Planning under uncertainty using a dynamical systems approach for autonomous vehicles

dc.contributor.advisorNiño Vásquez, Luis Fernando
dc.contributor.advisorBobadilla, Jaime Leonardo
dc.contributor.authorBayuelo Sierra, Alfredo José
dc.contributor.researchgrouplaboratorio de Investigación en Sistemas Inteligentes Lisispa
dc.date.accessioned2022-03-23T18:54:29Z
dc.date.available2022-03-23T18:54:29Z
dc.date.issued2022-03
dc.descriptionilustraciones, fotografías, graficasspa
dc.description.abstractLa planeación del movimiento para sistemas robóticos (o simplemente robots, o vehículos) es un problema bastante bien estudiado. Resultados significativos se han obtenido en la literatura y se han llevado a la práctica en la industria y otros usos comerciales. Sin embargo, altos costos computacionales y simplificaciones hechas en la formulación de los problemas presentan retos abiertos y oportunidades de investigación. Este trabajo presenta estrategias para ayudar en la solución del problema de navegación, y otros relacionados, en cuatro escenarios: Cuando no se conoce el Modelo que describe el vehículo, No se conoce la posición ni orientación del vehículo, no se conoce el Mapa del lugar, Y cuando no se conoce la intención (aliado/adversario) de otros robots en el ambiente. Primero, se presenta una estrategia que usa ambientes simulados realísticos para superar la falta de modelo del vehículo o las dificulatades que conlleven su cálculo. Los ambientes simulados se han beneficiado de las mejoras en los sistemas computarizados de la última década; por ejempo, los juegos de computadora han progresivamente mostrado ambientes más y más realistas, y estos han sido ya usados para entrenar robots al mostrarle a los sensores del robot esta información como cierta, de tal forma que se logra que los robots aprendan de secuencias del juego, de esta misma forma, en este trabajo se usan los simuladores para ayudar a resolver el problema de la navegación. También se presenta un esquema de planeación basado en la retro alimentación para un sencillo robot que rebota, mostrando cómo dicho robot puede navegar ambientes complejos sin saber su posición en todo momento. Por supuesto el mapa debe ser conocido para crear tal esquema de planeación, cuando no se conoce el mapa, la estrategia conocida como Localización y Mapeo Simultaneos, puede usarse para determinar el mapa alrededor y encontrarse en el mismo. Finalmente, cuando se consideran robots más simples, puede llegar a ser necesario usar más de un robot para cumplir una tarea, y puede que en el ambiente hayan robots adversarios, por lo tanto, se presenta una estrategia que permite comunicarse para evitar colisiones que mantiene la privacidad al mismo tiempo. (Texto tomado de la fuente)spa
dc.description.abstractThe problem of Motion Planning for Robotic Systems (in this work: robot or vehicles) has been well studied. Some significant outcomes have been accomplished, and good results demonstrated in practical situations in industry and other commercial uses. Nevertheless, high computational cost and several assumptions on the problems present open challenges and opportunities for research. This work presents strategies to help in the solution of the navigation and other related problems for four different scenarios: unknown vehicle model, unknown positions/orientation of the vehicle, unknown map to navigate and unknown intention of other vehicles in the same environment. First, realistic simulation is used to overcome the lack of a model, or the difficulties to calculate it. Simulated environments have taken advantage of the improvements in computer systems in the last decades; for example, computer games have progressively shown more realistic environments, these environments have already been used to train models by fooling the sensors of robots and making them to learn from gameplays, in this fashion, simulators are used here to help solving the navigation problem. It is also presented here a feedback-based motion planer for a simple bouncing robot, showing how it can navigate a complex world even if the current position is not know all the time. Of course the map must be known before hand to create such a plan, for the case where the map is not known a priori, a strategy for simultaneous localization and mapping is presented here to determine the world around and the position of the vehicle in such map. Finally, when considering simpler robots, it might be necessary to use multiple of them to succeed at a particular task, and they might also be in the presence of a third party robot, hence, a strategy is presented here to communicate and avoid collisions while preserving privacy.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingenieríaspa
dc.description.researchareaMotion Planning - Dynamic Non-Linear Systems - Robotics Algorithmsspa
dc.format.extentxxi, 105 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81329
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ingeniería de Sistemas e Industrialspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Sistemas y Computaciónspa
dc.relation.referencesTauhidul Alam, Leonardo Bobadilla, and Dylan A. Shell. Minimalist Robot Navigation and Coverage Using a Dynamical System Approach. In 2017 First IEEE International Conference on Robotic Computing (IRC), pages 249–256. IEEE, 4 2017.spa
dc.relation.referencesTauhidul Alam, Leonardo Bobadilla, and Dylan A Shell. Minimalist robot navigation and coverage using a dynamical system approach. In Proceedings of IEEE International Conference on Robotic Computing, pages 249–256, 2017.spa
dc.relation.referencesTauhidul Alam, Leonardo Bobadilla, and Dylan A. Shell. Space-Efficient Filters for Mobile Robot Localization from Discrete Limit Cycles. IEEE Robotics and Automation Letters, 3(1):257–264, 1 2018.spa
dc.relation.referencesMikhail J Atallah and Wenliang Du. Secure multi-party computational geometry. In Proceedings of the Workshop on Algorithms and Data Structures, pages 165–179. Springer, 2001.spa
dc.relation.referencesAli-akbar Agha-mohammadi, Saurav Agarwal, Sung-Kyun Kim, Suman Chakravorty, and Nancy M. Amato. SLAP: Simultaneous Localization and Planning Under Uncertainty via Dynamic Replanning in Belief Space. IEEE Transactions on Robotics, 34(5):1195–1214, 10 2018.spa
dc.relation.referencesAli-akbar Agha-mohammadi, Suman Chakravorty, and Nancy M Amato. FIRM: Sampling-based feedback motion-planning under motion uncertainty and imperfect measurements. The International Journal of Robotics Research, 33(2):268–304, 2 2014.spa
dc.relation.referencesAli-Akbar Agha-Mohammadi, Suman Chakravorty, and Nancy M Amato. FIRM: Sampling-based feedback motion-planning under motion uncertainty and imperfect measurements. The International Journal of Robotics Research, 33(2):268–304, 2014spa
dc.relation.referencesTauhidul Alam, Gregory Murad Reis, Leonardo Bobadilla, and Ryan N. Smith. A Data-Driven Deployment Approach for Persistent Monitoring in Aquatic Environments. In 2018 Second IEEE International Conference on Robotic Computing (IRC), pages 147–154. IEEE, 1 2018spa
dc.relation.referencesTauhidul Alam, Gregory Murad Reis, Leonardo Bobadilla, and Ryan N Smith. A data-driven deployment approach for persistent monitoring in aquatic environments. In Proceedings of IEEE International Conference on Robotic Computing, pages 147–154, 2018.spa
dc.relation.referencesTauhidul Alam, Gregory Murad Reis, Leonardo Bobadilla, and Ryan N Smith. An underactuated vehicle localization method in marine environments. Technical report, 2018.spa
dc.relation.referencesTauhidul Alam, Gregory Murad Reis, Leonardo Bobadilla, and Ryan N Smith. An underactuated vehicle localization method in marine environments. In Proceedings of MTS/IEEE OCEANS Charleston, pages 1–8, 2018.spa
dc.relation.referencesJacob Anderson and Ryan N. Smith. Predicting Water Properties with Markov Random Fields for Augmented Terrain-Based Navigation in Autonomous Underwater Vehicles. In 2018 OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO), pages 1–5. IEEE, 5 2018.spa
dc.relation.referencesTim Bailey. Mobile robot localisation and mapping in extensive outdoor environments. pages 121–125. Ph.D. dissertation, 2002.spa
dc.relation.referencesDimitri P Bertsekas, Dimitri P Bertsekas, Dimitri P Bertsekas, and Dimitri P Bertsekas. Dynamic programming and optimal control, volume 1. Athena scientific Belmont, MA, 2005spa
dc.relation.referencesPeter Bogetoft, Dan Lund Christensen, Ivan Damg˚ard, Martin Geisler, Thomas Jakobsen, Mikkel Krøigaard, Janus Dam Nielsen, Jesper Buus Nielsen, Kurt Nielsen, Jakob Pagter, et al. Secure multiparty computation goes live. In Proceedings of the International Conference on Financial Cryptography and Data Security, pages 325–343, 2009.spa
dc.relation.referencesAssaf Ben-David, Noam Nisan, and Benny Pinkas. Fairplaymp: a system for secure multi-party computation. In Proceedings of the 15th ACM Conference on Computer and Communications Security, pages 257–266. ACM, 2008spa
dc.relation.referencesTim Bailey and Hugh Durrant-Whyte. Simultaneous localization and mapping (slam): Part ii. IEEE Robotics & Automation Magazine, 13(3):108–117, 2006spa
dc.relation.referencesAdam Bry and Nicholas Roy. Rapidly-exploring Random Belief Trees for motion planning under uncertainty. In 2011 IEEE International Conference on Robotics and Automation, pages 723–730. IEEE, 5 2011.spa
dc.relation.referencesRobert R Burridge, Alfred A Rizzi, and Daniel E Koditschek. Sequential composition of dynamically dexterous robot behaviors. The International Journal of Robotics Research, 18(6):534–555, 1999.spa
dc.relation.referencesJustin Brickell and Vitaly Shmatikov. Privacy-preserving graph algorithms in the semi-honest model. In Proceedings of the International Conference on the Theory and Application of Cryptology and Information Security, pages 236–252. Springer, 2005.spa
dc.relation.referencesV. Chen, M. Batalin, W. Kaiser, and Gaurav S. Sukhatme. Towards spatial and semantic mapping in aquatic environments. In IEEE International Conference on Robotics and Automation, pages 629 – 636, Pasadena, CA, May 2008spa
dc.relation.referencesHowie M Choset, Seth Hutchinson, Kevin M Lynch, George Kantor, Wolfram Burgard, Lydia E Kavraki, and Sebastian Thrun. Principles of Robot Motion: Theory, Algorithms, and Implementation. MIT press, 2005.spa
dc.relation.referencesSuman Chakravorty and S. Kumar. Generalized sampling based motion planners with application to nonholonomic systems. In 2009 IEEE International Conference on Systems, Man and Cybernetics, pages 4077–4082. IEEE, 10 2009.spa
dc.relation.referencesHao Chen, Kim Laine, and Rachel Player. Simple encrypted arithmetic library-seal v2. 1. In Proceedings of the International Conference on Financial Cryptography and Data Security, pages 3–18. Springer, 2017.spa
dc.relation.referencesT. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. MIT Press, Cambridge, MA, 2001.spa
dc.relation.referencesQinyue Chen, Sheue-Er Low, Jeremiah WE Yap, Adjovi KX Sim, Yu-Yang Tan, Benjamin WJ Kwok, Jeannie SA Lee, Chek-Tien Tan, Wan-Ping Loh, Bernard LW Loo, et al. Immersive virtual reality training of bioreactor operations. In 2020 IEEE International Conference on Teaching, Assessment, and Learning for Engineering (TALE), pages 873–878. IEEE, 2020.spa
dc.relation.referencesA. Comport, E. Malis, and P. Rives. Real-time quadrifocal visual odometry. International Journal of Robotics Research, Special issue on Robot Vision, 29(2 - 3):245 – 266, 2010.spa
dc.relation.referencesL. G. Crespo and J. Q. Sun. Stochastic Optimal Control of Nonlinear Systems via Short-Time Gaussian Approximation and Cell Mapping. Nonlinear Dynamics, 28(3/4):323–342, 2002spa
dc.relation.referencesDavid A Caron, Beth Stauffer, Steffi Moorthi, Amarjeet Singh, Maxim Batalin, Eric Graham, Mark Hansen, William Kaiser, Jnaneshwar Das, Arvind A Pereira, Amit Dhariwal, Bin Zhang, Carl Oberg, and Gaurav S Sukhatme. Macro- to fine-scale spatial and temporal distributions and dynamics of phytoplankton and their environmental driving forces in a small subalpine lake in southern {c}alifornia, {usa}. Journal of Limnology and Oceanography, 53(5):2333–2349, 2008spa
dc.relation.referencesWenliang Du and Mikhail J Atallah. Secure multi-party computation problems and their applications: a review and open problems. In Proceedings of the Workshop on New Security Paradigms, pages 13–22, 2001.spa
dc.relation.referencesArnaud Doucet, Simon Godsill, and Christophe Andrieu. On sequential Monte Carlo sampling methods for Bayesian filtering. Statistics and Computing, 10(3):197–208, 2000.spa
dc.relation.referencesJ Das, T Maughan, M McCann, M Godin, T O’Reilly, M Messie, F Bahr, K Gomes, F Py, J Bellingham, G Sukhatme, and K Rajan. Towards mixedinitiative, multi-robot field experiments: Design, deployment, and lessons learned. In Proceedings of the Intelligent Robots and Systems (IROS) Conference, 2011.spa
dc.relation.referencesJ Das, F Py, T Maughan, M Messie, T O’Reilly, J Ryan, G S Sukhatme, and K Rajan. Coordinated Sampling of Dynamic Oceanographic Features with AUVs and Drifters. Intnl. J. of Robotics Research, 31(5):626–646, 2012spa
dc.relation.referencesJorge Estrela da Silva, Bruno Terra, Ricardo Martins, and Joao Borges de Sousa. Modeling and simulation of the lauv autonomous underwater vehicle. In 13th IEEE IFAC international conference on methods and models in automation and robotics, volume 1. Szczecin, Poland Szczecin, Poland, 2007.spa
dc.relation.referencesRobin Deits and Russ Tedrake. Efficient mixed-integer planning for UAVs in cluttered environments. In 2015 IEEE International Conference on Robotics and Automation (ICRA), pages 42–49. IEEE, 5 2015spa
dc.relation.referencesHugh Durrant-Whyte and Tim Bailey. Simultaneous localization and mapping: part i. IEEE Robotics & Automation Magazine, 13(2):99–110, 2006spa
dc.relation.referencesDavid Eppstein, Michael T Goodrich, and Roberto Tamassia. Privacypreserving data-oblivious geometric algorithms for geographic data. In Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, pages 13–22. ACM, 2010.spa
dc.relation.referencesXavier Emery. The kriging update equations and their application to the selection of neighboring data. Computational Geosciences, 13(3):269–280, Sep 2009spa
dc.relation.referencesKeith B Frikken and Mikhail J Atallah. Privacy preserving route planning. In Proceedings of the ACM Workshop on Privacy in the Electronic Society, pages 8–15, 2004.spa
dc.relation.referencesDrone airborne collisions report. https://www.faa.gov/newsroom/ researchers-release-report-drone-airborne-collisions?newsId= 89246. Published: 28-11-2017, Accessed: 01-10-2021.spa
dc.relation.referencesC. Fookes, F. Lin, V. Chandran, and S. Sridharan. Evaluation of image resolution and super-resolution on face recognition performance. Journal of Visual Communication and Image Representation, 23(1):75 – 93, 2012spa
dc.relation.referencesC. Fruh and A. Zakhor. Constructing 3d city models by merging aerial and ground views. IEEE Computer Graphics and Applications, 23(6):52 – 61, 2003.spa
dc.relation.referencesCraig Gentry and Dan Boneh. A fully homomorphic encryption scheme, volume 20. Stanford University Stanford, 2009.spa
dc.relation.referencesStephanie Gil, Swarun Kumar, Mark Mazumder, Dina Katabi, and Daniela Rus. Guaranteeing spoof-resilient multi-robot networks. Autonomous Robots, 41(6):1383–1400, 2017.spa
dc.relation.referencesAlessio Gambi, Marc Mueller, and Gordon Fraser. Automatically testing selfdriving cars with search-based procedural content generation. In Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis, pages 318–328, 2019spa
dc.relation.referencesOded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game. In Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, pages 218–229, 1987spa
dc.relation.referencesJose E Guivant and Eduardo Mario Nebot. Optimization of the simultaneous localization and map-building algorithm for real-time implementation. IEEE Transactions on Robotics and Automation, 17(3):242–257, 2001spa
dc.relation.referencesSandeep Hans, Sarat C Addepalli, Anuj Gupta, and Kannan Srinathan. On privacy preserving convex hull. In Proceedings of the International Conference on Availability, Reliability and Security, pages 187–192, 2009.spa
dc.relation.referencesTomislav Hengl, Gerard BM Heuvelink, and Alfred Stein. A generic framework for spatial prediction of soil variables based on regression-kriging. Geoderma, 120(1-2):75–93, 2004.spa
dc.relation.referencesJeong hwan Jeon, Sertac Karaman, and Emilio Frazzoli. Optimal samplingbased feedback motion trees among obstacles for controllable linear systems with linear constraints. In Proceedings of IEEE International Conference on Robotics and Automation, pages 4195–4201, 2015spa
dc.relation.referencesDaniel Hernandez, Ryan N Smith, Enrique Fernandez, Josep Isern, Jorge Cabrera, Antonio Dominguez, and Victor Prieto. Glider path-planning for optimal sampling of mesoscale eddies. In Fourteenth International Conference on Computer Aided Systems Theory, Workshop on Marine Robotics and Applications, 2 2013.spa
dc.relation.referencesChieh Su Hsu. Cell-to-cell mapping: A method of global analysis for nonlinear systems, volume 64. Springer Science & Business Media, 2013.spa
dc.relation.referencesRaja Jurdak, Alberto Elfes, Branislav Kusy, Ashley Tews, Wen Hu, Emili Hernandez, Navinda Kottege, and Pavan Sikka. Autonomous surveillance for biosecurity. Trends in biotechnology, 33(4):201–207, 2015spa
dc.relation.referencesRae Jeong, Jackie Kay, Francesco Romano, Thomas Lampe, Tom Rothorl, Abbas Abdolmaleki, Tom Erez, Yuval Tassa, and Francesco Nori. Modelling generalized forces with reinforcement learning for sim-to-real transfer. arXiv preprint arXiv:1910.09471, 2019.spa
dc.relation.referencesL´eonard Jaillet and Josep M Porta. Path planning under kinematic constraints by rapidly exploring manifolds. IEEE Transactions on Robotics, 29(1):105–117, 2012.spa
dc.relation.referencesSertac Karaman and Emilio Frazzoli. Sampling-based algorithms for optimal motion planning. The international journal of robotics research, 30(7):846– 894, 2011spa
dc.relation.referencesNathan Koenig and Andrew Howard. Design and use paradigms for gazebo, an open-source multi-robot simulator. In 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)(IEEE Cat. No. 04CH37566), volume 3, pages 2149–2154. IEEE, 2004.spa
dc.relation.referencesLeslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement learning: A survey. Journal of Artificial Intelligence Research, 4:237–285, 1996spa
dc.relation.referencesSteven M LaValle et al. Sensing and filtering: A fresh perspective based on preimages and information spaces. Foundations and Trends R in Robotics, 1(4):253–372, 2012.spa
dc.relation.referencesSteven M LaValle. Rapidly-exploring random trees: A new tool for path planning. 1998.spa
dc.relation.referencesSteven M. LaValle. Planning Algorithms. Cambridge University Press, 2006.spa
dc.relation.referencesSteven M LaValle. Planning Algorithms. Cambridge University Press, Cambridge, U.K., 2006. Available at http://planning.cs.uiuc.edu/spa
dc.relation.referencesS. M. LaValle. Motion planning. IEEE Robotics & Automation Magazine, 18(2):108–118, 6 2011spa
dc.relation.referencesS. M. LaValle. Motion planning. IEEE Robotics & Automation Magazine, 18(1):79–89, March 2011spa
dc.relation.referencesSteven M. LaValle. Motion planning: Wild frontiers. IEEE Robotics Automation Magazine, 18(2):108–118, 2011.spa
dc.relation.referencesBenoit Landry, Robin Deits, Peter R Florence, and Russ Tedrake. Aggressive quadrotor flight through cluttered environments using mixed integer programming. In 2016 IEEE International Conference on Robotics and Automation (ICRA), pages 1469–1475. IEEE, 5 2016spa
dc.relation.referencesJim A Ledin. Hardware-in-the-loop simulation. Embedded Systems Programming, 12:42–62, 1999spa
dc.relation.referencesStephen R Lindemann and Steven M LaValle. Multiresolution approach for motion planning under differential constraints. In Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006., pages 139–144. IEEE, 2006.spa
dc.relation.referencesC. Liu, H.-Y. Shum, and W. Freeman. Face hallucination: Theory and practice. Internaltional Journal of Computer Vision, 75(1):115 – 134, 10 2007.spa
dc.relation.referencesKevin M. Lynch, Ira B. Schwartz, Peng Yang, and Randy A. Freeman. Decentralized Environmental Modeling by Mobile Sensor Networks. IEEE Transactions on Robotics, 24(3):710–724, June 2008.spa
dc.relation.referencesSteven La Valle. Motion Planning. IEEE Robotics & Automation Magazine, 18(2):108–118, 6 2011.spa
dc.relation.referencesKaitai Liang, Bo Yang, Dake He, and Min Zhou. Privacy-preserving computational geometry problems on conic sections. Journal of Computational Information Systems, 7(6):1910–1923, 2011.spa
dc.relation.referencesGordon E Moore et al. Cramming more components onto integrated circuits, 1965.spa
dc.relation.referencesM. Mason. The mechanics of manipulation. In Proceedings. 1985 IEEE International Conference on Robotics and Automation, volume 2, pages 544– 548. Institute of Electrical and Electronics Engineers, 1985.spa
dc.relation.referencesMatthew Mason. The mechanics of manipulation. In Proceedings of IEEE International Conference on Robotics and Automation, volume 2, pages 544– 548, 1985.spa
dc.relation.referencesBethany H. McCarthy. Ibm unveils world’s first 2 nanometer chip technology, opening a new frontier for semiconductors. https://newsroom.ibm.com/ 2021-05-06-IBM-Unveils-Worlds-First-2-Nanometer-Chip-Technology, -Opening-a-New-Frontier-for-Semiconductors#assets_all, May 2021. Accessed: 01-10-2021.spa
dc.relation.referencesDahlia Malkhi, Noam Nisan, Benny Pinkas, Yaron Sella, et al. Fairplaysecure two-party computation system. In Proceedings of the USENIX Security Symposium, volume 4, page 9. San Diego, CA, USA, 2004.spa
dc.relation.referencesYuriy Mileyko, Gregory Reis, Monique Chyba, and Ryan N Smith. Energyefficient control strategies for updating an augmented terrain-based navigation map for autonomous underwater navigation. In 2017 IEEE Conference on Control Technology and Applications (CCTA), pages 223–228. IEEE, 8 2017.spa
dc.relation.referencesMusa Morena Marcusso Manh˜aes, Sebastian A. Scherer, Martin Voss, Luiz Ricardo Douat, and Thomas Rauschenbach. UUV simulator: A gazebobased package for underwater intervention and multi-robot simulation. In OCEANS 2016 MTS/IEEE Monterey. IEEE, sep 2016spa
dc.relation.referencesAnirudha Majumdar and Russ Tedrake. Funnel Libraries for Real-Time Robust Feedback Motion Planning. 1 2016.spa
dc.relation.referencesAnirudha Majumdar and Russ Tedrake. Funnel libraries for real-time robust feedback motion planning. The International Journal of Robotics Research, 36(8):947–982, 2017spa
dc.relation.referencesElon Musk. Tesla ai day. https://www.youtube.com/watch?v= j0z4FweCy4M. Accessed: 01-10-2021spa
dc.relation.referencesSen Nag et al. How much of the ocean have we explored? WorldAtlas, 2019spa
dc.relation.referencesJuan Nieto, Jose Guivant, and Eduardo Nebot. Denseslam: Simultaneous localization and dense mapping. The International Journal of Robotics Research, 25(8):711–744, 2006spa
dc.relation.referencesJason M O’Kane and Steven M LaValle. Comparing the power of robots. The International Journal of Robotics Research, 27(1):5–23, 2008.spa
dc.relation.referencesJason M O’Kane and Dylan A Shell. Automatic design of discreet discrete filters. In Proceedings of the IEEE International Conference on Robotics and Automation, pages 353–360, 2015.spa
dc.relation.referencesPascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In Proceedings of the International Conference on the Theory and Applications of Cryptographic Techniques, pages 223–238. Springer, 1999spa
dc.relation.referencesBrian Paden, Michal Cap, Sze Zheng Yong, Dmitry Yershov, and Emilio Frazzoli. A Survey of Motion Planning and Control Techniques for SelfDriving Urban Vehicles. IEEE Transactions on Intelligent Vehicles, 1(1):33– 55, 3 2016spa
dc.relation.referencesBrian Paden, Michal C´ap, Sze Zheng Yong, Dmitry Yershov, and Emilio ˇ Frazzoli. A survey of motion planning and control techniques for self-driving urban vehicles. IEEE Transactions on Intelligent Vehicles, 1(1):33–55, 2016.spa
dc.relation.referencesS. Prince, J. Elder, J. Warrell, and F. Felisberti. Tied factor analysis for face recognition across large pose differences. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(6):970 – 984, 2008.spa
dc.relation.referencesAmanda Prorok and Vijay Kumar. A macroscopic privacy model for heterogeneous robot swarms. In International Conference on Swarm Intelligence, pages 15–27. Springer, 2016.spa
dc.relation.referencesM Quigley, B Gerkey, K Conley, J Faust, T Foote, J Leibs, E Berger, R Wheeler, and A Y Ng. Ros: an open-source robot operating system. In Proceedings of the Open-Source Software workshop of the International Conference on Robotics and Automation, 2009.spa
dc.relation.referencesStephan R Richter, Hassan Abu AlHaija, and Vladlen Koltun. Enhancing photorealism enhancement. arXiv preprint arXiv:2105.04619, 2021.spa
dc.relation.referencesGregory Murad Reis, Michael Fitzpatrick, Jacob Anderson, Leonardo Bobadilla, and Ryan N. Smith. Augmented Terrain-Based Navigation to Enable Persistent Autonomy for Underwater Vehicles. In 2017 First IEEE International Conference on Robotic Computing (IRC), pages 292–298. IEEE, 4 2017spa
dc.relation.referencesGregory Murad Reis, Michael Fitzpatrick, Jacob Anderson, Leonardo Bobadilla, and Ryan N. Smith. Increasing persistent navigation capabilities for underwater vehicles with augmented terrain-based navigation. In MTS/IEEE Oceans, Aberdeen, Scotland, April 2017. Best Student Paper Finalistspa
dc.relation.referencesGregory Murad Reis, Michael Fitzpatrick, Jacob Anderson, Jonathan Kelly, Leonardo Bobadilla, and Ryan N. Smith. Increasing persistent navigation capabilities for underwater vehicles with augmented terrain-based navigation. In OCEANS 2017 - Aberdeen, pages 1–8. IEEE, 6 2017spa
dc.relation.referencesE Rimon and DE Koditschek. Exact robot navigation using artificial potential functions. IEEE Transactions on Robotics and Automation, 8(5):501– 518, 1992spa
dc.relation.referencesD L Rudnick and M J Perry. ALPS: Autonomous and Lagrangian Platforms and Sensors, Workshop Report. Technical report, http://www.geoprose.com/ALPS, 2003spa
dc.relation.referencesDavid Ribas, Pere Ridao, Jose Neira, and Juan D Tardos. SLAM using an imaging sonar for partially structured underwater environments. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 5040–5045, 2006spa
dc.relation.referencesDavid Ribas, Pere Ridao, Juan Domingo Tard´os, and Jos´e Neira. Underwater SLAM in a marina environment. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 1455–1460, 2007.spa
dc.relation.referencesDavid Ribas, Pere Ridao, Juan Domingo Tard´os, and Jos´e Neira. Underwater SLAM in man-made structured environments. Journal of Field Robotics, 25(11-12):898–921, 2008.spa
dc.relation.referencesVenkatraman Renganathan and Tyler Summers. Spoof resilient coordination for distributed multi-robot systems. In Proceedings of the International Symposium on Multi-Robot and Multi-Agent Systems, pages 135–141, 2017.spa
dc.relation.referencesAndrei A Rusu, Matej Veˇcer´ık, Thomas Roth¨orl, Nicolas Heess, Razvan Pascanu, and Raia Hadsell. Sim-to-real robot learning from pixels with progressive nets. In Conference on Robot Learning, pages 262–270. PMLR, 2017spa
dc.relation.referencesRichard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.spa
dc.relation.referencesRyan N Smith, Yi Chao, Peggy P Li, David A Caron, Burton H Jones, and Gaurav S Sukhatme. Planning and Implementing Trajectories for Autonomous Underwater Vehicles to Track Evolving Ocean Processes based on Predictions from a Regional Ocean Model. International Journal of Robotics Research, 29(12):1475–1497, October 2010.spa
dc.relation.referencesT. Senlet and A. Elgammal. Satellite image based precise robot localization on sidewalks. In IEEE International Conference on Robotics and Automation (ICRA), pages 2647 – 2653, 5 2012.spa
dc.relation.referencesJ Q Sun and CS T Hsu. The generalized cell mapping method in nonlinear random vibration based upon short-time gaussian approximation. Journal of Applied Mechanics, 57(4):1018–1025, 1990spa
dc.relation.referencesEdward Schmerling, Lucas Janson, and Marco Pavone. Optimal samplingbased motion planning under differential constraints: the driftless case. In 2015 IEEE International Conference on Robotics and Automation (ICRA), pages 2368–2375. IEEE, 2015spa
dc.relation.referencesP Svestka, JC Latombe, and LE Overmars Kavraki. Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Transactions on Robotics and Automation, 12(4):566–580, 1996.spa
dc.relation.referencesAndrew Stuntz, David Liebel, and Ryan N Smith. Enabling persistent autonomy for underwater gliders through terrain based navigation. In OCEANS 2015-Genova, pages 1–10. IEEE, 2015spa
dc.relation.referencesAlexander F. Shchepetkin and James C. McWilliams. The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topographyfollowing-coordinate oceanic model. Ocean Modelling, 9(4):347–404, 1 2005.spa
dc.relation.referencesAlexandre Sousa, Luis Madureira, Jorge Coelho, Jos´e Pinto, Jo˜ao Pereira, Jo˜ao Borges Sousa, and Paulo Dias. Lauv: The man-portable autonomous underwater vehicle. IFAC Proceedings Volumes, 45(5):268–274, 2012spa
dc.relation.referencesMarkku Suomalainen, Alexandra Q Nilles, and Steven M LaValle. Virtual reality for robots. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 11458–11465. IEEE, 2020.spa
dc.relation.referencesRoland Siegwart, Illah Reza Nourbakhsh, and Davide Scaramuzza. Introduction to Autonomous Mobile Robots. MIT press, 2011spa
dc.relation.referencesNitin Sydney and Derek A. Paley. Multi-vehicle control and optimization for spatiotemporal sampling. In IEEE Conference on Decision and Control and European Control Conference, pages 5607–5612. IEEE, December 2011spa
dc.relation.referencesMichael L Stein. Interpolation of spatial data: some theory for kriging. Springer Science & Business Media, 2012.spa
dc.relation.referencesLi Shundong, Dai Yigi, Wang Daoshun, and Luo Ping. A secure multiparty computation solution to intersection problems of sets and rectangles. Progress in Natural Science, 16(5):538–545, 2006spa
dc.relation.referencesSebastian Thrun et al. Robotic mapping: A survey. Exploring artificial intelligence in the new millennium, 1(1-35):1, 2002spa
dc.relation.referencesRobert Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on Computing, 1(2):146–160, 1972spa
dc.relation.referencesSebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics. MIT press, 2005.spa
dc.relation.referencesSebastian Thrun. Probabilistic algorithms in robotics. AI Magazine, 21(4):93–93, 2000.spa
dc.relation.referencesA. J. Titus, S. Kishore, T. Stavish, S. M. Rogers, and K. Ni. PySEAL: A Python wrapper implementation of the SEAL homomorphic encryption library. ArXiv e-prints, March 2018spa
dc.relation.referencesRuss Tedrake, Ian R Manchester, Mark Tobenkin, and John W Roberts. LQR-trees: Feedback motion planning via sums-of-squares verification. The International Journal of Robotics Research, 29(8):1038–1052, 2010.spa
dc.relation.referencesBen Upcroft, M.F. Ridley, L. Ong, B. Douillard, T. Kaupp, S. Kumar, T.A. Bailey, Fabio Ramos, A. Makarenko, A. Brooks, S. Sukkarieh, and H F Durrant-Whyte. Multi-level state estimation in an outdoor decentralised sensor network. Springer Tracts in Advanced Robotics - Experimental Robotics, 39:355 – 365, 2008spa
dc.relation.referencesAntonio AC Vieira, Luis MS Dias, Guilherme AB Pereira, Jos´e A Oliveira, Maria Do Sameiro Carvalho, and Paulo Martins. Simulation model generation for warehouse management: Case study to test different storage strategies. International Journal of Simulation and Process Modelling, 13(4):324–336, 2018.spa
dc.relation.referencesUlrich Viereck, Andreas Pas, Kate Saenko, and Robert Platt. Learning a visuomotor controller for real world robotic grasping using simulated depth images. In Sergey Levine, Vincent Vanhoucke, and Ken Goldberg, editors, Proceedings of the 1st Annual Conference on Robot Learning, volume 78 of Proceedings of Machine Learning Research, pages 291–300. PMLR, 13–15 Nov 2017.spa
dc.relation.referencesFlorian Wirnshofer, Philipp S. Schmitt, Wendelin Feiten, Georg v. Wichert, and Wolfram Burgard. Robust, Compliant Assembly via Optimal Belief Space Planning. 11 2018.spa
dc.relation.referencesDustin J Webb and Jur Van Den Berg. Kinodynamic RRT*: Asymptotically optimal motion planning for robots with linear dynamics. In Proceedings of IEEE International Conference on Robotics and Automation, pages 5054– 5061, 2013.spa
dc.relation.referencesWencen Wu and Fumin Zhang. Cooperative exploration of level surfaces of three dimensional scalar fields. Automatica, 47(9):2044–2051, September 2011.spa
dc.relation.referencesFu-Rui Xiong, Zhi-Chang Qin, Yang Xue, Oliver Sch¨utze, Qian Ding, and Jian-Qiao Sun. Multi-objective optimal design of feedback controls for dynamical systems with hybrid simple cell mapping algorithm. Communications in Nonlinear Science and Numerical Simulation, 19(5):1465–1473, 5 2014.spa
dc.relation.referencesAndrew C Yao. Protocols for secure computations. In Proceedings of the 23rd Annual Symposium on Foundations of Computer Science, pages 160– 164, 1982spa
dc.relation.referencesAndrew Chi-Chih Yao. How to generate and exchange secrets. In Proceedings of the 27th Annual Symposium on Foundations of Computer Science, pages 162–167, 1986spa
dc.relation.referencesDmitry S. Yershov and Emilio Frazzoli. Asymptotically optimal feedback planning using a numerical Hamilton-Jacobi-Bellman solver and an adaptive mesh refinement. The International Journal of Robotics Research, 35(5):565– 584, 4 2016.spa
dc.relation.referencesDmitry S Yershov and Emilio Frazzoli. Asymptotically optimal feedback planning using a numerical Hamilton-Jacobi-Bellman solver and an adaptive mesh refinement. The International Journal of Robotics Research, 35(5):565– 584, 2016spa
dc.relation.referencesFumin Zhang, D. M. Fratantoni, Derek Paley, J. Lund, and Naomi E. Leonard. Control of coordinated patterns for ocean sampling. International Journal of Control, 80(7):1186 – 1199, 2007.spa
dc.relation.referencesY Zhang, M A Godin, J G Bellingham, and J P Ryan. Using an Autonomous Underwater Vehicle to Track a Coastal Upwelling Front. IEEE Journal of Oceanic Engineering, 37(3):338–347, July 2012.spa
dc.relation.referencesLiangjun Zhang, Steven M LaValle, and Dinesh Manocha. Global vector field computation for feedback motion planning. In Proceedings of IEEE International Conference on Robotics and Automation, pages 477–482, 2009.spa
dc.relation.referencesWenshuai Zhao, Jorge Pe˜na Queralta, and Tomi Westerlund. Sim-to-real transfer in deep reinforcement learning for robotics: a survey. In 2020 IEEE Symposium Series on Computational Intelligence (SSCI), pages 737–744. IEEE, 2020spa
dc.relation.referencesYulin Zhang and Dylan A Shell. Complete characterization of a class of privacy-preserving tracking problems. International Journal of Robotics Research, 2018.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computaciónspa
dc.subject.lembINGENIERIA-APARATOS E INSTRUMENTOSspa
dc.subject.lembEngineering instrumentseng
dc.subject.proposalMotion Planningeng
dc.subject.proposalSim-to-realeng
dc.subject.proposalDynamical Systemseng
dc.subject.proposalSLAMeng
dc.subject.proposalAquatic Vehicleseng
dc.subject.proposalPlaneación de movimientospa
dc.subject.proposalSimuladoresspa
dc.subject.proposalSistemas dinámicosspa
dc.subject.proposalSLAM
dc.subject.proposalVehículos acuáticosspa
dc.titlePlanning under uncertainty using a dynamical systems approach for autonomous vehicleseng
dc.title.translatedPlaneación bajo incertidumbre usando una aproximación de los sistemas dinámicos para vehículos autónomosspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
80882583.2022.pdf
Tamaño:
7.15 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería - Ingeniería de Sistemas y Computación

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: