A computational justice model for resources distribution in Ad Hoc Networks
dc.contributor.advisor | Ortiz Triviño, Jorge Eduardo | spa |
dc.contributor.author | Ospina López, Juan Pablo | spa |
dc.contributor.researchgroup | TLÖN - Grupo de Investigación en Redes de Telecomunicaciones Dinámicas y Lenguajes de Programación Distribuidos | spa |
dc.date.accessioned | 2020-05-27T15:56:45Z | spa |
dc.date.available | 2020-05-27T15:56:45Z | spa |
dc.date.issued | 2020-05-26 | spa |
dc.description.abstract | We propose a computational justice model for resource distribution in ad hoc networks using socially inspired computing and agent-based modeling. Ad hoc networks are self-organizing systems in which there is no central controller or other orchestration forms. Therefore, it is not possible to use distribution methods designed for centralized systems that require complete information and where the resource distribution aims to optimize the performance of the whole system without considering the individual goals of the participants. In this work, we used socially inspired computing to formulate a distribution method using stochastic games, institutions, distributive justice, and adaptative computing. We analyzed our proposal through simulation and compared its performance with previous works. The result showed how a distribution method based on computational justice is a potential solution for facing the distribution problem in ad hoc networks. Additionally, we implemented a multi-agent system to evaluate this proposal in a real system and to provide an easy and low-cost platform for developing ad hoc network applications. | spa |
dc.description.abstract | En este trabajo, se propone un modelo de justicia computacional para la distribución de recursos en redes ad hoc utilizando computación social inspirada y modelamiento basado en agentes. Las redes ad hoc son sistemas auto-organizantes en los que no existe control centralizado u otras formas de orquestación. Como consecuencia, no es posible utilizar métodos de distribución diseñados para sistemas centralizados que requieren información completa y donde la distribución de recursos tiene como objetivo optimizar el rendimiento global del sistema sin considerar los objetivos individuales de los participantes. Así, utilizando computación social inspirada se formuló un método de distribución utilizando juegos estocásticos, instituciones, justicia distributiva y computación adaptativa. Se evaluó el modelo a través simulación y se validó su desempeño con trabajos reportados en la literatura. Los resultados muestran cómo un método de distribución basado en la idea justicia computacional es una solución potencial para enfrentar el problema de distribución en redes ad hoc. Adicionalmente, se implementó un sistema multi-agente para evaluar esta propuesta en un ambiente real, y proporcionar una plataforma de bajo costo para el desarrollo de aplicaciones relacionadas con redes ad hoc. | spa |
dc.description.degreelevel | Doctorado | spa |
dc.format.extent | 87 | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/77557 | |
dc.language.iso | eng | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.program | Bogotá - Ingeniería - Doctorado en Ingeniería - Sistemas y Computación | spa |
dc.relation.references | J. Pitt, D. Busquets, and S. Macbeth, “Distributive justice for self-organised common- pool resource management,” ACM Transactions on Autonomous and Adaptive Systems (TAAS), vol. 9, no. 3, p. 14, 2014. | spa |
dc.relation.references | J. F. Sánchez, J. P. Ospina, J. Lopez, and J. Ortiz, “Proposed ad hoc network to expand coverage of an ieee 802.11 n network,” in 2017 IEEE Colombian Conference on Communications and Computing (COLCOM). IEEE, 2017, pp. 1–5. | spa |
dc.relation.references | D. A. Vega, J. P. Ospina, J. F. Latorre, and J. E. Ortiz, “An adaptive trust model for achieving emergent cooperation in ad hoc networks,” in Current Trends in Semantic Web Technologies: Theory and Practice. Springer, 2019, pp. 85–100. | spa |
dc.relation.references | J. F. Latorre, J. P. Ospina, and J. E. Ortiz, “A coalitional game for achieving emergent cooperation in ad hoc networks through sympathy and commitment,” in Workshop on Engineering Applications. Springer, 2018, pp. 352–362. | spa |
dc.relation.references | J. P. Ospina and J. E. Ortiz, “Estimation of a growth factor to achieve scalable ad hoc networks,” Ingeniería y Universidad, vol. 21, no. 1, pp. 49–70, 2017. | spa |
dc.relation.references | L. J. Alfonso, J. P. Ospina, and J. E. Ortiz, “A register module for agents communities through robustness property in ad hoc networks,” in 2018 Congreso Internacional de Innovación y Tendencias en Ingeniería (CONIITI). IEEE, 2018, pp. 1–6. | spa |
dc.relation.references | J. F. Sánchez, J. P. Ospina, J. E. Gonzalez, and J. E. Ortiz, “Sociability as a decision model for artificial agents,” in Proceedings of the 2017 International Symposium on Industrial Engineering and Operations Management (IEOM) IEOM Society, 2017. | spa |
dc.relation.references | G. R. Osorio, J. F. Sánchez, J. P. Ospina, and J. E. Ortiz, “An address allocation protocol for ad hoc networks through pollen dispersion algorithms,” in 2019 IEEE Co- lombian Conference on Applications in Computational Intelligence (ColCACI). IEEE, 2019, pp. 1–6. | spa |
dc.relation.references | J. P. Ospina, J. F. Sánchez, J. E. Ortiz, C. Collazos-Morales, and P. Ariza-Colpas, “Socially and biologically inspired computing for self-organizing communications networks,” in International Conference on Machine Learning for Networking. Springer, 2019, pp. 461–484. | spa |
dc.relation.references | J. D. Day and H. Zimmermann, “The osi reference model,” Proceedings of the IEEE, vol. 71, no. 12, pp. 1334–1340, 1983. | spa |
dc.relation.references | T. G. Robertazzi, Computer networks and systems: queueing theory and performance evaluation. Springer Science & Business Media, 2012. | spa |
dc.relation.references | F. Dressler, “A study of self-organization mechanisms in ad hoc and sensor networks,” Computer Communications, vol. 31, no. 13, pp. 3018–3029, 2008. | spa |
dc.relation.references | C. Gershenson and F. Heylighen, “When can we call a system self-organizing?” in European Conference on Artificial Life. Springer, 2003, pp. 606–614. | spa |
dc.relation.references | V. Pureswaran and P. Brody, “Device democracy: Saving the future of the internet of things,” IBM Corporation, 2015. | spa |
dc.relation.references | C. E. Maldonado, “Complejidad: ciencia, pensamiento y aplicaciones,” Books, vol. 1, 2007. | spa |
dc.relation.references | F. Dressler, Self-organization in sensor and actor networks. John Wiley & Sons, 2008. | spa |
dc.relation.references | M. S. Taqqu, W. Willinger, and R. Sherman, “Proof of a fundamental result in self- similar traffic modeling,” ACM SIGCOMM Computer Communication Review, vol. 27, no. 2, pp. 5–23, 1997. | spa |
dc.relation.references | M. Alzate and A. Monroy, “Introducción al tráfico autosimilar en redes de comunicaciones,” Revista Ingeniería, vol. 6, no. 2, pp. 6–17, 2001. | spa |
dc.relation.references | C. Gershenson, Design and control of self-organizing systems. CopIt ArXives, 2007. | spa |
dc.relation.references | B. C. Neuman, “Scale in distributed systems,” ISI/USC, 1994. | spa |
dc.relation.references | F. Dressler and O. B. Akan, “A survey on bio-inspired networking,” Computer Net- works, vol. 54, no. 6, pp. 881–900, 2010. | spa |
dc.relation.references | J. Pitt, J. Schaumeier, and A. Artikis, “The axiomatisation of socio-economic principles for self-organising systems,” in Self-Adaptive and Self-Organizing Systems (SASO), 2011 Fifth IEEE International Conference on. IEEE, 2011, pp. 138–147. | spa |
dc.relation.references | M. Mejia, N. Peña, J. L. Muñoz, O. Esparza, and M. A. Alzate, “A game theoretic trust model for on-line distributed evolution of cooperation inmanets,” Journal of Network and Computer Applications, vol. 34, no. 1, pp. 39–51, 2011. | spa |
dc.relation.references | A. J. Jones, A. Artikis, and J. Pitt, “The design of intelligent socio-technical systems,”Artificial Intelligence Review, vol. 39, no. 1, pp. 5–20, 2013. | spa |
dc.relation.references | J. Pitt, “From trust and forgiveness to social capital and justice: Formal models of social processes in open distributed systems,” in Trustworthy Open Self-Organising Systems. Springer, 2016, pp. 185–208. | spa |
dc.relation.references | F. H. Fitzek and M. D. Katz, Mobile clouds: Exploiting distributed resources in wireless, mobile and social networks. John Wiley & Sons, 2013. | spa |
dc.relation.references | M. A. Nowak, “Five rules for the evolution of cooperation,” science, vol. 314, no. 5805, pp. 1560–1563, 2006. | spa |
dc.relation.references | J. Pitt, J. Schaumeier, D. Busquets, and S. Macbeth, “Self-organising common-pool resource allocation and canons of distributive justice,” in Self-Adaptive and Self- Organizing Systems (SASO), 2012 IEEE Sixth International Conference on. IEEE, 2012, pp. 119–128. | spa |
dc.relation.references | J. Pitt and J. Schaumeier, “Provision and appropriation of common-pool resources without full disclosure,” in International Conference on Principles and Practice of Multi-Agent Systems. Springer, 2012, pp. 199–213. | spa |
dc.relation.references | M. A. Nowak, A. Sasaki, C. Taylor, and D. Fudenberg, “Emergence of cooperation and evolutionary stability in finite populations,” Nature, vol. 428, no. 6983, pp. 646–650, 2004. | spa |
dc.relation.references | G. F. Marias, P. Georgiadis, D. Flitzanis, and K. Mandalas, “Cooperation enforce- ment schemes for manets: A survey,” Wireless Communications and Mobile Computing, vol. 6, no. 3, pp. 319–332, 2006. | spa |
dc.relation.references | L. Buttyán and J.-P. Hubaux, “Enforcing service availability in mobile ad-hoc wans,” in Mobile and Ad Hoc Networking and Computing, 2000. MobiHOC. 2000 First Annual Workshop on. IEEE, 2000, pp. 87–96. | spa |
dc.relation.references | E. Ostrom, Governing the commons: The evolution of institutions for collective action. Cambridge university press, 1990. | spa |
dc.relation.references | S. M. Pedersen and K. M. Lind, Precision Agriculture: Technology and Economic Perspectives. Springer, 2017. | spa |
dc.relation.references | J. Lindblom, C. Lundström, M. Ljung, and A. Jonsson, “Promoting sustainable intensification in precision agriculture: review of decision support systems development and strategies,” Precision Agriculture, vol. 18, no. 3, pp. 309–331, 2017. | spa |
dc.relation.references | V. Dignum, “Social agents: bridging simulation and engineering,” Communications of the ACM, vol. 60, no. 11, pp. 32–34, 2017. | spa |
dc.relation.references | S. M. Pedersen and K. M. Lind, Precision Agriculture: Technology and Economic Perspectives. Springer, 2017. | spa |
dc.relation.references | P. E. Petruzzi, D. Busquets, and J. Pitt, “A generic social capital framework for opti- mising self-organised collective action,” in Self-Adaptive and Self-Organizing Systems (SASO), 2015 IEEE 9th International Conference on. IEEE, 2015, pp. 21–30. | spa |
dc.relation.references | M. M. Waldrop, Complexity: The emerging science at the edge of order and chaos. Simon and Schuster, 1993. | spa |
dc.relation.references | T. Baarslag and K. V. Hindriks, “Accepting optimally in automated negotiation with incomplete information,” in Proceedings of the 2013 international conference on Auto- nomous agents and multi-agent systems. International Foundation for Autonomous Agents and Multiagent Systems, 2013, pp. 715–722. | spa |
dc.relation.references | P. Faratin, C. Sierra, and N. R. Jennings, “Negotiation decision functions for autono- mous agents,” Robotics and Autonomous Systems, vol. 24, no. 3, pp. 159–182, 1998. | spa |
dc.relation.references | A. Artikis, L. Kamara, J. Pitt, and M. Sergot, “A protocol for resource sharing in norm-governed ad hoc networks,” in Declarative Agent Languages and Technologies II, J. Leite, A. Omicini, P. Torroni, and p. Yolum, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 221–238. | spa |
dc.relation.references | D. M. Carballo, P. Roscoe, and G. M. Feinman, “Cooperation and collective action in the cultural evolution of complex societies,” Journal of Archaeological Method and Theory, vol. 21, no. 1, pp. 98–133, 2014. | spa |
dc.relation.references | H. Shi, R. V. Prasad, E. Onur, and I. Niemegeers, “Fairness in wireless networks: Issues, measures and challenges,” IEEE Communications Surveys & Tutorials, vol. 16, no. 1, pp. 5–24, 2014. | spa |
dc.relation.references | B. Wang, X. Chen, and W. Chang, “A light-weight trust-based qos routing algorithm for ad hoc networks,” Pervasive and Mobile Computing, vol. 13, pp. 164–180, 2014. | spa |
dc.relation.references | L. A. Grieco, A. Rizzo, S. Colucci, S. Sicari, G. Piro, D. Di Paola, and G. Boggia, “Iot-aided robotics applications: Technological implications, target domains and open issues,” Computer Communications, vol. 54, pp. 32–47, 2014. | spa |
dc.relation.references | Y. Li, H. Xu, Q. Cao, Z. Li, and S. Shen, “Evolutionary game-based trust strategy adjustment among nodes in wireless sensor networks,” International Journal of Distri- buted Sensor Networks, vol. 11, no. 2, p. 818903, 2015. | spa |
dc.relation.references | M. Mejia, N. Pena, J. L. Munoz, and O. Esparza, “A review of trust modeling in ad hoc networks,” Internet Research, vol. 19, no. 1, pp. 88–104, 2009. | spa |
dc.relation.references | R. Sugumar, A. Rengarajan, and C. Jayakumar, “Trust based authentication technique for cluster based vehicular ad hoc networks (vanet),” Wireless Networks, vol. 24, no. 2, pp. 373–382, 2018. | spa |
dc.relation.references | Z. Zhang, K. Long, J. Wang, and F. Dressler, “On swarm intelligence inspired self- organized networking: its bionic mechanisms, designing principles and optimization approaches,” IEEE Communications Surveys & Tutorials, vol. 16, no. 1, pp. 513–537, 2014. | spa |
dc.relation.references | A. H. Sayed, S.-Y. Tu, J. Chen, X. Zhao, and Z. J. Towfic, “Diffusion strategies for adaptation and learning over networks: an examination of distributed strategies and network behavior,” IEEE Signal Processing Magazine, vol. 30, no. 3, pp. 155–171, 2013. | spa |
dc.relation.references | Z. Zhang, K. Long, and J. Wang, “Self-organization paradigms and optimization ap- proaches for cognitive radio technologies: a survey,” IEEE Wireless Communications, vol. 20, no. 2, pp. 36–42, 2013. | spa |
dc.relation.references | M. Chitra and S. S. Sathya, “Bidirectional data dissemination in vehicular ad hoc net- works using epidemic spreading model,” in Proceedings of the International Conference on Informatics and Analytics. ACM, 2016, p. 57. | spa |
dc.relation.references | B. Liu, W. Zhou, L. Gao, H. Zhou, T. H. Luan, and S. Wen, “Malware propagations in wireless ad hoc networks,” IEEE Transactions on Dependable and Secure Computing, 2016. | spa |
dc.relation.references | C. Gan, X. Yang, W. Liu, Q. Zhu, J. Jin, and L. He, “Propagation of computer virus both across the internet and external computers: A complex-network approach,” Communications in Nonlinear Science and Numerical Simulation, vol. 19, no. 8, pp. 2785–2792, 2014. | spa |
dc.relation.references | X. Yang, B. K. Mishra, and Y. Liu, “Computer virus: theory, model, and methods,” Discrete Dynamics in Nature and Society, vol. 2012, 2012. | spa |
dc.relation.references | L.-X. Yang, X. Yang, J. Liu, Q. Zhu, and C. Gan, “Epidemics of computer viruses: A complex-network approach,” Applied Mathematics and Computation, vol. 219, no. 16, pp. 8705–8717, 2013. | spa |
dc.relation.references | H. B. Liaqat, F. Xia, Q. Yang, Z. Xu, A. M. Ahmed, and A. Rahim, “Bio-inspired packet dropping for ad-hoc social networks,” International Journal of Communication Systems, vol. 30, no. 1, 2017. | spa |
dc.relation.references | S. Tiwari, K. Mishra, N. Saxena, N. Singh, and A. Misra, “Artificial immune system based mac layer misbehavior detection in manet,” in Advanced Computer and Com- munication Engineering Technology. Springer, 2016, pp. 707–722. | spa |
dc.relation.references | S. Jamali and R. Fotohi, “Defending against wormhole attack in manet using an ar- tificial immune system,” New Review of Information Networking, vol. 21, no. 2, pp. 79–100, 2016. | spa |
dc.relation.references | W. Li, P. Yi, Y. Wu, L. Pan, and J. Li, “A new intrusion detection system based on knn classification algorithm in wireless sensor network,” Journal of Electrical and Computer Engineering, vol. 2014, 2014. | spa |
dc.relation.references | I. Butun, S. D. Morgera, and R. Sankar, “A survey of intrusion detection systems in wireless sensor networks,” IEEE communications surveys & tutorials, vol. 16, no. 1, pp. 266–282, 2014. | spa |
dc.relation.references | N. A. Alrajeh and J. Lloret, “Intrusion detection systems based on artificial intelligence techniques in wireless sensor networks,” International Journal of Distributed Sensor Networks, vol. 9, no. 10, p. 351047, 2013. | spa |
dc.relation.references | G. Brandner, U. Schilcher, and C. Bettstetter, “Firefly synchronization with phase rate equalization and its experimental analysis in wireless systems,” Computer Networks, vol. 97, pp. 74–87, 2016. | spa |
dc.relation.references | J.-Y. Jung, H.-H. Choi, and J.-R. Lee, “Survey of bio-inspired resource allocation al- gorithms and mac protocol design based on a bio-inspired algorithm for mobile ad hoc networks,” IEEE Communications Magazine, vol. 56, no. 1, pp. 119–127, 2018. | spa |
dc.relation.references | J. He, H. Li, J. Chen, and P. Cheng, “Study of consensus-based time synchronization in wireless sensor networks,” ISA transactions, vol. 53, no. 2, pp. 347–357, 2014. | spa |
dc.relation.references | F. Zhang, H. L. Trentelman, and J. M. Scherpen, “Fully distributed robust synchroni- zation of networked lur’e systems with incremental nonlinearities,” Automatica, vol. 50, no. 10, pp. 2515–2526, 2014. | spa |
dc.relation.references | J. He, P. Cheng, L. Shi, J. Chen, and Y. Sun, “Time synchronization in wsns: A maximum-value-based consensus approach,” IEEE Transactions on Automatic Con- trol, vol. 59, no. 3, pp. 660–675, 2014. | spa |
dc.relation.references | D. Karaboga and B. Akay, “A survey: algorithms simulating bee swarm intelligence,” Artificial intelligence review, vol. 31, no. 1-4, p. 61, 2009. | spa |
dc.relation.references | G. Di Caro, F. Ducatelle, and L. M. Gambardella, “Anthocnet: an adaptive nature- inspired algorithm for routing in mobile ad hoc networks,” Transactions on Emerging Telecommunications Technologies, vol. 16, no. 5, pp. 443–455, 2005. | spa |
dc.relation.references | X. Zhang, X. Zhang, and C. Gu, “A micro-artificial bee colony based multicast routing in vehicular ad hoc networks,” Ad Hoc Networks, vol. 58, pp. 213–221, 2017. | spa |
dc.relation.references | S. Saleh, M. Ahmed, B. M. Ali, M. F. A. Rasid, and A. Ismail, “A survey on energy awareness mechanisms in routing protocols for wireless sensor networks using optimization methods,” Transactions on Emerging Telecommunications Technologies, vol. 25, no. 12, pp. 1184–1207, 2014. | spa |
dc.relation.references | M. Fahad, F. Aadil, S. Khan, P. A. Shah, K. Muhammad, J. Lloret, H. Wang, J. W. Lee, I. Mehmood et al., “Grey wolf optimization based clustering algorithm for vehicular ad-hoc networks,” Computers & Electrical Engineering, 2018. | spa |
dc.relation.references | M. Hammoudeh and R. Newman, “Adaptive routing in wireless sensor networks: Qos optimisation for enhanced application performance,” Information Fusion, vol. 22, pp. 3–15, 2015. | spa |
dc.relation.references | A. Giagkos and M. S. Wilson, “Beeip–a swarm intelligence based routing for wireless ad hoc networks,” Information Sciences, vol. 265, pp. 23–35, 2014. | spa |
dc.relation.references | C. R. Shalizi et al., “Causal architecture, complexity and self-organization in the time series and cellular automata,” Ph.D. dissertation, University of Wisconsin–Madison, 2001. | spa |
dc.relation.references | A. M. Law, W. D. Kelton, and W. D. Kelton, Simulation modeling and analysis. McGraw-Hill New York, 2007, vol. 3. | spa |
dc.relation.references | U. Hatfield, “Socially inspired computing,” 2005. | spa |
dc.relation.references | M. Wang and T. Suda, “The bio-networking architecture: A biologically inspired ap- proach to the design of scalable, adaptive, and survivable/available network appli- cations,” in Applications and the Internet, 2001. Proceedings. 2001 Symposium on. IEEE, 2001, pp. 43–53. | spa |
dc.relation.references | M. Eigen and P. Schuster, The hypercycle: a principle of natural self-organization. Springer Science & Business Media, 2012. | spa |
dc.relation.references | J. P. Garbiso, A. Diaconescu, M. Coupechoux, J. Pitt, and B. Leroy, “Distributive justice for fair auto-adaptive clusters of connected vehicles,” in Foundations and Ap- plications of Self* Systems (FAS* W), 2017 IEEE 2nd International Workshops on. IEEE, 2017, pp. 79–84. | spa |
dc.relation.references | J. Pitt, A. Diaconescu, and A. Bourazeri, “Democratisation of the smartgrid and the active participation of prosumers,” in Industrial Electronics (ISIE), 2017 IEEE 26th International Symposium on. IEEE, 2017, pp. 1707–1714. | spa |
dc.relation.references | M. Amoozadeh, H. Deng, C.-N. Chuah, H. M. Zhang, and D. Ghosal, “Platoon mana- gement with cooperative adaptive cruise control enabled by vanet,” Vehicular commu- nications, vol. 2, no. 2, pp. 110–123, 2015. | spa |
dc.relation.references | P. F. Dell, “Beyond homeostasis: Toward a concept of coherence,” Family Process, vol. 21, no. 1, pp. 21–41, 1982. | spa |
dc.relation.references | F. Wortmann and K. Flüchter, “Internet of things,” Business & Information Systems Engineering, vol. 57, no. 3, pp. 221–224, 2015. | spa |
dc.relation.references | A. Galati, “Delay tolerant network,” 2010. | spa |
dc.relation.references | T. Camp, J. Boleng, and V. Davies, “A survey of mobility models for ad hoc network research,” Wireless communications and mobile computing, vol. 2, no. 5, pp. 483–502, 2002. | spa |
dc.relation.references | T. Tsuchiya and T. Kikuno, “An adaptive mechanism for epidemic communication,” in International Workshop on Biologically Inspired Approaches to Advanced Information Technology. Springer, 2004, pp. 306–316. | spa |
dc.relation.references | K. Yang, “Wireless sensor networks,” Principles, Design and Applications, 2014. | spa |
dc.relation.references | J. Ramiro and K. Hamied, Self-organizing networks (SON): Self-planning, self- optimization and self-healing for GSM, UMTS and LTE. John Wiley & Sons, 2011. | spa |
dc.relation.references | S. Li, L. Da Xu, and S. Zhao, “5g internet of things: A survey,” Journal of Industrial Information Integration, 2018. | spa |
dc.relation.references | E. Yanmaz, S. Yahyanejad, B. Rinner, H. Hellwagner, and C. Bettstetter, “Drone networks: Communications, coordination, and sensing,” Ad Hoc Networks, vol. 68, pp. 1–15, 2018. | spa |
dc.relation.references | F. Dressler, F. Klingler, C. Sommer, and R. Cohen, “Not all vanet broadcasts are the same: Context-aware class based broadcast,” IEEE/ACM Transactions on Networking, vol. 26, no. 1, pp. 17–30, 2018. | spa |
dc.relation.references | P. Grippa, D. A. Behrens, C. Bettstetter, and F. Wall, “Job selection in a network of autonomous uavs for delivery of goods,” arXiv preprint arXiv:1604.04180, 2016. | spa |
dc.relation.references | G. Carreón, C. Gershenson, and L. Pineda, “Improving public transportation systems with self-organization: A headway-based model and regulation of passenger alighting and boarding.” PloS one, vol. 12, no. 12, 2017. | spa |
dc.relation.references | J. Loo, J. L. Mauri, and J. H. Ortiz, Mobile ad hoc networks: current status and future trends. CRC Press, 2016. | spa |
dc.relation.references | D. Abadi, “Consistency tradeoffs in modern distributed database system design: Cap is only part of the story,” Computer, vol. 45, no. 2, pp. 37–42, 2012. | spa |
dc.relation.references | A.-L. Barabási and E. Bonabeau, “Scale-free networks,” Scientific american, vol. 288, no. 5, pp. 60–69, 2003. | spa |
dc.relation.references | L. Kocarev, Complex dynamics in communication networks. Springer Science & Bu- siness Media, 2005. | spa |
dc.relation.references | W. San-Um, P. Ketthong, and J. Noymanee, “A deterministic node mobility model for mobile ad hoc wireless network using signum-based discrete-time chaotic map,” in Telecommunication Networks and Applications Conference (ITNAC), 2015 International. IEEE, 2015, pp. 114–119. | spa |
dc.relation.references | P. Ranjan, E. H. Abed, and R. J. La, “Nonlinear instabilities in tcp-red,” IEEE/ACM transactions on networking, vol. 12, no. 6, pp. 1079–1092, 2004. | spa |
dc.relation.references | M. Wooldridge, An introduction to multiagent systems. John Wiley & Sons, 2009. | spa |
dc.relation.references | S. F. Railsback and V. Grimm, Agent-based and individual-based modeling: a practical introduction. Princeton university press, 2012. | spa |
dc.relation.references | J. Lindblom, C. Lundström, M. Ljung, and A. Jonsson, “Promoting sustainable inten- sification in precision agriculture: review of decision support systems development and strategies,” Precision Agriculture, vol. 18, no. 3, pp. 309–331, 2017. | spa |
dc.rights | Derechos reservados - Universidad Nacional de Colombia | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.spa | Acceso abierto | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
dc.subject.ddc | 000 - Ciencias de la computación, información y obras generales::003 - Sistemas | spa |
dc.subject.proposal | justicia computacional | spa |
dc.subject.proposal | computational justice | eng |
dc.subject.proposal | fairness | eng |
dc.subject.proposal | justicia | spa |
dc.subject.proposal | redes ad hoc | spa |
dc.subject.proposal | socially inspired computing | eng |
dc.subject.proposal | ad hoc networks | eng |
dc.subject.proposal | computación social inspirada | spa |
dc.subject.proposal | modelamiento basado en agentes | spa |
dc.subject.proposal | agent-based modelling | eng |
dc.title | A computational justice model for resources distribution in Ad Hoc Networks | spa |
dc.type | Trabajo de grado - Doctorado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_db06 | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/doctoralThesis | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |