Design of Fault Tolerant Embedded Systems using Approximate Computing Techniques.

dc.contributor.advisorRestrepo Calle, Felipe
dc.contributor.advisorPedraza Bonilla, Cesar Augusto
dc.contributor.authorAponte Moreno, John Alexander
dc.contributor.cvlacAponte Moreno, Alexander[0001095072]spa
dc.contributor.googlescholarAponte Moreno, Alexander[9kAWQNMAAAAJ]spa
dc.contributor.orcidAponte Moreno, Alexander[0000-0002-4569-0733]spa
dc.contributor.researchgroupPlas Programming languages And Systemsspa
dc.contributor.scopusAponte Moreno, Alexander[57203206767]spa
dc.date.accessioned2023-11-28T16:42:24Z
dc.date.available2023-11-28T16:42:24Z
dc.date.issued2023-11-08
dc.descriptionilustraciones, diagramas, fotografíasspa
dc.description.abstractDue to technological scaling, the susceptibility of modern systems to radiation effects has been steadily increasing. Consequently, it has become essential to protect systems against such faults. While these faults, referred to as soft errors, can be transient rather than permanent, they can disrupt system behavior, leading to malfunctions or crashes in electronic systems. Researchers have proposed fault tolerance techniques encompassing various approaches to address this problem. These techniques range from modifying chip materials and manufacturing processes to alternative design-level solutions. Such design-level alternatives include mitigation approaches based on hardware, software, or a combination of both, commonly known as hybrid methods. However, many of these techniques rely on redundancy, which imposes significant computational overhead. To address this challenge, Approximate Computing (AC) techniques have gained attention as an alternative to reduce the overhead associated with transient faults mitigation. These proposals have demonstrated that AC can improve efficiency by balancing fault coverage, overheads, and result accuracy. However, most of these proposals focus primarily on the circuit level, requiring physical modifications to the system or specific implementation requirements tailored to particular solutions. In this thesis, we present FTxAC, a novel strategy for designing radiation-induced fault-tolerant embedded systems that aims to reduce overheads. This strategy involves the use of approximate computing techniques in conjunction with radiation-induced fault mitigation strategies. FTxAC exhibits flexibility to incorporate various AC techniques and fault mitigation strategies. The proposed method has been thoroughly validated, considering reliability, result precision, and overheads. Fault injection experiments were conducted on four case studies encompassing various AC techniques and fault tolerance strategies. The results of these tests confirm the effectiveness of the presented design strategy. The improvements achieved in the approximation stage compensate for the overheads incurred in the hardening process. (Texto tomado de la fuente)eng
dc.description.abstractDebido a la escala tecnológica, la susceptibilidad de los sistemas modernos a los efectos de la radiación ha aumentado constantemente. En consecuencia, se ha vuelto esencial proteger los sistemas contra tales fallos. Si bien estos fallos, denominados \textit{soft errors}, pueden ser transitorios en lugar de permanentes, pueden alterar el comportamiento del sistema y provocar mal funcionamiento o fallas en los sistemas electrónicos. Los investigadores han propuesto técnicas de tolerancia a fallos que abarcan varios enfoques para abordar este problema. Estas técnicas van desde la modificación de materiales de chips y procesos de fabricación hasta soluciones alternativas a nivel de diseño. Estas alternativas a nivel de diseño incluyen enfoques de mitigación basados en hardware, software o una combinación de ambos, comúnmente conocidos como métodos híbridos. Sin embargo, muchas de estas técnicas se basan en la redundancia, lo que impone una importante sobrecarga computacional. Para abordar este desafío, las técnicas de Computación Aproximada (CA) han llamado la atención como una alternativa para reducir los sobrecostos asociados con la mitigación de fallos transitorios. Estas propuestas han demostrado que la CA puede mejorar la eficiencia al equilibrar la cobertura de fallas, los sobrecostos y la precisión de los resultados. Sin embargo, la mayoría de estas propuestas se centran principalmente en el nivel de circuito, lo que requiere modificaciones físicas en el sistema o requisitos de implementación específicos adaptados a soluciones particulares. En esta tesis, presentamos FTxAC, una estrategia novedosa para diseñar sistemas embebidos tolerantes a fallos inducidos por radiación que tiene como objetivo reducir los sobrecostos. Esta estrategia implica el uso de técnicas de computación aproximada junto con estrategias de mitigación de fallos inducidas por radiación. FTxAC muestra flexibilidad para incorporar varias técnicas de CA y estrategias de mitigación de fallos. El método propuesto ha sido validado exhaustivamente, considerando la confiabilidad, la precisión de los resultados y los sobrecostos. Se realizaron experimentos de inyección de fallos en cuatro estudios de caso que abarcan diversas técnicas de CA y estrategias de tolerancia a fallos. Los resultados de estas pruebas confirman la efectividad de la estrategia de diseño presentada. Las mejoras logradas en la etapa de aproximación compensan los sobrecostos incurridos en el proceso de endurecimiento.spa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctorado en Ingeniería - Sistemas y Computaciónspa
dc.description.researchareaComputación aplicadaspa
dc.format.extentxviii, 135 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85008
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Sistemas y Computaciónspa
dc.relation.referencesAamodt, T. M. and Chow, P. (2008). Compile-time and instruction-set methods for improving floating-to fixed-point conversion accuracy. ACM Transactions on Embedded Computing Systems, 7(3):1–27.spa
dc.relation.referencesAEC (2014). FAILURE MECHANISM BASED STRESS TEST QUALIFICATION FOR INTEGRATED CIRCUITS Automotive Electronics Council Rev-H.spa
dc.relation.referencesAgarwal, A., Rinard, M., Sidiroglou, S., Misailovic, S., and Hoffmann, H. (2009). Using Code Perforation to Improve Performance, Reduce Energy Consumption, and Respond to Failures. Technical report, MIT.spa
dc.relation.referencesAlaghi, A. and Hayes, J. P. (2015). STRAUSS: Spectral Transform Use in Stochastic Circuit Synthesis. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 34(11):1770–1783.spa
dc.relation.referencesAponte-Moreno, A., Isaza-Gonzalez, J., Serrano-Cases, A., Martinez-Alvarez, A., Cuenca-Asensi, S., and Restrepo-Calle, F. (2020). An experimental comparison of fault injection tools for microprocessor-based systems. In 21st IEEE Latin-American Test Symposium, LATS 2020.spa
dc.relation.referencesAponte-Moreno, A., Isaza-González, J., Serrano-Cases, A., Martínez-Álvarez, A., Cuenca-Asensi, S., and Restrepo-Calle, F. (2023). Evaluation of fault injection tools for reliability estimation of microprocessor-based embedded systems. Microprocessors and Microsystems, 96:104723.spa
dc.relation.referencesAponte-Moreno, A., Moncada, A., Restrepo-Calle, F., and Pedraza, C. (2018). A review of approximate computing techniques towards fault mitigation in HW/SW systems. In 2018 IEEE 19th Latin- American Test Symposium (LATS), pages 1–6. IEEE.spa
dc.relation.referencesAponte-Moreno, A., Pedraza, C., and Restrepo-Calle, F. (2019a). Reducing overheads in software-based fault tolerant systems using approximate computing. In LATS 2019 - 20th IEEE Latin American Test Symposium.spa
dc.relation.referencesAponte-Moreno, A., Restrepo-Calle, F., and Pedraza, C. (2019b). A Low-Overhead Radiation Hardening Approach using Approximate Computing and Selective Fault Tolerance Techniques at the Software Level. In 2019 19th European Conference on Radiation and Its Effects on Components and Systems (RADECS), pages 1–4. IEEE.spa
dc.relation.referencesAponte-Moreno, A., Restrepo-Calle, F., and Pedraza, C. (2019c). MiFIT: A fault injection tool to validate the reliability of microprocessors. In LATS 2019 - 20th IEEE Latin American Test Symposium.spa
dc.relation.referencesAponte-Moreno, A., Restrepo-Calle, F., and Pedraza, C. (2019d). Using approximate computing and selective hardening for the reduction of overheads in the design of radiation-induced fault-tolerant systems. Electronics (Switzerland), 8.spa
dc.relation.referencesAponte-Moreno, A., Restrepo-Calle, F., and Pedraza, C. (2021a). A Low-cost Fault Tolerance Method for ARM and RISC-V Microprocessor-based Systems using Temporal Redundancy and Approximate Computing through Simplified Iterations. Journal of Integrated Circuits and Systems, 16(3):1–14.spa
dc.relation.referencesAponte-Moreno, A., Restrepo-Calle, F., and Pedraza, C. (2021b). Reliability Evaluation of RISC-V and ARM Microprocessors Through a New Fault Injection Tool. In 2021 IEEE 22nd Latin American Test Symposium (LATS), pages 1–6. IEEE.spa
dc.relation.referencesAponte-Moreno, A., Restrepo-Calle, F., and Pedraza, C. A. (2021c). FTxAC: Leveraging the Approximate Computing Paradigm in the Design of Fault-Tolerant Embedded Systems to Reduce Overheads. IEEE Transactions on Emerging Topics in Computing, 9(2):797–810.spa
dc.relation.referencesArifeen, T., Hassan, A. S., Moradian, H., and Lee, J. A. (2016). Probing Approximate TMR in Error Resilient Applications for Better Design Tradeoffs. In Proceedings - 19th Euromicro Conference on Digital System Design, DSD 2016, pages 637–640.spa
dc.relation.referencesARM (2023). Arm ref. manual.spa
dc.relation.referencesAugustin, M., Gossel, M., and Kraemer, R. (2011). Implementation of Selective Fault Tolerance with conventional synthesis tools. In 14th IEEE International Symposium on Design and Diagnostics of Electronic Circuits and Systems, pages 213–218. IEEE.spa
dc.relation.referencesAvizienis, A. (1985). The N-Version Approach to Fault-Tolerant Software. IEEE Transactions on Software Engineering, SE-11(12):1491–1501.spa
dc.relation.referencesAzambuja, J. R., Lapolli, Â., Rosa, L., and Kastensmidt, F. L. (2011a). Detecting SEEs in microprocessors through a non-intrusive hybrid technique. IEEE Transactions on Nuclear Science, 58(3 PART 2):993–1000.spa
dc.relation.referencesAzambuja, J. R., Pagliarini, S., Rosa, L., and Kastensmidt, F. L. (2011b). Exploring the Limitations of Software-based Techniques in SEE Fault Coverage. Journal of Electronic Testing, 27(4):541–550.spa
dc.relation.referencesBaek, W. and Chilimbi, T. M. (2010). Green: A Framework for Supporting Energy-Conscious Programming using Controlled Approximation. ACM SIGPLAN Notices, 45(6):198–209.spa
dc.relation.referencesBaharvand, F. and Miremadi, S. G. (2020). Lexact: Low energy n-modular redundancy using approximate computing for real-time multicore processors. IEEE Transactions on Emerging Topics in Computing, 8(2):431–441.spa
dc.relation.referencesBarr, M. and Massa, A. (2006). Programming embedded systems: with C and GNU development tools. O’Reilly Media, 2 edition.spa
dc.relation.referencesBellard, F. (2005). QEMU, a Fast and Portable Dynamic Translator. In USENIX Annual Technical Conf, pages 41–46.spa
dc.relation.referencesBenso, A., Di Carlo, S., Di Natale, G., Prinetto, P., and Tagliaferri, L. (2001). Control-flow checking via regular expressions. In Proceedings 10th Asian Test Symposium, pages 299–303. IEEE.spa
dc.relation.referencesBernardi, P., Bolzani Poehls, L., Grosso, M., and Sonza Reorda, M. (2010). A Hybrid Approach for Detection and Correction of Transient Faults in SoCs. IEEE Transactions on Dependable and Secure Computing, 7(4):439–445.spa
dc.relation.referencesBohman, M., James, B., Wirthlin, M. J., Quinn, H., and Goeders, J. (2019). Microcontroller compiler-assisted software fault tolerance. IEEE Transactions on Nuclear Science, 66(1):223–232.spa
dc.relation.referencesBoston, B., Sampson, A., Grossman, D., and Ceze, L. (2015). Probability type inference for flexible approximate programming. In Proceedings of the 2015 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and Applications, pages 470–487, New York, NY, USA. ACM.spa
dc.relation.referencesCarbin, M., Misailovic, S., and Rinard, M. C. (2013). Verifying quantitative reliability for programs that execute on unreliable hardware. In Proceedings of the 2013 ACM SIGPLAN international conference on Object oriented programming systems languages & applications, pages 33–52, New York, NY, USA. ACM.spa
dc.relation.referencesChang, I. J., Mohapatra, D., and Roy, K. (2011). A Priority-Based 6T/8T Hybrid SRAM Architecture for Aggressive Voltage Scaling in Video Applications. IEEE Transactions on Circuits and Systems for Video Technology, 21(2):101–112.spa
dc.relation.referencesChang, J., Reis, G., and August, D. (2006). Automatic instruction-level software-only recovery. In International Conference on Dependable Systems and Networks (DSN’06), pages 83–92. IEEE.spa
dc.relation.referencesChen, K., Han, J., and Lombardi, F. (2017). Two approximate voting schemes for reliable computing. IEEE Transactions on Computers, 66(7):1227–1239.spa
dc.relation.referencesChielle, E., Azambuja, J. R., Barth, R. S., Almeida, F., and Kastensmidt, F. L. (2013). Evaluating selective redundancy in data-flow software-based techniques. IEEE Transactions on Nuclear Science, 60(4):2768–2775.spa
dc.relation.referencesChippa, V. K., Mohapatra, D., Roy, K., Chakradhar, S. T., and Raghunathan, A. (2014). Scalable Effort Hardware Design. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 22(9):2004–2016.spa
dc.relation.referencesChippa, V. K., Roy, K., Chakradhar, S. T., and Raghunathan, A. (2013a). Managing the Quality vs. Efficiency Trade-off Using Dynamic Effort Scaling. ACM Transactions on Embedded Computing Systems, 12(2s):1–23.spa
dc.relation.referencesChippa, V. K., Venkataramani, S., Chakradhar, S. T., Roy, K., and Raghunathan, A. (2013b). Approximate computing: An integrated hardware approach. In 2013 Asilomar Conference on Signals, Systems and Computers, pages 111–117. IEEE.spa
dc.relation.referencesCho, H., Leem, L., and Mitra, S. (2012). ERSA: Error Resilient System Architecture for Probabilistic Applications. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 31(4):546–558.spa
dc.relation.referencesChoudhury, M. R. and Mohanram, K. (2008). Approximate logic circuits for low overhead, non-intrusive concurrent error detection. In 2008 Design, Automation and Test in Europe, pages 903–908. IEEE.spa
dc.relation.referencesClark, L. T., Patterson, D. W., Hindman, N. D., Holbert, K. E., Maurya, S., and Guertin, S. M. (2011). A Dual Mode Redundant Approach for Microprocessor Soft Error Hardness. IEEE Transactions on Nuclear Science, 58(6):3018–3025.spa
dc.relation.referencesCreswell, J. W. (2014). Research design : qualitative, quantitative, and mixed methods approaches. SAGE Publications, 4 edition.spa
dc.relation.referencesDeveautour, B., Traiola, M., Virazel, A., and Girard, P. (2020). Qamr: An approximation-based fully reliable tmr alternative for area overhead reduction. Proceedings of the European Test Workshop, 2020-May.spa
dc.relation.referencesDeveautour, B., Traiola, M., Virazel, A., and Girard, P. (2021). Reducing Overprovision of Triple Modular Reduncancy Owing to Approximate Computing. In 2021 IEEE 27th International Symposium on On-Line Testing and Robust System Design (IOLTS), pages 1–7. IEEE.spa
dc.relation.referencesDi Mascio, S., Menicucci, A., Furano, G., Monteleone, C., and Ottavi, M. (2019). The case for risc-v in space. In Saponara, S. and De Gloria, A., editors, Applications in Electronics Pervading Industry, Environment and Society, pages 319–325, Cham. Springer International Publishing.spa
dc.relation.referencesDoochul Shin and Gupta, S. K. (2011). A new circuit simplification method for error tolerant applications. In 2011 Design, Automation & Test in Europe, pages 1–6. IEEE.spa
dc.relation.referencesDubrova, E. (2013). Fault-Tolerant Design. Springer New York, New York, NY.spa
dc.relation.referencesECSS (2016). Techniques for radiation effects mitigation in ASICs and FPGAs handbook (1 September 2016) | European Cooperation for Space Standardization. ESA Requirements and Standards Division.spa
dc.relation.referencesEsmaeilzadeh, H., Sampson, A., Ceze, L., and Burger, D. (2012a). Architecture support for disciplined approximate programming. In Proceedings of the 17th international conference on Architectural Support for Programming Languages and Operating Systems - ASPLOS ’12, page 301, New York, New York, USA. ACM Press.spa
dc.relation.referencesEsmaeilzadeh, H., Sampson, A., Ceze, L., and Burger, D. (2012b). Neural Acceleration for General-Purpose Approximate Programs. In Microarchitecture (MICRO), 2012 45th Annual IEEE/ACM International Symposium. IEEE.spa
dc.relation.referencesFulton, R. and Vandermolen, R. (2014). Airborne electronic hardware design assurance : a practitioner’s guide to RTCA/DO-254. CRC Press.spa
dc.relation.referencesGala, N., Venkataramani, S., Raghunathan, A., and Kamakoti, V. (2017). Approximate Error Detection With Stochastic Checkers. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 25(8):2258–2270.spa
dc.relation.referencesGao, M. and Qu, G. (2017). A novel approximate computing based security primitive for the Internet of Things. In 2017 IEEE International Symposium on Circuits and Systems (ISCAS), pages 1–4. IEEE.spa
dc.relation.referencesGarcia-Astudillo, L. A., Entrena, L., Lindoso, A., and Martin, H. (2022). Reduced resolution redundancy: A novel approximate error mitigation technique. IEEE Access, 10:20643–20651.spa
dc.relation.referencesGoloubeva, O., Rebaudengo, M., Sonza Reorda, M., and Violante, M. (2003). Soft-error detection using control flow assertions. In Proceedings. 16th IEEE Symposium on Computer Arithmetic, pages 581–588. IEEE Comput. Soc.spa
dc.relation.referencesGomes, I. A. C. and Kastensmidt, F. G. L. (2013). Reducing TMR overhead by combining approximate circuit, transistor topology and input permutation approaches. Chip in Curitiba 2013 - SBCCI 2013: 26th Symposium on Integrated Circuits and Systems Design.spa
dc.relation.referencesGomes, I. A. C., Martins, M., Reis, A., and Kastensmidt, F. L. (2015). Using only redundant modules with approximate logic to reduce drastically area overhead in TMR. In 2015 16th Latin-American Test Symposium (LATS), pages 1–6. IEEE.spa
dc.relation.referencesGupta, V., Mohapatra, D., Raghunathan, A., and Roy, K. (2013). Low-Power Digital Signal Processing Using Approximate Adders. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 32(1):124–137.spa
dc.relation.referencesGuthaus, M. R., Ringenberg, J. S., Ernst, D., Austin, T. M., Mudge, T., and Brown, R. B. (2001). MiBench: A free, commercially representative embedded benchmark suite. Proceedings of the Workload Characterization, 2001. WWC-4. 2001 IEEE International Workshop, pages 3–14.spa
dc.relation.referencesHan, J. and Orshansky, M. (2013). Approximate computing: An emerging paradigm for energy-efficient design. Proceedings - 2013 18th IEEE European Test Symposium, ETS 2013.spa
dc.relation.referencesHe, X., Yan, G., Han, Y., and Li, X. (2016). ACR: Enabling computation reuse for approximate computing. Proceedings of the Asia and South Pacific Design Automation Conference, ASP-DAC, 25-28-Janu:643–648.spa
dc.relation.referencesHegde, R. and Shanbhag, N. (2001). Soft digital signal processing. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 9(6):813–823.spa
dc.relation.referencesHerrera-Alzu, I. and Lopez-Vallejo, M. (2013). Design Techniques for Xilinx Virtex FPGA Configuration Memory Scrubbers. IEEE Transactions on Nuclear Science, 60(1):376–385.spa
dc.relation.referencesHo, N.-M., Manogaran, E., Wong, W.-F., and Anoosheh, A. (2017). Efficient floating point precision tuning for approximate computing. In 2017 22nd Asia and South Pacific Design Automation Conference (ASP-DAC), pages 63–68. IEEE.spa
dc.relation.referencesHuang, Q. and Jiang, J. (2019). An overview of radiation effects on electronic devices under severe accident conditions in NPPs, rad-hardened design techniques and simulation tools. Progress in Nuclear Energy, 114(November 2018):105–120.spa
dc.relation.referencesIEC (2012). INTERNATIONAL STANDARD Process management for avionics – Atmospheric radiation effects – Part 1: Accommodation of atmospheric radiation effects via single event effects within avionics electronic equipment.spa
dc.relation.referencesISO (2018). ISO 26262 Functional Safety Sandards for Road Vehicles.spa
dc.relation.referencesJames, B., Quinn, H., Wirthlin, M., and Goeders, J. (2020). Applying Compiler-Automated Software Fault Tolerance to Multiple Processor Platforms. IEEE Transactions on Nuclear Science, 67(1):321–327.spa
dc.relation.referencesKarnik, T., Hazucha, P., and Patel, J. (2004). Characterization of soft errors caused by single event upsets in CMOS processes. IEEE Transactions on Dependable and Secure Computing, 1(2):128–143.spa
dc.relation.referencesKeramidas, G., Kokkala, C., and Stamoulis, I. (2015). Clumsy Value Cache: An Approximate Memoization Technique for Mobile GPU Fragment Shaders. In Workshop on Approximate Computing (WAPCO’15).spa
dc.relation.referencesKooli, M. and Di Natale, G. (2014). A survey on simulation-based fault injection tools for complex systems. 9th IEEE Int Conf on Design and Technology of Integrated Systems in Nanoscale Era, DTIS 2014, pages 1–6.spa
dc.relation.referencesLeveugle, R., Calvez, A., Maistri, P., and Vanhauwaert, P. (2009). Statistical fault injection: Quantified error and confidence. In Design, Automation & Test in Europe Conf, pages 502–506. IEEE.spa
dc.relation.referencesLiu, K., Li, Y., and Ouyang, L. (2021). Fast recoverable heterogeneous quad-core lockstep architecture. 2021 International Conference on Advanced Computing and Endogenous Security, ICACES 2021.spa
dc.relation.referencesLLVM (2023). The llvm compiler infrastructure.spa
dc.relation.referencesLotfi, A., Rahimi, A., Yazdanbakhsh, A., Esmaeilzadeh, H., and Gupta, R. K. (2016). GRATER: An Approximation Workflow for Exploiting Data-Level Parallelism in FPGA Acceleration. Design, Automation and Test in Europe (DATE). Design, Automation & Test in Europe (DATE), March 14-18, Dresden, Germany, pages 1393–1398.spa
dc.relation.referencesMahdiani, H. R., Ahmadi, A., Fakhraie, S. M., and Lucas, C. (2010). Bio-Inspired Imprecise Computational Blocks for Efficient VLSI Implementation of Soft-Computing Applications. IEEE Transactions on Circuits and Systems I: Regular Papers, 57(4):850–862.spa
dc.relation.referencesMahmood, A. and McCluskey, E. (1988). Concurrent error detection using watchdog processors-a survey. IEEE Transactions on Computers, 37(2):160–174.spa
dc.relation.referencesMartínez-Álvarez, A., Cuenca-Asensi, S., and Restrepo-Calle, F. (2016). Soft Error Mitigation in Soft-Core Processors. In Kastensmidt, F. and Rech, P., editors, FPGAs and Parallel Architectures for Aerospace Applications, chapter 16, pages 239–258. Springer International Publishing, Cham.spa
dc.relation.referencesMartinez-Alvarez, A., Cuenca-Asensi, S., Restrepo-Calle, F., Pinto, F. R. P., Guzman-Miranda, H., and Aguirre, M. A. (2012). Compiler-Directed Soft Error Mitigation for Embedded Systems. IEEE Transactions on Dependable and Secure Computing, 9(2):159–172.spa
dc.relation.referencesMartinez-Alvarez, A., Restrepo-Calle, F., Cuenca-Asensi, S., Reyneri, L. M., Lindoso, A., and Entrena, L. (2016). A Hardware-Software Approach for On-Line Soft Error Mitigation in Interrupt-Driven Applications. IEEE Transactions on Dependable and Secure Computing, 13(4):502–508.spa
dc.relation.referencesMcAfee, L. and Olukotun, K. (2015). EMEURO: A framework for generating multi-purpose accelerators via deep learning. In 2015 IEEE/ACM International Symposium on Code Generation and Optimization (CGO), pages 125–135. IEEE.spa
dc.relation.referencesMenard, D., Chillet, D., and Sentieys, O. (2006). Floating-to-Fixed-Point Conversion for Digital Signal Processors. EURASIP Journal on Advances in Signal Processing, 2006(1):096421.spa
dc.relation.referencesMiao, J., Gerstlauer, A., and Orshansky, M. (2013). Approximate logic synthesis under general error magnitude and frequency constraints. In 2013 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pages 779–786. IEEE.spa
dc.relation.referencesMisailovic, S., Carbin, M., Achour, S., Qi, Z., and Rinard, M. C. (2014). Chisel: reliability- and accuracy-aware optimization of approximate computational kernels. In Proceedings of the 2014 ACM International Conference on Object Oriented Programming Systems Languages & Applications - OOPSLA ’14, pages 309–328, New York, New York, USA. ACM Press.spa
dc.relation.referencesMisailovic, S., Sidiroglou, S., Hoffmann, H., and Rinard, M. (2010). Quality of service profiling. In Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering - ICSE ’10, volume 1, page 25, New York, New York, USA. ACM Press.spa
dc.relation.referencesMishra, A. K., Barik, R., and Paul, S. (2014). iACT: A Software-Hardware Framework for Understanding the Scope of Approximate Computing. In Wacas.spa
dc.relation.referencesMittal, S. (2016). A Survey of Techniques for Approximate Computing. ACM Computing Surveys, 48(4):1–33.spa
dc.relation.referencesMohanram, K. and Touba, N. (2003). Partial error masking to reduce soft error failure rate in logic circuits. In Proceedings 18th IEEE Symposium on Defect and Fault Tolerance in VLSI Systems, pages 433–440. IEEE Comput. Soc.spa
dc.relation.referencesMohapatra, D., Chippa, V. K., Raghunathan, A., and Roy, K. (2011). Design of voltage-scalable meta-functions for approximate computing. In 2011 Design, Automation & Test in Europe, pages 1–6. IEEE.spa
dc.relation.referencesMukherjee, S., Kontz, M., and Reinhardt, S. (2002). Detailed design and evaluation of redundant multi-threading alternatives. In Proceedings 29th Annual International Symposium on Computer Architecture, pages 99–110. IEEE Comput. Soc.spa
dc.relation.referencesMukherjee, S., Weaver, C., Emer, J., Reinhardt, S., and Austin, T. (2003). A systematic methodology to compute the architectural vulnerability factors for a high-performance microprocessor. In 22nd Digital Avionics Systems Conference. Proceedings (Cat. No.03CH37449), pages 29–40. IEEE Comput. Soc.spa
dc.relation.referencesNicolaidis, M. (2005). Design for soft error mitigation. IEEE Transactions on Device and Materials Reliability, 5(3):405–418.spa
dc.relation.referencesNicolaidis, M., editor (2011). Soft Errors in Modern Electronic Systems, volume 41 of Frontiers in Electronic Testing. Springer US, Boston, MA.spa
dc.relation.referencesOh, N. and McCluskey, E. J. (2002). Error detection by selective procedure call duplication for low energy consumption. IEEE Transactions on Reliability, 51(4):392–402.spa
dc.relation.referencesOmar, H., Shi, Q., Ahmad, M., Dogan, H., and Khan, O. (2018). Declarative Resilience. ACM Transactions on Embedded Computing Systems, 17(4):1–27.spa
dc.relation.referencesParr, T. (2013). The Definite ANTLR 4 Reference. The Pragmatic Bookshelf, Dallas.spa
dc.relation.referencesPatterson, D. and Waterman, A. (2017). The RISC-V Reader: An Open Architecture Atlas. Strawberry Canyon.spa
dc.relation.referencesQian Zhang, Yuan, F., Ye, R., and Xu, Q. (2014). ApproxIt: An approximate computing framework for iterative methods. In 2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC), pages 1–6. IEEE.spa
dc.relation.referencesQuinn, H., Black, D., Robinson, W., and Buchner, S. (2013). Fault simulation and emulation tools to augment radiation-hardness assurance testing. IEEE Trans Nuclear Science, 60(3):2119–2142.spa
dc.relation.referencesRagel, R. G. and Parameswaran, S. (2011). A hybrid hardware–software technique to improve reliability in embedded processors. ACM Transactions on Embedded Computing Systems, 10(3):1–16.spa
dc.relation.referencesRajesh Venkatasubramanian, Hayes, J., and Murray, B. (2003). Low-cost on-line fault detection using control flow assertions. In 9th IEEE On-Line Testing Symposium, 2003. IOLTS 2003., pages 137–143. IEEE Comput. Soc.spa
dc.relation.referencesRanjan, A., Raha, A., Venkataramani, S., Roy, K., and Raghunathan, A. (2014). ASLAN: Synthesis of approximate sequential circuits. In Design, Automation & Test in Europe Conference & Exhibition (DATE), 2014, pages 1–6, New Jersey. IEEE Conference Publications.spa
dc.relation.referencesReddy, V. K., Rotenberg, E., and Parthasarathy, S. (2006). Understanding prediction-based partial redundant threading for low-overhead, high- coverage fault tolerance. ACM SIGARCH Computer Architecture News, 34(5):83.spa
dc.relation.referencesReis, G., Chang, J., Vachharajani, N., Rangan, R., August, D., and Mukherjee, S. (2005). Design and Evaluation of Hybrid Fault-Detection Systems. In 32nd International Symposium on Computer Architecture (ISCA’05), pages 148–159. IEEE.spa
dc.relation.referencesRenganarayana, L., Srinivasan, V., Nair, R., and Prener, D. (2012). Programming with relaxed synchronization. In Proceedings of the 2012 ACM workshop on Relaxing synchronization for multicore and manycore scalability - RACES ’12, page 41, New York, New York, USA. ACM Press.spa
dc.relation.referencesRestrepo-Calle, F., Martínez-Álvarez, A., Cuenca-Asensi, S., and Jimeno-Morenilla, A. (2013). Selective SWIFT-R. A Flexible Software-Based Technique for Soft Error Mitigation in Low-Cost Embedded Systems. Journal of Electronic Testing, 29(6):825–838.spa
dc.relation.referencesRodrigues, C., Marques, I., Pinto, S., Gomes, T., and Tavares, A. (2019). Towards a heterogeneous fault-tolerance architecture based on arm and risc-v processors. IECON Proceedings (Industrial Electronics Conference), 2019-October:3112–3117.spa
dc.relation.referencesRodrigues, G. S., Barros de Oliveira, A., Bosio, A., Kastensmidt, F. L., and Pignaton de Freitas, E. (2018). ARFT: An Approximative Redundant Technique for Fault Tolerance. In 2018 Conference on Design of Circuits and Integrated Systems (DCIS), pages 1–6. IEEE.spa
dc.relation.referencesRoy, D. B., Fritzmann, T., and Sigl, G. (2020). Efficient hardware/software co-design for post-quantum crypto algorithm sike on arm and risc-v based microcontrollers. In 2020 IEEE/ACM International Conference On Computer Aided Design (ICCAD), pages 1–9.spa
dc.relation.referencesRubio-González, C., Nguyen, C., Nguyen, H. D., Demmel, J., Kahan, W., Sen, K., Bailey, D. H., Iancu, C., and Hough, D. (2013). Precimonious. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis on - SC ’13, pages 1–12, New York, New York, USA. ACM Press.spa
dc.relation.referencesSalehi, M., Tavana, M. K., Rehman, S., Kriebel, F., Shafique, M., Ejlali, A., and Henkel, J. (2015). DRVS: Power-efficient reliability management through Dynamic Redundancy and Voltage Scaling under variations. In 2015 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED), pages 225–230. IEEE.spa
dc.relation.referencesSamadi, M., Lee, J., Jamshidi, D. A., Hormati, A., and Mahlke, S. (2013). SAGE: Self-tuning approximation for graphics engines. MICRO 2013 - Proceedings of the 46th Annual IEEE/ACM International Symposium on Microarchitecture, pages 13–24.spa
dc.relation.referencesSampson, A. (2015). Hardware and Software for Approximate Computing. PhD thesis, University of Washington.spa
dc.relation.referencesSampson, A., Dietl, W., Fortuna, E., Gnanapragasam, D., Ceze, L., and Grossman, D. (2011). EnerJ: approximate data types for safe and general low-power computation. In Proceedings of the 32nd ACM SIGPLAN conference on Programming language design and implementation - PLDI ’11, page 164, New York, New York, USA. ACM Press.spa
dc.relation.referencesSampson, A., Nelson, J., Strauss, K., and Ceze, L. (2014). Approximate Storage in Solid-State Memories. ACM Transactions on Computer Systems, 32(3):1–23.spa
dc.relation.referencesSampson, A., Ransford, B., and Ceze, L. (2015). ACCEPT: A Programmer-Guided Compiler Framework for Practical Approximate Computing. University of Washington Technical Report UW-CSE-15-01.spa
dc.relation.referencesSanchez, A., Entrena, L., and Kastensmidt, F. (2018). Approximate TMR for selective error mitigation in FPGAs based on testability analysis. In 2018 NASA/ESA Conference on Adaptive Hardware and Systems (AHS), pages 112–119. IEEE.spa
dc.relation.referencesSanchez-Clemente, A. J., Entrena, L., and Garcia-Valderas, M. (2016). Partial TMR in FPGAs Using Approximate Logic Circuits. IEEE Transactions on Nuclear Science, 63(4):2233–2240.spa
dc.relation.referencesShi, Q., Hoffmann, H., and Khan, O. (2015). A Cross-Layer Multicore Architecture to Tradeoff Program Accuracy and Resilience Overheads. IEEE Computer Architecture Letters, 14(2):85–89.spa
dc.relation.referencesShivakumar, P., Kistler, M. D., Keckler, S. W., Burger, D. C., and Alvisi, L. (2002). Modeling the effect of technology trends on the soft error rate of combinational logic. Dependable Systems and Networks, 2002. DSN 2002. Proceedings. International Conference on, pages 389–398.spa
dc.relation.referencesSidiroglou-Douskos, S., Misailovic, S., Hoffmann, H., and Rinard, M. (2011). Managing performance vs. accuracy trade-offs with loop perforation. In Proceedings of the 19th ACM SIGSOFT symposium and the 13th European conference on Foundations of software engineering - SIGSOFT/FSE ’11, page 124, New York, New York, USA. ACM Press.spa
dc.relation.referencesStanley-Marbell, P., Alaghi, A., Carbin, M., Darulova, E., Dolecek, L., Gerstlauer, A., Gillani, G., Jevdjic, D., Moreau, T., Cacciotti, M., Daglis, A., Jerger, N. E., Falsafi, B., Misailovic, S., Sampson, A., and Zufferey, D. (2018). Exploiting errors for efficiency: A survey from circuits to algorithms.spa
dc.relation.referencesTaher, F. N., Callenes-Sloan, J., and Schafer, B. C. (2018). A Machine Learning based Hard Fault Recuperation Model for Approximate Hardware Accelerators. In 2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC), pages 1–6. IEEE.spa
dc.relation.referencesTexas Instruments, I. (2023). Msp430 ultra-low-power mcus.spa
dc.relation.referencesTiwari, V., Malik, S., and Wolfe, A. (1994). Power analysis of embedded software: a first step towards software power minimization. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2(4):437–445.spa
dc.relation.referencesTofallis, C. (2015). A better measure of relative prediction accuracy for model selection and model estimation. Journal of the Operational Research Society, 66(8):1352–1362.spa
dc.relation.referencesTraiola, M., Echavarria, J., Bosio, A., Teich, J., and O’Connor, I. (2021). Design Space Exploration of Approximation-Based Quadruple Modular Redundancy Circuits. In IEEE/ACM International Conference on Computer-Aided Design, Digest of Technical Papers, ICCAD, volume 2021-November, pages 1–9. IEEE.spa
dc.relation.referencesTsuchiya, T., Ootsu, K., Yokota, T., and Kojima, S. (2022). Assembly code translation from arm64 to risc-v. Proceedings - 2022 23rd ACIS International Summer Virtual Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, SNPD-Summer 2022, pages 68–73.spa
dc.relation.referencesVan Leussen, M., Huisken, J., Wang, L., Jiao, H., and Pineda De Gyvez, J. (2017). Reconfigurable Support Vector Machine Classifier with Approximate Computing. In 2017 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pages 13–18. IEEE.spa
dc.relation.referencesVenkataramani, S., Chippa, V. K., Chakradhar, S. T., Roy, K., and Raghunathan, A. (2013). Quality programmable vector processors for approximate computing. In 2013 46th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), pages 1–12.spa
dc.relation.referencesVenkataramani, S., Sabne, A., Kozhikkottu, V., Roy, K., and Raghunathan, A. (2012). SALSA: Systematic logic synthesis of approximate circuits. In Proceedings of the 49th Annual Design Automation Conference on - DAC ’12, page 796, New York, New York, USA. ACM Press.spa
dc.relation.referencesVera, X., Abella, J., Carretero, J., and González, A. (2009). Selective replication. ACM Transactions on Computer Systems, 27(4):1–30.spa
dc.relation.referencesWang, Y., Dong, J., Xu, Q., and Qu, G. (2021). Ftapprox: A fault-tolerant approximate arithmetic computing data format. Proceedings -Design, Automation and Test in Europe, DATE, 2021-February:1548–1551.spa
dc.relation.referencesXu, Q., Mytkowicz, T., and Kim, N. S. (2016). Approximate Computing: A Survey. IEEE Design and Test, 33(1):8–22.spa
dc.relation.referencesYang, Z., Jain, A., Liang, J., Han, J., and Lombardi, F. (2013). Approximate XOR/XNOR-based adders for inexact computing. In 2013 13th IEEE International Conference on Nanotechnology (IEEE-NANO 2013), pages 690–693. IEEE.spa
dc.relation.referencesYanmei Li, Dongmei Li, and Zhihua Wang (2000). A new approach to detect-mitigate-correct radiation-induced faults for SRAM-based FPGAs in aerospace application. In Proceedings of the IEEE 2000 National Aerospace and Electronics Conference. NAECON 2000. Engineering Tomorrow (Cat. No.00CH37093), volume 1, pages 588–594. IEEE.spa
dc.relation.referencesYazdanbakhsh, A., Mahajan, D., Esmaeilzadeh, H., and Lotfi-Kamran, P. (2017). AxBench: A Multiplatform Benchmark Suite for Approximate Computing. IEEE Design & Test, 34(2):60–68.spa
dc.relation.referencesYen-Kuang Chen, Chhugani, J., Dubey, P., Hughes, C., Daehyun Kim, Kumar, S., Lee, V., Nguyen, A., and Smelyanskiy, M. (2008). Convergence of Recognition, Mining, and Synthesis Workloads and Its Implications. Proceedings of the IEEE, 96(5):790–807.spa
dc.relation.referencesZhang, Q., Wang, T., Tian, Y., Yuan, F., and Xu, Q. (2015). ApproxANN: An Approximate Computing Framework for Artificial Neural Network. In Design, Automation & Test in Europe Conference & Exhibition (DATE), 2015, pages 701–706, New Jersey. IEEE Conference Publications.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::003 - Sistemasspa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.decsRadiationeng
dc.subject.decsRadiaciónspa
dc.subject.lembMétodos orientados a objetos (computadores)eng
dc.subject.lembObject-oriented methods (computer)eng
dc.subject.lembDiagnóstico por computaciónspa
dc.subject.lembDiagnosis computer assistedeng
dc.subject.proposalFault Toleranceeng
dc.subject.proposalApproximate Computingeng
dc.subject.proposalReliabilityeng
dc.subject.proposalSoft Errorseng
dc.subject.proposalTolerancia a fallosspa
dc.subject.proposalComputación aproximadaspa
dc.subject.proposalConfiabilidadspa
dc.titleDesign of Fault Tolerant Embedded Systems using Approximate Computing Techniques.
dc.title.translatedDiseño de sistemas embebidos tolerantes a fallos usando técnicas de computación aproximada.
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
80017086.2023.pdf
Tamaño:
1.73 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería - Sistemas y Computación

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: