory synapses in rat hippocampal CA1 and CA3 regions. Brain Research, 962(1–2), Article 1–2. https://doi.org/10.1016/s0006-8993(02)03846-5 | spa |
dc.relation.references | Schwarz, C., & Chakrabarti, S. (2016). Whisking Control by Motor Cortex. En T. Prescott, E. Ahissar, & E. Izhikevich (Eds.), Scholarpedia of Touch (pp. 751–769). Atlantis Press. https://doi.org/10.2991/978-94-6239-133-8_55 | spa |
dc.relation.references | Sert, N. P. du, Ahluwalia, A., Alam, S., Avey, M. T., Baker, M., Browne, W. J., Clark, A., Cuthill, I. C., Dirnagl, U., Emerson, M., Garner, P., Holgate, S. T., Howells, D. W., Hurst, V., Karp, N. A., Lazic, S. E., Lidster, K., MacCallum, C. J., Macleod, M., … Würbel, H. (2020). Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0. PLOS Biology, 18(7), e3000411. https://doi.org/10.1371/journal.pbio.3000411 | spa |
dc.relation.references | Sreenivasan, V., Esmaeili, V., Kiritani, T., Galan, K., Crochet, S., & Petersen, C. (2016). Movement Initiation Signals in Mouse Whisker Motor Cortex. Neuron, 92, 1368–1382. https://doi.org/10.1016/j.neuron.2016.12.001 | spa |
dc.relation.references | Stüttgen, M. C., Kullmann, S., & Schwarz, C. (2008). Responses of Rat Trigeminal Ganglion Neurons to Longitudinal Whisker Stimulation. Journal of Neurophysiology, 100(4), 1879–1884. https://doi.org/10.1152/jn.90511.2008 | spa |
dc.relation.references | Tahmasebi, L., Komaki, A., Karamian, R., Shahidi, S., Sarihi, A., & Komaki, H. (2016). Interaction between paired-pulse facilitation and long-term potentiation during the stimulation of the cannabinoid and vanilloid systems in the dentate gyrus. Brain Research, 1643, 27–34. https://doi.org/10.1016/j.brainres.2016.04.058 | spa |
dc.relation.references | Tremblay, R., Lee, S., & Rudy, B. (2016). GABAergic interneurons in the neocortex: From cellular properties to circuits. Neuron, 91(2), 260–292. https://doi.org/10.1016/j.neuron.2016.06.033 | spa |
dc.relation.references | Troncoso, J., Múnera, A., & Delgado-García, J. M. (2007). Learning-dependent potentiation in the vibrissal motor cortex is closely related to the acquisition of conditioned whisker responses in behaving mice. Learning & Memory, 14(1–2), 84–93. https://doi.org/10.1101/lm.341807 | spa |
dc.relation.references | Trussell, L. O., Zhang, S., & Ramant, I. M. (1993). Desensitization of AMPA receptors upon multiquantal neurotransmitter release. Neuron, 10(6), 1185–1196. https://doi.org/10.1016/0896-6273(93)90066-Z | spa |
dc.relation.references | Urbain, N., & Deschênes, M. (2007). A New Thalamic Pathway of Vibrissal Information Modulated by the Motor Cortex. Journal of Neuroscience, 27(45), 12407–12412. https://doi.org/10.1523/JNEUROSCI.2914-07.2007 | spa |
dc.relation.references | Vatsyayan, R., Lee, J., Bourhis, A., Tchoe, Y., Cleary, D., Tonsfeldt, K., Lee, K., Montgomery-Walsh, R., Paulk, A., U, H., Cash, S., & Dayeh, S. (2023). Electrochemical and electrophysiological considerations for clinical high channel count neural interfaces. MRS Bulletin, 48. https://doi.org/10.1557/s43577-023-00537-0 | spa |
dc.relation.references | Vincent, S. B. (2010). The Functions Of The Vibrissae In The Behavior Of The White Rat. Kessinger Publishing. | spa |
dc.relation.references | Wagner, J., Makeig, S., Hoopes, D., & Gola, M. (2019). Can Oscillatory Alpha-Gamma Phase-Amplitude Coupling be Used to Understand and Enhance TMS Effects? Frontiers in Human Neuroscience, 13. https://doi.org/10.3389/fnhum.2019.00263 | spa |
dc.relation.references | Welker, W. I. (1964). Analysis of Sniffing of the Albino Rat. Behaviour, 22(3/4), 223–244. | spa |
dc.relation.references | Wilson, S. P., & Moore, C. (2016). S1 Somatotopic Maps. En T. Prescott, E. Ahissar, & E. Izhikevich (Eds.), Scholarpedia of Touch (pp. 565–576). Atlantis Press. https://doi.org/10.2991/978-94-6239-133-8_43 | spa |
dc.relation.references | Yamashita, T., Vavladeli, A., Pala, A., Galan, K., Crochet, S., Petersen, S. S. A., & Petersen, C. C. H. (2018). Diverse Long-Range Axonal Projections of Excitatory Layer 2/3 Neurons in Mouse Barrel Cortex. Frontiers in Neuroanatomy, 12, 33. https://doi.org/10.3389/fnana.2018.00033 | spa |
dc.relation.references | Yang, Y., & Calakos, N. (2013). Presynaptic long-term plasticity. Frontiers in Synaptic Neuroscience, 5. https://www.frontiersin.org/articles/10.3389/fnsyn.2013.00008 | spa |
dc.relation.references | Zingg, B., Hintiryan, H., Gou, L., Song, M. Y., Bay, M., Bienkowski, M. S., Foster, N. N., Yamashita, S., Bowman, I., Toga, A. W., & Dong, H.-W. (2014). Neural Networks of the Mouse Neocortex. Cell, 156(5), 1096–1111. https://doi.org/10.1016/j.cell.2014.02.023 | spa |
dc.relation.references | Zucker, R. S., & Regehr, W. G. (2002). Short-Term Synaptic Plasticity. Annual Review of Physiology, 64(1), 355–405. https://doi.org/10.1146/annurev.physiol.64.092501.114547 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
dc.subject.ddc | 570 - Biología::571 - Fisiología y temas relacionados | spa |
dc.subject.ddc | 570 - Biología::573 - Sistemas fisiológicos específicos en animales, histología regional y fisiología en los animales | spa |
dc.subject.lemb | RECEPTORES SENSORIALES | spa |
dc.subject.lemb | Sensory receptors | eng |
dc.subject.lemb | LOBULO PARIETAL | spa |
dc.subject.lemb | Parietal lobes | eng |
dc.subject.lemb | GENERALIZACION DEL ESTIMULO | spa |
dc.subject.lemb | Stimulus generalization | eng |
dc.subject.proposal | Sistema de las vibrisas | spa |
dc.subject.proposal | Corteza motora de las vibrisas | spa |
dc.subject.proposal | Corteza de los barriles | spa |
dc.subject.proposal | Integración sensoriomotora | spa |
dc.subject.proposal | Whisker system | eng |
dc.subject.proposal | Vibrissal motor cortex | eng |
dc.subject.proposal | Barrel cortex | eng |
dc.subject.proposal | Sensorimotor integration | eng |
dc.title | Interacción de la estimulación somatosensorial periférica y cortical sobre el procesamiento de la información somatosensorial en la corteza motora primaria de las vibrisas en ratas | spa |
dc.title.translated | Interaction of peripheral and cortical somatosensory stimulation on somatosensory information processing in the vibrissal primary motor cortex in rats | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1024543251.2024.pdf
- Tamaño:
- 3.89 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias - Biología
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: