Bayesian constraints on observable properties of exoplanetary systems using planet population synthesis simulations

dc.contributor.advisorChaparro Molano, Germán
dc.contributor.advisorVargas Domínguez, Santiago
dc.contributor.authorBautista Sánchez, Frank Jair
dc.date.accessioned2021-09-15T12:53:39Z
dc.date.available2021-09-15T12:53:39Z
dc.date.issued2021-08-18
dc.descriptionIlustraciones y tablasspa
dc.description.abstractRecent advances in exoplanet observations have led to the discovery of nearly 4400 planets in more than 3000 planetary systems. However, many physical properties of these systems remain largely unknown due to observational biases and stochasticity in their formation processes. We address current limitations of exoplanet classification by formulating a new, robust classification scheme based on the first moment of planet mass vs. semi-major axis distribution using Gaussian Mixture Models (GMM). We validate our method via Approximate Bayesian Computation and Information Criteria, which shows that it is robust with uncertainties measurement and adaptable to new observations. Our scheme yields four planetary system classes: Sub-Mercurial systems, Venusian systems, Solar-like systems, and Periphery systems. We also propose a new method for compensating observational biases while addressing stochasticity in star and planet formation. To this end, we develop a Bayesian probabilistic formalism in which we take priors from observed planetary systems and marginalize them over synthetic likelihood functions. It allows us to estimate probability distribution functions for variables of interest, such as the total number of planets, total planetary mass, rocky planetary mass, center of mass, among others. We generate our synthetic likelihood functions from a multivariate Kernel Density Estimation (KDE) model based on the results of a Monte Carlo simulation of 1200 planet population synthesis models, drawn from observational priors obtained from the literature. We assess the performance of the kernel parameter choice using cross-validation. Therefore, we got probability distributions of physical variables of interest for ten observed systems using data from public catalogues. For the selected systems, we infer that they had initial disks with masses around 0.1 M⊙ ± 0.01 M⊙, their centers of mass are located around 5 AU ± 2 AU, and they should have around seven more planets than are currently observed. We also conclude that the number of rocky planets significantly contributes to the total number of planets, so we expect to find more rocky planets in future observations. Our formalism allows getting the probability distributions of exoplanetary systems unobserved or with biased properties. It will help steering future astronomical surveys and motivating further questions of observed planetary systems.eng
dc.description.abstractLos avances recientes en las observaciones de exoplanetas han llevado al descubrimiento de casi 4400 planetas en más de 3000 sistemas planetarios. Sin embargo, muchas propiedades físicas de estos sistemas siguen siendo en gran parte desconocidas debido a sesgos observacionales y estocasticidad en sus procesos de formación. Abordamos las limitaciones actuales de la clasificación de exoplanetas mediante la formulación de un nuevo y robusto esquema de clasificación basado en el primer momento de la masa del planeta frente a la distribución del eje semi-mayor utilizando modelos de mezcla gaussianos (GMM). Validamos nuestro método mediante criterios de información y cálculo bayesianos aproximados, lo que demuestra que es robusto con la medición de incertidumbres y adaptable a nuevas observaciones. Nuestro esquema produce cuatro clases de sistemas planetarios: sistemas Sub-Mercurianos, sistemas Venusianos, sistemas similares al solar y sistemas periféricos. También proponemos un nuevo método para compensar los sesgos de observación al abordar la estocasticidad en la formación de estrellas y planetas. Con este fin, desarrollamos un formalismo probabilístico bayesiano en el que tomamos información previa de los sistemas planetarios observados y los marginalizamos sobre las funciones de verosimilitud sintéticas. Lo que nos permite estimar funciones de distribución de probabilidad para variables de interés, como el número total de planetas, la masa total planetaria, la masa planetaria rocosa, centro de masa, entre otras. Generamos nuestras funciones de verosimilitud sintéticas a partir de un modelo multivariado de estimación de densidad de núcleo (KDE) basado en los resultados de una simulación de Monte Carlo de 1200 modelos de síntesis de población planetaria, extraídos de observaciones previas obtenidas de la literatura. Evaluamos el rendimiento de la elección del parámetro de una función núcleo (Kernel) mediante validación cruzada. De esta manera, obtuvimos distribuciones de probabilidad de variables físicas de interés para diez sistemas observados utilizando datos de catálogos públicos. Para los sistemas seleccionados, inferimos que tenían discos iniciales con masas alrededor 0.1 M⊙ ± 0.01 M⊙, sus centros de masa se ubican alrededor de 5 AU ± 2 AU, y deberían tener alrededor de siete planetas más de los que se observan actualmente. También concluimos que el número de planetas rocosos contribuye significativamente al número total de planetas, por lo que esperamos encontrar más planetas rocosos en futuras observaciones. Nuestro formalismo permite obtener las distribuciones de probabilidad de sistemas exoplanetarios no observados o con propiedades sesgadas. Este formalismo ayudará a dirigir los estudios astronómicos futuros y a motivar más preguntas sobre los sistemas planetarios observados. (Texto tomado de la fuente).spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Físicaspa
dc.description.notesIncluye anexosspa
dc.description.researchareaFormación Eexoplanetaria - Sintesis planetariaspa
dc.format.extentxii, 92 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80194
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Físicaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Físicaspa
dc.relation.referencesAkaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6):716–723.spa
dc.relation.referencesAlibert, Y., Mordasini, C., and Benz, W. (2010). Extrasolar planet population synthesis. A&A, 526:A63.spa
dc.relation.referencesArmitage, P. J. (2009). Astrophysics of Planet Formation. Cambridge University Press.spa
dc.relation.referencesBashi, D., Helled, R., and Zucker, S. (2018). A quantitative comparison of exoplanet catalogs. Geosciences, 8:325.spa
dc.relation.referencesBenz, W., Ida, S., Alibert, Y., Lin, D., and Mordasini, C. (2014). Planet population synthesis. In Protostars and Planets VI, page 691.spa
dc.relation.referencesBishop, C. M. (2006). Pattern Recognition and Machine Learning (Information Science and Statistics). Springer-Verlag, Berlin, Heidelberg.spa
dc.relation.referencesBonanos, A. Z., Yang, M., Sokolovsky, K. V., Gavras, P., Hatzidimitriou, D., Bellas-Velidis, I., Kakaletris, G., Lennon, D. J., Nota, A., White, R. L., Whitmore, B. C., Anastasiou, K. A.,Arevalo, M., Arviset, C., Baines, D., Budavari, T., Charmandaris, V., Chatzichristodoulou, C., Dimas, E., Duran, J., Georgantopoulos, I., Karampelas, A., Laskaris, N., Lianou, S., Livanis, A., Lubow, S., Manouras, G., Moretti, M. I., Paraskeva, E., Pouliasis, E., Rest, A., Salgado, J., Sonnentrucker, P., Spetsieri, Z. T., Taylor, P., and Tsinganos, K. (2019). The hubble catalog of variables (hcv). A&A, 630:A92.spa
dc.relation.referencesBrogan, C. L., P´erez, L. M., Hunter, T. R., Dent, W. R. F., Hales, A. S., Hills, R. E., Corder, S., Fomalont, E. B., Vlahakis, C., and et al. (2015). First results from high angular resolution alma observations toward the hl tau region. The Astrophysical Journal, 808(1).spa
dc.relation.referencesBrügger, N., Alibert, Y., Ataiee, S., and Benz, W. (2018). Metallicity effect and planet mass function in pebble-based planet formation models. Astronomy & Astrophysics, 619:A174.spa
dc.relation.referencesChaparro Molano, G., Bautista, F., and Miguel, Y. (2018). Transitional disk archeology from exoplanet population synthesis. Proceedings of the International Astronomical Union, 14(S345):152–155.spa
dc.relation.referencesChuong, D. B. and Batzoglou, S. (2008). What is the expectation maximization algorithm? Nature Biotechnology, 26(8):897–899.spa
dc.relation.referencesClaeskens, G. and Hjort, N. L. (2008). Model Selection and Model Averaging. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press.spa
dc.relation.referencesCox, R. (1961). Algebra of Probable Inference. Johns Hopkins University Press.spa
dc.relation.referencesCrida, A. (2009). Minimum mass solar nebulae and planetary migration. The Astrophysical Journal, 698(1):606–614.spa
dc.relation.referencesDeleuil, M. and Fridlund, M. (2018). CoRoT: The First Space-Based Transit Survey to Explore the Close-in Planet Population, pages 1135–1158. Springer International Publishing.spa
dc.relation.referencesDempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the em algorithm. Journal of the Royal Statistical Society. Series B (Methodological), (1):1–38.spa
dc.relation.referencesEuropean Southern Observatory (2020). High accuracy radial velocity planet searcher. http://www.eso.org/sci/facilities/lasilla/instruments/harps.html. 2020-07-24.spa
dc.relation.referencesEuropean Space Agency (2020). Atmospheric remote-sensing infrared exoplanet large. https://arielmission.space/. 2020-07-25.spa
dc.relation.referencesExoplanet Exploration Program, NASA (2010). Exoplanet exploration program, NASA’s search for habitable planets and life beyond our solar system. /https://exoplanets.nasa.gov/exep/. 2020-07-21.spa
dc.relation.referencesGarcía, E. (2019). Nonparametric statistics. https://bookdown.org/egarpor/NP-UC3M/. 2020-12-09.spa
dc.relation.referencesGelman, A., Carlin, J., Stern, H., Dunson, D., Vehtari, A., and Rubin, D. (2013). Bayesian Data Analysis, Third Edition. Chapman & Hall/CRC Texts in Statistical Science. Taylor & Francis.spa
dc.relation.referencesGosling, J. T. (2007). Encyclopedia of the solar system. pages 99 – 116. Academic Press, San Diego, second edition.spa
dc.relation.referencesGraziani, F., Desjarlais, M., Redmer, R., and Trickey, S. (2014). Frontiers and Challenges in Warm Dense Matter. Lecture Notes in Computational Science and Engineering. Springer International Publishing.spa
dc.relation.referencesGuidoum, A. C. (2015). Kernel estimator and bandwidth selection for density and its derivatives. Technical report.spa
dc.relation.referencesGuillot, T. and Gautier, D. (2007). Treatise on geophysics. pages 439 – 464. Elsevier, Amsterdam.spa
dc.relation.referencesHastie, T., Tibshirani, R., and Friedman, J. (2009). The elements of statistical learning: Data mining, inference, and prediction. Springer Series in Statistics. Springer, 2nd ed. 2009. corr. 3rd printing 5th printing. edition.spa
dc.relation.referencesHayashi, C. (1981). Structure of the solar nebula, growth and decay of magnetic fields and effects of magnetic and turbulent viscosities on the nebula. Progress of Theoretical Physics Supplement, 70:35–53.spa
dc.relation.referencesIda, S. and Lin, D. N. C. (2004a). Toward a deterministic model of planetary formation. I. a desert in the mass and semimajor axis distributions of extrasolar planets. The Astrophysical Journal, 604(1):388–413.spa
dc.relation.referencesIda, S. and Lin, D. N. C. (2004b). Toward a deterministic model of planetary formation. II. the formation and retention of gas giant planets around stars with a range of metallicities. The Astrophysical Journal, 616(1):567–572.spa
dc.relation.referencesIda, S. and Lin, D. N. C. (2005). Toward a deterministic model of planetary formation. III. mass distribution of short-period planets around stars of various masses. The Astrophysical Journal, 626(2):1045–1060.spa
dc.relation.referencesIda, S. and Lin, D. N. C. (2007). Toward a deterministic model of planetary formation IV: Effects of type-i migration.spa
dc.relation.referencesIda, S. and Lin, D. N. C. (2008). Toward a deterministic model of planetary formation V. accumulation near the ice line. The Astrophysical Journal, 673(1):487–501.spa
dc.relation.referencesIda, S. and Lin, D. N. C. (2010). Toward a deterministic model of planetary formation VI: Dynamical interaction and coagulation of multiple rocky embryos and super-earth systems around solar type stars. The Astrophysical Journal, 719(1):810–830.spa
dc.relation.referencesKipping, D. M. and Sandford, E. (2016). Observational biases for transiting planets. Monthly Notices of the Royal Astronomical Society, 463(2):1323–1331.spa
dc.relation.referencesKokubo, E. and Ida, S. (1998). Oligarchic growth of protoplanets. Icarus, 131(1):171 – 178.spa
dc.relation.referencesLodders, K. (2003). Solar System Abundances and Condensation Temperatures of the Elements. Astrophysical Journal, 591(2):1220–1247.spa
dc.relation.referencesMakov, U. E. (2001). Mixture models in statistics. In International Encyclopedia of the Social and Behavioral Sciences, pages 9910 – 9915. Pergamon, Oxford.spa
dc.relation.referencesMason, J. W. (2008). Exoplanets: Detection, Formation, Properties, Habitability. Springer Praxis Books / Astronomy and Planetary Sciences. Springer, 1 edition.spa
dc.relation.referencesMayor, M., Marmier, M., Lovis, C., Udry, S., Segransan, S., Pepe, F., Benz, W., Bertaux, J. L., Bouchy, F., Dumusque, X., Lo Curto, G., Mordasini, C., Queloz, D., and Santos, N. C. (2011). The HARPS search for southern extra-solar planets occurrence, mass distribution and orbital properties of super-Earths and Neptune-mass planets.spa
dc.relation.referencesMcElreath, R. and Safari, a. O. M. C. (2018). Statistical Rethinking. OCLC: 1107423386.spa
dc.relation.referencesMcKinney, W. (2010). Data Structures for Statistical Computing in Python. In Stéfan van der Walt and Jarrod Millman, editors, Proceedings of the 9th Python in Science Conference, pages 56 – 61.spa
dc.relation.referencesMcLachlan, G. and Peel, D. (2000). Finite Mixture Models. Wiley Series in Probability and Statistics. Wiley-Interscience.spa
dc.relation.referencesMcNicholas, P. (2016). Mixture Model-Based Classification. CRC Press.spa
dc.relation.referencesMiguel, Y., Guilera, O. M., and Brunini, A. (2011a). The diversity of planetary system architectures: contrasting theory with observations. Monthly Notices of the Royal Astronomical Society, 417(1):314–332.spa
dc.relation.referencesMiguel, Y., Guilera, O. M., and Brunini, A. (2011b). The role of the initial surface density profiles of the disc on giant planet formation: comparing with observations. Monthly Notices of the Royal Astronomical Society, 412(4):2113–2124.spa
dc.relation.referencesMordasini, C., Alibert, Y., and Benz, W. (2009a). Extrasolar planet population synthesis - I. method, formation tracks, and mass-distance distribution. A&A, 501(3):1139–1160.spa
dc.relation.referencesMordasini, C., Alibert, Y., and Benz, W. (2009b). Extrasolar planet population synthesis ii: Statistical comparison with observation. A&A, 501(3):1161–1184.spa
dc.relation.referencesNaderi, M., Hung, W.-L., Lin, T.-I., and Jamalizadeh, A. (2019). A novel mixture model using the multivariate normal mean–variance mixture of birnbaum–saunders distributions and its application to extrasolar planets. Journal of Multivariate Analysis, 171:126 – 138.spa
dc.relation.referencesOllivier, M. (2009). Planetary systems : detection, formation and habitability of extrasolar planets. Springer, Berlin.spa
dc.relation.referencesParviainen, H. (2018). Bayesian methods for exoplanet science. Handbook of Exoplanets, page 1567–1590.spa
dc.relation.referencesIsella, A., Carpenter, J. M., and Sargent, A. I. (2009). Structure and evolution of pre-main-sequence circumstellar disks. The Astrophysical Journal, 701(1):260–282.spa
dc.relation.referencesPedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine learning in python. Journal of Machine Learning Research, 12:2825–2830.spa
dc.relation.referencesPinilla, P., Birnstiel, T., Ricci, L., Dullemond, C. P., Uribe, A. L., Testi, L., and Natta, A. (2012). Trapping dust particles in the outer regions of protoplanetary disks. A&A, 538:A114.spa
dc.relation.referencesPringle, J. E. (1981). Accretion discs in astrophysics. Annual Review of Astronomy and Astrophysics, 19:137–162.spa
dc.relation.referencesRonald E. Walpole, Raymond H. Myers, S. L. M. K. E. Y. (2011). Probability and Statistics for Engineers and Scientists (9th Edition). Prentice Hall, 9 edition.spa
dc.relation.referencesSchneider, J., Dedieu, C., Le Sidaner, P., Savalle, R., and Zolotukhin, I. (2011). Defining and cataloging exoplanets: the exoplanet.eu database. A&A, 532:A79.spa
dc.relation.referencesSchwarz, G. (1978). Estimating the dimension of a model. Ann. Statist., 6(2):461–464.spa
dc.relation.referencesScott, D. W. (1979). On optimal and data-based histograms. Biometrika, 66(3):605–610.spa
dc.relation.referencesShalizi, C. R. (2020). Advanced Data Analysis from an Elementary Point of View. Cambridge University Press.spa
dc.relation.referencesSilverman, B. W. (1986). Density Estimation for Statistics and Data Analysis. Chapman & Hall.spa
dc.relation.referencesSivia, D. and Skilling, J. (2006). Data Analysis: A Bayesian Tutorial. Oxford science publications. OUP Oxford.spa
dc.relation.referencesThe Extrasolar Planets Encyclopaedia (1995). The extrasolar planets encyclopaedia kernel description. http://exoplanet.eu/. 2020-05-16.spa
dc.relation.referencesToomre, A. (1964). On the gravitational stability of a disk of stars. APJ, 139:1217–1238.spa
dc.relation.referencesUdry, S. (2010). Detection and characterization of exoplanets: from gaseous giants to superearths. In In the Spirit of Lyot 2010, page E11.spa
dc.relation.referencesVanderPlas, J. (2013). Kernel density estimation in python. https://jakevdp.github.io/blog/2013/12/01/kernel-density-estimation/. 2020-12-09.spa
dc.relation.referencesVanderPlas, J. (2016). Python Data Science Handbook: Essential Tools for Working with Data. O’Reilly Media, Inc., 1st edition.spa
dc.relation.referencesVirtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, ˙I., Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt, P., and SciPy 1.0 Contributors (2020). SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17:261–272.spa
dc.relation.referencesVogt, S. (2005). Update on the california-carnegie extrasolar planet search program.spa
dc.relation.referencesWeidenschilling, S. J. (1977). The Distribution of Mass in the Planetary System and Solar Nebula. Astrophysics and Space Science, 51(1):153–158.spa
dc.relation.referencesWhipple Observatory (2020). Advanced fiber-optic echelle (OFOE). urlhttps://www.eso.org/public/teles-instr/alma/. 2020-07-23.spa
dc.relation.referencesWilliams, J. P. and Cieza, L. A. (2011). Protoplanetary disks and their evolution. Annual Review of Astronomy and Astrophysics, 49(1):67–117.spa
dc.relation.referencesWright, J. and Gaudi, B. (2012). Exoplanet detection methods. Planets, Stars and Stellar Systems. Volume 3: Solar and Stellar Planetary Systems.spa
dc.relation.referencesZakamska, N., Pan, M., and Ford, E. (2010). Observational biases in determining extrasolar planet eccentricities in single-planet systems. Monthly Notices of the Royal Astronomical Society, 410.spa
dc.relation.referencesZucchini, W., Berzel, A., and Nenadic, O. (2003). Applied smoothing techniques. Part I: Kernel Density Estimation, 15.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc520 - Astronomía y ciencias afinesspa
dc.subject.lembPlanets
dc.subject.lembPlanetas
dc.subject.lembAstronomy
dc.subject.lembAstronomía
dc.subject.lembCosmic physics
dc.subject.lembFísica cósmica
dc.subject.proposalBayesian inferenceeng
dc.subject.proposalFormación planetariaspa
dc.subject.proposalMezcla gaussianaspa
dc.subject.proposalPlanet population synthesiseng
dc.subject.proposalGaussian mixture modeleng
dc.subject.proposalSíntesis planetariaspa
dc.subject.proposalKernel density estimationeng
dc.subject.proposalInferencia bayesianaspa
dc.titleBayesian constraints on observable properties of exoplanetary systems using planet population synthesis simulationseng
dc.title.translatedRestricciones bayesianas sobre las propiedades observables de los sistemas exoplanetarios utilizando simulaciones de síntesis de población planetariaspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1022973370.2021.pdf
Tamaño:
6.3 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Física

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: