Una propuesta multirregistro para la comprensión de la noción del máximo o mínimo valor del rango de una función cuadrática en estudiantes de grado once

dc.contributor.advisorPontón Ladino, Teresaspa
dc.contributor.authorCarabalí Rojas, José Santiagospa
dc.date.accessioned2020-02-20T20:44:26Zspa
dc.date.available2020-02-20T20:44:26Zspa
dc.date.issued2020-02-20spa
dc.description.abstractEn el presente trabajo de indagación se relacionan elementos que buscan describir los procesos de comprensión sobre la noción del máximo o mínimo valor del rango de una función cuadrática, cuando los estudiantes de grado once de la Institución Educativa Vicente Borrero Costa, conocida como “VIBOCO” de Cali-valle, se enfrentan a resolver situaciones multirregistros relacionadas con estos conceptos. Para el diseño de las situaciones didácticas, su implementación y análisis de los resultados, este trabajo se desarrolló bajo la perspectiva de la teoría semiótica y cognitiva propuesta por Duval (1988a, 1988b, 1999, 2006a, 2016), la cual expresa que para generar comprensión de los objetos matemáticos es necesario la articulación de por lo menos dos registros de representación, y esa comprensión se funda en la actividad de conversión de registros. En este trabajo se busca contribuir con dicha comprensión a través de la coordinación de registros y para ello se planteó el siguiente objetivo general: Diseñar, describir y analizar situaciones multirregistros que generaran comprensión de la noción del máximo o el mínimo valor del rango de una función cuadrática en estudiantes de grado once del VIBOCO. Investigaciones como Cuesta (2007), Zúñiga (2009), Escalante y Cuesta (2012), Moreno y Cuevas (2004), Carrillo (2013), Porras (2011), entre otras, muestran que los estudiantes de los diferentes niveles educativos presentan dificultades para comprender los conceptos de función, extremos de una función, máximos o mínimos de una función cuadrática, construcción y conceptualización de la función. Por esta razón, en esta indagación se presenta una propuesta didáctica que permite la articulación de registros para acercarse a la comprensión inicial del máximo o el mínimo, en la cual, se parte del registro de la lengua natural que facilita la justificación de procesos y el registro gráfico cartesiano que privilegia la visualización e identificación de variables que al coordinarlas entre sí, facilitan los tratamientos para la objetivación del concepto matemático. Esta indagación se enmarca en el pensamiento variacional y los sistemas algebraicos y analíticos en el cual se observan muchas dificultades de estudiantes al realizar tratamientos de los objetos matemáticos, especialmente, en las funciones lineales y cuadráticas, porque en la educación básica y media se da una enseñanza monorregistro, privilegiando los tratamientos numéricos, algebraicos o gráficos. Por esta razón, en este trabajo se promueve el uso del registro de la lengua natural como uno de los registros que permiten expresar las ideas o razonamientos en la solución de un problema matemático que articulado con otro registro, genera comprensión; porque según Pontón (2012) la solución de un problema matemático depende en gran medida de la comprensión del enunciado dado en el registro de la lengua natural. La recolección de los datos se desarrolló teniendo en cuenta la metodología investigación acción participativa (I.A.P), que hace partícipe al estudiante y lo toma como protagonista en la construcción de su propio conocimiento. De este modo, la investigación permitió que los estudiantes se acercaran a la comprensión inicial del máximo o el mínimo, identificando variables, hallando el vértice de una función y coordinando registros para la construcción de su propio conocimiento.spa
dc.description.degreelevelMaestríaspa
dc.format.extent354 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationDuval (1999)spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/75668
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Palmiraspa
dc.publisher.departmentMaestría en Enseñanza de las Ciencias Exactas y Naturalesspa
dc.relation.referencesAránzazu, C. M. (2013). Secuencia didáctica para la enseñanza de la función cuadrática. Tesis de maestría, universidad nacional de Colombia, sede Medellín.spa
dc.relation.referencesArya, J. C. y Lardner, R. W. (2009). Matemáticas aplicadas a la administración y a la economía. Quinta edición. Disponible en http://eduvirtual.cuc.edu.co/moodle/pluginfile.php/336190/mod_resource/content/0/matematicas-aplicadas-a-la-administracion-airya-5edi.pdfspa
dc.relation.referencesAzorín, A. Cecilia, M. (2018). El método de aprendizaje cooperativo y su aplicación en las aulas. Disponible en file:///C:/Users/Santiago/Downloads/2018-161-181-194.pdfspa
dc.relation.referencesBenveniste, E. (1978). Problemas de lingüística general II. 2° ed. México. Siglo XXI editores S.A. Disponible en la base de datos desde el día 25 de mayo de 2016 en. http://www.textosenlinea.com.ar/academicos/Problemas%20de%20ling%C3%BC%C3%ADstica%20general%20II.PDFspa
dc.relation.referencesBernal, C. (2010). Metodología de la investigación. 3ra. edición. Universidad de la sabana. Person.spa
dc.relation.referencesBrousseau G. (1986). Fundamentos y métodos de la didáctica de las matemáticas. [Traducido al español de Fondements et méthodes de la didactiques des mathématiques. Centeno, J., Melendo, B., Murillo, J. Trad(s).] Publicado en Recherches en Didactique des Mathématiques. Vol. 7. N° 2. PP. 33- 115. Universidad de Burdeos I.spa
dc.relation.referencesBrousseau, G. (1999). Educación y Didáctica de las matemáticas. En Educación Matemática (en prensa). México.spa
dc.relation.referencesBruno, A. et al. (2012). Revista de didáctica de las matemáticas. Vol. 80. Disponible 30 de junio de 2017 en http://www.sinewton.org/numeros/numeros/80/Volumen_80.pdfspa
dc.relation.referencesCalzadilla, María, E. (s.f.). Aprendizaje colaborativo y tecnologías de la información y la comunicación. OEI-Revista Iberoamericana de Educación (ISSN: 1681-5653).Universidad Pedagógica Experimental Libertador, Venezuela. Disponible en file:///C:/Users/Santiago/Downloads/322Calzadilla.pdfspa
dc.relation.referencesCarrillo, F. (2013). Un estudio de las organizaciones matemáticas del objeto función cuadrática en la enseñanza superior. Tesis de Maestría. Pontificia Universidad Católica del Perú. Escuela de postgrado. Lima- Perú.spa
dc.relation.referencesChavarría, J. (2006). Teoría de las situaciones didácticas. Fundamentos y métodos de la didáctica. Disponible en http://www.centrodemaestros.mx/enams/pa04teoria.pdfspa
dc.relation.referencesCuesta, A. (2007). El proceso de aprendizaje de los conceptos de función y extremo en estudiantes de economía: análisis de una innovación didáctica. Tesis Doctoral. Universidad Autónoma de Barcelona, Bellaterra.spa
dc.relation.referencesDepartamento del Valle del Cauca, Secretaria de Educación (2013). Análisis y uso de los resultados de las evaluaciones de estudiantes SABER 5, 9 y 11 año 2012.spa
dc.relation.referencesDuval R. (1988a). Las representaciones gráficas: funcionamiento y condiciones de su aprendizaje traducido por Miriam Vega Restrepo. Universidad del valle.spa
dc.relation.referencesDuval R. (1988b). Gráficas y ecuaciones: la articulación de dos registros.spa
dc.relation.referencesDuval, R. (1993). Registros de Representación Semiótica y Funcionamiento Cognitivo del Pensamiento. Annales de Didactique et de Sciencies Cognitives. Traducción para fines educativos. Departamento de Matemática Educativa CINVESTAV-IPN. Vol. 5. PP. 37-65. México.spa
dc.relation.referencesDuval, R. (1995). Semiosis y pensamiento humano. Registros de representación.spa
dc.relation.referencesDuval, R. (1999). Semiosis y pensamiento humano. Registros semióticos y aprendizajes intelectuales (Segunda Edición).Santiago de Cali, Colombia: Peter Lang S.A.spa
dc.relation.referencesDuval, R. (2006a). Un tema crucial en la educación matemática: La habilidad para cambiar el registro de representación. Gaceta de la Real Sociedad Matemática Española, Vol. 9, N° 1. PP. 143- 168.spa
dc.relation.referencesDuval, R. (2006b). Transformaciones de las representaciones semióticas y démarche de pensamiento en matemáticas. Primera versión de la traducción borrador realizada por Teresa Pontón, del original Transformations de représentations sémiotiques et démarches de pensée en mathématiques. En: J-C.Rrauscher (Ed.). Actes du XXXII ème Colloque COPIRELEM. Strasbourg: IREM. PP. 67-89.spa
dc.relation.referencesDuval, R. (2016). Análisis cognitivo de problemas de comprensión en el aprendizaje de las matemáticas. Colección énfasis. Comprensión y aprendizaje en matemáticas. Doctorado interinstitucional. Universidad Distrital Francisco José de Caldas.spa
dc.relation.referencesEdwards, C., y Penney, D. (1996). Cálculo con geometría analítica. 4°. Edición. Pearson Prentice hall.spa
dc.relation.referencesEscalante, J., y Cuesta, A. (2012). Dificultades para comprender el concepto de variable: un estudio con estudiantes universitarios. Red de Revistas Científicas de América Latina y el Caribe. Educación Matemática. Vol. 24. N° 1. PP. 107-132. México., J., yspa
dc.relation.referencesEscobar, A. Jaime. (s. f.). Elementos de Geometría. Disponible en http://matematicas.udea.edu.co/~jescobar/Geometria/pdf/elementos%20de%20geometria1.pdfspa
dc.relation.referencesFeixas, G., y Cornejo, JM. (1996). Manual de la técnica de la rejilla. Segunda edición. Disponible en http://diposit.ub.edu/dspace/bitstream/2445/33138/1/Manual_de_la_tecnica_de_rejilla%20%28pags%201-31%29.pdfspa
dc.relation.referencesGodino, J. D. (2013). Diseño y análisis de tareas para el desarrollo del conocimiento didáctico-matemático de profesores. En actas de las Jornadas Virtuales en Didáctica de la Estadística, Probabilidad y Combinatoria. pp. 1-15. Departamento de didáctica de la matemática de la universidad de Granada, Granada.spa
dc.relation.referencesGuzmán, I. (1998). Registros de representación, el aprendizaje de nociones relativas a funciones: voces de estudiantes. Revista Latinoamericana de Investigación en Matemática Educativa. Vol. 1 N° 1. PP. 5-21spa
dc.relation.referencesGrupo Azarquiel. (1992). El simbolismo algebraico o ¿por qué los profesores nos empeñamos en complicar tanto la vida de nuestros alumnos? Tarbiya n° 1-2. PP. 81-90. Universidad autónoma de Madrid, España.spa
dc.relation.referencesIcfes (2015). Reporte histórico de comparación entre los años 2009 - 2012 - 2013 – 2014. Bogotá, Colombia.spa
dc.relation.referencesLondoño, N., Guarín, H., y Bedoya, H. (1994). Dimensión matemática 8°. Serie para la educación básica secundaria. Bogotá, Colombia. Grupo editorial norma.spa
dc.relation.referencesMacías, J. (2014). Los registros semióticos en Matemáticas como elemento personalizado en el aprendizaje. Revista de Investigación Educativa Conect@2. Vol. 4. N° 9. PP. 27-57spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.proposalSemióticaspa
dc.subject.proposalFunción cuadráticaspa
dc.titleUna propuesta multirregistro para la comprensión de la noción del máximo o mínimo valor del rango de una función cuadrática en estudiantes de grado oncespa
dc.typeDocumento de trabajospa
dc.type.coarhttp://purl.org/coar/resource_type/c_93fcspa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/workingPaperspa
dc.type.redcolhttp://purl.org/redcol/resource_type/WPspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Msc-Jose Santiago Carabali Rojas.pdf
Tamaño:
17.6 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.9 KB
Formato:
Item-specific license agreed upon to submission
Descripción: