Evaluación técnica de un reactor auger para el proceso de pirólisis rápida de biomasa
dc.contributor.advisor | Chejne Janna, Farid | spa |
dc.contributor.author | Peña Sterling, Daniel Esteban | spa |
dc.contributor.researchgroup | Termodinámica Aplicada y Energías Alternativas | spa |
dc.date.accessioned | 2024-05-27T21:43:09Z | |
dc.date.available | 2024-05-27T21:43:09Z | |
dc.date.issued | 2023 | |
dc.description | ilustraciones, diagramas | spa |
dc.description.abstract | Se demostró a través del modelamiento y simulación que un reactor auger es una alternativa tecnológica viable para obtener biocombustibles con rendimientos de hasta el 65% mediante el proceso de pirólisis rápida de biomasa. Se comparó inicialmente con diferentes reactores usados actualmente en la industria, identificando sus ventajas y desventajas. Posteriormente, se modela la reacción química en el reactor asumiendo el comportamiento de flujo pistón, en estado estacionario y con el uso de balines de acero como elemento transportador de calor. Se soluciona numéricamente el modelo y se usaron datos tomados de literatura para realizar un análisis paramétrico, permitiendo determinar que la temperatura de reacción y el diámetro de partícula de biomasa tienen alta incidencia en el rendimiento de productos alcanzados. Se prueba el modelo usando datos experimentales de la literatura, encontrando buen ajuste para ciertas condiciones de operación, con una desviación media relativa de hasta 7.2 %. (Texto tomado de la fuente). | spa |
dc.description.abstract | Through modeling and simulation, it was demonstrated that an auger reactor is a viable technological alternative for obtaining biofuels with yields of up to 65% through the fast pyrolysis process of biomass. It was initially compared with different reactors currently used in the industry, identifying their advantages and disadvantages. Subsequently, the chemical reaction in the reactor was modeled assuming piston flow behavior in a steady state and using steel pellets as a heat-carrying element. The model was numerically solved, and literature data were used to conduct a parametric analysis, allowing the determination that the reaction temperature and biomass particle diameter have a high impact on the achieved product yields. The model was tested using experimental data from the literature, showing a good fit for certain operating conditions, with a relative mean deviation of up to 7.2%. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería - Ingeniería Química | spa |
dc.description.researcharea | Modelamiento y simulación de procesos | spa |
dc.format.extent | xvi, 57 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/86168 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Química | spa |
dc.relation.references | Afanasjeva, N., Castillo, L. C., & Sinisterra, J. C. (2018). Review Biomasa lignocelulósica . Parte II : Tendencias en la pirólisis de biomasa. Journal of Science with Technological Applications, 5(2018), 4–22. https://doi.org/10.34294/j.jsta.18.5.31 %7C | spa |
dc.relation.references | Andrés Obando, G. (2015). Condiciones de diseño de un Reactor de Pirolisis a escala de laboratorio para la obtención de Biocarbón a partir de Residuos Orgánicos Sólidos ( ROS ). Repositorio RIDUM, 1, 83. https://ridum.umanizales.edu.co/jspui/bitstream/20.500.12746/2590/1/informe final trabajo investigacion Gabriel_Obando_2016.pdf | spa |
dc.relation.references | Anex, R. P., Aden, A., Kazi, F. K., Fortman, J., Swanson, R. M., Wright, M. M., Satrio, J. A., Brown, R. C., Daugaard, D. E., Platon, A., Kothandaraman, G., Hsu, D. D., & Dutta, A. (2010). Techno-economic comparison of biomass-to-transportation fuels via pyrolysis, gasification, and biochemical pathways. Fuel, 89(SUPPL. 1), S29–S35. https://doi.org/10.1016/j.fuel.2010.07.015 | spa |
dc.relation.references | Aramideh, S., Xiong, Q., Kong, S. C., & Brown, R. C. (2015). Numerical simulation of biomass fast pyrolysis in an auger reactor. Fuel, 156, 234–242. https://doi.org/10.1016/j.fuel.2015.04.038 | spa |
dc.relation.references | Aschjem, C. W. S. (2019). Modeling and optimization of pyrolysis reactors. Norwegian University of Life Science, 20. http://hdl.handle.net/11250/2608647 | spa |
dc.relation.references | Aylón, E., Fernández-Colino, A., Navarro, M. V., Murillor, R., García, T., & Mastral, A. M. (2008). Waste tire pyrolysis: Comparison between fixed bed reactor and moving bed reactor. Industrial and Engineering Chemistry Research, 47(12), 4029–4033. https://doi.org/10.1021/ie071573o | spa |
dc.relation.references | Bohn, M. S., & Benham, C. B. (1984). Biomass Pyrolysis with an Entrained Flow Reactor. Industrial and Engineering Chemistry Process Design and Development, 23(2), 355–363. https://doi.org/10.1021/i200025a030 | spa |
dc.relation.references | Brassard, P., Godbout, S., & Raghavan, V. (2017). Pyrolysis in auger reactors for biochar and bio-oil production: A review. Biosystems Engineering, 161, 80–92. https://doi.org/10.1016/j.biosystemseng.2017.06.020 | spa |
dc.relation.references | Bridgwater, A. V., Meier, D., & Radlein, D. (1999). An overview of fast pyrolysis of biomass. Organic Geochemistry, 1479–1493. https://doi.org/10.1016/j.jinorgbio.2016.11.027 | spa |
dc.relation.references | Bridgwater, A. V. (2012). Review of fast pyrolysis of biomass and product upgrading. Biomass and Bioenergy, 38, 68–94. https://doi.org/10.1016/j.biombioe.2011.01.048 | spa |
dc.relation.references | British Petroleum. (2022). BP Statistical Review of World Energy 2022,( 71st edition). Https://Www.Bp.Com/Content/Dam/Bp/Business-Sites/En/Global/Corporate/Pdfs/Energy-Economics/Statistical-Review/Bp-Stats-Review-2022-Full-Report.Pdf, 1–60. https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2022-full-report.pdf | spa |
dc.relation.references | Calonaci, M., Grana, R., Barker Hemings, E., Bozzano, G., Dente, M., & Ranzi, E. (2010). Comprehensive kinetic modeling study of bio-oil formation from fast pyrolysis of biomass. Energy and Fuels, 24(10), 5727–5734. https://doi.org/10.1021/ef1008902 | spa |
dc.relation.references | Campuzano, F., Brown, R. C., & Martínez, J. D. (2019). Auger reactors for pyrolysis of biomass and wastes. Renewable and Sustainable Energy Reviews, 102(December 2018), 372–409. https://doi.org/10.1016/j.rser.2018.12.014 | spa |
dc.relation.references | Chan, W. C. R., Kelbon, M., & Krieger, B. B. (1985). Modelling and experimental verification of physical and chemical processes during pyrolysis of a large biomass particle. Fuel, 64(11), 1505–1513. https://doi.org/10.1016/0016-2361(85)90364-3 | spa |
dc.relation.references | Codignole Luz, F., Cordiner, S., Manni, A., Mulone, V., & Rocco, V. (2017). Pyrolysis in screw reactors: A 1-D numerical tool. Energy Procedia, 126, 683–689. https://doi.org/10.1016/j.egypro.2017.08.297 | spa |
dc.relation.references | Di Blasi, C. (2009). Combustion and gasification rates of lignocellulosic chars. Progress in Energy and Combustion Science, 35(2), 121–140. https://doi.org/10.1016/j.pecs.2008.08.001 | spa |
dc.relation.references | Funke, A., Grandl, R., Ernst, M., & Dahmen, N. (2018). Modelling and improvement of heat transfer coefficient in auger type reactors for fast pyrolysis application. Chemical Engineering and Processing - Process Intensification, 130(May), 67–75. https://doi.org/10.1016/j.cep.2018.05.023 | spa |
dc.relation.references | Garcia-Nunez, J. A., Pelaez-Samaniego, M. R., Garcia-Perez, M. E., Fonts, I., Abrego, J., Westerhof, R. J. M., & Garcia-Perez, M. (2017). Historical Developments of Pyrolysis Reactors: A Review. In Energy and Fuels (Vol. 31, Issue 6). https://doi.org/10.1021/acs.energyfuels.7b00641 | spa |
dc.relation.references | Jahirul, M. I., Rasul, M. G., Chowdhury, A. A., & Ashwath, N. (2012). Biofuels production through biomass pyrolysis- A technological review. Energies, 5(12), 4952–5001. https://doi.org/10.3390/en5124952 | spa |
dc.relation.references | Jalalifar, S., Abbassi, R., Garaniya, V., Salehi, F., Papari, S., Hawboldt, K., & Strezov, V. (2020). CFD analysis of fast pyrolysis process in a pilot-scale auger reactor. Fuel, 273(March), 117782. https://doi.org/10.1016/j.fuel.2020.117782 | spa |
dc.relation.references | Lathouwers, D., & Bellan, J. (2001). Modeling of Biomass Pyrolysis for Hydrogen Production: The Fluidized Bed Reactor. Proceedings of the 2001 DOE Hydrogen Program Review, 1–35. | spa |
dc.relation.references | Liang, P., Wang, Z., & Bi, J. (2008). Simulation of coal pyrolysis by solid heat carrier in a moving-bed pyrolyzer. Fuel, 87(4–5), 435–442. https://doi.org/10.1016/j.fuel.2007.06.022 | spa |
dc.relation.references | Liu, S., Xing, Y., Chen, H., Tang, P., Jiang, J., Tang, S., & Liang, B. (2017). Sustainable Reactors for Biomass Conversion Using Pyrolysis and Fermentation. In Encyclopedia of Sustainable Technologies (Vol. 3). Elsevier. https://doi.org/10.1016/B978-0-12-409548-9.10245-3 | spa |
dc.relation.references | Miller, R. S., & Bellan, J. (1997). A generalized biomass pyrolysis model based on superimposed cellulose, hemicellulose and lignin kinetics. Combustion Science and Technology, 126(1–6), 97–137. https://doi.org/10.1080/00102209708935670 | spa |
dc.relation.references | Mkhize, N. M., van der Gryp, P., Danon, B., & Görgens, J. F. (2016). Effect of temperature and heating rate on limonene production from waste tyre pyrolysis. Journal of Analytical and Applied Pyrolysis, 120, 314–320. https://doi.org/10.1016/j.jaap.2016.04.019 | spa |
dc.relation.references | Morf, P., Hasler, P., & Nussbaumer, T. (2002). Mechanisms and kinetics of homogeneous secondary reactions of tar from continuous pyrolysis of wood chips. Fuel, 81(7), 843–853. https://doi.org/10.1016/S0016-2361(01)00216-2 | spa |
dc.relation.references | Nachenius, R. W., Van De Wardt, T. A., Ronsse, F., & Prins, W. (2015). Residence time distributions of coarse biomass particles in a screw conveyor reactor. Fuel Processing Technology, 130(C), 87–95. https://doi.org/10.1016/j.fuproc.2014.09.039 | spa |
dc.relation.references | Papari, S., & Hawboldt, K. (2017). Development and Validation of a Process Model to Describe Pyrolysis of Forestry Residues in an Auger Reactor. Energy and Fuels, 31(10), 10833–10841. https://doi.org/10.1021/acs.energyfuels.7b01263 | spa |
dc.relation.references | Peacocke, G. V. C., & Bridgwater, A. V. (1994). Ablative plate pyrolysis of biomass for liquids. Biomass and Bioenergy, 7(1–6), 147–154. https://doi.org/10.1016/0961-9534(94)00054-W | spa |
dc.relation.references | Pérez-Rodríguez, C. P., Ríos, L. A., Duarte González, C. S., Montaña, A., & García-Marroquín, C. (2023). Aprovechamiento de la biomasa residual como fuente de energía renovable en Colombia: escenario de gasificación potencial. Palmas, 44(1), 65–82. | spa |
dc.relation.references | Puente, F. (2012). Cogasificación De Combustibles Fósiles Sólidos Y Orujillo Hasta El 10% En Peso, En La Central De Gasificación Integrada En Ciclo Combinado (Gicc) De Elcogas. 261. https://pdfs.semanticscholar.org/72ce/c66da2d0c2412d7c7ad0ce723f74380858f4.pdf | spa |
dc.relation.references | Qi, F., & Wright, M. M. (2020). A DEM modeling of biomass fast pyrolysis in a double auger reactor. International Journal of Heat and Mass Transfer, 150. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119308 | spa |
dc.relation.references | Roy, P., & Dias, G. (2017). Prospects for pyrolysis technologies in the bioenergy sector: A review. Renewable and Sustainable Energy Reviews, 77(March), 59–69. https://doi.org/10.1016/j.rser.2017.03.136 | spa |
dc.relation.references | Shi, X., Ronsse, F., Nachenius, R., & Pieters, J. G. (2019). 3D Eulerian-Eulerian modeling of a screw reactor for biomass thermochemical conversion. Part 2: Slow pyrolysis for char production. Renewable Energy, 143, 1477–1487. https://doi.org/10.1016/j.renene.2019.05.088 | spa |
dc.relation.references | Sun, S., Tian, H., Zhao, Y., Sun, R., & Zhou, H. (2010). Experimental and numerical study of biomass flash pyrolysis in an entrained flow reactor. Bioresource Technology, 101(10), 3678–3684. https://doi.org/10.1016/j.biortech.2009.12.092 | spa |
dc.relation.references | Van de Velden, M., Baeyens, J., Brems, A., Janssens, B., & Dewil, R. (2010). Fundamentals, kinetics and endothermicity of the biomass pyrolysis reaction. Renewable Energy, 35(1), 232–242. https://doi.org/10.1016/j.renene.2009.04.019 | spa |
dc.relation.references | Wagenaar, B. M., Prins, W., & van Swaaij, W. P. M. (1994). Pyrolysis of biomass in the rotating cone reactor: modelling and experimental justification. Chemical Engineering Science, 49(24), 5109–5126. https://doi.org/10.1016/0009-2509(94)00392-0 | spa |
dc.relation.references | Zhang, T., Zhou, Y., Li, L., Zhao, Y., De Felici, M., Reiter, R. J., & Shen, W. (2018). Melatonin protects prepuberal testis from deleterious effects of bisphenol A or diethylhexyl phthalate by preserving H3K9 methylation. Journal of Pineal Research, 65(2), 67–77. https://doi.org/10.1111/jpi.12497 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.agrovoc | Degradación térmica | spa |
dc.subject.agrovoc | thermal degradation | eng |
dc.subject.agrovoc | Biocarburante | spa |
dc.subject.agrovoc | biofuels | eng |
dc.subject.agrovoc | reactor químico | spa |
dc.subject.agrovoc | chemical reactor | eng |
dc.subject.ddc | 660 - Ingeniería química::661 - Tecnología de químicos industriales | spa |
dc.subject.proposal | Pirólisis rápida | spa |
dc.subject.proposal | Biomasa | spa |
dc.subject.proposal | Reactor auger | spa |
dc.subject.proposal | Modelo de flujo pistón | spa |
dc.subject.proposal | Fast pyrolysis | eng |
dc.subject.proposal | Biomass | eng |
dc.subject.proposal | Auger reactor | eng |
dc.subject.proposal | Plug flow model | eng |
dc.title | Evaluación técnica de un reactor auger para el proceso de pirólisis rápida de biomasa | spa |
dc.title.translated | Technical evaluation of an auger reactor for the fast biomass pyrolysis process | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1084899154.2023.pdf
- Tamaño:
- 2.5 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Ingeniería Química
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: