Análisis neotectónico en la cuenca Guajira offshore sector Tayrona a partir de información sísmica

dc.contributor.advisorVargas Jiménez, Carlos Alberto
dc.contributor.authorRodríguez Moreno, Oscar Hernando
dc.coverage.regionGuajira
dc.date.accessioned2021-09-01T17:25:02Z
dc.date.available2021-09-01T17:25:02Z
dc.date.issued2020
dc.descriptionIlustracionesspa
dc.description.abstractNeotectonics activity is revealed by taking advantage on 3D marine seismic data in depth acquired in the Guajira Offshore basin, Tayrona area in the Colombian Caribbean Sea. The existence of vertical migration structures is confirmed through gas chimneys and mud volcanoes interpretation using neural nets methods. With a previous seismic data conditioning and later image enhancing, similarity seismic attribute allows a reliably identification and characterization of the neotectonic faults that affect the shallowest sedimentary sequence. According to size, some fault planes are modeled as the seismogenic sources into the probabilistic seismic hazard assessment (PSHA) conducted as part of the neotectonics analysis. This evaluation is executed in terms of the design seismic motion for the horizontal components of the effective peak ground acceleration (PGA) and pseudo-absolute acceleration response spectra (PSA) on periods of engineering interest (0,01 – 10 s). An integrated seismic catalog is built and used to obtain the seismicity on an area-type volumetric fault that involves the Guajira Offshore basin for first 5 km in depth, representing the rheology properties that generate the seismic activity of the interpreted sediments interval. The ground motion prediction models (GMPM) are chosen according to the magnitude and distance valid ranges and the events contained in the strong motion databases used to build them. Several PSHA are computed using each selected GMPM; the Campbell and Bozorgnia (2014) NGA-West2 model is suggested to be adopted given that the basin response can be modeled directly from the seismic data and where the predictions uncertainty is not magnitude depending. The calculated PGA values reach 0,56 g, accelerations greater than those estimated by previous seismic hazard zoning studies performed for Colombia where at most in La Guajira Peninsula they are 0,15 g. These differences are mainly due to the used GMPM, the considered sources and the how the included sources and the implemented shallow site response are modeled. The obtained results can be considered as a baseline to define the earthquake resistance conditions under which the infrastructure destined to hydrocarbon exploration and exploitation and renewable energies generation must be developed.eng
dc.description.abstractEl aprovechamiento de los datos en profundidad de un programa sísmico marino 3D, adquirido en la cuenca de hidrocarburos Guajira Offshore, sector Tayrona en el Caribe Colombiano, revela la actividad neotectónica presente en el área. Se confirma la existencia de estructuras verticales de migración con la interpretación de chimeneas de gas y volcanes de lodo mediante la aplicación de redes neuronales. El atributo sísmico de similaridad, previo acondicionamiento de los datos y realce posterior del atributo, permite identificar y caracterizar con fidelidad las fallas neotectónicas que afectan el paquete sedimentario más somero. De acuerdo a su tamaño, algunos planos de falla extraídos son modelados como las fuentes sismogénicas de la evaluación probabilística de amenaza sísmica (EPAS) que se adelanta dentro del análisis neotectónico. Esta evaluación se lleva a cabo de acuerdo al movimiento de diseño sísmico para las componentes horizontales de la aceleración pico efectiva (APE) y del espectro de respuesta de aceleración pseudo-absoluta (EAPA), para períodos osciladores de interés en la construcción de obras de ingeniería (0,01 – 10 s). Se construye un catálogo sísmico integrado para una fuente volumétrica tipo área que abarca la cuenca Guajira Offshore y se obtiene la sismicidad para una profundidad de 5 km, la cual representa las propiedades reológicas del intervalo de sedimentos interpretado y que dan lugar a su actividad sísmica. En función de la disponibilidad de información, se obtienen y estiman los parámetros involucrados en las ecuaciones de los modelos de predicción de movimiento de terreno (MPMT), seleccionados de acuerdo a los rangos de magnitud y distancia para los que son válidos y las características de los eventos que contienen las bases de datos de movimiento fuerte usadas para su construcción. Por cada MPMT se calcula la amenaza sísmica y se sugiere la adopción de los resultados obtenidos con el modelo de Campbell y Bozorgnia (2014) NGA-West2 en vista que la respuesta de la cuenca puede ser modelada directamente de los datos sísmicos y para el que la incertidumbre de su estimación no depende de las magnitudes usadas. Los máximos valores de APE calculados corresponden a 0,56 g y son superiores a los estimados en estudios previos de zonificación de amenaza sísmica para Colombia, donde para la Península de La Guajira se asigna una APE no mayor a 0,15g. Estas diferencias se deben principalmente al MPMT usado, a las fuentes consideradas, a la forma en cómo son modeladas las fuentes incluidas y a la respuesta somera de sitio implementada. Los resultados obtenidos se pueden considerar como una línea base para definir las condiciones de sismo resistencia en el área de estudio para el desarrollo de infraestructura, como por ejemplo la destinada a la exploración y explotación de hidrocarburos y la generación de energías renovables. (Texto tomado de la fuente).spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Geofísicaspa
dc.description.notesIncluye apéndicesspa
dc.description.researchareaNeotectónicaspa
dc.format.extentxvi, 183 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80067
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Geocienciasspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Geofísicaspa
dc.relation.referencesAbrahamson, N A, & Silva, W. (1995). A consistent set of ground motion attenuation relations including data from the 1994 Northridge earthquake, abstract. Seismic Research Letter, 66(2), 23.spa
dc.relation.referencesAbrahamson, N A, & Silva, W. (1996). A consistent set of ground motion attenuation relationships, Prepared for Brookhaven National Laboratory.spa
dc.relation.referencesAbrahamson, Norman A, Silva, W. J., Cerrito, E., & Kamai, R. (2013). Update of the AS08 Ground-Motion Prediction Equations Based on the NGA-West2 Data Set (Número May). Pacific Earthquake Engineering Research Center.spa
dc.relation.referencesAguilera, R. (2011). Petroleum Geology of Colombia - Guajira and Cayos Basins (F. Cediel (ed.); Vol. 8). Fondo Editorial Universidad EAFIT.spa
dc.relation.referencesAIS. (2008). Reglamento Colomiano de Construcción Sismo Resistente (pp. 1–174). Ministerio de Ambiente, Vivienda y Desarrollo Territorial - AIS.spa
dc.relation.referencesAIS. (2009). Estudio General de Amenaza Sísmica de Colombia 2009. Universidad de los Andes - Universidad Nacional de Colombia - Universidad EAFIT.spa
dc.relation.referencesAlbaric, J., Déverchère, J., Petit, C., Perrot, J., & Le, B. (2009). Tectonophysics Crustal rheology and depth distribution of earthquakes : Insights from the central and southern East African Rift System. Tectonophysics, 468, 28–41. https://doi.org/10.1016/j.tecto.2008.05.021spa
dc.relation.referencesANH. (2007). Colombian Sedimentary Basins: Nomenclature, boundaries and Petroleum Geology, a New Proposal. En D. Barrero, A. Pardo, C. A. Vargas, & J. F. Martínez (Eds.), Agencia Nacional de Hidrocarburos - A.N.H.- (Números 978-958-98237-0–5). ANH. http://www.anh.gov.co/Informacion-Geologica-y-Geofisica/Cuencassedimentarias/Documents/colombian_sedimentary_basins.pdfspa
dc.relation.referencesANH. (2011). Información general cuencas sedimentarias de Colombia. Colombia the perfect environment for Hydrocarbons Exploration and Production, 1.spa
dc.relation.referencesAnsari, A., Firuzi, E., & Etemadsaeed, L. (2015). Delineation of seismic sources in probabilistic seismic-hazard analysis using fuzzy cluster analysis and Monte Carlo simulation. Bulletin of the Seismological Society of America, 105(4), 2174–2191. https://doi.org/10.1785/0120140256spa
dc.relation.referencesAPI. (2007). Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms — Working Stress Design. En Api Recommended Practice (Vols. 24-WSD, Número December 2000, p. 4).spa
dc.relation.referencesAudemard, F. A. M. (1996). Paleoseismicity studies on the Oca-Ancón fault system, northwestern Venezuela. Tectonophysics, 259(1), 67–80. https://doi.org/https://doi.org/10.1016/0040- 1951(95)00144-1spa
dc.relation.referencesBaker, J. W. (2008). An Introduction to Probabilistic Seismic Hazard Analysis (PSHA) (pp. 5–72).spa
dc.relation.referencesBartolini, C., Lang, H., & Spell, T. (2003). Geochronology, Geochemistry, and Tectonic Setting of the Mesozoic Nazas Arc in North-Central Mexico, and its Continuation to Northern South America. En C. Bartolini, R. T. Buffler, & J. F. Blickwede (Eds.), The Circum-Gulf of Mexico and the Caribbean; Hydrocarbon Habitats, Basin Formation, and Plate Tectonics (Vol. 79, pp. 427–461). American Association of Petroleum Geologists. https://doi.org/https://doi.org/10.1306/M79877spa
dc.relation.referencesBeidinger, A., Decker, K., & Roch, K. H. (2011). The Lassee segment of the Vienna Basin fault system as a potential source of the earthquake of Carnuntum in the fourth century a.d. International Journal of Earth Sciences, 100(6), 1315–1329. https://doi.org/10.1007/s00531010-0546-xspa
dc.relation.referencesBenkovics, L., & Asensio, A. (2015). New Evidences of an Active Strike-slip Fault System in Northern Venezuela, near Offshore Perla Field. En C. Bartolini & P. Mann (Eds.), Petroleum geology and potential of the Colombian Caribbean Margin: AAPG Memoir 108 (pp. 749– 764). AAPG. https://doi.org/10.1306/13531956M1083659spa
dc.relation.referencesBommer, J. J., & Abrahamson, N. A. (2006). Why Do Modern Probabilistic Seismic-Hazard Analyses Often Lead to Increased Hazard Estimates? Bulletin of the Seismological Society of America, April, 1967–1977. https://doi.org/10.1785/0120060043spa
dc.relation.referencesBonini, L., Toscani, G., & Seno, S. (2014). Three-dimensional segmentation and different rupture behavior during the 2012 Emilia seismic sequence (Northern Italy). Tectonophysics, 630(C), 33–42. https://doi.org/10.1016/j.tecto.2014.05.006spa
dc.relation.referencesBoore, D M, Joyner, W. B., & Fumal, T. E. (1994). Estimation of response spectra and peak accelerations from western North American earthquakes; an interim report, Part 2. En Open- File Report. https://doi.org/10.3133/ofr94127spa
dc.relation.referencesBoore, David M, Park, M., Stewart, J. P., & Atkinson, G. M. (2013). Equations for Predicting Response Spectral Accelerations for Shallow Crustal Earthquakes (Número May). Pacific Earthquake Engineering Research Center.spa
dc.relation.referencesBorcherdt, R. D. (1994). Estimates of Site-Dependent Response Spectra for Design (Methodology and Justification). Earthquake Spectra, 10(4), 617–653. https://doi.org/10.1193/1.1585791spa
dc.relation.referencesBrooks, C., Douglas, J., & Shipton, Z. (2020). Improving earthquake ground-motion predictions for the North Sea. Journal of Seismology, 24(2), 343–362. https://doi.org/10.1007/s10950- 020-09910-xspa
dc.relation.referencesBrouwer, F., & Huck, A. (2011). An Integrated Workflow to Optimize Discontinuity Attributes for the Imaging of Faults. GCSSEPM, 496–533.spa
dc.relation.referencesBrown, A. R. (2004). Interpretation of Three-Dimensional Seismic Data (6a ed.). American Association of Petroleum Geologists. https://doi.org/10.1306/M4271346spa
dc.relation.referencesCampbell, K. W. (1997). Empirical Near-Source Attenuation Relationships for Horizontal and Vertical Components of Peak Ground Acceleration, Peak Ground Velocity, and PseudoAbsolute Acceleration Response Spectra. EQE International, 68(1), 154–179.spa
dc.relation.referencesCampbell, K. W., & Bozorgnia, Y. (2007). NGA Ground Motion Relations for the Geometric Mean Horizontal Component of Peak and Spectral Ground Motion Parameters (Número May). Pacific Earthquake Engineering Research Center.spa
dc.relation.referencesCampbell, K. W., & Bozorgnia, Y. (2013). NGA-West2 Campbell-Bozorgnia Ground Motion Model for the Horizontal Components of PGA, PGV, Response Spectra for Periods Ranging from 0. 01 to 10 sec (Número May). Pacific Earthquake Engineering Research Center.spa
dc.relation.referencesCarvalho, J., Rabeh, T., Cabral, J., Carrilho, F., & Miranda, J. M. (2008). Geophysical characterization of the Ota-Vila Franca de Xira-Lisbon-Sesimbra fault zone, Portugal. Geophysical Journal International, 174(2), 567–584. https://doi.org/10.1111/j.1365- 246X.2008.03791.xspa
dc.relation.referencesChen, Bao-kui, Wang, D., & Li, H. (2017). Vertical-to-horizontal response spectral ratio for offshore ground motions : Analysis and simplified design equation. Central South University Press and Springer-Verlag Berlin Heidelberg 2017, 24, 203–216. https://doi.org/10.1007/s11771-017-3421-0spa
dc.relation.referencesChen, Baokui, Wang, D., Li, H., Sun, Z., & Shi, Y. (2015). Characteristics of Earthquake Ground Motion on the Seafloor. Journal of Earthquake Engineering, 19(6), 874–904. https://doi.org/10.1080/13632469.2015.1006344spa
dc.relation.referencesChiou, B. S. J., & Youngs, R. R. (2013). Update of the Chiou and Youngs NGA Ground Motion Model for Average Horizontal Component of Peak Ground Motion and Response Spectra (Número May). Pacific Earthquake Engineering Research Center.spa
dc.relation.referencesChiou, J., & Youngs, R. R. (2008). NGA Model for Average Horizontal Component of Peak Ground Motion and Response Spectra (Número November). Pacific Earthquake Engineering Research Center.spa
dc.relation.referencesChopra, S., & Marfurt, K. J. (2007). Seismic Attributes for Prospect Identification and Reservoir Characterization (S. J. Hill (ed.); Número 11). Society of Exploration Geophysicists.spa
dc.relation.referencesDe Porta, J. (1974). Lexique Stratigraphique International, Colombie, (deuxieme partie), Tertiaire et Quaternaire, Union Internationale des Sciences Geologiques. Centre National de la Reserche Scientifique.spa
dc.relation.referencesDuncan, R., & Hargraves, R. (1984). Plate tectonic evolution of the Caribbean region in the mantle reference frame. Geological Society of America Memoirs, 162, 81–94.spa
dc.relation.referencesErcoli, M., Forte, E., Porreca, M., Carbonell, R., Pauselli, C., Minelli, G., & Barchi, M. R. (2020). Using seismic attributes in seismotectonic research: an application to the Norcia Mw = 6.5 earthquake (30 October 2016) in central Italy. Solid Earth, 11(2), 329–348. https://doi.org/10.5194/se-11-329-2020spa
dc.relation.referencesEtris, E. L., Crabtree, N. J., & Dewar, J. (2001). True Depth Conversion: More Than a Pretty Picture. CSEG Recorder, 11–21.spa
dc.relation.referencesGozgor, G., Kumar, M., Demir, E., & Padhan, H. (2020). The impact of economic globalization on renewable energy in the OECD countries. Energy Policy, 139(January), 1–13.spa
dc.relation.referencesHaiyun, W., & Xiaxin, T. (2003). Relationships between moment magnitude and fault parameters: theoretical and semi-empirical relationships. Earthquake Engineering and Engineering Vibration, 2(2), 201–211. https://doi.org/1671-3664(2003)02-0201-11spa
dc.relation.referencesHamilton, E. L. (1979). Vp / Vo and Poisson’s ratios in marine sediments and rocks. Journal Acoustics Society of the America, 66(4), 1093–1101. https://doi.org/10.1121/1.383344spa
dc.relation.referencesHaskey, P., Faragher, J., Raymondi, M. J., Dangerfield, J., & Fjeld, O. (1998). Embla : an Interpretive Case History : Depth Imaging With Well Controlled Signal Estimation And Depth Conversion. En 1998 SEG Annual Meeting (p. 4). Society of Exploration Geophysicists. https://doi.org/spa
dc.relation.referencesHengesh, J. V, & Whitney, B. B. (2015). Characterization of seismic sources within northwestern Australia ’ s newly reactivated transcurrent margin. Proceedings of the Tenth Pacific Conference on earthquake Engineering Building an Earthquake-Resilient Pacific, October.spa
dc.relation.referencesIdriss, I. M. (1993). Procedures for Selecting Earthquake Ground Motions at Rock Sites. Departament of Commerce United State of America.spa
dc.relation.referencesIdriss, I. M. (2013). NGA-West2 Model for Estimating Average Horizontal Values of PseudoAbsolute Spectral Accelerations Generated by Crustal Earthquakes (Número May). Pacific Earthquake Engineering Research Center.spa
dc.relation.referencesIEA. (2019). The Role of Gas in Today’s Energy Transitions.spa
dc.relation.referencesIngeominas - UNAL. (2010). Mapa nacional de amenaza sísmica. Periodo de retorno 475 años. Mapa nacional de amenaza sísmica. Periodo de retorno 475 años; Ingeominas – Universidad Nacional. https://miig.sgc.gov.co/Paginas/Resultados.aspx?k=BusquedaPredefinida=DGAM%0AapN acAmenSismic1500Kspa
dc.relation.referencesİşcan, Y., Ocakoğlu, N., Kılıç, F., & Özel, O. (2019). Active tectonics of offshore Cide–Sinop (southern Black Sea shelf): from seismic and multibeam bathymetry data. Geo-Marine Letters, 39(4), 279–294. https://doi.org/10.1007/s00367-019-00572-4spa
dc.relation.referencesIshiyama, T., Sato, H., Abe, S., Kawasaki, S., & Kato, N. (2016). High-resolution 3D seismic reflection imaging across active faults and its impact on seismic hazard estimation in the Tokyo metropolitan area. Tectonophysics, 689, 79–88. https://doi.org/10.1016/j.tecto.2016.01.042spa
dc.relation.referencesJahn, F., Mark, C., & Mark, G. (2008). Hydrocarbon exploration and production. En Hydrocarbon Exploration and Production (Segunda, Vol. 15, Número 55, pp. 2–7). Elsevier. https://doi.org/10.1016/0148-9062(96)80031-3spa
dc.relation.referencesJames, K. H. (2006). Arguments for and against the Pacific origin of the Caribbean Plate : discussion, finding for an inter-American origin. Geologica Acta, 4(1–2), 279–302.spa
dc.relation.referencesJames, K. H. (2009). In situ origin of the Caribbean : discussion of data In situ origin of the Caribbean : discussion of data. The Origin and Evolution of the Caribbean Plate, 77–125. https://doi.org/10.1144/SP328.3spa
dc.relation.referencesKanamori, H., & Anderson, D. L. (1975). Theoretical bases of some empirical relations in Seismology. Bulletin of the Seismological Society of America, 65(5), 1073–1095.spa
dc.relation.referencesKvět, R. (1992). A New View on Neotectonics. GeoJournal, 28(4), 413–415.spa
dc.relation.referencesLondono, J., Schiek, C., & Biegert, E. (2015). Basement Architecture of the Southern Caribbean Basin, Guajira Offshore, Colombia. Petroleum geology and potential of the Colombian Caribbean Margin: AAPG Memoir 108, 108, 85–102. https://doi.org/10.1306/13531932M1083639spa
dc.relation.referencesLugo, J., & Mann, P. (1995). Jurassic - Eocene tectonic evolution of Maracaibo basin, Venezuela. Petroleum basins of South America, 62, 699–726. http://search.datapages.com/data/specpubs/memoir62/38lugo/0699.htmspa
dc.relation.referencesMacellari, C. E. (1995). Cenozoic sedimentation and tectonics of the southwestern Caribbean pullapart basin, Venezuela and Colombia. Petroleum basins of South America, 62, 757–780. http://search.datapages.com/data/specpubs/memoir62/41macell/0757.htmspa
dc.relation.referencesMaesano, F. E., D’Ambrogi, C., Burrato, P., & Toscani, G. (2014). Slip-rates of blind thrusts in slow deforming areas: Exampels from the Po Plain (Italy). Tectonophysics, 4(643), 8–25. https://doi.org/http://dx.doi.org/10.1016/j.tecto.2014.12.007spa
dc.relation.referencesMann, P., & Burke, K. (1984). Neotectonics of the Caribbean. Reviews of Geophysics, 22(4), 309– 362. https://doi.org/https://doi.org/10.1029/RG022i004p00309spa
dc.relation.referencesMantilla, A. M. (2008). Crustal structure of the southwestern colombian caribbean margin: Geological interpretation of geophysical data. http://uri.gbv.de/document/gvk:ppn:57378535Xspa
dc.relation.referencesMatos, C., Custódio, S., Batló, J., Zahradník, J., Arroucau, P., Silveira, G., & Heimann, S. (2018). An Active Seismic Zone in Intraplate West Iberia Inferred From High-Resolution Geophysical Data. Journal of Geophysical Research: Solid Earth, 123(4), 2885–2907. https://doi.org/10.1002/2017JB015114spa
dc.relation.referencesMcGuire, R. K. (2004). Seismic hazard and Risk Analysis. En Earthquake Engineering Research Institute. Earthquake Engineering Research Institute.spa
dc.relation.referencesMekkawi, M. M., Fergani, E. S. A., & Abdella, K. A. (2017). Seismic Risk Zones and Faults Characterization using Geophysical Data. Journal of Geology & Geophysics, 6(6), 1–6. https://doi.org/10.4172/2381-8719.1000311spa
dc.relation.referencesMeschede, M., & Frisch, W. (1998). A plate-tectonic model for the Mesozoic and Early Cenozoic history of the Caribbean plate. Tectonophysics, 296, 269–291.spa
dc.relation.referencesMurthy, Y. S. (2002). On the correlation of seismicity with geophysical lineaments over the Indian subcontinent. Current Science, 83(6), 760–766.spa
dc.relation.referencesO’Loughlin, C. D. O., Richardson, M. D., Randolph, M., & Gaudin, C. (2013). Penetration of dynamically installed anchors in clay. 63(September), 909–919. https://doi.org/10.1680/geot.11.P.137spa
dc.relation.referencesParis, G., Machette, M. N., Dart, R. L., Haller, K. M., & Report, O. (2000). Map and Database of Quaternary Faults and Folds in Colombia and its Offshore Regions.spa
dc.relation.referencesPark, S., & Elrick, S. (1998). Predictions of shear-wave velocities in southern California using surface geology. Bulletin of the Seismological Society of America, 88(3), 677–685.spa
dc.relation.referencesPavlides, S., Tsapanos, T., Zouros, N., Sboras, S., Koravos, G., & Chatzipetros, A. (2009). Using active fault data for assessing seismic hazard: a case study from NE Aegean sea, Greece. Earthquake Geotechnical Engineering Satellite Conference XVIIth International Conference on Soil Mechanics & Geotechnical Engineering, October, 2–3.spa
dc.relation.referencesPedersen, S. I., Skov, T., Randen, T., & Sønneland, L. (2005). Automatic Fault Extraction Using Artificial Ants BT - Mathematical Methods and Modelling in Hydrocarbon Exploration and Production (A. Iske & T. Randen (eds.); pp. 107–116). Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-26493-0_5spa
dc.relation.referencesPEER. (2008). Next Generation Attenuation (NGA) - West. Pacific Earthquake Engineering Research Center. https://peer.berkeley.edu/nga-westspa
dc.relation.referencesPEER. (2010). Next Generation Attenuation (NGA) - West 2. Pacific Earthquake Engineering Research Center. https://ngawest2.berkeley.eduspa
dc.relation.referencesPepper, R., & Bejarano, G. (2005). Advances in Seismic Fault Interpretation Automation * By. Figure 1, 1–16.spa
dc.relation.referencesPindell, J. L., & Kennan, L. (2009). Tectonic evolution of the Gulf of Mexico, Caribbean and northern South America in the mantle reference frame : an update. The Origin and Evolution of the Caribbean Plate, 1–55. https://doi.org/10.1144/SP328.1spa
dc.relation.referencesPratt, T. L., Horton, J. W., Spears, D. B., Gilmer, A. K., & McNamara, D. E. (2014). The 2011 Virginia Mw 5.8 earthquake: Insights from seismic reflection imaging into the influence of older structures on eastern U.S. Seismicity. Special Paper of the Geological Society of America, 509(16), 285–294. https://doi.org/10.1130/2014.2509(16)spa
dc.relation.referencesRamírez, V., Vargas, L. S., Rubio, C., Nino, H., & Mantilla, O. (2015). Petroleum Systems of the Guajira Basin, Northern Colombia. En C. Bartolini & P. Mann (Eds.), Petroleum geology and potential of the Colombian Caribbean Margin: AAPG Memoir 108 (Vol. 108, pp. 399–430). AAPG. https://doi.org/10.1306/13531944M1083647spa
dc.relation.referencesRollins, J. F. (1965). Stratigraphy and structure of the Goajira Peninsula, Northwestern Venezuela and Northeastern Colombia. En University Nebraska Studies (Vol. 19, p. 20).spa
dc.relation.referencesRonen, B. S., Schultz, P. S., Hattori, M., & Corbett, C. (1994). Seismic-guided estimation of log properties. The Leading Edge, June, 674–678.spa
dc.relation.referencesSadigh, K., Egan, J., & Youngs, R. (1986). Specification of ground motion for seismic design of long period structures. Earthquake Notes, 57(13).spa
dc.relation.referencesSalgado-Gálvez, M. A., Bernal, G. A., & Cardona, O. D. (2016). Evaluación Probabilista de la Amenaza Sísmica de Colombia con fines de Actualización de la Norma Colombiana de Diseño de Puentes CCP-14. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 32(4), 230–239. https://doi.org/10.1016/j.rimni.2015.07.001spa
dc.relation.referencesSalgado, M. A., Bernal, G. A., Cardona, O. D., & Yamín, L. E. (2013). Influencia de la “Caldas Tear” en la Amenaza Sísmica de Colombia Comparación con el Estudio General de Amenaza Sísmica 2010. Congreso Nacional de Ingeniería Sísmica, May 2016.spa
dc.relation.referencesSánchez, A. (2016). Base Fm. Castilletes: Uncertainty Analisys Depth Conversion (Número 10). Repsol - G&G Task Force Team.spa
dc.relation.referencesSánchez, L., & Drewes, H. (2020). Geodetic Monitoring of the Variable Surface Deformation in Latin America. International Association of Geodesy Symposia. https://doi.org/10.1007/1345_2020_91spa
dc.relation.referencesSchneider, J. A., & Senders, M. (2010). Foundation design: A comparison of oil and gas platforms with offshore wind turbines. Marine Technology Society Journal, 44(1), 32–51. https://doi.org/10.4031/MTSJ.44.1.5spa
dc.relation.referencesSchroot, B. M., & Shcüttenhelm, R. T. E. (2003). Expressions of shallow gas in the Netherlands North Sea. Netherlands Journal of Geosciences / Geologie, 82(1), 91–105. https://doi.org/10.1017/S0016774600022812spa
dc.relation.referencesSGC, & GEM. (2018). Modelo nacional de amenaza sísmica para colombia. Servicio Geológico Colombiano (SGC) - Grupo de Amenaza Sísmica. Global Earthquake Mode (GEM).spa
dc.relation.referencesSingh, S., Ordaz, M., & Pacheco, J. (2003). Advances in Seismology with Impact on Earthquake Engineering. En R. Dmowska, J. R. Holton, & H. T. Rossby (Eds.), International Handbook of Earthquake and Engineering Seismology (Vol. 81B, p. 1081). International Geophysics Series. http://library1.nida.ac.th/termpaper6/sd/2554/19755.pdfspa
dc.relation.referencesSomerville, P., & Moriwaki, Y. (2003). Seismic Hazards and Risk Assessment in Engineering Practice. En R. Dmowska, J. R. Holton, & H. T. Rossby (Eds.), International Handbook of Earthquake and Engineering Seismology (Vol. 81B, pp. 1065–1080). INTERNATIONAL GEOPHYSICS SERIES. http://library1.nida.ac.th/termpaper6/sd/2554/19755.pdfspa
dc.relation.referencesStewart, I. (2005). TECTONICS | Neotectonics (R. C. Selley, L. R. M. Cocks, & I. R. B. T.-E. of G. Plimer (eds.); pp. 425–428). Elsevier. https://doi.org/https://doi.org/10.1016/B0-12369396-9/00502-5spa
dc.relation.referencesStrasser, F. O., Bommer, J. J., & Abrahamson, N. A. (2008). Truncation of the distribution of ground-motion residuals. Journal Seismological Research Letters, 12, 79–105. https://doi.org/10.1007/s10950-007-9073-zspa
dc.relation.referencesTaboada, A., Dimaté, C., & Fuenzalida, A. (1998). Sismotectónica de Colombia: deformación continental activa y subducción. Física de la Tierra, 10, 111–147.spa
dc.relation.referencesTchalenko, J. S. (1970). Similarities between Shear Zones of Different Magnitudes. Imperial College of Science and Technology, 81, 1625–1640.spa
dc.relation.referencesTerzic, Z., Ermakov, O., & Urosevic, M. (2019). Geophysical Survey as a part of a Multi-tiered Investigation in Fault Characterization and Dam Seismic Hazard Assessment – a case study from.spa
dc.relation.referencesTingdahl, K. M. (2003). Improving seismic chimney detection using directional attributes. Developments in Petroleum Science, 51, 157–173.spa
dc.relation.referencesTrifonova, P., Solakov, D., Simeonova, S., Metodiev, M., & Stavrev, P. (2013). Regional pattern of the earth’s crust dislocations on the territory of Bulgaria inferred from gravity data and its recognition in the spatial distribution of seismicity. Pattern Recognition in Physics, 1(1), 25–36. https://doi.org/10.5194/prp-1-25-2013spa
dc.relation.referencesUPME. (2018). Evaluación de las Cuencas y oferta de Hidrocarburos Convencionales y no Convencionales. En Evaluación de las Cuencas y oferta de Hidrocarburos Convencionales y no Convencionales. Unidad de Planeación Minero Energética.spa
dc.relation.referencesUtsu, T. (2002). Statistical Features of Seismicity. En R. Dmowska, J. R. Holton, & H. T. Rossby (Eds.), International Handbook of Earthquake and Engineering Seismology (pp. 719–732). International Geophysics Series. http://library1.nida.ac.th/termpaper6/sd/2554/19755.pdfspa
dc.relation.referencesVargas, C. A. (2012). Evaluating total Yet-to-Find hydrocarbon volume in Colombia (C. A. Vargas (ed.); Vol. 16, Número Special). Universidad Nacional de Colombia.spa
dc.relation.referencesWells, D. L., & Coppersmith, K. J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 84(4), 974–1002.spa
dc.relation.referencesWen, S., Wen, Y. Y., Ching, K. E., Yeh, Y. L., & Lee, Y. H. (2019). Tectonic implications on the 2018 Hualien Earthquake. Terrestrial, Atmospheric and Oceanic Sciences, 30(3), 389–398. https://doi.org/10.3319/TAO.2019.01.28.01spa
dc.relation.referencesWilcox, R. E., Harding, T. P., & Seely, D. R. (1973). Basic Wrench Tectonics. The American Association Petroleum Geologist Bulletin, 57(1), 74–96.spa
dc.relation.referencesWills, C. J., & Silva, W. (1998). Shear-Wave Velocity Characteristics of Geologic Units in California. Earthquake Spectra, 14(3), 533–556. https://doi.org/10.1193/1.1586014spa
dc.relation.referencesYenier, E., & Atkinson, G. M. (2015). Regionally adjustable generic ground-motion prediction equation based on equivalent point-source simulations: Application to central and eastern North America. Bulletin of the Seismological Society of America, 105(4), 1989–2009. https://doi.org/10.1785/0120140332spa
dc.relation.referencesZhang, Q., & Yuan, X. (2019). Offshore earthquake ground motions : Distinct features and influence on the seismic design of marine structures. Marine Structures, 65(February), 291– 307. https://doi.org/10.1016/j.marstruc.2019.02.003spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.armarcVulnerabilidad sísmica
dc.subject.ddc550 - Ciencias de la tierraspa
dc.subject.lembSismología
dc.subject.lembSeismology
dc.subject.lembZonas de actividad sísmica
dc.subject.lembSeismic zones
dc.subject.lembSeismic vulnerability
dc.subject.proposalNeotectónicaspa
dc.subject.proposalSimilaridadspa
dc.subject.proposalNeotectonicseng
dc.subject.proposalSimilarityeng
dc.subject.proposalCubo de fallasspa
dc.subject.proposalAceleración pico efectivaspa
dc.subject.proposalEspectro de respuesta de aceleración pseudo-absolutaspa
dc.subject.proposalAmenaza sísmicaspa
dc.subject.proposalFault cubeeng
dc.subject.proposalEffective peak ground accelerationeng
dc.subject.proposalPseudo-absolute acceleration response spectraeng
dc.subject.proposalSeismic hazardseng
dc.titleAnálisis neotectónico en la cuenca Guajira offshore sector Tayrona a partir de información sísmicaspa
dc.title.translatedNeotectonics analysis in the Guajira offshore basin Tayrona area from seismic informationeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audienceGeneralspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
80190048.2020.pdf
Tamaño:
11.86 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias – Geofísica

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: