Evaluación técnica de un reactor auger para el proceso de pirólisis rápida de biomasa

dc.contributor.advisorChejne Janna, Faridspa
dc.contributor.authorPeña Sterling, Daniel Estebanspa
dc.contributor.researchgroupTermodinámica Aplicada y Energías Alternativasspa
dc.date.accessioned2024-05-27T21:43:09Z
dc.date.available2024-05-27T21:43:09Z
dc.date.issued2023
dc.descriptionilustraciones, diagramasspa
dc.description.abstractSe demostró a través del modelamiento y simulación que un reactor auger es una alternativa tecnológica viable para obtener biocombustibles con rendimientos de hasta el 65% mediante el proceso de pirólisis rápida de biomasa. Se comparó inicialmente con diferentes reactores usados actualmente en la industria, identificando sus ventajas y desventajas. Posteriormente, se modela la reacción química en el reactor asumiendo el comportamiento de flujo pistón, en estado estacionario y con el uso de balines de acero como elemento transportador de calor. Se soluciona numéricamente el modelo y se usaron datos tomados de literatura para realizar un análisis paramétrico, permitiendo determinar que la temperatura de reacción y el diámetro de partícula de biomasa tienen alta incidencia en el rendimiento de productos alcanzados. Se prueba el modelo usando datos experimentales de la literatura, encontrando buen ajuste para ciertas condiciones de operación, con una desviación media relativa de hasta 7.2 %. (Texto tomado de la fuente).spa
dc.description.abstractThrough modeling and simulation, it was demonstrated that an auger reactor is a viable technological alternative for obtaining biofuels with yields of up to 65% through the fast pyrolysis process of biomass. It was initially compared with different reactors currently used in the industry, identifying their advantages and disadvantages. Subsequently, the chemical reaction in the reactor was modeled assuming piston flow behavior in a steady state and using steel pellets as a heat-carrying element. The model was numerically solved, and literature data were used to conduct a parametric analysis, allowing the determination that the reaction temperature and biomass particle diameter have a high impact on the achieved product yields. The model was tested using experimental data from the literature, showing a good fit for certain operating conditions, with a relative mean deviation of up to 7.2%.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería Químicaspa
dc.description.researchareaModelamiento y simulación de procesosspa
dc.format.extentxvi, 57 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86168
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Químicaspa
dc.relation.referencesAfanasjeva, N., Castillo, L. C., & Sinisterra, J. C. (2018). Review Biomasa lignocelulósica . Parte II : Tendencias en la pirólisis de biomasa. Journal of Science with Technological Applications, 5(2018), 4–22. https://doi.org/10.34294/j.jsta.18.5.31 %7Cspa
dc.relation.referencesAndrés Obando, G. (2015). Condiciones de diseño de un Reactor de Pirolisis a escala de laboratorio para la obtención de Biocarbón a partir de Residuos Orgánicos Sólidos ( ROS ). Repositorio RIDUM, 1, 83. https://ridum.umanizales.edu.co/jspui/bitstream/20.500.12746/2590/1/informe final trabajo investigacion Gabriel_Obando_2016.pdfspa
dc.relation.referencesAnex, R. P., Aden, A., Kazi, F. K., Fortman, J., Swanson, R. M., Wright, M. M., Satrio, J. A., Brown, R. C., Daugaard, D. E., Platon, A., Kothandaraman, G., Hsu, D. D., & Dutta, A. (2010). Techno-economic comparison of biomass-to-transportation fuels via pyrolysis, gasification, and biochemical pathways. Fuel, 89(SUPPL. 1), S29–S35. https://doi.org/10.1016/j.fuel.2010.07.015spa
dc.relation.referencesAramideh, S., Xiong, Q., Kong, S. C., & Brown, R. C. (2015). Numerical simulation of biomass fast pyrolysis in an auger reactor. Fuel, 156, 234–242. https://doi.org/10.1016/j.fuel.2015.04.038spa
dc.relation.referencesAschjem, C. W. S. (2019). Modeling and optimization of pyrolysis reactors. Norwegian University of Life Science, 20. http://hdl.handle.net/11250/2608647spa
dc.relation.referencesAylón, E., Fernández-Colino, A., Navarro, M. V., Murillor, R., García, T., & Mastral, A. M. (2008). Waste tire pyrolysis: Comparison between fixed bed reactor and moving bed reactor. Industrial and Engineering Chemistry Research, 47(12), 4029–4033. https://doi.org/10.1021/ie071573ospa
dc.relation.referencesBohn, M. S., & Benham, C. B. (1984). Biomass Pyrolysis with an Entrained Flow Reactor. Industrial and Engineering Chemistry Process Design and Development, 23(2), 355–363. https://doi.org/10.1021/i200025a030spa
dc.relation.referencesBrassard, P., Godbout, S., & Raghavan, V. (2017). Pyrolysis in auger reactors for biochar and bio-oil production: A review. Biosystems Engineering, 161, 80–92. https://doi.org/10.1016/j.biosystemseng.2017.06.020spa
dc.relation.referencesBridgwater, A. V., Meier, D., & Radlein, D. (1999). An overview of fast pyrolysis of biomass. Organic Geochemistry, 1479–1493. https://doi.org/10.1016/j.jinorgbio.2016.11.027spa
dc.relation.referencesBridgwater, A. V. (2012). Review of fast pyrolysis of biomass and product upgrading. Biomass and Bioenergy, 38, 68–94. https://doi.org/10.1016/j.biombioe.2011.01.048spa
dc.relation.referencesBritish Petroleum. (2022). BP Statistical Review of World Energy 2022,( 71st edition). Https://Www.Bp.Com/Content/Dam/Bp/Business-Sites/En/Global/Corporate/Pdfs/Energy-Economics/Statistical-Review/Bp-Stats-Review-2022-Full-Report.Pdf, 1–60. https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2022-full-report.pdfspa
dc.relation.referencesCalonaci, M., Grana, R., Barker Hemings, E., Bozzano, G., Dente, M., & Ranzi, E. (2010). Comprehensive kinetic modeling study of bio-oil formation from fast pyrolysis of biomass. Energy and Fuels, 24(10), 5727–5734. https://doi.org/10.1021/ef1008902spa
dc.relation.referencesCampuzano, F., Brown, R. C., & Martínez, J. D. (2019). Auger reactors for pyrolysis of biomass and wastes. Renewable and Sustainable Energy Reviews, 102(December 2018), 372–409. https://doi.org/10.1016/j.rser.2018.12.014spa
dc.relation.referencesChan, W. C. R., Kelbon, M., & Krieger, B. B. (1985). Modelling and experimental verification of physical and chemical processes during pyrolysis of a large biomass particle. Fuel, 64(11), 1505–1513. https://doi.org/10.1016/0016-2361(85)90364-3spa
dc.relation.referencesCodignole Luz, F., Cordiner, S., Manni, A., Mulone, V., & Rocco, V. (2017). Pyrolysis in screw reactors: A 1-D numerical tool. Energy Procedia, 126, 683–689. https://doi.org/10.1016/j.egypro.2017.08.297spa
dc.relation.referencesDi Blasi, C. (2009). Combustion and gasification rates of lignocellulosic chars. Progress in Energy and Combustion Science, 35(2), 121–140. https://doi.org/10.1016/j.pecs.2008.08.001spa
dc.relation.referencesFunke, A., Grandl, R., Ernst, M., & Dahmen, N. (2018). Modelling and improvement of heat transfer coefficient in auger type reactors for fast pyrolysis application. Chemical Engineering and Processing - Process Intensification, 130(May), 67–75. https://doi.org/10.1016/j.cep.2018.05.023spa
dc.relation.referencesGarcia-Nunez, J. A., Pelaez-Samaniego, M. R., Garcia-Perez, M. E., Fonts, I., Abrego, J., Westerhof, R. J. M., & Garcia-Perez, M. (2017). Historical Developments of Pyrolysis Reactors: A Review. In Energy and Fuels (Vol. 31, Issue 6). https://doi.org/10.1021/acs.energyfuels.7b00641spa
dc.relation.referencesJahirul, M. I., Rasul, M. G., Chowdhury, A. A., & Ashwath, N. (2012). Biofuels production through biomass pyrolysis- A technological review. Energies, 5(12), 4952–5001. https://doi.org/10.3390/en5124952spa
dc.relation.referencesJalalifar, S., Abbassi, R., Garaniya, V., Salehi, F., Papari, S., Hawboldt, K., & Strezov, V. (2020). CFD analysis of fast pyrolysis process in a pilot-scale auger reactor. Fuel, 273(March), 117782. https://doi.org/10.1016/j.fuel.2020.117782spa
dc.relation.referencesLathouwers, D., & Bellan, J. (2001). Modeling of Biomass Pyrolysis for Hydrogen Production: The Fluidized Bed Reactor. Proceedings of the 2001 DOE Hydrogen Program Review, 1–35.spa
dc.relation.referencesLiang, P., Wang, Z., & Bi, J. (2008). Simulation of coal pyrolysis by solid heat carrier in a moving-bed pyrolyzer. Fuel, 87(4–5), 435–442. https://doi.org/10.1016/j.fuel.2007.06.022spa
dc.relation.referencesLiu, S., Xing, Y., Chen, H., Tang, P., Jiang, J., Tang, S., & Liang, B. (2017). Sustainable Reactors for Biomass Conversion Using Pyrolysis and Fermentation. In Encyclopedia of Sustainable Technologies (Vol. 3). Elsevier. https://doi.org/10.1016/B978-0-12-409548-9.10245-3spa
dc.relation.referencesMiller, R. S., & Bellan, J. (1997). A generalized biomass pyrolysis model based on superimposed cellulose, hemicellulose and lignin kinetics. Combustion Science and Technology, 126(1–6), 97–137. https://doi.org/10.1080/00102209708935670spa
dc.relation.referencesMkhize, N. M., van der Gryp, P., Danon, B., & Görgens, J. F. (2016). Effect of temperature and heating rate on limonene production from waste tyre pyrolysis. Journal of Analytical and Applied Pyrolysis, 120, 314–320. https://doi.org/10.1016/j.jaap.2016.04.019spa
dc.relation.referencesMorf, P., Hasler, P., & Nussbaumer, T. (2002). Mechanisms and kinetics of homogeneous secondary reactions of tar from continuous pyrolysis of wood chips. Fuel, 81(7), 843–853. https://doi.org/10.1016/S0016-2361(01)00216-2spa
dc.relation.referencesNachenius, R. W., Van De Wardt, T. A., Ronsse, F., & Prins, W. (2015). Residence time distributions of coarse biomass particles in a screw conveyor reactor. Fuel Processing Technology, 130(C), 87–95. https://doi.org/10.1016/j.fuproc.2014.09.039spa
dc.relation.referencesPapari, S., & Hawboldt, K. (2017). Development and Validation of a Process Model to Describe Pyrolysis of Forestry Residues in an Auger Reactor. Energy and Fuels, 31(10), 10833–10841. https://doi.org/10.1021/acs.energyfuels.7b01263spa
dc.relation.referencesPeacocke, G. V. C., & Bridgwater, A. V. (1994). Ablative plate pyrolysis of biomass for liquids. Biomass and Bioenergy, 7(1–6), 147–154. https://doi.org/10.1016/0961-9534(94)00054-Wspa
dc.relation.referencesPérez-Rodríguez, C. P., Ríos, L. A., Duarte González, C. S., Montaña, A., & García-Marroquín, C. (2023). Aprovechamiento de la biomasa residual como fuente de energía renovable en Colombia: escenario de gasificación potencial. Palmas, 44(1), 65–82.spa
dc.relation.referencesPuente, F. (2012). Cogasificación De Combustibles Fósiles Sólidos Y Orujillo Hasta El 10% En Peso, En La Central De Gasificación Integrada En Ciclo Combinado (Gicc) De Elcogas. 261. https://pdfs.semanticscholar.org/72ce/c66da2d0c2412d7c7ad0ce723f74380858f4.pdfspa
dc.relation.referencesQi, F., & Wright, M. M. (2020). A DEM modeling of biomass fast pyrolysis in a double auger reactor. International Journal of Heat and Mass Transfer, 150. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119308spa
dc.relation.referencesRoy, P., & Dias, G. (2017). Prospects for pyrolysis technologies in the bioenergy sector: A review. Renewable and Sustainable Energy Reviews, 77(March), 59–69. https://doi.org/10.1016/j.rser.2017.03.136spa
dc.relation.referencesShi, X., Ronsse, F., Nachenius, R., & Pieters, J. G. (2019). 3D Eulerian-Eulerian modeling of a screw reactor for biomass thermochemical conversion. Part 2: Slow pyrolysis for char production. Renewable Energy, 143, 1477–1487. https://doi.org/10.1016/j.renene.2019.05.088spa
dc.relation.referencesSun, S., Tian, H., Zhao, Y., Sun, R., & Zhou, H. (2010). Experimental and numerical study of biomass flash pyrolysis in an entrained flow reactor. Bioresource Technology, 101(10), 3678–3684. https://doi.org/10.1016/j.biortech.2009.12.092spa
dc.relation.referencesVan de Velden, M., Baeyens, J., Brems, A., Janssens, B., & Dewil, R. (2010). Fundamentals, kinetics and endothermicity of the biomass pyrolysis reaction. Renewable Energy, 35(1), 232–242. https://doi.org/10.1016/j.renene.2009.04.019spa
dc.relation.referencesWagenaar, B. M., Prins, W., & van Swaaij, W. P. M. (1994). Pyrolysis of biomass in the rotating cone reactor: modelling and experimental justification. Chemical Engineering Science, 49(24), 5109–5126. https://doi.org/10.1016/0009-2509(94)00392-0spa
dc.relation.referencesZhang, T., Zhou, Y., Li, L., Zhao, Y., De Felici, M., Reiter, R. J., & Shen, W. (2018). Melatonin protects prepuberal testis from deleterious effects of bisphenol A or diethylhexyl phthalate by preserving H3K9 methylation. Journal of Pineal Research, 65(2), 67–77. https://doi.org/10.1111/jpi.12497spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.agrovocDegradación térmicaspa
dc.subject.agrovocthermal degradationeng
dc.subject.agrovocBiocarburantespa
dc.subject.agrovocbiofuelseng
dc.subject.agrovocreactor químicospa
dc.subject.agrovocchemical reactoreng
dc.subject.ddc660 - Ingeniería química::661 - Tecnología de químicos industrialesspa
dc.subject.proposalPirólisis rápidaspa
dc.subject.proposalBiomasaspa
dc.subject.proposalReactor augerspa
dc.subject.proposalModelo de flujo pistónspa
dc.subject.proposalFast pyrolysiseng
dc.subject.proposalBiomasseng
dc.subject.proposalAuger reactoreng
dc.subject.proposalPlug flow modeleng
dc.titleEvaluación técnica de un reactor auger para el proceso de pirólisis rápida de biomasaspa
dc.title.translatedTechnical evaluation of an auger reactor for the fast biomass pyrolysis processeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1084899154.2023.pdf
Tamaño:
2.5 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: