A computational justice model for resources distribution in Ad Hoc Networks

dc.contributor.advisorOrtiz Triviño, Jorge Eduardospa
dc.contributor.authorOspina López, Juan Pablospa
dc.contributor.researchgroupTLÖN - Grupo de Investigación en Redes de Telecomunicaciones Dinámicas y Lenguajes de Programación Distribuidosspa
dc.date.accessioned2020-05-27T15:56:45Zspa
dc.date.available2020-05-27T15:56:45Zspa
dc.date.issued2020-05-26spa
dc.description.abstractWe propose a computational justice model for resource distribution in ad hoc networks using socially inspired computing and agent-based modeling. Ad hoc networks are self-organizing systems in which there is no central controller or other orchestration forms. Therefore, it is not possible to use distribution methods designed for centralized systems that require complete information and where the resource distribution aims to optimize the performance of the whole system without considering the individual goals of the participants. In this work, we used socially inspired computing to formulate a distribution method using stochastic games, institutions, distributive justice, and adaptative computing. We analyzed our proposal through simulation and compared its performance with previous works. The result showed how a distribution method based on computational justice is a potential solution for facing the distribution problem in ad hoc networks. Additionally, we implemented a multi-agent system to evaluate this proposal in a real system and to provide an easy and low-cost platform for developing ad hoc network applications.spa
dc.description.abstractEn este trabajo, se propone un modelo de justicia computacional para la distribución de recursos en redes ad hoc utilizando computación social inspirada y modelamiento basado en agentes. Las redes ad hoc son sistemas auto-organizantes en los que no existe control centralizado u otras formas de orquestación. Como consecuencia, no es posible utilizar métodos de distribución diseñados para sistemas centralizados que requieren información completa y donde la distribución de recursos tiene como objetivo optimizar el rendimiento global del sistema sin considerar los objetivos individuales de los participantes. Así, utilizando computación social inspirada se formuló un método de distribución utilizando juegos estocásticos, instituciones, justicia distributiva y computación adaptativa. Se evaluó el modelo a través simulación y se validó su desempeño con trabajos reportados en la literatura. Los resultados muestran cómo un método de distribución basado en la idea justicia computacional es una solución potencial para enfrentar el problema de distribución en redes ad hoc. Adicionalmente, se implementó un sistema multi-agente para evaluar esta propuesta en un ambiente real, y proporcionar una plataforma de bajo costo para el desarrollo de aplicaciones relacionadas con redes ad hoc.spa
dc.description.degreelevelDoctoradospa
dc.format.extent87spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77557
dc.language.isoengspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Sistemas y Computaciónspa
dc.relation.referencesJ. Pitt, D. Busquets, and S. Macbeth, “Distributive justice for self-organised common- pool resource management,” ACM Transactions on Autonomous and Adaptive Systems (TAAS), vol. 9, no. 3, p. 14, 2014.spa
dc.relation.referencesJ. F. Sánchez, J. P. Ospina, J. Lopez, and J. Ortiz, “Proposed ad hoc network to expand coverage of an ieee 802.11 n network,” in 2017 IEEE Colombian Conference on Communications and Computing (COLCOM). IEEE, 2017, pp. 1–5.spa
dc.relation.referencesD. A. Vega, J. P. Ospina, J. F. Latorre, and J. E. Ortiz, “An adaptive trust model for achieving emergent cooperation in ad hoc networks,” in Current Trends in Semantic Web Technologies: Theory and Practice. Springer, 2019, pp. 85–100.spa
dc.relation.referencesJ. F. Latorre, J. P. Ospina, and J. E. Ortiz, “A coalitional game for achieving emergent cooperation in ad hoc networks through sympathy and commitment,” in Workshop on Engineering Applications. Springer, 2018, pp. 352–362.spa
dc.relation.referencesJ. P. Ospina and J. E. Ortiz, “Estimation of a growth factor to achieve scalable ad hoc networks,” Ingeniería y Universidad, vol. 21, no. 1, pp. 49–70, 2017.spa
dc.relation.referencesL. J. Alfonso, J. P. Ospina, and J. E. Ortiz, “A register module for agents communities through robustness property in ad hoc networks,” in 2018 Congreso Internacional de Innovación y Tendencias en Ingeniería (CONIITI). IEEE, 2018, pp. 1–6.spa
dc.relation.referencesJ. F. Sánchez, J. P. Ospina, J. E. Gonzalez, and J. E. Ortiz, “Sociability as a decision model for artificial agents,” in Proceedings of the 2017 International Symposium on Industrial Engineering and Operations Management (IEOM) IEOM Society, 2017.spa
dc.relation.referencesG. R. Osorio, J. F. Sánchez, J. P. Ospina, and J. E. Ortiz, “An address allocation protocol for ad hoc networks through pollen dispersion algorithms,” in 2019 IEEE Co- lombian Conference on Applications in Computational Intelligence (ColCACI). IEEE, 2019, pp. 1–6.spa
dc.relation.referencesJ. P. Ospina, J. F. Sánchez, J. E. Ortiz, C. Collazos-Morales, and P. Ariza-Colpas, “Socially and biologically inspired computing for self-organizing communications networks,” in International Conference on Machine Learning for Networking. Springer, 2019, pp. 461–484.spa
dc.relation.referencesJ. D. Day and H. Zimmermann, “The osi reference model,” Proceedings of the IEEE, vol. 71, no. 12, pp. 1334–1340, 1983.spa
dc.relation.referencesT. G. Robertazzi, Computer networks and systems: queueing theory and performance evaluation. Springer Science & Business Media, 2012.spa
dc.relation.referencesF. Dressler, “A study of self-organization mechanisms in ad hoc and sensor networks,” Computer Communications, vol. 31, no. 13, pp. 3018–3029, 2008.spa
dc.relation.referencesC. Gershenson and F. Heylighen, “When can we call a system self-organizing?” in European Conference on Artificial Life. Springer, 2003, pp. 606–614.spa
dc.relation.referencesV. Pureswaran and P. Brody, “Device democracy: Saving the future of the internet of things,” IBM Corporation, 2015.spa
dc.relation.referencesC. E. Maldonado, “Complejidad: ciencia, pensamiento y aplicaciones,” Books, vol. 1, 2007.spa
dc.relation.referencesF. Dressler, Self-organization in sensor and actor networks. John Wiley & Sons, 2008.spa
dc.relation.referencesM. S. Taqqu, W. Willinger, and R. Sherman, “Proof of a fundamental result in self- similar traffic modeling,” ACM SIGCOMM Computer Communication Review, vol. 27, no. 2, pp. 5–23, 1997.spa
dc.relation.referencesM. Alzate and A. Monroy, “Introducción al tráfico autosimilar en redes de comunicaciones,” Revista Ingeniería, vol. 6, no. 2, pp. 6–17, 2001.spa
dc.relation.referencesC. Gershenson, Design and control of self-organizing systems. CopIt ArXives, 2007.spa
dc.relation.referencesB. C. Neuman, “Scale in distributed systems,” ISI/USC, 1994.spa
dc.relation.referencesF. Dressler and O. B. Akan, “A survey on bio-inspired networking,” Computer Net- works, vol. 54, no. 6, pp. 881–900, 2010.spa
dc.relation.referencesJ. Pitt, J. Schaumeier, and A. Artikis, “The axiomatisation of socio-economic principles for self-organising systems,” in Self-Adaptive and Self-Organizing Systems (SASO), 2011 Fifth IEEE International Conference on. IEEE, 2011, pp. 138–147.spa
dc.relation.referencesM. Mejia, N. Peña, J. L. Muñoz, O. Esparza, and M. A. Alzate, “A game theoretic trust model for on-line distributed evolution of cooperation inmanets,” Journal of Network and Computer Applications, vol. 34, no. 1, pp. 39–51, 2011.spa
dc.relation.referencesA. J. Jones, A. Artikis, and J. Pitt, “The design of intelligent socio-technical systems,”Artificial Intelligence Review, vol. 39, no. 1, pp. 5–20, 2013.spa
dc.relation.referencesJ. Pitt, “From trust and forgiveness to social capital and justice: Formal models of social processes in open distributed systems,” in Trustworthy Open Self-Organising Systems. Springer, 2016, pp. 185–208.spa
dc.relation.referencesF. H. Fitzek and M. D. Katz, Mobile clouds: Exploiting distributed resources in wireless, mobile and social networks. John Wiley & Sons, 2013.spa
dc.relation.referencesM. A. Nowak, “Five rules for the evolution of cooperation,” science, vol. 314, no. 5805, pp. 1560–1563, 2006.spa
dc.relation.referencesJ. Pitt, J. Schaumeier, D. Busquets, and S. Macbeth, “Self-organising common-pool resource allocation and canons of distributive justice,” in Self-Adaptive and Self- Organizing Systems (SASO), 2012 IEEE Sixth International Conference on. IEEE, 2012, pp. 119–128.spa
dc.relation.referencesJ. Pitt and J. Schaumeier, “Provision and appropriation of common-pool resources without full disclosure,” in International Conference on Principles and Practice of Multi-Agent Systems. Springer, 2012, pp. 199–213.spa
dc.relation.referencesM. A. Nowak, A. Sasaki, C. Taylor, and D. Fudenberg, “Emergence of cooperation and evolutionary stability in finite populations,” Nature, vol. 428, no. 6983, pp. 646–650, 2004.spa
dc.relation.referencesG. F. Marias, P. Georgiadis, D. Flitzanis, and K. Mandalas, “Cooperation enforce- ment schemes for manets: A survey,” Wireless Communications and Mobile Computing, vol. 6, no. 3, pp. 319–332, 2006.spa
dc.relation.referencesL. Buttyán and J.-P. Hubaux, “Enforcing service availability in mobile ad-hoc wans,” in Mobile and Ad Hoc Networking and Computing, 2000. MobiHOC. 2000 First Annual Workshop on. IEEE, 2000, pp. 87–96.spa
dc.relation.referencesE. Ostrom, Governing the commons: The evolution of institutions for collective action. Cambridge university press, 1990.spa
dc.relation.referencesS. M. Pedersen and K. M. Lind, Precision Agriculture: Technology and Economic Perspectives. Springer, 2017.spa
dc.relation.referencesJ. Lindblom, C. Lundström, M. Ljung, and A. Jonsson, “Promoting sustainable intensification in precision agriculture: review of decision support systems development and strategies,” Precision Agriculture, vol. 18, no. 3, pp. 309–331, 2017.spa
dc.relation.referencesV. Dignum, “Social agents: bridging simulation and engineering,” Communications of the ACM, vol. 60, no. 11, pp. 32–34, 2017.spa
dc.relation.referencesS. M. Pedersen and K. M. Lind, Precision Agriculture: Technology and Economic Perspectives. Springer, 2017.spa
dc.relation.referencesP. E. Petruzzi, D. Busquets, and J. Pitt, “A generic social capital framework for opti- mising self-organised collective action,” in Self-Adaptive and Self-Organizing Systems (SASO), 2015 IEEE 9th International Conference on. IEEE, 2015, pp. 21–30.spa
dc.relation.referencesM. M. Waldrop, Complexity: The emerging science at the edge of order and chaos. Simon and Schuster, 1993.spa
dc.relation.referencesT. Baarslag and K. V. Hindriks, “Accepting optimally in automated negotiation with incomplete information,” in Proceedings of the 2013 international conference on Auto- nomous agents and multi-agent systems. International Foundation for Autonomous Agents and Multiagent Systems, 2013, pp. 715–722.spa
dc.relation.referencesP. Faratin, C. Sierra, and N. R. Jennings, “Negotiation decision functions for autono- mous agents,” Robotics and Autonomous Systems, vol. 24, no. 3, pp. 159–182, 1998.spa
dc.relation.referencesA. Artikis, L. Kamara, J. Pitt, and M. Sergot, “A protocol for resource sharing in norm-governed ad hoc networks,” in Declarative Agent Languages and Technologies II, J. Leite, A. Omicini, P. Torroni, and p. Yolum, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 221–238.spa
dc.relation.referencesD. M. Carballo, P. Roscoe, and G. M. Feinman, “Cooperation and collective action in the cultural evolution of complex societies,” Journal of Archaeological Method and Theory, vol. 21, no. 1, pp. 98–133, 2014.spa
dc.relation.referencesH. Shi, R. V. Prasad, E. Onur, and I. Niemegeers, “Fairness in wireless networks: Issues, measures and challenges,” IEEE Communications Surveys & Tutorials, vol. 16, no. 1, pp. 5–24, 2014.spa
dc.relation.referencesB. Wang, X. Chen, and W. Chang, “A light-weight trust-based qos routing algorithm for ad hoc networks,” Pervasive and Mobile Computing, vol. 13, pp. 164–180, 2014.spa
dc.relation.referencesL. A. Grieco, A. Rizzo, S. Colucci, S. Sicari, G. Piro, D. Di Paola, and G. Boggia, “Iot-aided robotics applications: Technological implications, target domains and open issues,” Computer Communications, vol. 54, pp. 32–47, 2014.spa
dc.relation.referencesY. Li, H. Xu, Q. Cao, Z. Li, and S. Shen, “Evolutionary game-based trust strategy adjustment among nodes in wireless sensor networks,” International Journal of Distri- buted Sensor Networks, vol. 11, no. 2, p. 818903, 2015.spa
dc.relation.referencesM. Mejia, N. Pena, J. L. Munoz, and O. Esparza, “A review of trust modeling in ad hoc networks,” Internet Research, vol. 19, no. 1, pp. 88–104, 2009.spa
dc.relation.referencesR. Sugumar, A. Rengarajan, and C. Jayakumar, “Trust based authentication technique for cluster based vehicular ad hoc networks (vanet),” Wireless Networks, vol. 24, no. 2, pp. 373–382, 2018.spa
dc.relation.referencesZ. Zhang, K. Long, J. Wang, and F. Dressler, “On swarm intelligence inspired self- organized networking: its bionic mechanisms, designing principles and optimization approaches,” IEEE Communications Surveys & Tutorials, vol. 16, no. 1, pp. 513–537, 2014.spa
dc.relation.referencesA. H. Sayed, S.-Y. Tu, J. Chen, X. Zhao, and Z. J. Towfic, “Diffusion strategies for adaptation and learning over networks: an examination of distributed strategies and network behavior,” IEEE Signal Processing Magazine, vol. 30, no. 3, pp. 155–171, 2013.spa
dc.relation.referencesZ. Zhang, K. Long, and J. Wang, “Self-organization paradigms and optimization ap- proaches for cognitive radio technologies: a survey,” IEEE Wireless Communications, vol. 20, no. 2, pp. 36–42, 2013.spa
dc.relation.referencesM. Chitra and S. S. Sathya, “Bidirectional data dissemination in vehicular ad hoc net- works using epidemic spreading model,” in Proceedings of the International Conference on Informatics and Analytics. ACM, 2016, p. 57.spa
dc.relation.referencesB. Liu, W. Zhou, L. Gao, H. Zhou, T. H. Luan, and S. Wen, “Malware propagations in wireless ad hoc networks,” IEEE Transactions on Dependable and Secure Computing, 2016.spa
dc.relation.referencesC. Gan, X. Yang, W. Liu, Q. Zhu, J. Jin, and L. He, “Propagation of computer virus both across the internet and external computers: A complex-network approach,” Communications in Nonlinear Science and Numerical Simulation, vol. 19, no. 8, pp. 2785–2792, 2014.spa
dc.relation.referencesX. Yang, B. K. Mishra, and Y. Liu, “Computer virus: theory, model, and methods,” Discrete Dynamics in Nature and Society, vol. 2012, 2012.spa
dc.relation.referencesL.-X. Yang, X. Yang, J. Liu, Q. Zhu, and C. Gan, “Epidemics of computer viruses: A complex-network approach,” Applied Mathematics and Computation, vol. 219, no. 16, pp. 8705–8717, 2013.spa
dc.relation.referencesH. B. Liaqat, F. Xia, Q. Yang, Z. Xu, A. M. Ahmed, and A. Rahim, “Bio-inspired packet dropping for ad-hoc social networks,” International Journal of Communication Systems, vol. 30, no. 1, 2017.spa
dc.relation.referencesS. Tiwari, K. Mishra, N. Saxena, N. Singh, and A. Misra, “Artificial immune system based mac layer misbehavior detection in manet,” in Advanced Computer and Com- munication Engineering Technology. Springer, 2016, pp. 707–722.spa
dc.relation.referencesS. Jamali and R. Fotohi, “Defending against wormhole attack in manet using an ar- tificial immune system,” New Review of Information Networking, vol. 21, no. 2, pp. 79–100, 2016.spa
dc.relation.referencesW. Li, P. Yi, Y. Wu, L. Pan, and J. Li, “A new intrusion detection system based on knn classification algorithm in wireless sensor network,” Journal of Electrical and Computer Engineering, vol. 2014, 2014.spa
dc.relation.referencesI. Butun, S. D. Morgera, and R. Sankar, “A survey of intrusion detection systems in wireless sensor networks,” IEEE communications surveys & tutorials, vol. 16, no. 1, pp. 266–282, 2014.spa
dc.relation.referencesN. A. Alrajeh and J. Lloret, “Intrusion detection systems based on artificial intelligence techniques in wireless sensor networks,” International Journal of Distributed Sensor Networks, vol. 9, no. 10, p. 351047, 2013.spa
dc.relation.referencesG. Brandner, U. Schilcher, and C. Bettstetter, “Firefly synchronization with phase rate equalization and its experimental analysis in wireless systems,” Computer Networks, vol. 97, pp. 74–87, 2016.spa
dc.relation.referencesJ.-Y. Jung, H.-H. Choi, and J.-R. Lee, “Survey of bio-inspired resource allocation al- gorithms and mac protocol design based on a bio-inspired algorithm for mobile ad hoc networks,” IEEE Communications Magazine, vol. 56, no. 1, pp. 119–127, 2018.spa
dc.relation.referencesJ. He, H. Li, J. Chen, and P. Cheng, “Study of consensus-based time synchronization in wireless sensor networks,” ISA transactions, vol. 53, no. 2, pp. 347–357, 2014.spa
dc.relation.referencesF. Zhang, H. L. Trentelman, and J. M. Scherpen, “Fully distributed robust synchroni- zation of networked lur’e systems with incremental nonlinearities,” Automatica, vol. 50, no. 10, pp. 2515–2526, 2014.spa
dc.relation.referencesJ. He, P. Cheng, L. Shi, J. Chen, and Y. Sun, “Time synchronization in wsns: A maximum-value-based consensus approach,” IEEE Transactions on Automatic Con- trol, vol. 59, no. 3, pp. 660–675, 2014.spa
dc.relation.referencesD. Karaboga and B. Akay, “A survey: algorithms simulating bee swarm intelligence,” Artificial intelligence review, vol. 31, no. 1-4, p. 61, 2009.spa
dc.relation.referencesG. Di Caro, F. Ducatelle, and L. M. Gambardella, “Anthocnet: an adaptive nature- inspired algorithm for routing in mobile ad hoc networks,” Transactions on Emerging Telecommunications Technologies, vol. 16, no. 5, pp. 443–455, 2005.spa
dc.relation.referencesX. Zhang, X. Zhang, and C. Gu, “A micro-artificial bee colony based multicast routing in vehicular ad hoc networks,” Ad Hoc Networks, vol. 58, pp. 213–221, 2017.spa
dc.relation.referencesS. Saleh, M. Ahmed, B. M. Ali, M. F. A. Rasid, and A. Ismail, “A survey on energy awareness mechanisms in routing protocols for wireless sensor networks using optimization methods,” Transactions on Emerging Telecommunications Technologies, vol. 25, no. 12, pp. 1184–1207, 2014.spa
dc.relation.referencesM. Fahad, F. Aadil, S. Khan, P. A. Shah, K. Muhammad, J. Lloret, H. Wang, J. W. Lee, I. Mehmood et al., “Grey wolf optimization based clustering algorithm for vehicular ad-hoc networks,” Computers & Electrical Engineering, 2018.spa
dc.relation.referencesM. Hammoudeh and R. Newman, “Adaptive routing in wireless sensor networks: Qos optimisation for enhanced application performance,” Information Fusion, vol. 22, pp. 3–15, 2015.spa
dc.relation.referencesA. Giagkos and M. S. Wilson, “Beeip–a swarm intelligence based routing for wireless ad hoc networks,” Information Sciences, vol. 265, pp. 23–35, 2014.spa
dc.relation.referencesC. R. Shalizi et al., “Causal architecture, complexity and self-organization in the time series and cellular automata,” Ph.D. dissertation, University of Wisconsin–Madison, 2001.spa
dc.relation.referencesA. M. Law, W. D. Kelton, and W. D. Kelton, Simulation modeling and analysis. McGraw-Hill New York, 2007, vol. 3.spa
dc.relation.referencesU. Hatfield, “Socially inspired computing,” 2005.spa
dc.relation.referencesM. Wang and T. Suda, “The bio-networking architecture: A biologically inspired ap- proach to the design of scalable, adaptive, and survivable/available network appli- cations,” in Applications and the Internet, 2001. Proceedings. 2001 Symposium on. IEEE, 2001, pp. 43–53.spa
dc.relation.referencesM. Eigen and P. Schuster, The hypercycle: a principle of natural self-organization. Springer Science & Business Media, 2012.spa
dc.relation.referencesJ. P. Garbiso, A. Diaconescu, M. Coupechoux, J. Pitt, and B. Leroy, “Distributive justice for fair auto-adaptive clusters of connected vehicles,” in Foundations and Ap- plications of Self* Systems (FAS* W), 2017 IEEE 2nd International Workshops on. IEEE, 2017, pp. 79–84.spa
dc.relation.referencesJ. Pitt, A. Diaconescu, and A. Bourazeri, “Democratisation of the smartgrid and the active participation of prosumers,” in Industrial Electronics (ISIE), 2017 IEEE 26th International Symposium on. IEEE, 2017, pp. 1707–1714.spa
dc.relation.referencesM. Amoozadeh, H. Deng, C.-N. Chuah, H. M. Zhang, and D. Ghosal, “Platoon mana- gement with cooperative adaptive cruise control enabled by vanet,” Vehicular commu- nications, vol. 2, no. 2, pp. 110–123, 2015.spa
dc.relation.referencesP. F. Dell, “Beyond homeostasis: Toward a concept of coherence,” Family Process, vol. 21, no. 1, pp. 21–41, 1982.spa
dc.relation.referencesF. Wortmann and K. Flüchter, “Internet of things,” Business & Information Systems Engineering, vol. 57, no. 3, pp. 221–224, 2015.spa
dc.relation.referencesA. Galati, “Delay tolerant network,” 2010.spa
dc.relation.referencesT. Camp, J. Boleng, and V. Davies, “A survey of mobility models for ad hoc network research,” Wireless communications and mobile computing, vol. 2, no. 5, pp. 483–502, 2002.spa
dc.relation.referencesT. Tsuchiya and T. Kikuno, “An adaptive mechanism for epidemic communication,” in International Workshop on Biologically Inspired Approaches to Advanced Information Technology. Springer, 2004, pp. 306–316.spa
dc.relation.referencesK. Yang, “Wireless sensor networks,” Principles, Design and Applications, 2014.spa
dc.relation.referencesJ. Ramiro and K. Hamied, Self-organizing networks (SON): Self-planning, self- optimization and self-healing for GSM, UMTS and LTE. John Wiley & Sons, 2011.spa
dc.relation.referencesS. Li, L. Da Xu, and S. Zhao, “5g internet of things: A survey,” Journal of Industrial Information Integration, 2018.spa
dc.relation.referencesE. Yanmaz, S. Yahyanejad, B. Rinner, H. Hellwagner, and C. Bettstetter, “Drone networks: Communications, coordination, and sensing,” Ad Hoc Networks, vol. 68, pp. 1–15, 2018.spa
dc.relation.referencesF. Dressler, F. Klingler, C. Sommer, and R. Cohen, “Not all vanet broadcasts are the same: Context-aware class based broadcast,” IEEE/ACM Transactions on Networking, vol. 26, no. 1, pp. 17–30, 2018.spa
dc.relation.referencesP. Grippa, D. A. Behrens, C. Bettstetter, and F. Wall, “Job selection in a network of autonomous uavs for delivery of goods,” arXiv preprint arXiv:1604.04180, 2016.spa
dc.relation.referencesG. Carreón, C. Gershenson, and L. Pineda, “Improving public transportation systems with self-organization: A headway-based model and regulation of passenger alighting and boarding.” PloS one, vol. 12, no. 12, 2017.spa
dc.relation.referencesJ. Loo, J. L. Mauri, and J. H. Ortiz, Mobile ad hoc networks: current status and future trends. CRC Press, 2016.spa
dc.relation.referencesD. Abadi, “Consistency tradeoffs in modern distributed database system design: Cap is only part of the story,” Computer, vol. 45, no. 2, pp. 37–42, 2012.spa
dc.relation.referencesA.-L. Barabási and E. Bonabeau, “Scale-free networks,” Scientific american, vol. 288, no. 5, pp. 60–69, 2003.spa
dc.relation.referencesL. Kocarev, Complex dynamics in communication networks. Springer Science & Bu- siness Media, 2005.spa
dc.relation.referencesW. San-Um, P. Ketthong, and J. Noymanee, “A deterministic node mobility model for mobile ad hoc wireless network using signum-based discrete-time chaotic map,” in Telecommunication Networks and Applications Conference (ITNAC), 2015 International. IEEE, 2015, pp. 114–119.spa
dc.relation.referencesP. Ranjan, E. H. Abed, and R. J. La, “Nonlinear instabilities in tcp-red,” IEEE/ACM transactions on networking, vol. 12, no. 6, pp. 1079–1092, 2004.spa
dc.relation.referencesM. Wooldridge, An introduction to multiagent systems. John Wiley & Sons, 2009.spa
dc.relation.referencesS. F. Railsback and V. Grimm, Agent-based and individual-based modeling: a practical introduction. Princeton university press, 2012.spa
dc.relation.referencesJ. Lindblom, C. Lundström, M. Ljung, and A. Jonsson, “Promoting sustainable inten- sification in precision agriculture: review of decision support systems development and strategies,” Precision Agriculture, vol. 18, no. 3, pp. 309–331, 2017.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::003 - Sistemasspa
dc.subject.proposaljusticia computacionalspa
dc.subject.proposalcomputational justiceeng
dc.subject.proposalfairnesseng
dc.subject.proposaljusticiaspa
dc.subject.proposalredes ad hocspa
dc.subject.proposalsocially inspired computingeng
dc.subject.proposalad hoc networkseng
dc.subject.proposalcomputación social inspiradaspa
dc.subject.proposalmodelamiento basado en agentesspa
dc.subject.proposalagent-based modellingeng
dc.titleA computational justice model for resources distribution in Ad Hoc Networksspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
80901523.2020.pdf
Tamaño:
4.62 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.9 KB
Formato:
Item-specific license agreed upon to submission
Descripción: