EEG-based BCI monitoring framework: Real-time acquisition and visualization from audiovisual stimulation paradigms

dc.contributor.advisorCastellanos Domínguez, César Germán
dc.contributor.advisorÁlvarez Meza, Andrés Marino
dc.contributor.authorCardona Alvarez, Yeison Nolberto
dc.contributor.cvlacCardona Alvarez, Yeison Nolberto [0000128391]spa
dc.contributor.orcidCardona Alvarez, Yeison Nolberto [0000-0002-0425-8880]spa
dc.contributor.researchgroupSignal processing and recognition group (SPRG)spa
dc.date.accessioned2023-01-17T19:09:56Z
dc.date.available2023-01-17T19:09:56Z
dc.date.issued2022
dc.descriptiongraficas, tablasspa
dc.description.abstractThe widespread use of neurophysiological signals to develop brain-computer interface (BCI) systems has certainly varied clinical and nonclinical applications. Main implementations in medical issues include: rehabilitation, cognitive state analysis, diagnostics, assistive devices for communication, locomotion and movement. By other hand, there is a bunch of researches that approaches the BCI systems to healthy people in fields like: neuroergonomics, smart homes, neuromarketing and advertising, games, education, entertainment and even security and validation. Not all EEG acquisition systems are capable to use in BCIs systems. Even if the clinic devices are highly accurate, these implementations have a limited, or nonexistent, real-time data flow access; because they mainly use is about diagnostic and offline analysis. Recently, and because of the cheapening prototyping development, there is in the market a set of low-cost embedded systems for electroencephalography (EEG) acquisition, i.e., OpenBCI, InteraXon, Muse, NeuroSky MindWave and Emotiv. All these options usually include a high or low-level software development kit (SDK), that could be open-source or proprietary and will come with a different grade of flexibility (rigid or customizable electrode placement, multiple sampling rates, transmission protocols, wireless, etc). Many of these devices have shown capabilities to handle BCI tasks, but they need a context-specific development to boost their base benefits. Acquiring brain signals is only one task for a BCI system, also it is necessary to carry out a lot of data processing and controlled experiments, concerning this have been specialized software for developers and researchers purpose i.e., BCI2000, Neurobehavioral Systems Presentation, Psychology Software Tools, Inc. ePrime and PsychoPy. All these systems offer greater ease of use through experimenter interfaces, but they can be costly, require high-level programming and technical skills, and usually do not support dedicated data acquisition. For this reason, the acquisition involves the implementation of third party software and drivers; consequently, losing interesting hardware features in favor to support as many devices as possible. To implement a BCI system is an interdisciplinary activity that requires a set of specific and outstanding knowledges about communication systems, signals acquisition, instrumentation, clinical protocols, experiments validation, software development, among others. Besides, in order to perform a real-world experiment, the user must calibrate the specific set of acquisition system, stimuli delivery and data processing stages. Current software approaches try to converge multiple technologies and methodologies to provide general purpose BCI systems. The most popular is the BCI200, which comes with default paradigms but their interface has been pointed out to be not very intuitive and its operation is difficult to understand, although, it is possible to add new paradigms, this include software contributions using their own libraries and do not through a built-int development interface. Other software widely used is the OpenVIBE this one includes a graphical drag-and-drop interface to perform data analysis with an extensive set of pre-defined algorithms. Its synchronous acquisition system is known for not only occasionally frozen the computer but also for adding delays to the streaming of the signals. All these systems handle with an extensive set of compatible devices which may be good at first glance but make that some specific hardware features are not available for compatibility reasons. On the side of the open source hardware, we can find that OpenBCI a flexible option, but with some important lacks. The most important relies on the communication between the computer and the board is not always stable and their graphical user interface (GUI) does not provide the possibility of acquiring data under wich a particular BCI paradigm. Otherwise, their hardware base and SDK features gives to this board a huge potential to implement a complete BCI system comparable with medical grade equipment. With all these factors in mind, we aim to develop a standalone BCI system with the OpenBCI Cyton board that handles the signal acquisition and the stimuli deliver in the same interface, to reduce the needed infrastructure to perform neurophysiological experiments. Alongside a distributed platform to improve the performance, increase the scalability, and reduce the jitter. This software, BCI-Framework, provides the user with a built-in development environment enhanced with a custom API for data interactions, montage context, and markers generation. This environment is full compatible with any Python module and is focused in the generation of real-time visualizations, data analysis and network-based stimuli delivery for the remote presentation of audiovisual cues. This approach converges almost all needed components for BCI researches into a single standalone implementation. In a nutshell, the introduced EEG-based BCI framework comprises the following benefits: i) A portable and cheap acquisition system (hardware) founded on the well-known OpenBCI devices. ii) This approach includes a wireless, e.g., Wi-Fi, communication protocol to couple the EEG data acquisition and event markers synchronization from audiovisual stimulation paradigms. iii) A distributed system is enhanced within this BCI framework to carry out real-time data acquisition and visualization while favoring the inclusion of conventional or user-designed EEG data processing libraries over a Python language environment. In addition, a latency-based quality assessment method is carried out. (Texto tomado de la fuente)eng
dc.description.abstractEl uso generalizado de señales neurofisiológicas para desarrollar sistemas BCI ciertamente tiene diversas aplicaciones clínicas y no clínicas. Las principales implementaciones en temas médicos incluyen: rehabilitación, análisis del estado cognitivo, diagnóstico, dispositivos de asistencia para la comunicación, locomoción y movimiento. Por otro lado, hay muchas investigaciones que acercan los sistemas BCI a personas sanas en campos como: neuroergonomía, hogares inteligentes, neuromarketing y publicidad, juegos, educación, entretenimiento e incluso seguridad y validación. No todos los sistemas de adquisición de EEG se pueden usar en los sistemas BCIs. Incluso si los dispositivos clínicos son muy precisos, estas implementaciones tienen un acceso limitado o inexistente al flujo de datos en tiempo real; debido principalmente a que se tratan sistemas enfocados al diagnóstico y análisis fuera de línea. Recientemente, y debido al abaratamiento del desarrollo de prototipos, existe en el mercado un conjunto de sistemas embebidos de bajo costo para la adquisición de EEG, algunos de ellos son: OpenBCI, InteraXon, Muse, NeuroSky MindWave y Emotiv. Todas estas opciones suelen incluir un SDK de nivel alto o bajo, que puede ser de código abierto o privativo los cuales vienen con un grado diferente de flexibilidad (disposición de electrodos rígida o personalizable, frecuencias de muestreo variable, diferentes protocolos de transmisión, conexión inalámbrica, etc). Muchos de estos dispositivos han demostrado capacidades para manejar tareas BCI, pero necesitan un desarrollo específico del contexto para aumentar sus beneficios básicos. Adquirir señales cerebrales es sólo una tarea indiidual para un sistema completo de BCI, también es necesario llevar a cabo una gran cantidad de procesamiento de datos y experimentos controlados, con respecto a esto se ha especializado software para desarrolladores e investigadores, por ejemplo: BCI2000, Neurobehavioral Systems Presentación, Psychology Software Tools, Inc. ePrime y PsychoPy. Todos estos sistemas ofrecen una mayor facilidad de uso a través de las interfaces del sistema de experimentos, pero pueden ser costosos, requieren habilidades técnicas y de programación de alto nivel y por lo general, no admiten la adquisición de datos dedicada. Por esta razón, la adquisición de señales se basa en la implementación de software y controladores de terceros; en consecuencia, se pierden características de hardware interesantes a favor de soportar tantos dispositivos como sea posible. Implementar un sistema BCI es una actividad interdisciplinaria que requiere un conjunto de conocimientos específicos y sobresalientes sobre sistemas de comunicación, adquisición de señales, instrumentación, protocolos clínicos, validación de experimentos, desarrollo de software, entre otros. Además, para realizar un experimento del mundo real, el usuario debe calibrar el conjunto específico de sistema de adquisición, entrega de estímulos y etapas de procesamiento de datos. Los enfoques de software actuales intentan hacer converger múltiples tecnologías y metodologías para proporcionar sistemas BCI de propósito general. El más popular es el BCI200, que incorpora paradigmas predeterminados pero se ha señalado que su interfaz es poco intuitiva y su funcionamiento es difícil de entender, aunque es posible agregar nuevos paradigmas, esto permite incluir contribuciones de software utilizando sus propias bibliotecas. y no mediante una interfaz de desarrollo integrada. Otro software ampliamente utilizado es OpenVIBE, este incluye una interfaz gráfica de arrastrar y soltar para realizar análisis de datos con un amplio conjunto de algoritmos predefinidos. Su sistema de adquisición sincrónica es conocido no sólo por congelar ocasionalmente la computadora, sino también por agregar retrasos en la transmisión de las señales. Todos estos sistemas manejan un amplio conjunto de dispositivos compatibles que pueden ser buenos a primera vista, pero hacen que algunas características específicas del hardware no estén disponibles por razones de compatibilidad. Del lado del hardware de código abierto, podemos encontrar que OpenBCI es una opción flexible, pero con algunas carencias importantes. La más importante se basa en que la comunicación entre la computadora y la placa no siempre es estable y su GUI no brinda la posibilidad de adquirir datos bajo un paradigma BCI particular. Por otro lado, su base de hardware y las características de SDK le dan a esta placa un gran potencial para implementar un sistema BCI completo comparable con el equipo de grado médico. Con todos estos factores en mente, nuestro objetivo es desarrollar un sistema BCI independiente con la placa OpenBCI Cyton que maneje la adquisición de señales y la entrega de estímulos en la misma interfaz, para reducir la infraestructura necesaria para realizar experimentos neurofisiológicos. Junto con una plataforma distribuida para mejorar el rendimiento, aumentar la escalabilidad y reducir el jitter. Este software, BCI-Framework, proporciona al usuario un entorno de desarrollo integrado mejorado con una API personalizada para interacciones de datos, selección de montaje y generación de marcadores. Este entorno es totalmente compatible con cualquier módulo de Python y se centra en la generación de visualizaciones en tiempo real, análisis de datos y entrega de estímulos a través de conexiones de red para la presentación remota de señales audiovisuales. Este enfoque reúne casi todos los componentes necesarios para la investigación de BCI En pocas palabras, el sistema BCI basado en EEG presentado comprende los siguientes beneficios: i) Un sistema de adquisición portátil y económico (hardware) basado en los conocidos dispositivos OpenBCI. ii) Este enfoque incluye un protocolo de comunicación inalámbrico (Wi-Fi), para acoplar la adquisición de datos de EEG y la sincronización de marcadores de eventos de paradigmas de estimulación audiovisual. iii) Se implementa un sistema distribuido dentro de este entorno BCI para llevar a cabo la adquisición y visualización de datos en tiempo real mientras se favorece la inclusión de bibliotecas de procesamiento de datos EEG convencionales o diseñadas por el usuario sobre un entorno de lenguaje Python. Además, se lleva a cabo método para la evaluación de la calidad basada en la latencia.spa
dc.description.curricularareaEléctrica, Electrónica, Automatización Y Telecomunicacionesspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Automatización Industrialspa
dc.format.extentxxvi, 152 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82987
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeManizales, Colombiaspa
dc.publisher.programManizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Automatización Industrialspa
dc.relation.referencesL. F. Nicolas-Alonso and J. Gomez-Gil, “Brain computer interfaces, a review,” sensors, vol. 12, no. 2, pp. 1211–1279, 2012.spa
dc.relation.referencesC. Tremmel, Estimating Cognitive Workload in an Interactive Virtual Reality Environment Using Electrophysiological and Kinematic Activity. PhD thesis, Old Dominion University, 2019.spa
dc.relation.referencesM. Maleki, N. Manshouri, and T. Kayikcioglu, “Brain-computer interface systems for smart homes-a review study,” Recent Advances in Electrical & Electronic Engineering (Formerly Recent Patents on Electrical & Electronic Engineering), vol. 14, no. 2, pp. 144–155, 2021.spa
dc.relation.referencesK. Polat, A. B. Aygun, and A. R. Kavsaoglu, “Eeg based brain-computer interface control applications: A comprehensive review,” Journal of Bionic Memory, vol. 1, no. 1, pp. 20–33, 2021.spa
dc.relation.referencesG. A. M. Vasiljevic and L. C. de Miranda, “Brain–computer interface games based on consumer-grade eeg devices: A systematic literature review,” International Journal of Human–Computer Interaction, vol. 36, no. 2, pp. 105–142, 2020.spa
dc.relation.referencesS. Taherian and T. C. Davies, “Caregiver and special education staff perspectives of a commercial brain-computer interface as access technology: a qualitative study,” Brain-Computer Interfaces, vol. 5, no. 2-3, pp. 73–87, 2018.spa
dc.relation.referencesS. K. Mudgal, S. K. Sharma, J. Chaturvedi, and A. Sharma, “Brain computer interface advancement in neurosciences: Applications and issues,” Interdisciplinary Neurosurgery, vol. 20, p. 100694, 2020.spa
dc.relation.referencesD. Bansal and R. Mahajan, EEG-Based Brain-Computer Interfaces: Cognitive Analysis and Control Applications. Academic Press, 2019.spa
dc.relation.referencesS. Baillet, J. C. Mosher, and R. M. Leahy, “Electromagnetic brain mapping,” IEEE Signal processing magazine, vol. 18, no. 6, pp. 14–30, 2001.spa
dc.relation.referencesS. Laureys, M. Boly, and G. Tononi, “Functional neuroimaging in the neurology of consciousness: cognitive neuroscience and neuropathology,” 2009.spa
dc.relation.referencesL. F. Nicolas-Alonso and J. Gomez-Gil, “Brain Computer Interfaces, a Review,” Sensors, vol. 12, pp. 1211–1279, Jan. 2012.spa
dc.relation.referencesK. Kostiukevych, S. Stirenko, N. Gordienko, O. Rokovyi, O. Alienin, and Y. Gordienko, “Convolutional and recurrent neural networks for physical action forecasting by brain-computer interface,” in 2021 11th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), vol. 2, pp. 973–978, IEEE, 2021.spa
dc.relation.referencesJ. Wolpaw and E. W. Wolpaw, “Brain-computer interfaces: Principles and practice,” 2012.spa
dc.relation.referencesD. Cárdenas-Peña, D. Collazos-Huertas, and G. Castellanos-Dominguez, “Enhanced data representation by kernel metric learning for dementia diagnosis,” Frontiers in neuroscience, vol. 11, p. 413, 2017.spa
dc.relation.referencesD. Collazos-Huertas, D. Cárdenas-Peña, and G. Castellanos-Dominguez, “Instance-based representation using multiple kernel learning for predicting conversion to alzheimer disease,” International journal of neural systems, vol. 29, no. 02, p. 1850042, 2019.spa
dc.relation.referencesJ. D. Pulgarin-Giraldo, A. Ruales-Torres, A. M. Álvarez-Meza, and G. Castellanos-Dominguez, “Relevant kinematic feature selection to support human action recognition in mocap data,” in International Work-Conference on the Interplay Between Natural and Artificial Computation, pp. 501–509, Springer, 2017.spa
dc.relation.referencesJ. V. Hurtado-Rincón, J. D. Martínez-Vargas, S. Rojas-Jaramillo, E. Giraldo, and G. Castellanos-Dominguez, “Identification of relevant inter-channel eeg connectivity patterns: a kernel-based supervised approach,” in International Conference on Brain Informatics, pp. 14–23, Springer, 2016.spa
dc.relation.referencesJ. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, and T. M. Vaughan, “Brain–computer interfaces for communication and control,” Clinical neurophysiology, vol. 113, no. 6, pp. 767–791, 2002.spa
dc.relation.referencesC. S. Nam, A. Nijholt, and F. Lotte, Brain–computer interfaces handbook: technological and theoretical advances. CRC Press, 2018.spa
dc.relation.referencesJ. R. Wessel, K. J. Gorgolewski, and P. Bellec, “Switching software in science: Motivations, challenges, and solutions,” Trends in cognitive sciences, vol. 23, no. 4, pp. 265–267, 2019.spa
dc.relation.referencesM. Ordikhani-Seyedlar and M. A. Lebedev, “Augmenting attention with brain–computer interfaces,” in Brain–Computer Interfaces Handbook, pp. 549–560, CRC Press, 2018.spa
dc.relation.referencesJ.-A. Martinez-Leon, J.-M. Cano-Izquierdo, and J. Ibarrola, “Are low cost brain computer interface headsets ready for motor imagery applications?,” Expert Systems with Applications, vol. 49, pp. 136–144, 2016.spa
dc.relation.referencesJ. LaRocco, M. D. Le, and D.-G. Paeng, “A systemic review of available low-cost eeg headsets used for drowsiness detection,” Frontiers in neuroinformatics, vol. 14, 2020.spa
dc.relation.referencesV. Peterson, C. Galván, H. Hernández, and R. Spies, “A feasibility study of a complete low-cost consumer-grade brain-computer interface system,” Heliyon, vol. 6, no. 3, p. e03425, 2020.spa
dc.relation.referencesJ. Frey, “Comparison of a consumer grade eeg amplifier with medical grade equipment in bci applications,” in International BCI meeting, 2016.spa
dc.relation.referencesP. Brunner and G. Schalk, “Bci software,” in Brain–Computer Interfaces Handbook, pp. 323–340, CRC Press, 2018.spa
dc.relation.referencesA. Lécuyer, F. Lotte, R. B. Reilly, R. Leeb, M. Hirose, and M. Slater, “Brain-computer interfaces, virtual reality, and videogames,” Computer, vol. 41, no. 10, pp. 66–72, 2008.spa
dc.relation.referencesM. Palaus, E. M. Marron, R. Viejo-Sobera, and D. Redolar-Ripoll, “Neural basis of video gaming: A systematic review,” Frontiers in human neuroscience, p. 248, 2017.spa
dc.relation.referencesM. Bassolino, M. Franza, J. Bello Ruiz, M. Pinardi, T. Schmidlin, M. Stephan, M. Solca, A. Serino, and O. Blanke, “Non-invasive brain stimulation of motor cortex induces embodiment when integrated with virtual reality feedback,” European Journal of Neuroscience, vol. 47, no. 7, pp. 790–799, 2018.spa
dc.relation.referencesI. Sugiarto and I. H. Putro, “Application of distributed system in neuroscience, a case study of bci framework,” in The 1st international seminar on science and technology, 2009.spa
dc.relation.referencesV. Alvarez and A. O. Rossetti, “Clinical use of eeg in the icu: technical setting,” Journal of clinical neurophysiology, vol. 32, no. 6, pp. 481–485, 2015.spa
dc.relation.referencesS. Beniczky, H. Aurlien, J. C. Brøgger, L. J. Hirsch, D. L. Schomer, E. Trinka, R. M. Pressler, R. Wennberg, G. H. Visser, M. Eisermann, et al., “Standardized computer-based organized reporting of eeg: Score–second version,” Clinical Neurophysiology, vol. 128, no. 11, pp. 2334–2346, 2017.spa
dc.relation.referencesM. Assran, A. Aytekin, H. R. Feyzmahdavian, M. Johansson, and M. G. Rabbat, “Advances in asynchronous parallel and distributed optimization,” Proceedings of the IEEE, vol. 108, no. 11, pp. 2013–2031, 2020.spa
dc.relation.referencesS. Deshmukh, K. Thirupathi Rao, and M. Shabaz, “Collaborative learning based straggler prevention in large-scale distributed computing framework,” Security and communication networks, vol. 2021, 2021.spa
dc.relation.referencesA. Powell, “Democratizing production through open source knowledge: from open software to open hardware,” Media, Culture & Society, vol. 34, no. 6, pp. 691–708, 2012.spa
dc.relation.referencesH. Legenvre, P. Kauttu, M. Bos, and R. Khawand, “Is open hardware worthwhile? learning from thales’ experience with risc-v,” Research-Technology Management, vol. 63, no. 4, pp. 44–53, 2020.spa
dc.relation.referencesF. Laport, F. J. Vazquez-Araujo, D. Iglesia, P. M. Castro, and A. Dapena, “A comparative study of low cost open source eeg devices,” in Multidisciplinary Digital Publishing Institute Proceedings, vol. 21, p. 40, 2019.spa
dc.relation.referencesR. Martínez-Cancino, A. Delorme, D. Truong, F. Artoni, K. Kreutz-Delgado, S. Sivagnanam, K. Yoshimoto, A. Majumdar, and S. Makeig, “The open eeglab portal interface: High-performance computing with eeglab,” NeuroImage, vol. 224, p. 116778, 2021.spa
dc.relation.referencesT. Choudhury, A. Tripathi, B. Arora, and A. Aggarwal, “Implementation of common spatial pattern algorithm using eeg in bcilab,” in International Conference on Recent Developments in Science, Engineering and Technology, pp. 288–300, Springer, 2019.spa
dc.relation.referencesA. Gramfort, M. Luessi, E. Larson, D. A. Engemann, D. Strohmeier, C. Brodbeck, R. Goj, M. Jas, T. Brooks, L. Parkkonen, and M. S. Hämäläinen, “MEG and EEG data analysis with MNE-Python,” Frontiers in Neuroscience, vol. 7, no. 267, pp. 1–13, 2013.spa
dc.relation.referencesG. Schalk, D. J. McFarland, T. Hinterberger, N. Birbaumer, and J. R. Wolpaw, “Bci2000: a general-purpose brain-computer interface (bci) system,” IEEE Transactions on biomedical engineering, vol. 51, no. 6, pp. 1034–1043, 2004.spa
dc.relation.referencesY. Renard, F. Lotte, G. Gibert, M. Congedo, E. Maby, V. Delannoy, O. Bertrand, and A. Lécuyer, “Openvibe: An open-source software platform to design, test, and use brain–computer interfaces in real and virtual environments,” Presence: teleoperators and virtual environments, vol. 19, no. 1, pp. 35–53, 2010.spa
dc.relation.referencesM. Madrid Sobrino, “Brain computer interface,” Master’s thesis, 2014.spa
dc.relation.referencesJ. A. Wilson, J. Mellinger, G. Schalk, and J. Williams, “A procedure for measuring latencies in brain–computer interfaces,” IEEE transactions on biomedical engineering, vol. 57, no.7, pp. 1785–1797, 2010.spa
dc.relation.referencesS. Appelhoff and T. Stenner, “In com we trust: Feasibility of usb-based event marking,” Behavior Research Methods, vol. 53, no. 6, pp. 2450–2455, 2021.spa
dc.relation.referencesM. Razavi, V. Janfaza, T. Yamauchi, A. Leontyev, S. Longmire-Monford, and J. Orr, “Opensync: An open-source platform for synchronizing multiple measures in neuroscience experiments,” Journal of neuroscience methods, vol. 369, p. 109458, 2022.spa
dc.relation.referencesC. E. Davis, J. G. Martin, and S. J. Thorpe, “Stimulus onset hub: An open-source, low latency, and opto-isolated trigger box for neuroscientific research replicability and beyond,” Frontiers in Neuroinformatics, vol. 14, 2020.spa
dc.relation.referencesE. Netzer, A. Frid, and D. Feldman, “Real-time eeg classification via coresets for bci applications,” Engineering applications of artificial intelligence, vol. 89, p. 103455, 2020.spa
dc.relation.referencesM. A. Hasan, M. U. Khan, and D. Mishra, “A computationally efficient method for hybrid eeg-fnirs bci based on the pearson correlation,” BioMed Research International, vol. 2020, 2020.spa
dc.relation.referencesA. Ahmadi, O. Dehzangi, and R. Jafari, “Brain-computer interface signal processing algorithms: A computational cost vs. accuracy analysis for wearable computers,” in 2012 Ninth International Conference on Wearable and Implantable Body Sensor Networks, pp. 40–45, IEEE, 2012.spa
dc.relation.referencesV. Changoluisa, P. Varona, and F. D. B. Rodríguez, “A low-cost computational method for characterizing event-related potentials for bci applications and beyond,” IEEE Access, vol. 8, pp. 111089–111101, 2020.spa
dc.relation.referencesT. Abe, I. Kinsella, S. Saxena, E. K. Buchanan, J. Couto, J. Briggs, S. L. Kitt, R. Glassman, J. Zhou, L. Paninski, et al., “Neuroscience cloud analysis as a service,” bioRxiv, pp. 2020–06, 2021.spa
dc.relation.referencesS. M. Potter, A. El Hady, and E. E. Fetz, “Closed-loop neuroscience and neuroengineering,” Frontiers in neural circuits, vol. 8, p. 115, 2014.spa
dc.relation.referencesC. Muñiz, F. d. B. Rodríguez, and P. Varona, “Rtbiomanager: a software platform to expand the applications of real-time technology in neuroscience,” BMC Neuroscience, vol. 10, no. 1, pp. 1–2, 2009.spa
dc.relation.referencesR. Amaducci, M. Reyes-Sanchez, I. Elices, F. B. Rodriguez, and P. Varona, “Rthybrid: a standardized and open-source real-time software model library for experimental neuroscience,” Frontiers in Neuroinformatics, vol. 13, p. 11, 2019.spa
dc.relation.references“Welcome to pytables’ documentation! — pytables 3.7.0 documentation.” https://www.pytables.org/. (Accessed on 03/29/2022).spa
dc.relation.referencesH. S. Kisakye, “Brain computer interfaces: Openvibe as a platform for a p300 speller,” 2013.spa
dc.relation.referencesR. K. Soni, Full Stack AngularJS for Java Developers: Build a Full-Featured Web Application from Scratch Using AngularJS with Spring RESTful. Apress, 2017.spa
dc.relation.referencesE. Muller, J. A. Bednar, M. Diesmann, M.-O. Gewaltig, M. Hines, and A. P. Davison, “Python in neuroscience,” Frontiers in neuroinformatics, vol. 9, p. 11, 2015.spa
dc.relation.referencesF.-B. Vialatte, J. Solé-Casals, and A. Cichocki, “Eeg windowed statistical wavelet scoring for evaluation and discrimination of muscular artifacts,” Physiological Measurement, vol. 29, no. 12, p. 1435, 2008.spa
dc.relation.referencesG. Gómez-Herrero, W. De Clercq, H. Anwar, O. Kara, K. Egiazarian, S. Van Huffel, and W. Van Paesschen, “Automatic removal of ocular artifacts in the eeg without an eog reference channel,” in Proceedings of the 7th Nordic signal processing symposium-NORSIG 2006, pp. 130–133, IEEE, 2006.spa
dc.relation.referencesP. T. Wang, C. E. King, C. M. McCrimmon, J. J. Lin, M. Sazgar, F. P. Hsu, S. J. Shaw, D. E. Millet, L. A. Chui, C. Y. Liu, et al., “Comparison of decoding resolution of standard and high-density electrocorticogram electrodes,” Journal of neural engineering, vol. 13, no. 2, p. 026016, 2016.spa
dc.relation.referencesL. Guo, “Principles of functional neural mapping using an intracortical ultra-density microelectrode array (ultra-density mea),” Journal of Neural Engineering, vol. 17, no. 3, p. 036018, 2020.spa
dc.relation.referencesQ. Liu, M. Ganzetti, N. Wenderoth, and D. Mantini, “Detecting large-scale brain networks using eeg: impact of electrode density, head modeling and source localization,” Frontiers in neuroinformatics, vol. 12, p. 4, 2018.spa
dc.relation.references“daemon.” https://www.freedesktop.org/software/systemd/man/ daemon.html. (Accessed on 06/04/2022).spa
dc.relation.references“systemd.” https://www.freedesktop.org/software/systemd/man/ systemd.html#. (Accessed on 06/04/2022).spa
dc.relation.referencesC. Xu, C. Sun, G. Jiang, X. Chen, Q. He, and P. Xie, “Two-level multi-domain feature extraction on sparse representation for motor imagery classification,” Biomedical Signal Processing and Control, vol. 62, p. 102160, 2020.spa
dc.relation.referencesD. G. García-Murillo, A. Alvarez-Meza, and G. Castellanos-Dominguez, “Single-trial kernel-based functional connectivity for enhanced feature extraction in motor-related tasks,” Sensors, vol. 21, no. 8, p. 2750, 2021spa
dc.relation.referencesM. Matsuo, N. Iso, K. Fujiwara, T. Moriuchi, D. Matsuda, W. Mitsunaga, A. Nakashima, and T. Higashi, “Comparison of cerebral activation between motor execution and motor imagery of self-feeding activity,” Neural regeneration research, vol. 16, no. 4, p. 778, 2021.spa
dc.relation.referencesD. F. Collazos-Huertas, A. M. Álvarez-Meza, C. D. Acosta-Medina, G. Castaño-Duque, and G. Castellanos-Domínguez, “Cnn-based framework using spatial dropping for enhanced interpretation of neural activity in motor imagery classification,” Brain Informatics, vol. 7, no. 1, pp. 1–13, 2020.spa
dc.relation.referencesS. Galindo-Noreña, D. Cárdenas-Peña, and Á. Orozco-Gutierrez, “Multiple kernel stein spatial patterns for the multiclass discrimination of motor imagery tasks,” Applied Sciences, vol. 10, no. 23, p. 8628, 2020.spa
dc.relation.referencesK. Choi, “Electroencephalography (eeg)-based neurofeedback training for brain–computer interface (bci),” Experimental brain research, vol. 231, no. 3, pp. 351–365, 2013.spa
dc.relation.referencesC. Llanos, M. Rodriguez, C. Rodriguez-Sabate, I. Morales, and M. Sabate, “Mu-rhythm changes during the planning of motor and motor imagery actions,” Neuropsychologia, vol. 51, no. 6, pp. 1019–1026, 2013.spa
dc.relation.referencesS. Perdikis, R. Leeb, and J. d. R. Millán, “Subject-oriented training for motor imagery brain-computer interfaces,” in 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1259–1262, IEEE, 2014spa
dc.relation.referencesA. D. Baddeley, “Working memory: theories, models, and controversies,” Exploring Working Memory, pp. 332–369, 2017.spa
dc.relation.referencesY. G. Pavlov and B. Kotchoubey, “Oscillatory brain activity and maintenance of verbal and visual working memory: A systematic review,” Psychophysiology, vol. 59, no. 5, p. e13735, 2022.spa
dc.relation.referencesE. L. Johnson, D. King-Stephens, P. B. Weber, K. D. Laxer, J. J. Lin, and R. T. Knight, “Spectral imprints of working memory for everyday associations in the frontoparietal network,” Frontiers in Systems Neuroscience, vol. 12, p. 65, 2019.spa
dc.relation.referencesD. Zhang, H. Zhao, W. Bai, and X. Tian, “Functional connectivity among multi-channel eegs when working memory load reaches the capacity,” Brain research, vol. 1631, pp. 101–112, 2016.spa
dc.relation.referencesZ. Dai, J. De Souza, J. Lim, P. M. Ho, Y. Chen, J. Li, N. Thakor, A. Bezerianos, and Y. Sun, “Eeg cortical connectivity analysis of working memory reveals topological reorganization in theta and alpha bands,” Frontiers in human neuroscience, p. 237, 2017.spa
dc.relation.referencesE. L. Johnson, J. N. Adams, A.-K. Solbakk, T. Endestad, P. G. Larsson, J. Ivanovic, T. R. Meling, J. J. Lin, and R. T. Knight, “Dynamic frontotemporal systems process space and time in working memory,” PLoS biology, vol. 16, no. 3, p. e2004274, 2018.spa
dc.relation.referencesE. K. Vogel and M. G. Machizawa, “Neural activity predicts individual differences in visual working memory capacity,” Nature, vol. 428, no. 6984, pp. 748–751, 2004.spa
dc.relation.referencesL. Newsome, “Visual angle and apparent size of objects in peripheral vision,” Perception & Psychophysics, vol. 12, no. 3, pp. 300–304, 1972.spa
dc.relation.referencesR. Haeuslschmid, S. Forster, K. Vierheilig, D. Buschek, and A. Butz, “Recognition of text and shapes on a large-sized head-up display,” in Proceedings of the 2017 Conference on Designing Interactive Systems, pp. 821–831, 2017.spa
dc.relation.referencesM. Villena-González, I. Rubio-Venegas, and V. López, “Data from brain activity during visual working memory replicates the correlation between contralateral delay activity and memory capacity,” Data in brief, vol. 28, p. 105042, 2020.spa
dc.relation.referencesS. Enriquez-Geppert, R. J. Huster, and C. S. Herrmann, “Eeg-neurofeedback as a tool to modulate cognition and behavior: a review tutorial,” Frontiers in human neuroscience, vol. 11, p. 51, 2017.spa
dc.relation.referencesA. R. Aron, P. C. Fletcher, E. T. Bullmore, B. J. Sahakian, and T. W. Robbins, “Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans,” Nature neuroscience, vol. 6, no. 2, pp. 115–116, 2003.spa
dc.relation.referencesF. N. Dempster, “The rise and fall of the inhibitory mechanism: Toward a unified theory of cognitive development and aging,” Developmental review, vol. 12, no. 1, pp. 45–75, 1992.spa
dc.relation.referencesA. Bari and T. W. Robbins, “Inhibition and impulsivity: behavioral and neural basis of response control,” Progress in neurobiology, vol. 108, pp. 44–79, 2013.spa
dc.relation.referencesJ. S. Ide, P. Shenoy, J. Y. Angela, and R. L. Chiang-Shan, “Bayesian prediction and evaluation in the anterior cingulate cortex,” Journal of Neuroscience, vol. 33, no. 5, pp. 2039–2047, 2013.spa
dc.relation.referencesK. Rubia, A. B. Smith, M. J. Brammer, and E. Taylor, “Right inferior prefrontal cortex mediates response inhibition while mesial prefrontal cortex is responsible for error detection,” Neuroimage, vol. 20, no. 1, pp. 351–358, 2003.spa
dc.relation.referencesG. D. Logan and W. B. Cowan, “On the ability to inhibit thought and action: A theory of an act of control.,” Psychological review, vol. 91, no. 3, p. 295, 1984.spa
dc.relation.referencesP. M. Herrera, A. V. Van Meerbeke, M. Speranza, C. L. Cabra, M. Bonilla, M. Canu, and T. A. Bekinschtein, “Expectation of reward differentially modulates executive inhibition,” BMC psychology, vol. 7, no. 1, pp. 1–10, 2019spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadoresspa
dc.subject.proposalBrain-Computer Interfaceeng
dc.subject.proposalSignals acquisitioneng
dc.subject.proposalNeurophysiological experimentseng
dc.subject.proposalDistributed systemseng
dc.subject.proposalEmbedded systemseng
dc.subject.proposalOpenBCIeng
dc.subject.proposalInterfaces Cerebro-Computadorspa
dc.subject.proposalAdquisición de señalesspa
dc.subject.proposalExperimentos neurofisiológicosspa
dc.subject.proposalSistemas distribuidosspa
dc.subject.proposalSistemas embebidosspa
dc.subject.unescoTecnología médicaspa
dc.subject.unescoMedical technologyeng
dc.titleEEG-based BCI monitoring framework: Real-time acquisition and visualization from audiovisual stimulation paradigmseng
dc.title.translatedFramework de monitoreo para BCI basado en EEG: Adquisición, visualización y procesamiento en tiempo real de paradigmas de estimulación audiovisualspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentImagespa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1053810923.2022.pdf
Tamaño:
2.68 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Automatización Industrial

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: