Proceso avanzado de oxidación fenton integrado con coagulación-floculación o electrocoagulación para el tratamiento de aguas residuales industriales textiles

dc.contributor.advisorDobrosz-Gómez, Izabela
dc.contributor.advisorGómez García, Miguel Ángel
dc.contributor.authorQuintero Arias, Jesús David
dc.contributor.orcidQuintero Arias, Jesús David [https://orcid.org/0009000168190862]spa
dc.contributor.researchgroupGrupo de Investigación en Procesos Reactivos Intensificados con Separación y Materiales Avanzados (Prisma)spa
dc.date.accessioned2024-06-25T17:27:26Z
dc.date.available2024-06-25T17:27:26Z
dc.date.issued2023
dc.descriptiongraficas, tablasspa
dc.description.abstractColombia es considerada el sexto país con mejor oferta hídrica (2145 m³/s) y el décimo tercero en disponibilidad per cápita de agua (42740 m³) en el mundo. Además, tiene normas ambientales proyectadas para un uso responsable del recurso hídrico, penaliza la dilución de las aguas residuales y delimita concentraciones de diferentes sustancias en el vertimiento. La industria textil colombiana representa 1.2% del PIB nacional y contribuye con el 9% de las exportaciones. Sin embargo, esta involucra altos impactos ambientales debido a la diversidad de las materias primas y reactivos involucrados en sus procesos y al elevado consumo de agua que a su vez genera un gran volumen de aguas residuales. Estos efluentes se caracterizan por contener materia no biodegradable, tóxica, persistente y recalcitrante, elevada DQO y alto contenido de color. El objetivo de este estudio fue el tratamiento de las aguas residuales de una industria textil del eje cafetero resultantes de la etapa de teñido con colorante negro ácido 194 (ARnD) utilizando un Proceso Avanzado de Oxidación (PAO) que permita un tratamiento eficiente y de fácil implementación en planta. Así, se evaluaron los métodos de coagulación-floculación con alumbre asistida por cal (CF, disponible en la industria bajo estudio y que constituye el caso base como método de tratamiento) y de electrocoagulación (EC, alternativa al proceso de CF), la oxidación Fenton (F) como PAO junto a la respectiva neutralización de sus efluentes (F-N), y los procesos secuenciales CF-F-N y EC-F-N. La determinación de las condiciones óptimas de operación de cada uno de ellos se realizó mediante el diseño de experimentos, análisis estadístico, la metodología de superficie de respuesta, herramientas de análisis numérico multivariable y estudios cinéticos. El análisis de su desempeño se enfocó en la degradación de la materia orgánica recalcitrante, el incremento de la biodegradabilidad, la disminución de la toxicidad y los costos. Inicialmente, la ARnD se caracterizó en función de la regulación ambiental vigente (30 parámetros incluidos en la Resolución 0631/2015 del MADS y otros 11 adicionales de especial interés). Entre otras particularidades, el ARnD presentó una elevada carga orgánica (DQO ≈ 3271 mg/L, DBO5 ≈ 648 mg/L y COT ≈ 1271 mg/L), intenso color negro (≈ 46000 U. Pt-Co, concentración de colorante ≈ 928 mg/L), elevada concentración de cromo (Cr6+ ≈ 21 mg/L y Cr,Total ≈ 26 mg/L), bajo índice de biodegradabilidad (IB = DBO5/DQO ≈ 0.20) y alta toxicidad para la Artemia salina (CL10 ≈ 0.08 mg/L). Estas características constituyeron la línea base para la evaluación de la capacidad de tratamiento de los diferentes métodos evaluados. Los resultados mostraron que los métodos de tratamiento primarios CF con alumbre asistido por cal y EC, a condiciones de operación óptimas, no permitieron el cumplimiento de la normatividad ambiental nacional vigente (remueven ca. 63% del DQO). El método de tratamiento F-N fue eficaz ya que alcanzó remociones de 99% del colorante, 99% de cromo y 89% de materia orgánica. La implementación de los procesos secuenciales CF-F-N y EC-F-N aseguró el cumplimiento de la normatividad ambiental, reduciendo la DQO en un 89% y el COT en un 86%. Más aún, se logró remoción de la concentración de colorante y de cromo en un 99% y un 100%, respectivamente. Adicionalmente, el análisis de distribución de pesos moleculares mostró que la carga contaminante residual en todos los procesos se centra en moléculas de peso molecular < 1 kDa y que la toxicidad de los efluentes tratados, varió según el método de tratamiento así: CL10,CF = 0.26 mg/L, CL10,F-N = 0.91 mg/L, CL10,EC = 3.3 mg/L, CL10,CF-F-N = 11.8 mg/L y CL10,EC-F-N = 362 mg/L. Por otro lado, los costos operacionales totales para los métodos de tratamiento que permiten cumplir con las exigencias de la normatividad ambiental se estimaron en COpTCF-F-N ≈ 13.7 USD/m³, COpTF-N ≈ 10.6 USD/m³ y COpTEC-F-N ≈ 7.7 USD/m³. De la comparación de los métodos de tratamiento evaluados, el proceso secuencial EC-F-N fue la mejor alternativa. Además del cumplimiento de la normatividad ambiental (en términos de DQO, DBO5, SST y Cr), este proceso permitió degradar el colorante presente en el efluente, aumentó el IB hasta 0.50 y entregó un efluente tratado no tóxico. Estas características viabilizaron esta alternativa de tratamiento desde el punto de vista ambiental, tecnológico y económico (Texto tomado de la fuente)spa
dc.description.abstractColombia is considered the sixth country with the best water supply (2145 m³/s) and the thirteenth in per capita water availability (42740 m³) in the world. In addition, it has environmental standards designed for a responsible use of water resources, penalizes the dilution of wastewater and delimits concentrations of different substances in discharges. The Colombian textile industry represents 1.2% of the national GDP and contributes 9% of exports. However, this involves high environmental impacts due to the diversity of raw materials and reagents involved in its processes and the high consumption of water, which in turn generates a large volume of wastewater. These effluents are characterized by containing non-biodegradable, toxic, persistent and recalcitrant matter, high COD and color content. The purpose of this study was the treatment of wastewater from a textile industry in the coffee region resulting from the dyeing stage with acid black 194 dye (ARnD) using an Advanced Oxidation Process (AOP) that allows efficient treatment and easy implementation in the plant. Thus, the following methods were evaluated: alum-lime assisted coagulation-flocculation (CF, available in the industry under study and which constitutes the baseline as treatment method) and electrocoagulation (EC, alternative to the CF process), Fenton oxidation (F, as AOP) together with the respective neutralization of its effluents (F-N), and the sequential processes CF-F-N and EC-F-N. The determination of the optimal operating conditions for each process was carried out through experiment design, statistical analysis, response surface methodology, multivariable numerical analysis tools and kinetic studies. The analysis of its performance was focused on the degradation of recalcitrant organic matter, the increase in biodegradability, the decrease in toxicity and costs. Initially, the ARnD was characterized based on the current environmental regulation (30 parameters included in Resolution 0631/2015 (MADS) and another 11 additional parameters of special interest). Among other particularities, the ARnD presented a high organic load (COD ≈ 3271 mg/L, BOD5 ≈ 648 mg/L and TOC ≈ 1271 mg/L), intense black color (≈ 46000 U. Pt-Co, dye concentration ≈ 928 mg/L), high chromium concentration (Cr6+ ≈ 21 mg/L and Cr,Total ≈ 26 mg/L), low biodegradability index (BI = BOD5/COD ≈ 0.20) and high toxicity to Artemia salina (LC10 = 0.08 mg/L). These characteristics constituted the baseline for the evaluation of the treatment capacity of the different treatment methods evaluated. The results showed that alum CF assisted by lime and EC methods, under optimal operating conditions, did not allow compliance with current national environmental regulations (they remove ca. 63% of the COD). The F-N method was effective since it achieved removals of 99% of the dye, 99% of chromium and 89% of organic matter. The implementation of sequential CF-F-N and EC-F-N ensure agreement with environmental regulations, reducing COD by 89% and TOC by 86%. Furthermore, removal of the dye and chromium concentrations was achieved by 99% and 100%, respectively. Additionally, the molecular weight distribution analysis showed that the residual contaminant load in all processes comprised mainly substances of molecular weight < 1 kDa and that the toxicity of the treated effluents varied depending on the treatment method as follows: LC10,CF = 0.26 mg/L, LC10,F-N = 0.91 mg/L, LC10,EC = 3.3 mg/L, LC10,CF-F-N = 11.8 mg/L and LC10,EC-F-N = 362 mg/L. On the other hand, the total operational costs for the processes that allowed compliance with the requirements of environmental regulations were estimated at COpTCF-F-N ≈ 13.7 USD/m³, COpTF-N ≈ 10.6 USD/m³ y COpTEC-F-N ≈ 7.7 USD/m³. From the comparison of the treatment methods evaluated, the sequential EC-F-N process was the best alternative. In addition to compliance with current environmental regulations (in terms of COD, BOD5, TSS and Cr), this process allowed the degradation of the dye present in the effluent, increased the IB to 0.50 and delivered a non-toxic treated effluent. These characteristics made this treatment alternative viable from an environmental, technological and economic point of view.eng
dc.description.curricularareaQuímica Y Procesos.Sede Manizalesspa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingeniería - Ingeniería Químicaspa
dc.description.researchareaTratamiento de aguas residualesspa
dc.description.sponsorshipConvocatoria 852-2019, Proyecto: 202010034716, Contrato: 172-2021; Proyecto HERMES: 46681spa
dc.description.sponsorshipConvocatoria 727-2015 Doctorados Nacionales FP44842-133-2017; Proyecto HERMES: 41928spa
dc.description.sponsorshipUniversidad Nacional de Colombia 2020-2021: Proyectos: HERMES-51167 y HERMES-51225spa
dc.description.sponsorshipFacultad de Ingeniería y Arquitectura de la Universidad Nacional de Colombia Sede Manizales 2020: Proyecto HERMES: 50955spa
dc.description.sponsorshipUniversidad Nacional de Colombia Sede Manizales 2019: Proyecto HERMES: 46213spa
dc.format.extent440 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86293
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.facultyFacultad de Ingeniería y Arquitecturaspa
dc.publisher.placeManizales, Colombiaspa
dc.publisher.programManizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - Ingeniería Químicaspa
dc.relation.referencesAbd-Alredha, L.; Al-Rubaie, R.; Jameel Mhessn, R. (2011). Synthesis and Characterization of Azo Dye Para Red and New Derivatives. Journal of Chemistry, 9(1), 465-470. https://doi.org/10.1155/2012/206076spa
dc.relation.referencesAbdessalem, A. K.; Oturan, N.; Bellakhal, N.; Dachraoui, M.; Oturan, M. A. (2008). Experimental design methodology applied to electro-Fenton treatment for degradation of herbicide chlortoluron. Applied Catalysis B: Environmental, 78(3-4), 334- 341. https://doi.org/10.1016/j.apcatb.2007.09.032spa
dc.relation.referencesAboulhassan, M.A.; Souabi, S.; Yaacoubi A.; Baudu, M. (2005). Treatment of Textile Wastewater Using a Natural Flocculant. Environmental Technology. 26, 705-711. https://doi.org/10.1080/09593330.2001.9619510spa
dc.relation.referencesAddai-Mensah, J.; Prestidge, C. A. (2005). Structure formation in dispersed systems. In: Stechemesser H and Dobiáš B (eds) Coagulation and Flocculation. USA: Taylor & Francis, 135-216.spa
dc.relation.referencesAguas de Manizales S.A. E.S.P-BIC, (2023). Tarifas, https://www.aguasdemanizales.com.co/Aguas-de-Manizales-SA-ESP/Atenci%C3%B3n-y-Servicios-al-Usuario/Informaci%C3%B3n-Generalspa
dc.relation.referencesAguilar, M.I.; Saez, J.; Liorens, M.; Soler, A.; Ortuno, J.F. (2002). Nutrient removal and sludge production in the coagulation–flocculation process. Wat. Res. 36, 2910– 2919. https://doi.org/10.1016/s0043-1354(01)00508-5spa
dc.relation.referencesAhmed, F.; Dewani, R., Pervez, M. K.; Mahboob, S. J.; Soomro, S. A. (2016). Non-destructive FT-IR analysis of mono azo dyes. Bulgarian Chemical Communications, 48(1), 71 – 77.spa
dc.relation.referencesAl-adilee, K. J.; Hatem, B. A.; Hatem, O. A. (2021). Synthesis and spectral characterization of new azo dye derived from benzimidazole and its complexation with selected transition metal ions. Journal of Physics: Conference Series, 1999 (1), 012123. https://doi.org/10.1088/1742-6596/1999/1/012123spa
dc.relation.referencesAli, A.; Shaikh, I.; Abid, T.; Samina, F.; Islam, S.; Khalid, A.; Firdous, N.; Javed, M. (2019). Reuse of Textile Wastewater After Treating with Combined Process of Chemical Coagulation and Electrocoagulation. Polish Journal of Environmental Studies, 28(4), 2565-2570. https://doi.org/10.15244/pjoes/91940spa
dc.relation.referencesAl-Qodah, Z.; Tawalbeh, M.; Al-Shannag, M.; Al-Anber, Z.; Bani-Melhem, K. (2020). Combined electrocoagulation processes as a novel approach for enhanced pollutants removal: A state-of-the-art review. Science of The Total Environment, 744, 140806. https://doi.org/10.1016/j.scitotenv.2020.140806spa
dc.relation.referencesAl-Rubaie, L; Mhessn, R. J. (2012). Synthesis and characterization of azo dye para red and new derivatives. E-Journal of Chemistry, 9(1), 465-470.spa
dc.relation.referencesAmador-Díaz, A.; Veliz-Lorenzo, E.; Bataller-Venta, M. (2015). Tratamiento de lodos, generalidades y aplicaciones. Revista CENIC. Ciencias Químicas. 46, 1-10.spa
dc.relation.referencesAmani-Ghadima, A.R.; Aber, S.; Olad, A.; Ashassi-Sorkhabi, H. (2011). Influence of anions on Reactive Red 43 removal in electrochemical coagulation process. Electrochim. Acta, 56, 1373–1380. https://doi.org/10.1016/j.electacta.2010.10.089spa
dc.relation.referencesAmor, C.; De Torres-Socías, E.; Peres, J.A.; Maldonado, M.I.; Oller, I.; Malato, S.; Lucas, M.S. (2015). Mature landfill leachate treatment by coagulation/flocculation combined with Fenton and solar photo-Fenton processes. J. Hazard. Materials, 286, 261–268. https://doi.org/10.1016/j.jhazmat.2014.12.036spa
dc.relation.referencesAmour, A.; Merzouk, B.; Leclerc, J.-P.; Lapicque, F. (2016). Removal of reactive textile dye from aqueous solutions by electrocoagulation in a continuous cell. Desalination and Water Treatment, 57(48-49), 22764-22773. https://doi.org/10.1080/19443994.2015.1106094spa
dc.relation.referencesANDI, BID, CIA-Universidad de Antioquia, CIDI-Universidad Pontificia Bolivariana (Eds.). (1997). Manual de caracterización de aguas residuales industriales (Ideas Graficas Ltda.). ANDI.spa
dc.relation.referencesAndres, L. A.; Sislen, D.; Marin, P. (2010). Charting a New Course: Structural Reforms in Colombia’s Water Supply and Sanitation Sector. World Bank. https://doi.org/10.1596/27920spa
dc.relation.referencesAnglada, Á.; Urtiaga, A.; Ortiz, I.; Mantzavinos, D.; Diamadopoulos, E. (2011). Treatment of municipal landfill leachate by catalytic wet air oxidation: Assessment of the role of operating parameters by factorial design. Waste Management, 31(8), 1833-1840. https://doi.org/10.1016/j.wasman.2011.03.023spa
dc.relation.referencesAoudj, S.; Khelifa, A.; Drouiche, N.; Hecini, M.; Hamitouche, H. (2010). Electrocoagulation process applied to wastewater containing dyes from textile industry. Chemical Engineering and Processing: Process Intensification, 49(11), 1176-1182. https://doi.org/10.1016/j.cep.2010.08.019spa
dc.relation.referencesAquino, J.; Pereira. G.; Rocha, R.; Bocchi, N.; Biaggio. S. (2016). Combined Coagulation and Electrochemical process to treat and detoxify a real textile effluent. Water. Air. Soil Pollut., 227 (8) 266. https://doi.org/10.1007/s11270-016-2967-zspa
dc.relation.referencesArboleda Valencia, J. (2000). Teoría y práctica de la purificación del agua. 3ra Ed. Mc-Graw Hill.spa
dc.relation.referencesArgun, M. E.; Karatas, M. (2011). Application of Fenton process for decolorization of reactive black 5 from synthetic wastewater: Kinetics and thermodynamics. Environmental Progress & Sustainable Energy, 30(4), 540-548. https://doi.org/10.1002/ep.10504spa
dc.relation.referencesAris, A.; Sharratt, P. N. (2004). Fenton Oxidation of Reactive Black 5: Effect of Mixing Intensity and Reagent Addition Strategy. Environmental Technology, 25(5), 601-612. https://doi.org/10.1080/09593330.2004.9619350spa
dc.relation.referencesArslan, I.; Balcioğlu, I. A. (1999). Degradation of commercial reactive dyestuffs by heterogenous and homogenous advanced oxidation processes: A comparative study. Dyes and Pigments, 43(2), 95-108. https://doi.org/10.1016/S0143-7208(99)00048-0spa
dc.relation.referencesAsgari, G.; Alahabadi, A.; Shomoossi, N.; Yazdani Aval, M.; Shabanloo, A.; Darvishmotevalli, M.; Zolghadr, H.; Salari, M. (2023). Mineralization and biodegradability improvement of textile wastewater using persulfate/dithionite process. Biomass Conversion and Biorefinery, https://doi.org/10.1007/s13399-023-04128-6spa
dc.relation.referencesASTM D2035-19. (2019). Standard Practice for Coagulation-Flocculation Jar Test of Water: West Conshohocken, PA. United States: ASTM International. https://doi.org/10.1520/D2035-19spa
dc.relation.referencesATSDR. (11 de 06 de 2019). Toxic Substances Portal - Naphthalene, 1-Methylnapthalene, 2-Methylnapthalene. Obtenido de Agency for Toxic Substances and Disease Registry https://www.atsdr.cdc.gov/phsspa
dc.relation.referencesAygun, A.; Nas, B.; Sevimli, M. F. (2019). Treatment of reactive dyebath wastewater by electrocoagulation process: Optimization and cost-estimation. Korean Journal of Chemical Engineering, 36(9), 1441-1449. https://doi.org/10.1007/s11814-019-0334-7spa
dc.relation.referencesBabuponnusami, A,; Karuppan, M. (2014). A Review on Fenton and Improvements to the Fenton Process for Wastewater Treatment. Journal of Environmental Chemical Engineering, 2(1), 557-72. https://doi.org/10.1016/j.jece.2013.10.011spa
dc.relation.referencesBaghel, R.; Upadhyaya, S.; Chaurasia, S. P.; Singh, K.; Kalla, S. (2018). Optimization of process variables by the application of response surface methodology for naphthol blue black dye removal in vacuum membrane distillation. Journal of Cleaner Production, 199, 900-915. https://doi.org/10.1016/j.jclepro.2018.07.214spa
dc.relation.referencesBakar, A. F. A.; Halim, A. A. (2013). Treatment of automotive wastewater by coagulation-flocculation using poly-aluminum chloride (PAC), ferric chloride (FeCl3) and aluminum sulfate (alum). AIP Conference Proceedings, 1571, 524-529. https://doi.org/10.1063/1.4858708spa
dc.relation.referencesBalapure, K.; Aghera, P.; Bhatt, N.; Madamwar, D. (2019). Community Synergism: Degradation of Triazine Dye Reactive Black 1 by Mixed Bacterial Cultures KND_PR under Microaerophilic and Aerobic Conditions. Environmental Processes, 6(3), 713-739. https://doi.org/10.1007/s40710-019-00378-7spa
dc.relation.referencesBali, U.; Karagozoglu, B. (2007). Performance comparison of Fenton process, ferric coagulation and H2O2/pyridine/Cu(II) system for decolorization of Remazol Turquoise Blue G-133. Dyes and Pigments, 74(1), 73-80. https://doi.org/10.1016/j.dyepig.2006.01.013spa
dc.relation.referencesBalla, W.; Essadki, A. H.; Gourich, B.; Dassaa, A.; Chenik, H.; Azzi, M. (2010). Electrocoagulation/electroflotation of reactive, disperse and mixture dyes in an external-loop airlift reactor. Journal of Hazardous Materials, 184(1-3), 710-716. https://doi.org/10.1016/j.jhazmat.2010.08.097spa
dc.relation.referencesBaneshi, M. M.; Naraghi, B.; Rahdar, S.; Biglari, H.; Ahamadabadi, M.; Narooie, M. R.; Salimi, A.; Khaksefidi, R.; Alipour, V. (2016). Removal of remazol black b dye from aqueous solution by electrocoagulation equipped with iron and aluminium electrodes. 7, 8.spa
dc.relation.referencesBannoud, A. H.; Persin, F.; Rumeau, M. (1993). A study of the perfection of an electrochemical reactor for softening water. Wat. Res., 27, 1385 – 1391. https://doi.org/10.1016/0043-1354(93)90226-8spa
dc.relation.referencesBard, A. J.; Faulkner, L. R. (2001). Electrochemical methods: Fundamentals and applications (2nd ed). Wiley.spa
dc.relation.referencesBarrenechea Martel, A.; Cánepa de Vargas, L.; Maldonado Yactayo, V.; Zumaeta, M. A. (2004). Tratamiento de agua para consumo humano. Plantas de filtración rápida. Manual I (Vol. 1). Centro Panamericano de Ingeniería Sanitaria y Ciencias del Ambiente.spa
dc.relation.referencesBarrera-Díaz, C.; Cañizares, P.; Fernández, F. J.; Natividad, R.; Rodrigo, M. A. (2017). Electrochemical Advanced Oxidation Processes: An Overview of the Current Applications to Actual Industrial Effluents. Journal of the Mexican Chemical Society, 58(3). https://doi.org/10.29356/jmcs.v58i3.133spa
dc.relation.referencesBarrera-Díaz, C.; Ureña-Nuñez, F.; Campos, E.; Palomar-Pardavé, M.; Romero, M. (2003). A combined electrochemical-irradiation treatment of highly colored and polluted industrial wastewater, Radiat. Phys. Chem., 67, 657–663. https://doi.org/10.1016/S0969-806X(02)00497-8spa
dc.relation.referencesBartošová, A.; Blinová, L.; Sirotiak, M.; Michalíková, A. (2017). Usage of FTIR-ATR as Non-Destructive Analysis of Selected Toxic Dyes. Research Papers Faculty of Materials Science and Technology Slovak University of Technology, 25(40), 103-111. https://doi.org/10.1515/rput-2017-0012spa
dc.relation.referencesBassyouni, D. G.; Hamad, H. A.; El-Ashtoukhy, E.-S. Z.; Amin, N. K.; El-Latif, M. M. A. (2017). Comparative performance of anodic oxidation and electrocoagulation as clean processes for electrocatalytic degradation of diazo dye Acid Brown 14 in aqueous medium. Journal of Hazardous Materials, 335, 176.2-187. https://doi.org/10.1016/j.jhazmat.2017.04.045spa
dc.relation.referencesBasturk, E.; Karatas, M. (2014). Advanced oxidation of Reactive Blue 181 solution: A comparison between Fenton and Sono-Fenton Process. Ultrasonics Sonochemistry, 21(5), 1881-1885. https://doi.org/10.1016/j.ultsonch.2014.03.026spa
dc.relation.referencesBautista, P.; Mohedano, A. F.; Casas, J. A.; Zazo, J. A.; Rodríguez, J. J. (2008). An Overview of the Application of Fenton Oxidation to Industrial Wastewaters Treatment. Journal of Chemical Technology & Biotechnology, 83(10):1323-38. https://doi.org/10.1002/jctb.1988spa
dc.relation.referencesBayar, S.; Erdogan, M. (2019). Removal of COD and color from reactive red 45 azo dye wastewater using fenton and fenton-like oxidation processes: Kinetic studies. Applied Ecology and Environmental Research, 17(2), 1516.2-1529. https://doi.org/10.15666/aeer/1702_15171529spa
dc.relation.referencesBayramoglu, M.; Eyvaz, M.; Kobya, M. (2007). Treatment of the textile wastewater by electrocoagulation. Chemical Engineering Journal, 128(2-3), 155-161. https://doi.org/10.1016/j.cej.2006.10.008spa
dc.relation.referencesBayramoglu, M.; Kobya, M.; Can, O. T.; Sozbir, M. (2004). Operating cost analysis of electrocoagulation of textile dye wastewater. Separation and Purification Technology, 37(2), 117-125. https://doi.org/10.1016/j.seppur.2003.09.002spa
dc.relation.referencesBazrafshan, E.; Mahvi, A. H.; Zazouli, M. ali. (2014). Textile Wastewater Treatment by Electrocoagulation Process using Aluminum Electrodes. Iranian Journal of Health Sciences, 2(1), 16-29. https://doi.org/10.18869/acadpub.jhs.2.1.16spa
dc.relation.referencesBehnajady, M. A.; Modirshahla, N.; Ghanbary, F. (2007). A kinetic model for the decolorization of C.I. Acid Yellow 23 by Fenton process. Journal of Hazardous Materials, 148(1-2), 98-102. https://doi.org/10.1016/j.jhazmat.2007.02.003spa
dc.relation.referencesBell-Ajy, K.; Abbaszadegan, M.; Ibrahim, E.; Verges, D.; Le Chevallier, M. (2000). Conventional and Optimized Coagulation for NOM Removal. Journal of the American Water Works Association, 92 (10), 44–58. https://doi.org/10.1002/j.1551-8833.2000.tb09023.xspa
dc.relation.referencesBello, M. M.; Abdul Raman, A. A.; Asghar, A. (2019). A review on approaches for addressing the limitations of Fenton oxidation for recalcitrant wastewater treatment. Process Safety and Environmental Protection, 126, 119-140. https://doi.org/10.1016/j.psep.2019.03.028spa
dc.relation.referencesBelouafa, S.; Habti, F.; Benhar, S.; Belafkih, B.; Tayane, S.; Hamdouch, S.; Bennamara, A.; Abourriche, A. (2017). Statistical tools and approaches to validate analytical methods: Methodology and practical examples. International Journal of Metrology and Quality Engineering, 8, 9. https://doi.org/10.1051/ijmqe/2016030spa
dc.relation.referencesBener, S.; Bulca, Ö.; Palas, B.; Tekin, G.; Atalay, S.; Ersöz, G. (2019). Electrocoagulation process for the treatment of real textile wastewater: Effect of operative conditions on the organic carbon removal and kinetic study. Process Safety and Environmental Protection, 129, 47-54. https://doi.org/10.1016/j.psep.2019.06.010spa
dc.relation.referencesBenhadji, A.; Ahmed, M. T.; Maachi, R. (2011). Electrocoagulation and effect of cathode materials on the removal of pollutants from tannery wastewater of Rouïba. Desalination. 277, 128 – 134. https://doi:10.1016/j.desal.2011.04.014spa
dc.relation.referencesBenitez, F.J.; Acero, J.L.; Real, F.J.; Rubio, F.J.; Leal, A.I. (2001). The role of hydroxyl radicals for the decomposition of p-hydroxy phenylacetic acid in aqueous solutions. Water Res., 35, 1338–1343. https://doi.org/10.1016/S0043-1354(00)00364-Xspa
dc.relation.referencesBernal, E. (2014). Limit of Detection and Limit of Quantification Determination in Gas Chromatography. En X. Guo (Ed.), Advances in Gas Chromatography. InTech. https://doi.org/10.5772/57341spa
dc.relation.referencesBes-Piá, A.; Mendoza-Roca, J. A.; Alcaina-Miranda, M. I.; Iborra-Clar, A.; Iborra-Clar, M. I. (2002). Reuse of wastewater of the textile industry after its treatment with a combination of physico-chemical treatment and membrane technologies. Desalination, 149(1-3), 169-174. https://doi.org/10.1016/S0011-9164(02)00750-6spa
dc.relation.referencesBezerra, M. A.; Santelli, R. E.; Oliveira, E. P.; Villar, L. S.; Escaleira, L. A. (2008). Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 76(5), 965-977. https://doi.org/10.1016/j.talanta.2008.05.019spa
dc.relation.referencesBhatnagar, R.; Joshi, H.; Mall, I. D.; Srivastava, V. C. (2014). Electrochemical treatment of acrylic dye-bearing textile wastewater: Optimization of operating parameters. Desalination and Water Treatment, 52(1-3), 111-122. https://doi.org/10.1080/19443994.2013.786653spa
dc.relation.referencesBidhendi, G. R.; Torabian, A.; Ehsani, H.; Razmkhah. (2007). Evaluation of Industrial Dyeing Wastewatre Treatment with Coagulants and Polyelectrolyte as a Coagulant Aid. Iran J. Environ. Health. Sci. Eng. 4, 1, 29 -36.spa
dc.relation.referencesBigda, R. J. (1995). Consider Fenton’s Chemistry for Wastewater Treatment. Chemical Engineering Progress, 5.spa
dc.relation.referencesBilińska, L.; Blus, K.; Gmurek, M.; Ledakowicz, S. (2019). Coupling of electrocoagulation and ozone treatment for textile wastewater reuse. Chemical Engineering Journal, 358, 992-1001. https://doi.org/10.1016/j.cej.2018.10.093spa
dc.relation.referencesBird, R. B.; Stewart, W. E.; Lightfoot, E. N. (2009). Transport Phenomena (2nd ed). Wiley.spa
dc.relation.referencesBlanco, J.; Torrades, F.; De la Varga, M.; García-Montaño, J. (2012). Fenton and biological-Fenton coupled processes for textile wastewater treatment and reuse. Desalination, 286, 394–399., https://doi.org/10.1016/j.desal.2011.11.055spa
dc.relation.referencesBlanco, J.; Torrades, F.; Moron, M.; Marolda, B.-A.; Garcia, J. (2014). Photo-Fenton and sequencing batch reactor coupled to photo-Fenton processes for textile wastewater reclamation: Feasibility of reuse in dyeing processes. Chem. Eng. J., 469-475. https://doi.org/10.1016/j.cej.2013.10.101spa
dc.relation.referencesBorchate, S. S; Kulkarni, G. S; Kore, V. S. (2014). A Review on Applications of Coagulation- Flocculation and Ballast Flocculation for Water and Wastewater. International Journal of Innovations in Engineering and Technology, 4(4), 216 - 223.spa
dc.relation.referencesBratby, J. (2016). Coagulation and Flocculation in Water and Wastewater Treatment. Water Intelligence Online, 15(0), (2nd edition). IWA Publishing., https://doi.org/10.2166/9781780407500spa
dc.relation.referencesBrillas, E. (2020). A review on the photoelectro-Fenton process as efficient electrochemical advanced oxidation for wastewater remediation. Treatment with UV light, sunlight, and coupling with conventional and other photo-assisted advanced technologies. Chemosphere, 250, 126198. https://doi.org/10.1016/j.chemosphere.2020.126198spa
dc.relation.referencesBrillas, E.; Martinez-Huitle, C.A. (2015). Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review. Applied Catalysis B: Environmental, 166-167, 603-643. https://doi.org/10.1016/j.apcatb.2014.11.016spa
dc.relation.referencesBrüschweiler, B. J.; Küng, S.; Bürgi, D.; Muralt, L.; Nyfeler, E. (2014). Identification of non-regulated aromatic amines of toxicological concern which can be cleaved from azo dyes used in clothing textiles. Regulatory Toxicology and Pharmacology, 69(2), 263-272. https://doi.org/10.1016/j.yrtph.2014.04.011spa
dc.relation.referencesButler, E.; Hung, Y.-T.; Yeh, R. Y.-L.; Suleiman Al Ahmad, M. (2011). Electrocoagulation in Wastewater Treatment. Water, 3(2), 495-525. https://doi.org/10.3390/w3020495spa
dc.relation.referencesButnaru, R.; Savin, I.-I. (2008). Wastewater characteristics in textile finishing mills. Environmental Engineering and Management Journal, 7(6), 859-864. https://doi.org/10.30638/eemj.2008.113spa
dc.relation.referencesCabot, F. A. (2012). El Camino Invisible de un Bien Preciado. Infografía.spa
dc.relation.referencesÇalik, Ç.; Çifçi D. İ. (2022) Comparison of kinetics and costs of Fenton and photo-Fenton processes used for the treatment of a textile industry wastewater. Journal of Environmental Management. 304, 114234. https://doi.org/10.1016/j.jenvman.2021.114234spa
dc.relation.referencesCan, O. T.; Bayramoğlu, M.; Kobya, M. (2003). Decolorization of Reactive Dye Solutions by Electrocoagulation Using Aluminum Electrodes. Industrial Engineering Chemistry Research, 42(14), 3391-3396. https://doi.org/10.1021/ie020951gspa
dc.relation.referencesCañizares, P.; Martínez, F.; Jiménez, C.; Lobato, J.; Rodrigo, M. A. (2006). Coagulation and Electrocoagulation of Wastes Polluted with Dyes. Environmental Science Technology, 40(20), 6418-6424. https://doi.org/10.1021/es0608390spa
dc.relation.referencesCárdenas Torrado, G.; Molina Pérez, F. J. (2022). Alternativas para tratar lodos originados en sistemas de tratamiento de aguas residuales: una revisión. Ingeniería, Vol. 27 No. 3 https://doi.org/10.14483/23448393.17945spa
dc.relation.referencesCarmona, I. (2013). De colorantes sintéticos a naturales en la industria alimentaria. Argentina.: Agrimundo.spa
dc.relation.referencesCarolina Investigations® for AP® Biology (2014). Carolina Investigations® for AP® Biology: Transformation Kit: Teacher's Manual and Students Guide. https://www.carolina.com/teacher-resources/Document/ap-biology-transformation-kit-manual/tr37235.trspa
dc.relation.referencesCarvalho, J. R. S.; Amaral, F. M.; Florencio, L.; Kato, M. T.; Delforno, T. P.; Gavazza, S. (2020). Microaerated UASB reactor treating textile wastewater: The core microbiome and removal of azo dye Direct Black 22. Chemosphere, 242, 125157. https://doi.org/10.1016/j.chemosphere.2019.125157spa
dc.relation.referencesÇatıkkaş, B. (2017). Raman and FT-IR spectra, DFT and SQMFF calculations for N, N-dimethylaniline. Periodicals of Engineering and Natural Sciences, 5(2).spa
dc.relation.referencesCavazzuti, M. (2013). Optimization methods: From theory to design: scientific and technological aspects in mechanics. Springer.spa
dc.relation.referencesCentro del Agua. (15 de 09 de 2017). Los Recursos Hídricos en América Latina. Recuperado el 22 de 08 de 2017, de Centro del Agua.: http://www.centrodelagua.orgspa
dc.relation.referencesCepillo, D.-I. S. (2011). Diseño Óptimo de Laminados en Materiales Compuestos. Aplicación del MEF y el Método de las Superficies de Respuesta. Universidad de Sevilla.spa
dc.relation.referencesCestarolli, D. T.; das Graças de Oliveira, A.; Guerra, E. M. (2019). Removal of Eriochrome Black textile dye from aqueous solution by combined electrocoagulation–electroflotation methodology. Applied Water Science, 9(4). https://doi.org/10.1007/s13201-019-0985-xspa
dc.relation.referencesChafi, M.; Gourich, B.; Essadki, A. H.; Vial, C.; Fabregat, A. (2011). Comparison of electrocoagulation using iron and aluminium electrodes with chemical coagulation for the removal of a highly soluble acid dye. Desalination, 281, 285-292. https://doi.org/10.1016/j.desal.2011.08.004spa
dc.relation.referencesChan, K. H.; Chu, W. (2003). Modeling the reaction kinetics of Fenton’s process on the removal of atrazine. Chemosphere, 51(4), 305-311. https://doi.org/10.1016/S0045-6535(02)00812-3spa
dc.relation.referencesChandana, L.; Lakshminarayana, B.; Subrahmanyam, C. (2015). Influence of hydrogen peroxide on the simultaneous removal of Cr(VI) and methylene blue from aqueous medium under atmospheric pressure plasma jet. Journal of Environmental Chemical Engineering, 3(4): 2760–2767. https://doi.org/10.1016/j.jece.2015.09.030spa
dc.relation.referencesChang, E. E.; Hsing, H.-J.; Ko, C. S.; Chiang, P. C. (2007). Decolorization, mineralization, and toxicity reduction of acid orange 6 by iron-sacrificed plates in the electrocoagulation process. Journal of Chemical Technology & Biotechnology, 82(5), 486.2-495. https://doi.org/10.1002/jctb.1696spa
dc.relation.referencesChang, S. H.; Chuang, S. H.; Li, H. C.; Liang, H. H.; Huang, L. C. (2009). Comparative study on the degradation of I.C. Remazol Brilliant Blue R and I.C. Acid Black 1 by Fenton oxidation and Fe0/air process and toxicity evaluation. Journal of Hazardous Materials, 166(2-3), 1279-1288. https://doi.org/10.1016/j.jhazmat.2008.12.042spa
dc.relation.referencesChantes, P.; Jarusutthirak, C.; Kanchanapiya, P.; Danwittayakul, S. (2015). Treatment of Textile Dyeing Wastewater by Electrocoagulation. Key Engineering Materials, 659, 284-288. https://doi.org/10.4028/www.scientific.net/KEM.659.284spa
dc.relation.referencesChen, J.; Tyagi, R.D.; Li, J.; Zhang, X.; Drogui, P.; Sun, F. (2018). Economic assessment of biodiesel production from wastewater sludge. Biores. Technol., 253, 41–48. https://doi.org/10.1016/j.biortech.2018.01.016spa
dc.relation.referencesChi, G. T.; Nagy, Z. K.; Huddersman, K. D. (2011). Kinetic Modelling of the Fenton-Like Oxidation of Maleic Acid Using a Heterogeneous Modified Polyacrylonitrile (Pan) Catalyst. Progress in Reaction Kinetics and Mechanism, 36(3), 189-214. https://doi.org/10.3184/146867811X13021847366179spa
dc.relation.referencesChung, K.-T. (2016). Azo dyes and human health: A review. Journal of Environmental Science and Health, Part C, 34(4), 233-261. https://doi.org/10.1080/10590501.2016.1236602spa
dc.relation.referencesCoates, J. (2000). Interpretation of infrared spectra, a practical approach. In Encyclopedia of Analytical Chemistry. R.A. Meyers (Ed.) pp. 10815–10837. John Wiley & Sonsspa
dc.relation.referencesCollivignarelli, M. C.; Abbà, A.; Miino, M. C.; Damiani, S. (2019). Treatments for color removal from wastewater: State of the art. Journal of Environmental Management, 236, 727 – 745, https://doi.org/10.1016/j.jenvman.2018.11.094spa
dc.relation.referencesColorants. (18 de Marzo de 2013). Recuperado el 28 de 08 de 2017, The Essential Chemical Industry.: http://www.essentialchemicalindustry.orgspa
dc.relation.referencesCONPES. (2002). Acciones prioritarias y lineamientos para la formulación del plan nacional de manejo de aguas residuales (3177; p. 27). Consejo Nacional de Política Económica y Social. https://colaboracion.dnp.gov.co/CDT/Conpes/Econ%C3%B3micos/3177.pdfspa
dc.relation.referencesContreras, C. A.; Sugita, S.; Ramos, E. (2006). Preparation of sodium aluminate from basic aluminum sulfate. Advances in Technology of Materials and Materials Processing Journal, 8 (2), 122.spa
dc.relation.referencesCooper, P. (Ed.). (1995). Colour in dyehouse effluent. Society of Dyers and Colourists.spa
dc.relation.referencesCORPOCALDAS. (2014). Por medio de la cual se ajustan los objetivos de calidad del recurso hidrico en la subcuenca del rfo Chinchina, y se definen para la microcuenca de la quebrada Manizales jurisdicción de la Corporación Autónoma Regiaonal de Caldas, CORPOCALDAS (Resolución 496; p. 6).spa
dc.relation.referencesCrittenden, J. C.; Trussell, R. R.; Hand, D. W.; Howe, K. J.; Tchobanoglous, G. (2012). MWH’s Water Treatment: Principles and Design. John Wiley & Sons, Inc. https://doi.org/10.1002/9781118131473spa
dc.relation.referencesCTA, GSI-LAC, COSUDE, IDEAM. (2015). Evaluación Multisectorial de la Huella Hídrica en Colombia. Resultados por subzonas hidrográficas en el marco del Estudio Nacional del Agua 2014. Medellín.spa
dc.relation.referencesCurrie, L. A. (1968). Limits for qualitative detection and quantitative determination. Application to radiochemistry. Analytical Chemistry, 40 (3), 586-593. https://doi.org/10.1021/ac60259a007spa
dc.relation.referencesCurrie, L. A. (1985). The limitations of models and measurements as revealed through chemometric intercomparison. Journal of Research of the National Bureau of Standards, 90 (6), 409. https://doi.org/10.6028/jres.090.033spa
dc.relation.referencesCurrie, L. A. (1999). Detection and quantification limits: Origins and historical overview. Analytica Chimica Acta, 8.spa
dc.relation.referencesDalvand, A.; Gholami, M.; Joneidi, A.; Mahmoodi, N. M. (2011). Dye Removal, Energy Consumption and Operating Cost of Electrocoagulation of Textile Wastewater as a Clean Process: Electrocoagulation of Textile Wastewater. CLEAN - Soil, Air, Water, 39(7), 665-672. https://doi.org/10.1002/clen.201000233spa
dc.relation.referencesDANE. (23 de 6 de 2020). DANE. Recuperado el 22 de 08 de 2017, de Departamento Administrativo Nacional de Estadística.: www.dane.gov.cospa
dc.relation.referencesDaneshvar, N.; Khataee, A. R.; Amani Ghadim, A. R.; Rasoulifard, M. H. (2007). Decolorization of C.I. Acid Yellow 23 solution by electrocoagulation process: Investigation of operational parameters and evaluation of specific electrical energy consumption (SEEC). Journal of Hazardous Materials, 148(3), 566-572. https://doi.org/10.1016/j.jhazmat.2007.03.028spa
dc.relation.referencesDanzer, K.; Currie, L. A. (1998). Guidelines for calibration in analytical chemistry. Part I. Fundamentals and single component calibration (IUPAC Recommendations 1998). Pure and Applied Chemistry, 70(4), 993-1014. https://doi.org/10.1351/pac199870040993spa
dc.relation.referencesDeghles, A. (2019). Treatment of Tannery Wastewater by the Application of Electrocoagulation Process Using Iron and Aluminum Electrodes. Green and Sustainable Chemistry. 9, 119-134. https://doi.org/10.4236/gsc.2019.94009spa
dc.relation.referencesDemirci, Y.; Pekel, L. C.; Alpbaz, M. (2015). Investigation of Different Electrode Connections in Electrocoagulation of Textile Wastewater Treatment. Int. J. Electrochem. Sci.; 10, 9.spa
dc.relation.referencesDempsey, B. A. (2006). Chapter 2 - Coagulant characteristics and reactions. En: Interface Science and Technology, Gayle Newcombe, David Dixon Editor(s). Elsevier, https://doi.org/10.1016/S1573-4285(06)80071-2spa
dc.relation.referencesDeng, Y.; Englehardt, J. D. (2006). Treatment of landfill leachate by the Fenton process. Water Research, 40(20), 3683-3694. https://doi.org/10.1016/j.watres.2006.08.009spa
dc.relation.referencesDentel, S. K. (1991). Coagulant control in water treatment. Critical Reviews in Environmental Control, 21(1), 41-135. https://doi.org/10.1080/10643389109388409spa
dc.relation.referencesDermentzis, K.; Valsamidou, E.; Chatzichristou, C.; Mitkidou, S. (2013). Decolorization Treatment of Copper Phthalocyanine Textile Dye Wastewater by Electrochemical Methods. Journal of Engineering Science and Technology Review, 6(1), 33-37. https://doi.org/10.25103/jestr.061.07spa
dc.relation.referencesDevi, O. Z.; Basavaiah, K.; Vinay, K. B. (2012). Application of potassium permanganate to spectrophotometric assay of metoclopramide hydrochloride in pharmaceuticals. Journal of Applied Spectroscopy, 78(6), 873-883. https://doi.org/10.1007/s10812-012-9547-9spa
dc.relation.referencesDIAN. (2021). Dirección de Impuestos y Aduanas Nacionales [Consultas Arancel]. Dirección de Impuestos y Aduanas Nacionales. https://www.dian.gov.co/spa
dc.relation.referencesDilaver, M.; Hocaoğlu, S. M.; Soydemir, G.; Dursun, M.; Keskinler, B.; Koyuncu, I.; Ağtaş, M. (2018). Hot wastewater recovery by using ceramic membrane ultrafiltration and its reusability in textile industry. Journal of Cleaner Production, 171, 220 – 233. https://doi.org/10.1016/j.jclepro.2017.10.015spa
dc.relation.referencesDo, S. H.; Batchelor, B.; Lee, H. K.; Kong, S. H. (2009). Hydrogen peroxide decomposition on manganese oxide (pyrolusite): Kinetics, intermediates, and mechanism. Chemosphere, 75(1), 8-12. https://doi.org/10.1016/j.chemosphere.2008.11.075spa
dc.relation.referencesDobrosz-Gómez, I.; Gómez-García, M. Á.; Ibarra, H. (2021). Integration of environmental and economic performance of Electro-Coagulation-Anodic Oxidation sequential process for the treatment of soluble coffee industrial effluent. The Science of The Total Environment, 837: 155880. https://doi.org/10.1016/j.scitotenv.2022.155880spa
dc.relation.referencesDobrosz-Gómez, I.; Gómez-García, M. Á.; Ibarra, H. (2022). Treatment of soluble coffee industrial effluent by electro coagulation–electro oxidation process: multiobjective optimization and kinetic study. International journal of Environmental Science and Technology, 19(7). https://doi.org/10.1007/s13762-022-04050-wspa
dc.relation.referencesDomènech, X.; Jardim, W.; Litter, M. (2004). Procesos avanzados de oxidación para la eliminación de contaminantes. Colección Documentos, 29.spa
dc.relation.referencesDonadelli, J. A.; Carlos, L.; Arques, A.; García Einschlag, F. S. (2018). Kinetic and mechanistic analysis of Rahman azo dyes decolorization by ZVI-assisted Fenton systems: PH-dependent shift in the contributions of reductive and oxidative transformation pathways. Applied Catalysis B: Environmental, 231, 51-61. https://doi.org/10.1016/j.apcatb.2018.02.057spa
dc.relation.referencesDrumond Chequer, F. M.; de Oliveira, G. A. R.; Anastacio Ferraz, E. R.; Carvalho, J.; Boldrin Zanoni, M. V.; de Oliveir, D. P. (2013). Textile Dyes: Dyeing Process and Environmental Impact. En M. Gunay (Ed.), Eco-Friendly Textile Dyeing and Finishing. InTech. https://doi.org/10.5772/53659spa
dc.relation.referencesDu, Y.; Zhou, M.; Lei, L. (2006) Role of the intermediates in the degradation of phenolic compounds by Fenton-like process. Journal of Hazardous Materials, B136, 859 – 865. https://doi.org/10.1016/j.jhazmat.2006.01.022spa
dc.relation.referencesDu, Y.; Zhou, M.; Lei, L. (2007). Kinetic model of 4-CP degradation by Fenton/O2 system. Water Research, 41(5), 1121-1133. https://doi.org/10.1016/j.watres.2006.11.038spa
dc.relation.referencesDulov, A.; Dulova, N.; Trapido, M. (2011). Combined Physicochemical Treatment of Textile and Mixed Industrial Wastewater. Ozone: Science & Engineering. 33(4):285-93. https://doi:10.1080/01919512.2011.583136spa
dc.relation.referencesDuque-Escobar, G. (2017). El Paisaje Cultural Cafetero. Manizales: Universidad Nacional de Colombia sede Manizales.spa
dc.relation.referencesEcheverri, M. J. (2017). Manizales’ Water Distribution System – Aguas de Manizales S.A. E.S.P. Procedia Engineering, 186, 36-43. https://doi.org/10.1016/j.proeng.2017.03.205spa
dc.relation.referencesEcoSiglos. (2017). Recuperado el 22 de 08 de 2017, de Infografía: La Huella del Agua.: http://waterfootprint.orgspa
dc.relation.referencesEdwards, F. G.; Fendley, D. L.; Lunsford, J. V. (2006). Electrolytic Treatment of an Industrial Wastewater from a Hosiery Plant. Water Environment Research, 78(4), 435-441. https://doi.org/10.2175/106143006X98831spa
dc.relation.referencesEl Colombiano. (10 de 6 de 2016). Obtenido de Identifican a otra empresa de textiles que está tiñendo el río Medellín: http://www.elcolombiano.com/medio-ambiente/identifican-a-otra-empresa-de-textiles-que-esta-tinendo-el-rio-medellin-IE4363659spa
dc.relation.referencesEl Colombiano. (3 de 6 de 2016). Obtenido de Así cazan a las empresas que tiñen de colores el río Medellín: http://www.elcolombiano.com/antioquia/asi-son-los-operativos-contra-los-que-contaminan-el-rio-medellin-CM4284455spa
dc.relation.referencesEl-Gohary, F.; Tawfik, A. (2009). Decolorization and COD reduction of disperse and reactive dyes wastewater using chemical-coagulation followed by sequential batch reactor (SBR) process. Desalination, 249(3), 1159-1164. https://doi.org/10.1016/j.desal.2009.05.010spa
dc.relation.referencesEl-Hosiny, F. I.; Abdel-Khalek, M. A.; Selim, K. A.; Osama, I. (2018). Physicochemical study of dye removal using electro-coagulation-flotation process. Physicochemical Problems of Mineral Processing; ISSN 2084-4735. https://doi.org/10.5277/ppmp1825spa
dc.relation.referencesEliyas, A.; Ljutzkanov, L.; Stambolova, I.; Blaskov, V.; Vassilev, S.; Razkazova-Velkova, E.; Mehandjiev, D. (2013). Visible light photocatalytic activity of TiO2 deposited on activated carbon. Open Chemistry, 11(3). https://doi.org/10.2478/s11532-012-0183-2spa
dc.relation.referencesEl-Khorassani, H., Trebuchon, P., Bitar, H., Thomas, O. A. (1999). Simple UV spectrophotometric procedure for the survey of industrial sewage system. Water Sc. Technol., 39 (10–11), 77–82. https://doi.org/10.2166/wst.1999.0633spa
dc.relation.referencesEllouzea, E.; Ellouzea, D.; Jradb, A.; Ben Amara, R. (2011). Treatment of synthetic textile wastewater by combined chemical coagulation/membrane processes. Desalination and Water Treatment. 33, 118–124. https://doi.org/10.5004/dwt.2011.2612spa
dc.relation.referencesEmamjomeh, M.; Sivakumar, M. (2009). Review of pollutants removed by electrocoagulation and electrocoagulation/flotation processes. Journal of Environmental Management, 90(5), 1663-1679. https://doi.org/10.1016/j.jenvman.2008.12.011spa
dc.relation.referencesEMAS (2021). Empresa Metropolitana de Aseo S.A E.S.P. Cotización realizada en junio de 2021.spa
dc.relation.referencesEPA. (1997). Profile of the textile industry. Washington.: Environmental Protection Agency.spa
dc.relation.referencesErdem, E., Sari, E. Y., Kilinçarslan, R., Kabay, N. (2009). Synthesis and characterization of azo-linked Schiff bases and their nickel(II), copper(II), and zinc(II) complexes. Transition Metal Chemistry, 34(2), 167-174. https://doi.org/10.1007/s11243-008-9173-9spa
dc.relation.referencesErtugay, N.; Acar, F. N. (2017). Removal of COD and color from Direct Blue 71 azo dye wastewater by Fenton’s oxidation: Kinetic study. Arabian Journal of Chemistry, 10, S1158-S1163. https://doi.org/10.1016/j.arabjc.2013.02.009spa
dc.relation.referencesEuropean Commission. Joint Research Centre. (2016). Guidance document on the estimation of LOD and LOQ for measurements in the field of contaminants in feed and food. Publications Office. https://data.europa.eu/doi/10.2787/8931spa
dc.relation.referencesEWA. (2005). Efficient use of water in the textile finishing industry. Brussels: Official Publication of the European Water Association (EWA).spa
dc.relation.referencesEyvaz, M.; Kirlaroglu, M.; Aktas, T. S.; Yuksel, E. (2009). The effects of alternating current electrocoagulation on dye removal from aqueous solutions. Chemical Engineering Journal, 153(1-3), 16-22. https://doi.org/10.1016/j.cej.2009.05.028spa
dc.relation.referencesFajardo, A. S.; Martins, R. C.; Silva, D. R.; Martínez-Huitle, C. A.; Quinta-Ferreira, R. M. (2017). Dye wastewaters treatment using batch and recirculation flow electrocoagulation systems. Journal of Electroanalytical Chemistry, 801, 30-37. https://doi.org/10.1016/j.jelechem.2017.07.015spa
dc.relation.referencesFAO. (15 de 09 de 2017). Food and Agriculture Organizacion of the United Nations. Recuperado el 22 de 08 de 2017, de World Water Resources by Country.: http://www.fao.orgspa
dc.relation.referencesFaust, S.D.; Aly, O.M. (1998). Chemistry of Water Treatment, 2nd edition. Taylor & Francis.spa
dc.relation.referencesFavero, B. M.; Favero, A. C.; Taffarel, S. R.; Souza, F. S. (2018). Evaluation of the efficiency of coagulation/flocculation and Fenton process in reduction of colour, turbidity and COD of a textile effluent. Environmental Technology, 1-10. https://doi.org/10.1080/09593330.2018.1542035spa
dc.relation.referencesFerrari-Lima, A. M.; Ueda, A. C.; Bergamo, E. A.; Marques, R. G.; Ferri, E. A. V.; Pinto, C. S.; Pereira, C. A. A.; Yassue-Cordeiro, P. H.; Souza, R. P. (2017). Perovskite-type titanate zirconate as photocatalyst for textile wastewater treatment. Environmental Science and Pollution Research, 24(14), 12529-12537. https://doi.org/10.1007/s11356-016-7590-4spa
dc.relation.referencesFogler, H. S. (2020). Elements of chemical reaction engineering (Sixth edition). Pearson.spa
dc.relation.referencesForero, J.-E.; Ortiz, O.-P. (2005). Aplicación de procesos de oxidación avanzada como tratamiento de fenol en aguas residuales industriales de refinería. 3, 14.spa
dc.relation.referencesFreitas, T. K. F. S.; Almeida, C. A.; Manholer, D. D.; Geraldino, H. C. L.; de Souza, M. T. F.; Garcia, J. C. (2018). Review of Utilization Plant-Based Coagulants as Alternatives to Textile Wastewater Treatment. En S. S. Muthu (Ed.), Detox Fashion (pp. 27-79). Springer Singapore. https://doi.org/10.1007/978-981-10-4780-0_2spa
dc.relation.referencesFreitas, T. K. F. S.; Oliveira, V. M.; de Souza, M. T. F.; Geraldino, H. C. L.; Almeida, V. C., Fávaro, S. L.; Garcia, J. C. (2015). Optimization of coagulation-flocculation process for treatment of industrial textile wastewater using okra (A. esculentus) mucilage as natural coagulant. Industrial Crops and Products, 76, 538-544. https://doi.org/10.1016/j.indcrop.2015.06.027spa
dc.relation.referencesGeorgiou, D.; Aivazidis, A.; Hatiras, J.; Gimouhopoulos, K. (2003). Treatment of cotton textile wastewater using lime and ferrous sulfate. Water Research, 37(9), 2248-2250. https://doi.org/10.1016/S0043-1354(02)00481-5spa
dc.relation.referencesGhafari, S.; Aziz, H. A.; Isa, M. H.; Zinatizadeh, A. A. (2009). Application of response surface methodology (RSM) to optimize coagulation–flocculation treatment of leachate using poly-aluminum chloride (PAC) and alum. Journal of Hazardous Materials, 163(2-3), 650-656. https://doi.org/10.1016/j.jhazmat.2008.07.090spa
dc.relation.referencesGhaly, A.; Ananthashankar, R.; Alhattab, M.; Ramakrishnan, V. V. (2013). Production, Characterization and Treatment of Textile Effluents: A Critical Review. Journal of Chemical Engineering & Process Technology, 05 (01). https://doi.org/10.4172/2157-7048.1000182spa
dc.relation.referencesGhanbari, F.; Moradi, M.; Eslami, A.; Emamjomeh, M. M. (2014). Electrocoagulation/Flotation of Textile Wastewater with Simultaneous Application of Aluminum and Iron as Anode. Environmental Processes, 1(4), 447-457. https://doi.org/10.1007/s40710-014-0029-3spa
dc.relation.referencesGhernaout, D.; Elboughdiri, N.; Ghareba, S. (2020). Fenton Technology for Wastewater Treatment: Dares and Trends, Open Access Library Journal, 7, 1-26. https://doi:10.4236/oalib.1106045spa
dc.relation.referencesGhernaout, D.; Ghernaout, B.; Kellil, A. (2009). Natural organic matter removal and enhanced coagulation as a link between coagulation and electrocoagulation. Desalin. Water Treat., 2, 203–222. https://doi:10.5004/dwt.2009.116spa
dc.relation.referencesGhodake, G.; Jadhav, U.; Tamboli, D.; Kagalkar, A.; Govindwar, S. (2011). Decolorization of Textile Dyes and Degradation of Mono-Azo Dye Amaranth by Acinetobacter calcoaceticus NCIM 2890. Indian J Microbiol., 51(4), 501–508. http://doi:10.1007/s12088-011-0131-4spa
dc.relation.referencesGhosh, P.; Samanta, A. N.; Ray, S. (2010). COD reduction of petrochemical industry wastewater using Fenton’s oxidation. The Canadian Journal of Chemical Engineering, 88(6), 1021-1026. https://doi.org/10.1002/cjce.20353spa
dc.relation.referencesGilPavas, E. (2020). Procesos Avanzados de Oxidación para la degradación de índigo y materia orgánica de aguas Residuales de una Industria textil. Tesis de doctorado. Departamento de Ingeniería Química, Universidad Nacional de Colombia – Sede Manizales. https://repositorio.unal.edu.co/handle/unal/78505spa
dc.relation.referencesGilPavas, E.; Dobrosz-Gómez, I.; Gómez-García, M. Á. (2011). The removal of the trivalent chromium from the leather tannery wastewater: The optimisation of the electro-coagulation process parameters. Water Science and Technology, 63(3), 385-394. https://doi.org/10.2166/wst.2011.232spa
dc.relation.referencesGilPavas, E.; Dobrosz-Gómez, I.; Gómez-García, M. Á. (2012). Decolorization and mineralization of Diarylide Yellow 12 (PY12) by photo-Fenton process: The Response Surface Methodology as the optimization tool. Water Science and Technology, 65(10), 1795-1800. https://doi.org/10.2166/wst.2012.078spa
dc.relation.referencesGilPavas, E.; Dobrosz-Gómez, I.; Gómez-García, M. Á. (2017). Coagulation-Flocculation Sequential with Fenton or Photo-Fenton Processes as an Alternative for the Industrial Textile Wastewater Treatment. Journal of Environmental Management. 191:189-97. https://doi:10.1016/j.jenvman.2017.01.015spa
dc.relation.referencesGilPavas, E.; Dobrosz-Gómez, I.; Gómez-García, M. Á. (2018). Optimization of solar-driven photo-electro-Fenton process for the treatment of textile industrial wastewater. Journal of Water Process Engineering, 24, 49-55 https://doi.org/10.1016/j.jwpe.2018.05.007spa
dc.relation.referencesGilPavas, E.; Dobrosz-Gómez, I.; Gómez-García, M. Á. (2019). Optimization and toxicity assessment of a combined electrocoagulation, H2O2/Fe2+/UV and activated carbon adsorption for textile wastewater treatment. Science of The Total Environment, 651, 551-560. https://doi.org/10.1016/j.scitotenv.2018.09.125spa
dc.relation.referencesGilPavas, E.; Molina-Tirado, K.; Gómez-García, M. Á. (2009). Treatment of automotive industry oily wastewater by electrocoagulation: Statistical optimization of the operational parameters. Water Science and Technology, 60(10), 2581-2588. https://doi.org/10.2166/wst.2009.519spa
dc.relation.referencesGlaze, W. H.; Kang, J.-W.; Chapin, D. H. (1987). The Chemistry of Water Treatment Processes Involving Ozone, Hydrogen Peroxide and Ultraviolet Radiation. Ozone: Science & Engineering: The Journal of the International Ozone Association, 9(4), 335-352. https://doi.org/10.1080/01919518708552148spa
dc.relation.referencesGlugoski, L. P.; de Jesus Cubas, P.; Fujiwara, S. T. (2017). Reactive Black 5 dye degradation using filters of smuggled cigarette modified with Fe3+. Environmental Science and Pollution Research, 24(7), 6143-6150. https://doi.org/10.1007/s11356-016-6820-0spa
dc.relation.referencesGogate, P.R.; Pandit, A.B. (2004). A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions. Adv. Environ. Res., 8 (3–4), 501–551. https://doi.org/10.1016/S1093-0191(03)00032-7spa
dc.relation.referencesGohil, C.; Makwana, A. R. (2019). Navy Blue 3G Dye Electrocoagulation using Stainless Steel Electrode in Presence and Absence of Granular Activated Carbon Particle Electrode. International Journal of Engineering and Advanced Technology, 8(6), 741-745. https://doi.org/10.35940/ijeat.F9218.088619spa
dc.relation.referencesGökkuş, Ö.; Yıldız, Y. Ş. (2014). Investigation of the effect of process parameters on the coagulation flocculation. Fresenius Environmental Bulletin, 23(2), 463-470.spa
dc.relation.referencesGolob, V.; Vinder, A.; Simonic, M. (2005). Efficiency of coagulation/flocculation method for treatment of dye bath effluents. Dyes and Pigments, 67, 93-97. https://doi.org/10.1016/j.dyepig.2004.11.003spa
dc.relation.referencesGómez, C. A.; Gómez-García, M. Á.; Dobrosz-Gómez, I. (2023) Analysis of the Capacity of the Fenton Process for the Treatment of Polluted Wastewater from the Leather Dyeing Industry. The Scientific World Journal. https://doi.org/10.1155/1969/4724606spa
dc.relation.referencesGonçalves, M. V. B.; Oliveira, S. C. D.; Abreu, B. M. P. N.; Guerra, E. M.; Cestarolli, D. T. (2016). Electrocoagulation/electroflotation Process Applied to Decolourization of a Solution Containing the Dye Yellow Sirius K-CF. International Journal of Electrochemical Science, 7576-7583. https://doi.org/10.20964/2016.09.42spa
dc.relation.referencesGovindan, K.; Oren, Y.; Noel, M. (2014). Effect of dye molecules and electrode material on the settling behavior of flocs in an electrocoagulation induced settling tank reactor (EISTR). Separation and Purification Technology, 133, 396-406. https://doi.org/10.1016/j.seppur.2014.04.046spa
dc.relation.referencesGrenda, K.; Arnold, J.; Hunkeler, D.; Gamelas, J. A. F.; Rasteiro, M. G. (2018). Tannin-based Coagulants from Laboratory to Pilot Plant Scales for Coloured Wastewater Treatment. BioResources, 13(2). https://doi.org/10.15376/biores.13.2.2727-2747spa
dc.relation.referencesGunawan, D.; Kuswadi, V. B.; Sapei, L.; Riadi, L. (2017). Yarn dyed wastewater treatment using hybrid electrocoagulation-Fenton method in a continuous system: Technical and economical viewpoint. Environmental Engineering Research, 23(1), 114-119. https://doi.org/10.4491/eer.2017.108spa
dc.relation.referencesGündüz, Z.; Atabey, M. (2019). Effects of Operational Parameters on the Decolourisation of Reactive Red 195 Dye from Aqueous Solutions by Electrochemical Treatmen. International Journal of Electrochemical Science, 5868-5885. https://doi.org/10.20964/2019.06.37spa
dc.relation.referencesGuo, Y.; Xue, Q.; Zhang, H.; Wang, N.; Chang, S.; Fang, Y.; Wang, H.; Yuan, F.; Pang, H.; Chen, H. (2018). Highly efficient treatment of real benzene dye intermediate wastewater by simple limestone and lime neutralization-coagulation with improved Fenton oxidation. Environmental Science and Pollution Research, 25(31), 31125-31135. https://doi.org/10.1007/s11356-018-3101-0spa
dc.relation.referencesGürses, A.; Açıkyıldız, M.; Güneş, K.; Gürses, M. S. (2016). Dyes and Pigments: Their Structure and Properties. En A. Gürses, M. Açıkyıldız, K. Güneş, M. S. Gürses, Dyes and Pigments (pp. 13-29). Springer International Publishing. https://doi.org/10.1007/978-3-319-33892-7_2spa
dc.relation.referencesGutiérrez Pulido, H.; Vara Salazar, R.; Cano Carrasco, A.; Osorio Sánchez, M. (2008). Análisis y diseño de experimentos (2.a Ed., Vol. 1). Mc Graw-Hill.spa
dc.relation.referencesHakizimana, J. N.; Gourich, B.; Chafi, M.; Stiriba, Y.; Vial, C.; Drogui, P.; Naja, J. (2017). Electrocoagulation process in water treatment: A review of electrocoagulation modeling approaches. Desalination, 404, 1-21. https://doi.org/10.1016/j.desal.2016.10.011spa
dc.relation.referencesHall, P.; Selinger, B. (1989). A statistical justification to relating interlaboratory coefficients of variation with concentration levels. Analytical Chemistry, 61(13), 1465-1466. https://doi.org/10.1021/ac00188a033spa
dc.relation.referencesHao, O. J.; Kim, H.; Chiang, P.-C. (2000). Decolorization of wastewater. Critical Reviews in Environmental Science and Technology., Vol. 30, pp 449-505.spa
dc.relation.referencesHarris, D. C. (2010). Quantitative chemical analysis (8th ed). W.H. Freeman and Co.spa
dc.relation.referencesHassan, H.; Wan, Z. (2012). Fenton-like oxidation of Reactive Black 5 solutions using acid-activated Kuala Kangsar clay. 2012 IEEE Business, Engineering & Industrial Applications Colloquium (BEIAC), 6-11. https://doi.org/10.1109/BEIAC.2012.6226108spa
dc.relation.referencesHayati, F.; Khodabakhshi, M. R.; Isari, A. A.; Moradi, S.; Kakavandi, B. (2020). LED-assisted sonocatalysis of sulfathiazole and pharmaceutical wastewater using N,Fe co-doped TiO2@SWCNT: Optimization, performance and reaction mechanism studies, Journal of Water Process Engineering, 38: 101693. https://doi.org/10.1016/j.jwpe.2020.101693spa
dc.relation.referencesHe, Y. Q. (2011). Experiment on Treating the Dying Wastewater with Blast-Furnace Ash and Fenton Reagent. Advanced Materials Research, 295-297:1120-23. https://doi: 10.4028/www.scientific.net/AMR.295-297.1120spa
dc.relation.referencesHe, Z.; Huang, C.; Wang, Q.; Jiang, Z.; Chen, J.; Song, S. (2011). Preparation of a Praseodymium Modified Ti/SnO2-Sb/PbO2 Electrode and its Application in the Anodic Degradation of the Azo Dye Acid Black 194. Int. J. Electrochem. Sci., 6, 14. https://doi.org/10.1016/S1452-3981(23)18332-5spa
dc.relation.referencesHelmes, C. T.; Sigman, C. C.; Fung, V. A.; Thompson, K.; Doeltz, M. K.; Mackie, M.; Klein, T. E.; Lent, D. (1984). A study of azo and nitro dyes for the selection of candidates for carcinogen bioassay. Journal of Environmental Science and Health. Part A: Environmental Science and Engineering, 19(2), 97-231. https://doi.org/10.1080/10934528409375152spa
dc.relation.referencesHerbst, W.; Hunger, K.; Wilker, G. (2004). Industrial organic pigments: Production, properties, applications (3rd, completely rev. ed.). Wiley-VCH.spa
dc.relation.referencesHill, C. G.; Root, T. W. (2014). An introduction to chemical engineering kinetics and reactor design (Second edition). John Wiley & Sons, Inc.spa
dc.relation.referencesHolt, P. K.; Barton, G. W.; Mitchell, C. A. (2005). The future for electrocoagulation as a localised water treatment technology. Chemosphere, 59(3), 355-367. https://doi.org/10.1016/j.chemosphere.2004.10.023spa
dc.relation.referencesHooshmandfar, A.; Ayati, B.; Khodadadi Darban, A. (2016). Optimization of material and energy consumption for removal of Acid Red 14 by simultaneous electrocoagulation and electroflotation. Water Science and Technology, 73(1), 192-202. https://doi.org/10.2166/wst.2015.477spa
dc.relation.referencesHorning, R. H. (1977). Characterization and Treatment Of Textile Dyeing Wastewaters. Textile Chemist & Colorist, 9, 4.spa
dc.relation.referencesHorning, R. H. (1978). Textile dyeing wastewaters: Characterization and treatment. Environmental Protection Agency, Office of Research and Development; for sale by the National Technical Information Service. https://catalog.hathitrust.org/Record/100966545spa
dc.relation.referencesHorwitz, W. (1982). Evaluation of analytical methods used for regulation of foods and drugs. Analytical Chemistry, 54(1), 67-76. https://doi.org/10.1021/ac00238a002spa
dc.relation.referencesHorwitz, W.; Albert, R. (2006). The Horwitz Ratio (HorRat): A Useful Index of Method Performance with Respect to Precision. Journal of AOAC International, 89(4), 1095-1109. https://doi.org/10.1093/jaoac/89.4.1095spa
dc.relation.referencesHorwitz, W.; Kamps, L. V. R.; Boyer, K. W. (1980). Quality Assurance in the Analysis of Foods for Trace Constituents. Journal of AOAC International, 63(6), 1344-1354. https://doi.org/10.1093/jaoac/63.6.1344spa
dc.relation.referencesHsueh, C.-L.; Huang, Y.-H.; Wang, C.-C.; Chen, C.-Y. (2006). Photoassisted Fenton degradation of nonbiodegradable azo-dye (Reactive Black 5) over a novel supported iron oxide catalyst at neutral pH. Journal of Molecular Catalysis A: Chemical, 245(1-2), 78-86. https://doi.org/10.1016/j.molcata.2005.09.044spa
dc.relation.referencesHu, H.; Xu, K. (2020). Physicochemical technologies for HRPs and risk control. En High-Risk Pollutants in Wastewater (pp. 169-207). Elsevier. https://doi.org/10.1016/B976.2-0-12-816446.2-8.00006.2-3spa
dc.relation.referencesHuang, L. Z.; Zhu, M.; Liu, Z.; Wang, Z.; Hansen, H. C. B. (2019). Single sheet iron oxide: An efficient heterogeneous electro-Fenton catalyst at neutral pH. Journal of Hazardous Materials, 364, 39-47. https://doi.org/10.1016/j.jhazmat.2018.10.026spa
dc.relation.referencesHuang, Y.-H.; Huang, Y.-F.; Chang, P.-S.; Chen, C.-Y. (2008). Comparative study of oxidation of dye-Reactive Black B by different advanced oxidation processes: Fenton, electro-Fenton and photo-Fenton. Journal of Hazardous Materials, 154(1-3), 655-662. https://doi.org/10.1016/j.jhazmat.2007.10.077spa
dc.relation.referencesHuang, Y. F.; Shih, C. H.; Chiueh, P. T.; Lo, S. L. (2015). Microwave co-pyrolysis of sewage sludge and rice straw. Energy. 87, 638–644. https://doi.org/10.1016/j.energy.2015.05.039spa
dc.relation.referencesHuber, L. (2010). Validation of Analytical Methods. Agilent Technologies.spa
dc.relation.referencesHussain, I.; Hussain, J.; Arif, M. (2013). Environmental impact of dyeing and printing industry of Sanganer, Rajasthan (India). Turkish Journal Of Engineering And Environmental Sciences, 37, 272-285. https://doi.org/10.3906/muh-1310-8spa
dc.relation.referencesHussain, J.; Hussain, I.; Arif, M. (2004). Characterization of Textile Wastewater. Journal of Industrial Pollution Control., 20, 137-144.spa
dc.relation.referencesIbarra, H.; Dobrosz-Gómez, I.; Gómez-García, M. Á. (2018). Optimización Multiobjetivo del Proceso Fenton en el Tratamiento de Aguas Residuales provenientes de la Producción de Café Soluble. Información tecnológica, 29(5):111-122. https://doi.org/10.4067/S0718-07642018000500111spa
dc.relation.referencesIbarra, H.; GilPavas, E., Blatchley, E.R.; Gómez-García, M. Á.; Dobrosz-Gómez, I. (2017). Integrated electrocoagulation-electrooxidation process for the treatment of soluble coffee effluent: Optimization of COD degradation and operation time analysis. Journal of Environmental Management, 200: 530-538, https://doi.org/10.1016/j.jenvman.2017.05.095spa
dc.relation.referencesIbrahim, G. P. S.; Isloor, A. M.; Inamuddin, A. M.; Ismail, N.; Ismail, A. F.; Ashraf, G. M. (2017). Novel, one-step synthesis of zwitterionic polymer nanoparticles via distillation-precipitation polymerization and its application for dye removal membrane. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-16131-9spa
dc.relation.referencesICONTEC. (1995). Calidad Del Agua. Muestreo. Parte 2. Técnicas Generales De Muestreo (p. 17). Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC).spa
dc.relation.referencesICONTEC. (2004). Calidad Del Agua. Muestreo. Parte 3: Directrices Para La Preservación Y Manejo De Las Muestras (p. 57). Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC).spa
dc.relation.referencesICONTEC. (2010). Calidad Del Agua. Muestreo. Parte 1. Directrices para el diseño de programas y técnicas de muestreo (p. 31). Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC).spa
dc.relation.referencesIDEAM (2015). Toma y preservación de muestras. Instituto de Hidrología, Meteorología y Estudios Ambientales-IDEAM. http://www.ideam.gov.co/documents/14691/38158/Toma_Muestras_AguasResiduales.pdf/f5baddf0-7d86-4598-bebd-0e123479d428spa
dc.relation.referencesIDEAM. (2002a). Guía para el Monitoreo de Vertimientos, Aguas Superficiales y Aguas Subterráneas. https://oab.ambientebogota.gov.co/?post_type=dlm_download&p=3834spa
dc.relation.referencesIDEAM. (2002b). Tipificación De Procesos Industriales. IDEAM. http://www.ideam.gov.co/documents/14691/38158/Tipificacion_+procesosindustriales.pdf/b145f0d9-803f-4bee-8d75-9d2a637dd221spa
dc.relation.referencesIDEAM. (2019). Estudio Nacional del Agua 2018. Bogotá: Instituto de Hidrología, Meteorología y Estudios Ambientales – IDEAM.spa
dc.relation.referencesInternational Trade Centre. (2021, marzo). International Trade Centre. [Trade Map]. International Trade Centre. https://www.intracen.org/spa
dc.relation.referencesInternational Trade Centre. (2022, marzo). International Trade Centre [Trade Map]. International Trade Centre. https://www.intracen.org/spa
dc.relation.referencesIrfan, M.; Butt, T.; Imtiaz, N.; Abbas, N.; Khan, R. A.; Shafique, A. (2017). The removal of COD, TSS and colour of black liquor by coagulation–flocculation process at optimized pH, settling and dosing rate. Arabian Journal of Chemistry, 10, S2307-S2318. https://doi.org/10.1016/j.arabjc.2013.08.007spa
dc.relation.referencesISO 5667-1. (2006). Water quality—Sampling—Part 1: Guidance on the design of sampling programmes and sampling techniques (p. 31). International Organization for Standardization. https://www.iso.org/standard/36693.htmlspa
dc.relation.referencesISO 5667-10. (1992). Water quality—Sampling—Part 10: Guidance on sampling of waste waters. International Organization for Standardization. https://www.iso.org/standard/11773.htmlspa
dc.relation.referencesISO 5667-16 (2000). Calidad del agua. Muestreo. Parte 16: Guía para el ensayo biológico de muestras. https://tienda.icontec.org/gp-calidad-del-agua-muestreo-parte-16-guia-para-el-ensayo-biologico-de-muestras-ntc-iso5667-16-2000.htmlspa
dc.relation.referencesISO 5667-3. (2003). Water quality—Sampling—Part 3: Guidance on the preservation and handling of water samples. International Organization for Standardization. https://www.iso.org/standard/33486.htmlspa
dc.relation.referencesISO 6341 (2012). Water quality - Determination of the inhibition of the mobility of Daphnia magna Straus (Cladocera, Crustacea) - Acute toxicity test. https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma?c=N0051030spa
dc.relation.referencesISO 7887 (2011) Water quality — Examination and determination of colour. https://www.iso.org/standard/46425.htmlspa
dc.relation.referencesIssa, Y. M.; El-Hawary, W.F.; Youssef, A.F.A.; Senosy, A.R. (2012). Synthesis and Structural Study of the Ion-Associates of Sildenafil Citrate with Chromotropic Acid Azo Dyes. European Chemical Bulletin, 1(6), 205-209.spa
dc.relation.referencesJiang, B.; Niu, Q.; Li, C.; Oturan, N.; Oturan, M. A. (2020). Outstanding performance of electro-Fenton process for efficient decontamination of Cr (III) complexes via alkaline precipitation with no accumulation of Cr (VI): Important roles of iron species. Applied Catalysis B: Environmental, 272, 119002. https://doi.org/10.1016/j.apcatb.2020.119002spa
dc.relation.referencesJoo, D. J.; Shin, W. S.; Choi, J.-H.; Choi, S. J.; Kim, M.-C.; Han, M. H.; Ha, T. W.; Kim, Y.-H. (2007). Decolorization of reactive dyes using inorganic coagulants and synthetic polymer. Dyes and Pigments, 73(1), 59-64. https://doi.org/10.1016/j.dyepig.2005.10.011spa
dc.relation.referencesJorfi, S.; Barzegar, G.; Ahmadi, M.; Cheshmeh, R.; Jafarzadeh, N.; Takdastan, A.; Saeedi, R.; Abtahi, M. (2016). Enhanced coagulation-photocatalytic treatment of Acid red 73 dye and real textile wastewater using UVA/ synthesized MgO nanoparticles. J. Environ. Manage, 177, 111-118. https://doi.org/10.1016/j.jenvman.2016.04.005spa
dc.relation.referencesJose, R. L.; Gigimol, M. G.; Mathew, B. (2020). Adsorptive Removal of Anionic Azo Dye Acid Black 194 from Aqueous Solution using NNMBA-Crosslinked Poly N-Vinyl Pyrrolidone Hydrogel. Asian Journal of Chemistry, 32(2), 311-316. https://doi.org/10.14233/ajchem.2020.22338spa
dc.relation.referencesJung, Y. S.; Lim, W. T.; Park, J. Y.; Kim, Y. H. (2009). Effect of pH on Fenton and Fenton‐like oxidation. Environmental Technology, 30(2), 183-190. https://doi.org/10.1080/09593330802468848spa
dc.relation.referencesKakoi, B.; Kaluli, J. W.; Ndiba, P.; Thiong’o, G. (2017). Optimization of Maerua Decumbent bio-coagulant in paint industry wastewater treatment with response surface methodology. Journal of Cleaner Production, 164, 1124-1134. https://doi.org/10.1016/j.jclepro.2017.06.240spa
dc.relation.referencesKang, L.-S. (1994). Flocculation kinetics using Fe(III) coagulant in water treatment: The effects of sulfate and temperature (p. 6453506) [Doctor of Philosophy, Iowa State University, Digital Repository]. https://doi.org/10.31274/rtd-180813-11468spa
dc.relation.referencesKang, S.-F.; Liao, C.-H.; Chen, M.-C. (2002). Pre-oxidation and coagulation of textile wastewater by the Fenton process. Chemosphere, 46(6), 923-928. https://doi.org/10.1016/S0045-6535(01)00159-Xspa
dc.relation.referencesKang, Y. W.; Hwang, K. Y. (2000). Effects of reaction conditions on the oxidation efficiency in the Fenton process. Water Research. 34 (10) 2786–2790. https://doi.org/10.1016/S0043-1354(99)00388-7spa
dc.relation.referencesKanth, S. V.; Venba, R.; Jayakumar, G. C.; Chandrababu, N. K. (2009). Kinetics of leather dyeing pretreated with enzymes: Role of acid protease. Bioresource Technology, 100(8), 2430-2435. https://doi.org/10.1016/j.biortech.2008.11.026spa
dc.relation.referencesKavak, D. (2017). Treatment of dye solutions by DL nanofiltration membrane. Desalination and Water Treatment, 69, 116-122. https://doi.org/10.5004/dwt.2017.20277spa
dc.relation.referencesKehinde, F.; Aziz, H. A. (2014). Textile Waste Water and the advanced Oxidative Treatment Process, an Overview. International Journal of Innovative Research in Science, Engineering and Technology, 03(08), 15310-15317. https://doi.org/10.15680/IJIRSET.2014.0308034spa
dc.relation.referencesKeskin, C. S.; Özdemir, A.; Şengil, İ. A. (2011). Simultaneous decolorization of binary mixture of Reactive Yellow and Acid Violet from wastewaters by electrocoagulation. Water Science and Technology, 63(8), 1644-1650. https://doi.org/10.2166/wst.2011.306spa
dc.relation.referencesKhamaruddin, P. F.; Bustam, M. A.; Omar, A. A. (2011). Using Fenton’s Reagents for the Degradation of Diisopropanolamine: Effect of Temperature and pH. International Conference on Environment and Industrial Innovation, 12.spa
dc.relation.referencesKhan, M. A.; Khan, M. I.; Zafar, S. (2017). Removal of different anionic dyes from aqueous solution by anion exchange membrane. Membrane Water Treatment, 8(3), 259-277. https://doi.org/10.12989/mwt.2017.8.3.259spa
dc.relation.referencesKhataee, A.R.; Vatanpour, V.; Amani Ghadim, A.R. (2009). Decolorization of C.I. Acid Blue 9 solution by UV/Nano-TiO2, Fenton, Fenton-like, electro-Fenton and electrocoagulation processes: A comparative study. J. Hazardous Mat., 161 (2–3), 1225-1233. https://doi.org/10.1016/j.jhazmat.2008.04.075spa
dc.relation.referencesKhorram, A. G.; Fallah, N. (2018). Treatment of textile dyeing factory wastewater by electrocoagulation with low sludge settling time: Optimization of operating parameters by RSM. Journal of Environmental Chemical Engineering, 6(1), 635-642. https://doi.org/10.1016/j.jece.2017.12.054spa
dc.relation.referencesKhorram, A. G.; Fallah, N. (2019). Comparison of sludge settling velocity and filtration time after electrocoagulation process in treating industrial textile dyeing wastewater: RSM optimization. International Journal of Environmental Science and Technology, 16(7), 3437-3446. https://doi.org/10.1007/s13762-018-1731-xspa
dc.relation.referencesKhosravi, R.; Hazrati, S.; Fazlzadeh, M. (2016). Decolorization of AR18 dye solution by electrocoagulation: Sludge production and electrode loss in different current densities. Desalination and Water Treatment, 57(31), 14656-14664. https://doi.org/10.1080/19443994.2015.1063092spa
dc.relation.referencesKim, H.-L.; Cho, J.-B.; Park, Y.-J.; Cho, I.-H. (2016). Treatment and toxicity reduction of textile dyeing wastewater using the electrocoagulation-electroflotation process. Journal of Environmental Science and Health, Part A, 1-8. https://doi.org/10.1080/10934529.2016.1159877spa
dc.relation.referencesKim, S.M.; Geissen, S.U.; Vogelpohl, A. (1997). Landfill leachate treatment by a photoassisted Fenton reaction. Water Sci. Technol., 35 (4), 239–248. https://doi.org/10.2166/wst.1997.0128spa
dc.relation.referencesKim, S-M.; Vogelpohl, A. (1999). Degradation of Organic Pollutants by the Photo-Fenton-Process. Chemical & Engineering Technology. 21(2), 187-191. https://doi.org/10.1002/(SICI)1521-4125(199802)21:2<187::AID-CEAT187>3.0.CO;2-Hspa
dc.relation.referencesKobya, M.; Gengec, E.; Demirbas. (2016). Operating parameters and costs assessments of a real dyehouse wastewater effluent treated by a continuous electrocoagulation process. Chemical Engineering and Processing: Process Intensification. 101, 87-100. https://doi.org/10.1016/j.cep.2015.11.012.spa
dc.relation.referencesKobya, M.; Gengec, E.; Sensoy, M. T.; Demirbas, E. (2014). Treatment of textile dyeing wastewater by electrocoagulation using Fe and Al electrodes: Optimisation of operating parameters using central composite design. Coloration Technology, 130(3), 226-235. https://doi.org/10.1111/cote.12090spa
dc.relation.referencesKorpe, S.; Rao, P. V. (2021). Application of Advanced Oxidation Processes and Cavitation Techniques for Treatment of Tannery Wastewater - A Review. Journal of Environmental Chemical Engineering, 9(3), 105234 https://doi.org/10.1016/j.jece.2021.105234spa
dc.relation.referencesKöse, T. E.; Bi̇Roğul, Çaliskan N. (2016). Real Textile Wastewater Reclamation using a Combined Coagulation/ Flocculation/ Membrane Filtration System and the Evaluation of Several Natural Materials as Flocculant Aids. Gazi University Journal of Science, 29, 565 - 572.spa
dc.relation.referencesKrause, M. (2009). The political economy of water and sanitation. Routledge.spa
dc.relation.referencesKulik, N.; Panova, Y.; Trapido, M. (2007). The Fenton Chemistry and Its Combination with Coagulation for Treatment of Dye Solutions. Separation Science and Technology, 42(7), 1521-1534. https://doi.org/10.1080/01496390701290185spa
dc.relation.referencesKumar, N.; Sinha, S.; Mehrotra, T.; Singh, R.; Tandon, S.; Thakur, I. S. (2019). Biodecolorization of azo dye Acid Black 24 by Bacillus pseudomycoides: Process optimization using Box Behnken design model and toxicity assessment. Bioresource Technology Reports, 8, 100311. https://doi.org/10.1016/j.biteb.2019.100311spa
dc.relation.referencesKumar, P.; Prasad, B.; Mishra, I. M.; Chand, S. (2008). Decolorization and COD reduction of dyeing wastewater from a cotton textile mill using thermolysis and coagulation. Journal of Hazardous Materials, 153 (1-2), 635-645. https://doi.org/10.1016/j.jhazmat.2007.09.007spa
dc.relation.referencesKuo, W. G. (1992). Decolorizing dye wastewater with Fenton’s reagent. Water Research, 26(7), 881-886. https://doi.org/10.1016/0043-1354(92)90192-7spa
dc.relation.referencesKwan, W. P. (Wai P. (1999). Kinetics of the Fe(III) initiated decomposition of hydrogen peroxide: Experimental and model results [Thesis, Massachusetts Institute of Technology]. https://dspace.mit.edu/handle/1721.1/80211spa
dc.relation.referencesLa Patria. (10 de 04 de 2020). Daño en empresa de Maltería provocó coloración azul de la quebrada Manizales. Obtenido de La Patria: https://www.lapatria.com/medioambiente/dano-en-empresa-de-malteria-provoco-coloracion-azul-de-la-quebrada-manizalesspa
dc.relation.referencesLa Patria. (10 de 05 de 2020). El azul de la quebrada Manizales era tinta para dulces. Obtenido de La Patria: https://www.lapatria.com/denuncie/el-azul-de-la-quebrada-manizales-era-tinta-para-dulces-452338spa
dc.relation.referencesLakshmanan, D.; Clifford, D. A.; Samanta, G. (2009). Ferrous and Ferric Ion Generation During Iron Electrocoagulation. Environmental Science Technology, 43(10), 3853-3859. https://doi.org/10.1021/es8036669spa
dc.relation.referencesLal, K.; Garg, A. (2017). Physico-chemical treatment of pulping effluent: Characterization of flocs and sludge generated after treatment. Separation Science and Technology, 52(9), 1583–1593. http://dx.doi.org/10.1080/01496395.2017.1292294spa
dc.relation.referencesLarkin, P. (2011). Infrared and Raman spectroscopy: Principles and spectral interpretation. Elsevier.spa
dc.relation.referencesLau, I. W. C.; Wang, P.; Fang, H. H. P. (2001). Organic removal of anaerobically treated leachate by Fenton coagulation. J. Environ. Eng., 27 (7), 666–669.spa
dc.relation.referencesLegisComex. (2012). Inteligencia de Mercados-Textiles y Confecciones en Colombia. LegisComex.spa
dc.relation.referencesLi, Y. F.; Zhang, L. L.; Yuan, X. D.; Zhang. X. Y. (2006). Experimental study on coagulation-Fenton process for the treatment of printing and dyeing wastewater. Shenyang Jianzhu Daxue Xuebao (Ziran Kexue Ban)/Journal of Shenyang Jianzhu University (Natural Science). 22:136-40.spa
dc.relation.referencesLide, D. R. (2006). CRC Handbook of Chemistry and Physics, 91th Edition (87. ed.; 2006-2007). CRC, Taylor Francis.spa
dc.relation.referencesLieberman, M. (1999). A Brine Shrimp Bioassay for Measuring Toxicity and Remediation of Chemicals. Journal of Chemical Education, 76(12), 1689. https://doi.org/10.1021/ed076p1689spa
dc.relation.referencesLin, S. H.; Lo, C. C. (1997). Fenton process for treatment of desizing wastewater. Water Research, 31(8), 2050-2056. https://doi.org/10.1016/S0043-1354(97)00024-9spa
dc.relation.referencesLin, S. H.; Peng, C. F. (1995). A Continuous Fenton’s Process for Treatment of Textile Wastewater. Environmental Technology, 16(7), 693-699. https://doi.org/10.1080/09593330.1995.9618268spa
dc.relation.referencesLiu T.; Zhu Y.; Zhang X.; Zhang To.; Zhang Ta. (2010). Synthesis and characterization of calcium hydroxide nanoparticles by hydrogen plasma-metal reaction method. Mater. Lett., 64(23), 2575-2577. https://10.1016/j.matlet.2010.08.050spa
dc.relation.referencesLiu, H.; Zhao, X.; Qu, J. (2010). Electrocoagulation in Water Treatment. En C. Comninellis G. Chen (Eds.), Electrochemistry for the Environment (pp. 245-262). Springer New York. https://doi.org/10.1007/978-0-387-68318-8_10spa
dc.relation.referencesLiu, J.; Peng, G.; Jing, X.; Yi, Z. (2018). Treatment of methyl orange by the catalytic wet peroxide oxidation process in batch and continuous fixed bed reactors using Fe-impregnated 13X as catalyst. Water Science and Technology, 78(4), 936-946. https://doi.org/10.2166/wst.2018.372spa
dc.relation.referencesLiu, W., Yu, Y. (2021). Removal of recalcitrant trivalent chromium complexes from industrial wastewater under strict discharge standards. Environmental Technology and Innovation, 23. https://doi.org/10.1016/j.eti.2021.101644spa
dc.relation.referencesLiu, X.; Qiu, M.; Huang, C. (2011). Degradation of the Reactive Black 5 by Fenton and Fenton-like system. Procedia Engineering, 15, 4835-4840. https://doi.org/10.1016/j.proeng.2011.08.902spa
dc.relation.referencesLiu, Y.; Lu, X.; Zhang, P.; Rao, T. (2009). Study on the Treatment Simulated Dye Wastewater by Electro-coagulation-floatation Method. http://en.cnki.com.cn/Article_en/CJFDTOTAL-HDJT200902005.htmspa
dc.relation.referencesLodha, B.; Chaudhari, S. (2007). Optimization of Fenton-biological treatment scheme for the treatment of aqueous dye solutions. Journal of Hazardous Materials, 148(1-2), 459-466. https://doi.org/10.1016/j.jhazmat.2007.02.061spa
dc.relation.referencesLofrano, G.; Meriç, S.; Zengin, G. E.; Orhon, D. (2013). Chemical and biological treatment technologies for leather tannery chemicals and wastewaters: A review. Science of The Total Environment, 461-462, 265-281. https://doi.org/10.1016/j.scitotenv.2013.05.004spa
dc.relation.referencesLopez, A.; Pagano, M.; Volpe, A.; Di Pinto, A. (2004). Fenton’s pretreatment of mature landfill leachate. Chemosphere, 54 (7), 1000–1005. https://doi.org/j.chemosphere.2003.09.015spa
dc.relation.referencesLu, M. C.; Chen, J. N.; Chang, C. P. (1999). Oxidation of dichlorvos with hydrogen peroxide using ferrous ion as catalyst. Journal of Hazardous Materials, 65(3), 276-288. https://doi.org/10.1016/S0304-3894(98)00266.2-4spa
dc.relation.referencesLucas, M. P. (2009). Application of Advanced Oxidation Processes To Wastewater Treatment. Vila Real.: University of Trás-os-Montes and Alto Douro.spa
dc.relation.referencesLucas, M. S.; Dias, A. A.; Sampaio, A.; Amaral, C.; Peres, J. A. (2007). Degradation of a textile reactive Azo dye by a combined chemical–biological process: Fenton’s reagent-yeast. Water Research, 41(5), 1103-1109. https://doi.org/10.1016/j.watres.2006.12.013spa
dc.relation.referencesLucas, M.; Peres, J. (2006). Decolorization of the azo dye Reactive Black 5 by Fenton and photo-Fenton oxidation. Dyes and Pigments, 71(3), 236-244. https://doi.org/10.1016/j.dyepig.2005.07.007spa
dc.relation.referencesMADS. (2010). Decreto 3930 de 2010. Bogota: Ministerio de Ambiente y Desarrollo Sostenible.spa
dc.relation.referencesMADS. (2010). Política Nacional para la Gestión Integral del Recurso Hídrico. Bogotá, D.C.: Ministerio de Ambiente, Vivienda y Desarrollo Territorial.spa
dc.relation.referencesMADS. (2010). Política Nacional para la Gestión Integral del Recurso Hídrico. Bogotá, D.C.: Ministerio de Ambiente, Vivienda y Desarrollo Territorial.spa
dc.relation.referencesMADS. (2021). Por la cual se reglamenta el uso de las aguas residuales y se adoptan otras disposiciones (Resolución 1256; p. 4; Decreto 1076 de 2015). Ministerio de Ambiente y Desarrollo Sostenible. https://www.minambiente.gov.co/wp-content/uploads/2021/12/Resolucion-1256-de-2021.pdfspa
dc.relation.referencesMagnusson, B.; Örnemark, U. (2014). The fitness for purpose of analytical methods: A laboratory guide to method validation and related topics (Eurachem Guide, Ed.; 2ed.). https://www.eurachem.org/images/stories/Guides/pdf/MV_guide_2nd_ed_EN.pdfspa
dc.relation.referencesMahmoodi, N. M.; Dalvand, A. (2013). Treatment of colored textile wastewater containing acid dye using electrocoagulation process. Desalination and Water Treatment, 51(31-33), 5959-5964. https://doi.org/10.1080/19443994.2013.791769spa
dc.relation.referencesMajeed, H. A. S.; Al-Ahmad, A. Y.; Hussain, K. A. (2011). The Preparation, Characterization and the Study of the Linear Optical Properties of a New Azo. Journal of Basrah Researches (Sciences), 37(2A).spa
dc.relation.referencesMalik, P. K.; Saha, S. K. (2003). Oxidation of direct dyes with hydrogen peroxide using ferrous ion as catalyst. Separation and Purification Technology, 31(3), 241-250. https://doi.org/10.1016/S1383-5866(02)00200-9spa
dc.relation.referencesMamelkina, M. A.; Tuunila, R.; Silänpää, M.; Häkkinen, A. (2019). Systematic study on sulfate removal from mining waters by electrocoagulation. Separation and Purification Technology, 216, 43 – 50. https://doi.org/10.1016/j.seppur.2019.01.056spa
dc.relation.referencesManara, P.; Zabaniotou A. (2012). Towards sewage sludge-based biofuels via thermochemical conversion – a review. Renew. Sustain. Energy Rev., 16, 2566–2582. https://doi.org/10.1016/j.rser.2012.01.074spa
dc.relation.referencesManenti, D. R.; Módenes, A. N.; Soares, P. A.; Espinoza-Quiñones, F. R.; Boaventura, R. A. R.; Bergamasco, R.; Vilar, V. J. P. (2014). Assessment of a multistage system based on electrocoagulation, solar photo-Fenton and biological oxidation processes for real textile wastewater treatment. Chemical Engineering Journal, 252, 120-130. https://doi.org/10.1016/j.cej.2014.04.096spa
dc.relation.referencesMantzavinos, D.; Livingston, A. G.; Hellenbrand, R.; Metcalfe, I. S. (1996). Wet air oxidation of polyethylene glycols; mechanisms, intermediates and implications for integrated chemical-biological wastewater treatment. Chemical Engineering Science, 51(18), 4219-4235. https://doi.org/10.1016/0009-2509(96)00272-2spa
dc.relation.referencesMarkets and Markets. (2016). Dyes & Pigments Market.spa
dc.relation.referencesMarmanis, D.; Konstantinos, D.; Christoforidis, A. (2016). Design and Application of Electrochemical Processes for Decolorization Treatment of Nylanthrene Red dye Bearing Wastewaters. Journal of Engineering Science and Technology Review, 9(1), 111-115. https://doi.org/10.25103/jestr.091.17spa
dc.relation.referencesMárquez, A. A.; Coreño, O.; Nava, J. L. (2022). An innovative process combining electrocoagulation and photoelectro-Fenton-like methods during the abatement of Acid Blue 113 dye. Process Safety and Environmental Protection, 163, 475-486. https://doi.org/10.1016/j.psep.2022.05.061spa
dc.relation.referencesMartínez Navarro, F. (2007). Tratamiento de aguas residuales industriales mediante electrocoagulación y coagulación convencional. Ediciones de la Universidad de Castilla-La Mancha. https://ruidera.uclm.es/xmlui/handle/10578/984spa
dc.relation.referencesMartins, A.; Vasconcelos, T.; Wilde, M. (2005). Influence of variables of the combined coagulation–Fenton-sedimentation process in the treatment of trifluraline effluent. Journal of Hazardous Materials, 127(1-3), 111-119. https://doi.org/10.1016/j.jhazmat.2005.06.028spa
dc.relation.referencesMartins, J. E. C. A.; Abdala Neto, E. F.; Lima, A. C. A. de, Ribeiro, J. P.; Maia, F. E. F.; Nascimento, R. F. do. (2017). Delineamento Box-Behnken para remoção de DQO de efluente têxtil utilizando eletrocoagulação com corrente contínua pulsada. Engenharia Sanitaria e Ambiental, 22(6), 1055-1064. https://doi.org/10.1590/s1413-41522017150743spa
dc.relation.referencesMasiello, C. A.; Gallagher, M. E.; Randerson, J. T.; Deco, R. M.; Chadwick, O. A. (2008). Evaluating two experimental approaches for measuring ecosystem carbon oxidation state and oxidative ratio. Journal of Geophysical Research, 113(G3). https://doi.org/10.1029/2007JG000534spa
dc.relation.referencesMathur, N.; Krishnatrey, R.; Sharma, S.; Sharma, K. (2003). Toxic effects of textile printing industry effluents on liver and testes of albino rats. Bull Environ Contam Toxicol., 71, 453–457. https://doi.org/10.1007/s00128-003-8781-5spa
dc.relation.referencesMaurer-Jones, M. A.; Love, S. A.; Meierhofer, S.; Marquis, B. J.; Liu, Z.; Haynes, C. L. (2013). Toxicity of Nanoparticles to Brine Shrimp: An Introduction to Nanotoxicity and Interdisciplinary Science. Journal of Chemical Education, 90(4), 475-478. https://doi.org/10.1021/ed3005424spa
dc.relation.referencesMbarek, W. B.; Azabou, M.; Pineda, E.; Fiol, N.; Escoda, L.; Suñol, J. J.; Khitouni, M. (2017). Rapid degradation of azo-dye using Mn–Al powders produced by ball-milling. RSC Advances, 7, 12620-12628, https://doi.org/10.1039/C6RA28578Cspa
dc.relation.referencesMbarek, W. B.; Saurina, J.; Escoda, L.; Pineda, E.; Khitouni, M.; Suñol, J. J. (2020) Effects of the Addition of Fe, Co on the Azo Dye Degradation Ability of Mn-Al Mechanically Alloyed Powders. Metals, 10, 1578-1594. https://doi:10.3390/met10121578spa
dc.relation.referencesMcCabe, W. L.; Smith, J. C.; Harriott, P. (1998). Operaciones unitarias en ingeniería química. McGraw-Hill.spa
dc.relation.referencesMcCleskey, R. B. (2011). Electrical Conductivity of Electrolytes Found In Natural Waters from (5 to 90)°C. Journal of Chemical Engineering Data, 56(2), 317-327. https://doi.org/10.1021/je101012nspa
dc.relation.referencesMcCleskey, R. B.; Nordstrom, D. K.; Ryan, J. N. (2012). Comparison of electrical conductivity calculation methods for natural waters: Methods for calculation of conductivity. Limnology and Oceanography: Methods, 10(11), 952-967. https://doi.org/10.4319/lom.2012.10.952spa
dc.relation.referencesMeriç, S.; Kaptan, D.; Ölmez, T. (2004). Color and COD removal from wastewater containing Reactive Black 5 using Fenton’s oxidation process. Chemosphere, 54(3), 435-441. https://doi.org/10.1016/j.chemosphere.2003.08.01spa
dc.relation.referencesMeriç, S.; Lofrano, G.; Belgiorno, V. (2005). Treatment of reactive dyes and textile finishing wastewater using Fenton’s oxidation for reuse. International Journal of Environment and Pollution, 23(3), 248. https://doi.org/10.1504/IJEP.2005.006865spa
dc.relation.referencesMerzouk, B.; Gourich, B.; Madani, K.; Vial, C.; Sekki, A. (2011). Removal of a disperse red dye from synthetic wastewater by chemical coagulation and continuous electrocoagulation. A comparative study. Desalination, 272(1-3), 246-253. https://doi.org/10.1016/j.desal.2011.01.029spa
dc.relation.referencesMerzouk, B.; Gourich, B.; Sekki, A.; Madani, K.; Vial, C.; Barkaoui, M. (2009). Studies on the decolorization of textile dye wastewater by continuous electrocoagulation process. Chemical Engineering Journal, 149(1-3), 207-214. https://doi.org/10.1016/j.cej.2008.10.018spa
dc.relation.referencesMerzouk, B.; Yakoubi, M.; Zongo, I.; Leclerc, J. P.; Paternotte, G.; Pontvianne, S.; Lapicque, F. (2011). Effect of modification of textile wastewater composition on electrocoagulation efficiency. Desalination, 275(1-3), 181-186. https://doi.org/10.1016/j.desal.2011.02.055spa
dc.relation.referencesMickley, M. (2009). Treatment of Concentrate (Report 155; Desalination and Water Purification Research and Development Program). https://www.usbr.gov/research/dwpr/reportpdfs/report155.pdfspa
dc.relation.referencesMiller, J. N.; Miller, J. C. (2010). Statistics and chemometrics for analytical chemistry (6th ed). Prentice Hall/Pearson.spa
dc.relation.referencesMinisterio de Vivienda, Ciudad y Territorio (MinVivienda). (2014). Decreto 1287 de 2014 compilado con el Decreto 1077 de 2015. https://www.minvivienda.gov.co/sites/default/files/normativa/1287%20-%202014.pdfspa
dc.relation.referencesMódenes, A. N.; Espinoza-Quiñones, F. R.; Borba, F. H.; Manenti, D. R. (2012). Performance evaluation of an integrated photo-Fenton – Electrocoagulation process applied to pollutant removal from tannery effluent in batch system. Chemical Engineering Journal, 197, 1-9. https://doi.org/10.1016/j.cej.2012.05.015spa
dc.relation.referencesMollah, M. Y. A.; Schennach, R.; Parga, J. R.; Cocke, D. L. (2001). Electrocoagulation (EC)—Science and applications. Journal of Hazardous Materials, 84(1), 29-41. https://doi.org/10.1016/S0304-3894(01)00176-5spa
dc.relation.referencesMondal, B.; Srivastava, V. C.; Mall, I. D. (2012). Electrochemical treatment of dye-bath effluent by stainless steel electrodes: Multiple response optimization and residue analysis. Journal of Environmental Science and Health, Part A, 47(13), 2040-2051. https://doi.org/10.1080/10934529.2012.695675spa
dc.relation.referencesMontgomery, D. C. (2019). Design and analysis of experiments (10th Edition). John Wiley & Sons, Inc.spa
dc.relation.referencesMontgomery, D. C.; Runger, G. C. (2014). Applied statistics and probability for engineers (Sixth edition). John Wiley and Sons, Inc.spa
dc.relation.referencesMook, W. T.; Aroua, M. K.; Szlachta, M.; Lee, C. S. (2017). Optimisation of Reactive Black 5 dye removal by electrocoagulation process using response surface methodology. Water Science and Technology, 75(4), 952-962. https://doi.org/10.2166/wst.2016.563spa
dc.relation.referencesMoradi, M.; Eslami, A.; Ghanbari, F. (2014). Direct Blue 71 removal by electrocoagulation sludge recycling in photo-Fenton process: Response surface modeling and optimization. Desalination and Water Treatment, 1-12. https://doi.org/10.1080/19443994.2014.995714spa
dc.relation.referencesMoradi, M.; Ghanbari, F. (2014). Application of response surface method for coagulation process in leachate treatment as pretreatment for Fenton process. Biodegradability improvement. Journal of Water Process Engineering. 4, 67 – 73. http://dx.doi.org/10.1016/j.jwpe.2014.09.002spa
dc.relation.referencesMoraga C, P.; Ávila P, R.; Vilaxa O, A. (2015). Salinidad y temperatura óptimas para reproducción ovípara y desarrollo de Artemia franciscana. Idesia (Arica), 33(1), 85-92. https://doi.org/10.4067/S0718-34292015000100009spa
dc.relation.referencesMordor Intelligence. (2018). Global Pigments Market (Chemicals & Materials 46248). (https://www.mordorintelligence.com/industry-reports/pigments-market)spa
dc.relation.referencesMoreno, A. D.; Lorenzo, E. G.; De Bazúa, C. D.; De La Torre, J. M.; Zamora, R. M. R. (2003). Fenton’s reagent and coagulation-flocculation as pretreatments of combined wastewater for reuse. Water Science and Technology, 47(11), 145-151. https://doi.org/10.2166/wst.2003.0598spa
dc.relation.referencesMouedhen, G.; Feki, M.; Wery, M. D. P.; Ayedi, H. F. (2008). Behavior of aluminum electrodes in electrocoagulation process. Journal of Hazardous Materials, 150(1), 124-135. https://doi.org/10.1016/j.jhazmat.2007.04.090spa
dc.relation.referencesMountassir, Y.; Benyaich, A.; Berçot, P.; Rezrazi, M. (2015). Potential use of clay in electrocoagulation process of textile wastewater: Treatment performance and flocs characterization. Journal of Environmental Chemical Engineering, 3(4), 2900-2908. https://doi.org/10.1016/j.jece.2015.10.004spa
dc.relation.referencesMurthy, U. N.; Rekha, H. B. (2011). Electrochemical Treatment of Textile Dye Wastewater Using Stainless Steel Electrode.spa
dc.relation.referencesNaje, A. S.; Abbas, S. A. (2013). Electrocoagulation Technology in Wastewater Treatment: A Review of Methods and Applications. Civil and Environmental Research, 15.spa
dc.relation.referencesNaje, A. S.; Chelliapan, S.; Zakaria, Z.; Abbas, S. A. (2015). Treatment Performance of Textile Wastewater Using Electrocoagulation (EC) Process under Combined Electrical Connection of Electrodes. Int. J. Electrochem. Sci., 10, 18.spa
dc.relation.referencesNaje, A. S.; Chelliapan, S.; Zakaria, Z.; Abbas, S. A. (2016). Electrocoagulation using a rotated anode: A novel reactor design for textile wastewater treatment. Journal of Environmental Management, 176, 34-44. https://doi.org/10.1016/j.jenvman.2016.03.034spa
dc.relation.referencesNaje, A. S.; Chelliapan, S.; Zakaria, Z.; Ajeel, M. A.; Alaba, P. A. (2016). A review of electrocoagulation technology for the treatment of textile wastewater. Reviews in Chemical Engineering, 33(3). https://doi.org/10.1515/revce-2016-0019spa
dc.relation.referencesNakamoto, K. (2009). Infrared and Raman spectra of inorganic and coordination compounds (6th ed). Wiley.spa
dc.relation.referencesNesheiwat, F.K.; Swanson, A.G. (2000). Clean contaminated sites using Fenton’s reagent. Chem. Eng. Prog., 96(4), 61-66.spa
dc.relation.referencesNeyens, E.; Baeyens, J. (2003). A Review of Classic Fenton’s Peroxidation as an Advanced Oxidation Technique. Journal of Hazardous Materials 98(1-3):33-50. https://doi.org/10.1016/S0304-3894(02)00282-0spa
dc.relation.referencesNourmoradi, H.; Rahmati, Z.; Javaheri, M.; Moradnejadi, K.; Noorimotlagh, Z. (2015). Effect of Praestol as a Coagulant-Aid to Improve Coagulation-Flocculation in Dye containing Wastewaters. Global NEST Journal, 18 (1), 38-46. https://doi.org/10.30955/gnj.001738spa
dc.relation.referencesNSF/ANSI-60. (2013). NSF/ANSI Drinking Water Treatment Chemicals - Health Effects. International Standard / American National Standard.spa
dc.relation.referencesNúñez, J.; Yeber, M.; Cisternas, N.; Thibaut, R.; Medina, P.; Carrasco, C. (2019). Application of electrocoagulation for the efficient pollutants removal to reuse the treated wastewater in the dyeing process of the textile industry. Journal of Hazardous Materials, 371, 705-711. https://doi.org/10.1016/j.jhazmat.2019.03.030spa
dc.relation.referencesObiora-Okafo I. A.; Onukwuli O. D. (2015). Optimization of coagulation-flocculation process for colour removal from synthetic dye wastewater using natural organic polymers: Response surface methodology applied. International Journal of Scientific & Engineering Research, 6(12), 12.spa
dc.relation.referencesOldham, K. B.; Myland, J. C.; Bond, A. M. (2013). Electrochemical science and technology: Fundamentals and applications (Reprinted with corrections). Wiley.spa
dc.relation.referencesOller, I.; Malato, S.; Sánchez-Pérez, J. (2011). Combination of Advanced Oxidation Processes and biological treatments for wastewater decontamination—A review. Science of the Total Environment, 409, 4141–4166. https://doi.org/10.1016/j.scitotenv.2010.08.061spa
dc.relation.referencesOlvera-Vargas, H.; Zheng, X.; Garcia-Rodriguez, O.; Lefebvre, O. (2019). Sequential “electrochemical peroxidation e Electro-Fenton” process for anaerobic sludge treatment. Water Res., 154, 277-286. https://doi.org/10.1016/j.watres.2019.01.063spa
dc.relation.referencesOng, H. R.; Hegde, G.; Chigrinov, V. G.; Khan, Md. M. R. (2016). Sulfuric disazo dye stabilized copper nanoparticle composite mixture: Synthesis and characterization. RSC Advances. 6(18), 15094-15100. https://doi.org/10.1039/C5RA26492Hspa
dc.relation.referencesOng, S. T.; Keng, P.-S.; Lee, W. N.; Ha, S. T.; Hung, Y.-T. (2011). Dye Waste Treatment. Water, Vol 3, pp 157-176.spa
dc.relation.referencesOSHA. (22 de 06 de 2019). Hexavalent Chromium. Obtenido de Occupational Safety and Health Administration: https://www.osha.gov/SLTC/hexavalentchromium/spa
dc.relation.referencesOsorio, P. C.; Peña, D. (1999). Determinación de la relación DQO/DBO5 en aguas residuales de comunas con población menor a 25.000 habitantes en la VIII región. Antofagasta: XIII Congreso de Ingeniería Sanitaria y Ambiental.spa
dc.relation.referencesÖzdemir, C.; Öden, M. K.; Şahinkaya, S.; Kalipçi, E. (2011). Color Removal from Synthetic Textile Wastewater by Sono-Fenton Process. CLEAN - Soil, Air, Water, 39(1), 60-67. https://doi.org/10.1002/clen.201000263spa
dc.relation.referencesPajootan, E.; Arami, M.; Bahrami, H. (2016). Optimization of the combined UV/electrocoagulation process for dye removal from textile wastewater using response surface methodology. Environmental Engineering and Management Journal, 15(1), 189-198.spa
dc.relation.referencesPatabandige, D. S. B. T.; Wadumethrige, S. H.; Wanniarachchi, S. (2020). Decolorization and COD removal from synthetic and real textile dye bath wastewater containing Reactive Black 5. Desalination And Water Treatment, 197, 392-401. https://doi.org/10.5004/dwt.2020.25954spa
dc.relation.referencesPatel, D. K.; Tipre, D. R.; Dave, S. R. (2017). Enzyme mediate bacterial biotransformation and reduction in toxicity of 1:2 chromium complex AB193 and AB194 dyes. Journal of the Taiwan Institute of Chemical Engineers, 77, 1–9. http://dx.doi.org/10.1016/j.jtice.2017.02.027spa
dc.relation.referencesPatel, U. D.; Ruparelia, J. P.; Patel, M. U. (2011). Electrocoagulation treatment of simulated floor-wash containing Reactive Black 5 using iron sacrificial anode. Journal of Hazardous Materials, 197, 128-136. https://doi.org/10.1016/j.jhazmat.2011.09.064spa
dc.relation.referencesPatil, A. D.; Raut, P. D. (2014). Treatment of textile wastewater by Fenton’s process as an Advanced Oxidation Process. IOSR Journal of Environmental Science, Toxicology and Food Technology, 8(10), 29-32. https://doi.org/10.9790/2402-081032932spa
dc.relation.referencesPeplowski, L.; Szczesny, R.; Skowronski, L.; Krupka, A.; Smokal, V.; Derkowska-Zielinska, B. (2022). Vibrational spectroscopy studies of methacrylic polymers containing heterocyclic azo dyes. Vibrational Spectroscopy, 120, 103377. https://doi.org/10.1016/j.vibspec.2022.103377spa
dc.relation.referencesPereira, L.; Alves, M. (2012). Dyes—Environmental Impact and Remediation. En A. Malik & E. Grohmann (Eds.), Environmental Protection Strategies for Sustainable Development (pp. 111-162). Springer Netherlands. https://doi.org/10.1007/978-94-007-1591-2_4spa
dc.relation.referencesPérez, O. P.; Lazo, F. J. (2010). Ensayo de Artemia: Útil herramienta de trabajo para ecotoxicólogos y químicos de productos naturales. 25(1), 10.spa
dc.relation.referencesPérez, S.; Morales, J.B.; Félix, R.M.; Hernández, O.M.; 2011. Evaluation of the Eletrocoagulation Process for the Removal of Turbidity of River Water, Wastewater and Pond Water. Rev. Mex. Ing. Química, 10, 79–91.spa
dc.relation.referencesPhalakornkule, C.; Polgumhang, S.; Tongdaung, W.; Karakat, B.; Nuyut, T. (2010). Electrocoagulation of blue reactive, red disperse and mixed dyes, and application in treating textile effluent. Journal of Environmental Management, 91(4), 918-926. https://doi.org/10.1016/j.jenvman.2009.11.008spa
dc.relation.referencesPi, K.-W.; Xiao, Q.; Zhang, H.-Q.; Xia, M.; Gerson, A. R. (2014). Decolorization of synthetic Methyl Orange wastewater by electrocoagulation with periodic reversal of electrodes and optimization by RSM. Process Safety and Environmental Protection, 92(6), 796-806. https://doi.org/10.1016/j.psep.2014.02.008spa
dc.relation.referencesPignatello, J. J. (1992). Dark and photo-assisted Fe3+ catalyzed degradation of chlorophenoxy herbicides by hydrogen peroxide. Environ. Sci. Technol. 26, 944–951. https://doi.org/10.1021/es00029a012spa
dc.relation.referencesPinheiro, H. M.; Touraud; E.; Thomas O. (2004) Aromatic amines from azo dye reduction: status review with emphasis on direct UV spectrophotometric detection in textile industry wastewaters. Dyes and Pigments, 61, 121–139. https://doi.org/10.1016/j.dyepig.2003.10.009spa
dc.relation.referencesPirkarami, A.; Olya, M. E. (2017). Removal of dye from industrial wastewater with an emphasis on improving economic efficiency and degradation mechanism. Journal of Saudi Chemical Society, 21, S179-S186. https://doi.org/10.1016/j.jscs.2013.12.008spa
dc.relation.referencesPouran, S. R.; Raman, A. A. A.; Daud, W. M. A. W. (2014). Review on the application of modified iron oxides as heterogeneous catalysts in Fenton reactions. Journal of Cleaner Production, 64, 24-35. https://doi.org/10.1016/j.jclepro.2013.09.013spa
dc.relation.referencesPourbaix, M.; Burbank, J. (1964). Atlas D-Equilibres Electrochimiques. Journal of The Electrochemical Society, 111(1), 14C. https://doi.org/10.1149/1.2426051spa
dc.relation.referencesPourrezaei, P.; Afzal, A.; Ding, N.; Islam, S.; Moustafa, A.; Drzewicz, P.; Chelme-Ayala, P.; Gamal El-Din, M. Physico-Chemical Processes. (2010). Water Environment Research, 82, 10, 997 – 1072.spa
dc.relation.referencesPoyatos, J. M.; Muñio, M. M.; Almecija, M. C.; Torres, J. C.; Hontoria, E.; Osorio, F. (2010). Advanced Oxidation Processes for Wastewater Treatment: State of the Art. Water, Air, and Soil Pollution, 205(1-4), 187-204. https://doi.org/10.1007/s11270-009-0065-1spa
dc.relation.referencesPretsch, E.; Bühlmann, P.; Badertscher, M. (2009). Structure determination of organic compounds: Tables of spectral data (4th Ed.). Springer.spa
dc.relation.referencesPriesing, C. P. (1962). A theory of coagulation useful for design. Industrial & Engineering Chemistry, 54 (8), 38-45. https://doi.org/10.1021/ie50632a006spa
dc.relation.referencesPrimo, O.; Rivero, M. J.; Ortiz, I. (2008). Photo-Fenton process as an efficient alternative to the treatment of landfill leachates. Journal of Hazardous Materials, 153(1-2), 834-842. https://doi.org/10.1016/j.jhazmat.2007.09.053spa
dc.relation.referencesProcolombia. (2018). Paints and Dyes in Colombia. (https://procolombia.co/)spa
dc.relation.referencesProcolombia. (9 de 01 de 2020). Inversión en el sector Sistema Moda. Recuperado el 23 de 08 de 2017, de Exportaciones turismo inversión marca país.: http://inviertaencolombia.com.cospa
dc.relation.referencesPysarevska, S.; Dubenska, L.; Spanik, I.; Kovalyshyn, J.; Tvorynska, S. (2013). Reactions of o,o′-Dihydroxy Azo Dyes with the Third Group M(III) Ions: A Spectroscopic and Electrochemical Study. Journal of Chemistry, 2013, 1-10. https://doi.org/10.1155/2013/853763spa
dc.relation.referencesQiu, M.; Shou, J.; Ren, P.; Lin, J. (2014). Treatment of the azo dye in the solution by fenton-SBR process. Journal of Chemical and Pharmaceutical Research, 6(7), 2039-2045.spa
dc.relation.referencesRadin Mohamed, R. M. S.; Mt. Nanyan, N.; Rahman, N.; Kutty, N.; Mohd Kassim, A. H. (2014). Colour Removal of Reactive Dye from Textile Industrial Wastewater using Different Types of Coagulants. Asian Journal of Applied Sciences, 2, 650-657.spa
dc.relation.referencesRaja, A. S. M.; Arputharaj, A.; Saxena, S.; Patil, P. G. (2019). Water requirement and sustainability of textile processing industries. En Water in Textiles and Fashion (pp. 155-173). Elsevier. https://doi.org/10.1016/B978-0-08-102633-5.00009-9spa
dc.relation.referencesRamírez, J. H.; Costa, C. A.; Madeira, L. M. (2005). Experimental design to optimize the degradation of the synthetic dye Orange II using Fenton's reagent. Catalysis Today, 107-108, 68 – 76. https://doi.org/10.1016/j.cattod.2005.07.060spa
dc.relation.referencesRamírez, J. H.; Costa, C. A.; Madeira, L. M.; Mata, G.; Vicente, M. A.; Rojas-Cervantes, M..; Lopez-Peinado, A. J.; Martin-Aranda R. M. (2007). Fenton-like oxidation of Orange II solutions using heterogeneous catalysts based on saponite clay. Applied Catalysis B: Environmental, 71, 44 – 56. https://doi.org/10.1016/j.apcatb.2006.08.012spa
dc.relation.referencesRana, S.; Suresh, S. (2017). Comparison of different Coagulants for Reduction of COD from Textile industry wastewater. Materials Today: Proceedings, 4(2), 567-574. https://doi.org/10.1016/j.matpr.2017.01.058spa
dc.relation.referencesRand View Research. (2017). Dyes & Pigments Market.spa
dc.relation.referencesRavina, L. (1991). Everything You Want to Know about Coagulation & Flocculation. Zeta-Meter, Inc.spa
dc.relation.referencesRebhun, M.; Lurie, M. (1993). Control of organic-matter by coagulation and floc separation. Water Science and Technology, 27. 1 – 20. https://doi.org/10.4236/gsc.2013.32013spa
dc.relation.referencesRiadi, L.; Sapei, L.; Lidiawati, T.; Agustin, Y. E. (2017). Application of a hybrid Electrocoagulation-Fenton process in yarn dye wastewater: Kinetic study. IOP Conference Series: Materials Science and Engineering, 162(1), 012026. https://doi.org/10.1088/1756.2-899X/162/1/012026spa
dc.relation.referencesRibeiro, J. P.; Nunes, M. I. (2021). Recent trends and developments in Fenton processes for industrial wastewater treatment – A critical review. Environmental Research, 197, 110957. https://doi.org/10.1016/j.envres.2021.110957spa
dc.relation.referencesRicordel, C.; Darchen, A.; Hadjiev, D. (2010). Electrocoagulation–electroflotation as a surface water treatment for industrial uses. Separation and Purification Technology. 74, 342 –347. https://doi:10.1016/j.seppur.2010.06.024spa
dc.relation.referencesRigg, T.; Taylor, W.; Weiss, J. (1954). The Rate Constant of the Reaction between Hydrogen Peroxide and Ferrous Ions. The Journal of Chemical Physics, 22(4), 575-577. https://doi.org/10.1063/1.1740127spa
dc.relation.referencesRiva, V.; Mapelli, F.; Syranidou, E.; Crotti, E.; Choukrallah, R.; Kalogerakis, N.; Borin, S. (2019). Root Bacteria Recruited by Phragmites australis in Constructed Wetlands Have the Potential to Enhance Azo-Dye Phytodepuration. Microorganisms, 7(10), 384. https://doi.org/10.3390/microorganisms7100384spa
dc.relation.referencesRivas, F. J.; Beltrán, F. J.; Frades, J.; Buxeda, P. (2001). Oxidation of p-hydroxybenzoic acid by Fenton’s reagent. Water Res. 35(2), 387-396. https://doi.org/10.1016/S0043-1354(00)00285-2spa
dc.relation.referencesRodrigues, C. S. D.; Boaventura, R. A. R.; & Madeira, L. M. (2014a). A new strategy for treating a cotton dyeing wastewater—Integration of physical-chemical and advanced oxidation processes. International Journal of Environment and Waste Management, 14(3), 232. https://doi.org/10.1504/IJEWM.2014.064583spa
dc.relation.referencesRodrigues, C. S. D.; Boaventura, R. A. R.; & Madeira, L. M. (2014b). Technical and economic feasibility of polyester dyeing wastewater treatment by coagulation/flocculation and Fenton’s oxidation. Environmental Technology, 35(10), 1307-1319. https://doi.org/10.1080/09593330.2013.866983spa
dc.relation.referencesRomero Rojas, Jairo Alberto. 1999. Potabilización del agua: 3ª edición, Escuela Colombiana de Ingeniería. Editorial Alfaomega.spa
dc.relation.referencesRubio-Clemente, A.; Chica, E. L.; Peñuela, G. A. (2014). Application of Fenton process for treating petrochemical wastewater. Ingeniería y Competitividad, 2, 13.spa
dc.relation.referencesSadri Moghaddam, S.; Alavi Moghaddam, M. R.; Arami, M. (2011). Response surface optimization of acid red 119 dye from simulated wastewater using Al based waterworks sludge and polyaluminium chloride as coagulant. Journal of Environmental Management, 92(4), 1284-1291. https://doi.org/10.1016/j.jenvman.2010.12.015spa
dc.relation.referencesSahu, O.; Mazumdar, B.; Chaudhari, P. K. (2014). Treatment of wastewater by electrocoagulation: A review. Environmental Science and Pollution Research, 21(4), 2397-2413. https://doi.org/10.1007/s11356-013-2208-6spa
dc.relation.referencesSamanta, K. K.; Pandit, P.; Samanta, P.; Basak, S. (2019). Water consumption in textile processing and sustainable approaches for its conservation. En Water in Textiles and Fashion (pp. 41-59). Elsevier. https://doi.org/10.1016/B978-0-08-102633-5.00003-8spa
dc.relation.referencesSanchez, M.; Rivero, M. J.; Ortiz, I. (2011). Kinetics of dodecylbenzenesulphonate mineralisation by TiO2 photocatalysis. Applied Catalysis B: Environmental, 101(3-4), 515-521. https://doi.org/10.1016/j.apcatb.2010.10.023spa
dc.relation.referencesSantana da R.; R. M.; Charamba, L. C. V.; do Nascimento, G. E.; de Oliveira, J. G. C.; Sales, D. C. S.; Duarte, M. M. M. B.; Napoleão, D. C. (2019). Degradation of Textile Dyes Employing Advanced Oxidative Processes: Kinetic, Equilibrium Modeling, and Toxicity Study of Seeds and Bacteria. Water, Air, & Soil Pollution, 230(6). https://doi.org/10.1007/s11270-019-4178-xspa
dc.relation.referencesSarayu, K.; Sandhya, S. (2012). Current Technologies for Biological Treatment of Textile Wastewater–A Review. Appl Biochem Biotechnol., Vol 167, pp 645–661.spa
dc.relation.referencesSass, B. M.; Rai, D. (1987). Solubility of amorphous chromium(III)-iron(III) hydroxide solid solutions. Inorganic Chemistry, 26, 14, 2228–2232. https://doi.org/10.1021/ic00261a013spa
dc.relation.referencesSasson, M. B.; Calmano, W.; Adin, A. (2009). Iron-oxidation processes in an electroflocculation (electrocoagulation) cell. Journal of Hazardous Materials, 171(1-3), 704-709. https://doi.org/10.1016/j.jhazmat.2009.06.057spa
dc.relation.referencesSawyer, C.; McCarty, P.; Parkin, G. (2003). Chemistry for Environmental Engineering and Science, fifth ed. McGraw-Hill Education, New Yorkspa
dc.relation.referencesScopus. (2023, febrero 21). Scopus—Analyze search results. https://www-scopus-comspa
dc.relation.referencesSDC-AATCC. (2019). Colour Index: Fourth Edition. United Kingdom: Society of Dyers and Colourists; Association of Textile Chemists and Colorists.spa
dc.relation.referencesSeader, J. D.; Henley, E. J.; Roper, D. K. (2011). Separation process principles: Chemical and biochemical operations (3rd ed). Wiley.spa
dc.relation.referencesSebastiano, R., Contiello, N., Senatore, S., Righetti, P. G., Citterio, A. (2012). Analysis of commercial Acid Black 194 and related dyes by micellar electrokinetic chromatography. Dyes and Pigments, 94(2), 258–265. https://doi.org/10.1016/j.dyepig.2011.12.014spa
dc.relation.referencesŞengil, İ. A.; Özacar, M. (2009). The decolorization of C.I. Reactive Black 5 in aqueous solution by electrocoagulation using sacrificial iron electrodes. Journal of Hazardous Materials, 161(2-3), 1369-1376. https://doi.org/10.1016/j.jhazmat.2008.04.100spa
dc.relation.referencesSerna-Galvis, E.A.; Silva-Agredo, J.; Lee, J.; Echavarría-Isaza, A.; Torres-Palma, R.A. (2023). Possibilities and Limitations of the Sono-Fenton Process Using Mid-High-Frequency Ultrasound for the Degradation of Organic Pollutants. Molecules. 28, 1113. https://doi.org/10.3390/molecules28031113spa
dc.relation.referencesShaikh, M. A. (2009). Water conservation in textile industry. Pakistan Textile Journal, 58; pp 48-51.spa
dc.relation.referencesSharma, L.; Kimura, T. (2003). FT‐IR Investigation into the miscible interactions in new materials for optical devices. Polymers for Advanced Technologies, 14(6), 392-399.spa
dc.relation.referencesSharma, S.; Mathur, S.; Sharma, R. (2011). Efficacy of Electrocoagulation in Treatment of Textile Wastewater Containing Basic Red Dye Using Iron Electrodes. Nature Environment and Pollution Technology, 10(2), 4.spa
dc.relation.referencesSharygin, A. V.; Mokbel, I.; Xiao, C.; Wood, R. H. (2001). Tests of Equations for the Electrical Conductance of Electrolyte Mixtures: Measurements of Association of NaCl (Aq) and Na2SO4(aq) at High Temperatures. The Journal of Physical Chemistry B, 105(1), 229-237. https://doi.org/10.1021/jp002564vspa
dc.relation.referencesSiche, R.; Falguera, V.; Ibarz, A. (2015). Use of Response Surface Methodology to Describe the Combined Effect of Temperature and Fiber on the Rheological Properties of Orange Juice: Orange Juice with Fiber RSM. Journal of Texture Studies, 46(2), 67-73. https://doi.org/10.1111/jtxs.12112spa
dc.relation.referencesSilva, L. C. da, Neto, B. de B.; Silva, V. L. da. (2009). Homogeneous degradation of the Remazol Black B dye by Fenton and photo-Fenton processes in aqueous medium. Afinidad LXVI, 66, 232.spa
dc.relation.referencesSilverstein, R. M.; Webster, F. X.; Kiemle, D. J. (2005). Spectrometric identification of organic compounds (7th ed). John Wiley & Sons.spa
dc.relation.referencesSingh, H.; Singh, G.; Bhatti, M. S.; Reddy, A. S. (2015). Textile dyebath wastewater decolorization by electrolytic processes: Response surface optimization using IV-optimal design. Desalination and Water Treatment, 56(3), 665-676. https://doi.org/10.1080/19443994.2014.937763spa
dc.relation.referencesSingh, P. K.; Kumar, P.; Seth, T.; Rhee, H.-W.; Bhattacharya, B. (2012). Preparation, characterization and application of Nano CdS doped with alum composite electrolyte. Journal of Physics and Chemistry of Solids, 73, 1159–1163. http://dx.doi.org/10.1016/j.jpcs.2012.05.008spa
dc.relation.referencesSkoog, D. A., Holler, F. J., Crouch, S. R. (2018). Principles of instrumental analysis (7th Ed.). Cengage Learning.spa
dc.relation.referencesSolbrig, R. (1982). Raman and infrared spectroscopy of the oxo-bridged iron (III) complex, [Cl3Fe O FeCl3]−2 as a spectroscopic model for the oxo bridge in hemerythrin and ribonucleotide reductase. Journal of Inorganic Biochemistry, 17(1), 69-74. https://doi.org/10.1016/S0162-0134(00)80231-7spa
dc.relation.referencesStandard Methods Committee, American Public Health Association, American Water Works Association, Water Environment Federation, Bridgewater, L. L., Baird, R. B., Eaton, A. D., & Rice, E. W. (Eds.). (2017). Standard methods for the examination of water and wastewater (23rd edition, Vol. 1). American Public Health Association APHA Press. https://doi.org/10.2105/SMWW.2882.002spa
dc.relation.referencesStandard Methods Committee, American Public Health Association, American Water Works Association, Water Environment Federation, Bridgewater, L. L., Baird, R. B., Eaton, A. D., & Rice, E. W. (Eds.). (2017). Standard methods for the examination of water and wastewater (23rd edition, Vol. 1). American Public Health Association APHA Press. https://doi.org/10.2105/SMWW.2882.002spa
dc.relation.referencesStephenson, R. J.; Duff, S. J. B. (1996) Coagulation and precipitation of a mechanical pulping effluent—I. Removal of carbon, colour and turbidity. Water Research, 30. 781-792. https://doi:10.1016/0043-1354(95)00213-8spa
dc.relation.referencesStergiopoulos, D.; Konstantinos, D.; Giannakoudakis, P.; Sotiropoulos, S. (2014). Electrochemical Decolorization and Removal of Indigo Carmine Textile Dye from Wastewater. Global NEST Journal, 16(3), 499-506. https://doi.org/10.30955/gnj.001330spa
dc.relation.referencesStreli, C.; Wobrauschek, P.; Kregsamer, P. (2017). X-Ray Fluorescence Spectroscopy, Applications. En Encyclopedia of Spectroscopy and Spectrometry (pp. 707-715). Elsevier. https://doi.org/10.1016/B978-0-12-803224-4.00315-0spa
dc.relation.referencesStumm, W.; Morgan, J. J. (1996). Aquatic chemistry: Chemical equilibria and rates in natural waters (3rd ed). Wiley.spa
dc.relation.referencesStumm, W.; O’Melia, C. R. (1968). Stoichiometry of Coagulation. Journal - American Water Works Association, 60(5), 514-539. https://doi.org/10.1002/j.1551-8833.1968.tb03579.xspa
dc.relation.referencesSum, O. S. N.; Feng, J.; Hub, X.; Yue, P. L. (2005). Photo-assisted fenton mineralization of an azo-dye acid black 1 using a modified laponite clay-based Fe nanocomposite as a heterogeneous catalyst. Topics in Catalysis, 33(1-4), 233-242. https://doi.org/10.1007/s11244-005-2532-2spa
dc.relation.referencesSun, J.; Sun, S.; Sun, J.; Sun, R.; Qiao, L.; Guo, H.; Fan, M. (2007). Degradation of azo dye Acid black 1 using low concentration iron of Fenton process facilitated by ultrasonic irradiation. Ultrasonics Sonochemistry, 14(6), 761-766. https://doi.org/10.1016/j.ultsonch.2006.12.010spa
dc.relation.referencesSun, J.; Zhou, Y.; Jiang, X.; Fan, J. (2022). Different adsorption behaviors and mechanisms of anionic azo dyes on polydopamine–polyethyleneimine modified thermoplastic polyurethane nanofiber membranes. Water. 14, 3865. https://doi.org/10.3390/w14233865spa
dc.relation.referencesSun, J. H.; Sun, S. P.; Wang, G. L.; Qiao, L. P. (2007). Degradation of azo dye Amido black 10B in aqueous solution by Fenton oxidation process. Dyes and Pigments, 74(3), 647-652. https://doi.org/10.1016/j.dyepig.2006.04.006spa
dc.relation.referencesSun, S.-P.; Li, C.-J.; Sun, J.-H.; Shi, S.-H.; Fan, M.-H.; Zhou, Q. (2009). Decolorization of an azo dye Orange G in aqueous solution by Fenton oxidation process: Effect of system parameters and kinetic study. Journal of Hazardous Materials, 161(2-3), 1052-1057. https://doi.org/10.1016/j.jhazmat.2008.04.080spa
dc.relation.referencesSuperintendente de Sociedades. (2017). Desempeño del sector textil-confección informe. Bogotá D.C.: Superintendente de Sociedades.spa
dc.relation.referencesSwaminathan, K.; Sandhya, S.; Carmalin Sophia, A.; Pachhade, K.; Subrahmanyam, Y. V. (2003). Decolorization and degradation of H-acid and other dyes using ferrous–hydrogen peroxide system. Chemosphere, 50(5), 619-625. https://doi.org/10.1016/S0045-6535(02)00615-Xspa
dc.relation.referencesSylwan, I.; Thorin, E. (2021). Removal of Heavy Metals during Primary Treatment of Municipal Wastewater and Possibilities of Enhanced Removal: A Review. Water. 13(8), 1121. https://doi.org/10.3390/w13081121spa
dc.relation.referencesTaghried A, S.; Mayasa I, A. (2019). Eriochrome Black T dye adsorption onto natural and modified orange peel. Research Journal of Chemistry and Environment, 23(1), 155-169.spa
dc.relation.referencesTaheri, M.; Moghaddam, M. R. A.; Arami, M. (2012). Optimization of Acid Black 172 decolorization by electrocoagulation using response surface methodology. Iranian Journal of Environmental Health Science Engineering, 9(1), 23. https://doi.org/10.1186/1735-2746-9-23spa
dc.relation.referencesTantak, N.; Chaudhari, S. (2006). Degradation of azo dyes by sequential Fenton’s oxidation and aerobic biological treatment. Journal of Hazardous Materials, 136(3), 698-705. https://doi.org/10.1016/j.jhazmat.2005.12.049spa
dc.relation.referencesTanveer, R.; Yasar, A.; Tabinda, A.-B.; Ikhlaq, A.; Nissar, H.; Nizami, A.-S. (2022). Comparison of ozonation, Fenton, and photo-Fenton processes for the treatment of textile dye-bath effluents integrated with electrocoagulation. Journal of Water Process Engineering, 46, 102547. https://doi.org/10.1016/j.jwpe.2021.102547spa
dc.relation.referencesTechnavio. (2016). Global Dyes And Pigments Market. (https://www.technavio.com/report/dyes-and-pigments-market-analysis)spa
dc.relation.referencesTeh, C. Y.; Budiman, P. M.; Shak, K. P. Y.; Wu, T. Y. (2016). Recent Advancement of Coagulation–Flocculation and Its Application in Wastewater Treatment. Industrial & Engineering Chemistry Research, 55(16), 4363-4389. https://doi.org/10.1021/acs.iecr.5b04703spa
dc.relation.referencesTejedor, A. S. (08 de 2017). La industria de los colorantes y pigmentos. Recuperado el 28 de 08 de 2017, de Química Orgánica Industrial.: https://www.eii.uva.esspa
dc.relation.referencesTezcan Un, U.; Aytac, E. (2013). Electrocoagulation in a packed bed reactor-complete treatment of color and cod from real textile wastewater. Journal of Environmental Management, 123, 113-119. https://doi.org/10.1016/j.jenvman.2013.03.016spa
dc.relation.referencesTezcan Ün, Ü.; Koparal, A. S.; Bakir Öğütveren, Ü. (2009). Hybrid processes for the treatment of cattle-slaughterhouse wastewater using aluminum and iron electrodes. Journal of Hazardous Materials, 164(2-3), 580-586. https://doi.org/10.1016/j.jhazmat.2008.08.045spa
dc.relation.referencesTharpa, K.; Basavaiah, K.; Vinay, K. B. (2009). Spectrophotometric Determination of Furosemide in Pharmaceuticals Using Permanganate. Jordan Journal of Chemistry, 4(4), 387-397.spa
dc.relation.referencesThéraulaz, F.; Djellal L.; Thomas, O. (1996). Simple LAS determination in sewage using advanced UV spectrophotometry. Tenside Surfactants Detergents, 33,447–451.spa
dc.relation.referencesThiam, A.; Zhou, M.; Brillas, E.; Sirés, I. (2014a). Two-step mineralization of Tartrazine solutions: Study of parameters and by-products during the coupling of electrocoagulation with electrochemical advanced oxidation processes. Applied Catalysis B: Environmental, 150-151, 116-125. https://doi.org/10.1016/j.apcatb.2013.12.011spa
dc.relation.referencesThiam, A.; Zhou, M.; Brillas, E.; Sirés, I. (2014b). A first pre-pilot system for the combined treatment of dye pollutants by electrocoagulation/EAOPs: Treatment of dye pollutants by combined electrocoagulation/EAOPs. Journal of Chemical Technology & Biotechnology, 89(8), 1136-1144. https://doi.org/10.1002/jctb.4358spa
dc.relation.referencesTizaoui, C.; Bouselmi, L.; Mansouri, L.; Ghrabi, A. (2007). Landfill leachate treatment with ozone and ozone/hydrogen peroxide systems. Journal of Hazardous Materials, 140(1-2), 316-324. https://doi.org/10.1016/j.jhazmat.2006.09.023spa
dc.relation.referencesTony, M. A.; Mansour, S. A. (2019). Removal of the commercial reactive dye Procion Blue MX-7RX from real textile wastewater using the synthesized Fe2O3 nanoparticles at different particle sizes as a source of Fenton’s reagent. Nanoscale Advances, 1(4), 1362-1371. https://doi.org/10.1039/C8NA00129Dspa
dc.relation.referencesTorrades, F.; Garcı́a-Montaño, J.; Garcı́a-Hortal, J.A. Domènech, X.; Peral, J. (2004). Decolorization and mineralization of commercial reactive dyes under solar light assisted photo-Fenton conditions. Solar Energy. 77(5), 573-581. https://doi.org/10.1016/j.solener.2004.05.004spa
dc.relation.referencesTorrades, F.; Garcı́a-Montaño, J.; Garcı́a-Hortal, J.A. Domènech, X.; Peral, J. (2004). Decolorization and mineralization of commercial reactive dyes under solar light assisted photo-Fenton conditions. Solar Energy. 77(5), 573-581. https://doi.org/10.1016/j.solener.2004.05.004spa
dc.relation.referencesTorres-Segundo, C.; Vergara-Sánchez, J.; Reyes-Romero, P. G.; Gómez-Díaz, A.; Rodríguez-Albarrán, M. J.; Martínez-Valencia, H. (2019). Effect on Discoloration By Nonthermal Plasma In Dissolved Textile Dyes: Acid Black 194. Revista Mexicana de Ingeniería Química, 18(3), 939-947. https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2019v18n3/Torresspa
dc.relation.referencesTRM dólar histórico. (2023). https://www.dolar-colombia.com/historicospa
dc.relation.referencesTsitonaki, A.; Petri, B.; Crimi, B.; Mosbaek, H.; Siegrist, R. L.; Bjerg, P. L. (2010). In Situ Chemical Oxidation of Contaminated Soil and Groundwater Using Persulfate: A Review. Critical Reviews in Environmental Science and Technology, 40 (1), 55-91, https://doi.org/10.1080/10643380802039303spa
dc.relation.referencesTünay, O.; Kabdasli, I.; Eremektar, G.; Orhon, D. (1996). Color removal from textile wastewaters. Water Science and Technology, 34(11), 9-16. https://doi.org/10.1016/S0273-1223(96)00815-3spa
dc.relation.referencesTyagi, N.; Mathur, S.; Kumar, D. (2014). Electrocoagulation process for textile wastewater treatment in continuous upflow reactor. Journal of Scientific & Industrial Research. 73, 195-198spa
dc.relation.referencesTzoupanos, N. D.; Zouboulis, A. I. (2008). Coagulation-flocculation processes in water/wastewater treatment: the application of new generation of chemical reagents. 6th IASME/WSEAS International Conference on Heat Transfer, Thermal Engineering And Environment (HTE'08). Rhodes, Greece, August 20-22, 2008. 309 - 317spa
dc.relation.referencesUbale, M. A.; Salkar, V. D. (2017). Experimental study on electrocoagulation of textile wastewater by continuous horizontal flow through aluminum baffles. Korean Journal of Chemical Engineering, 34(4), 1044-1050. https://doi.org/10.1007/s11814-016-0351-8spa
dc.relation.referencesUner, H.; Dogruel, S.; Arslan-Alaton, I.; Babuna, F. G.; Orhon, D. (2006). Evaluation of Coagulation-Flocculation on a COD-Based Molecular Size Distribution for a Textile Finishing Mill Effluent. Journal of Environmental Science and Health Part A, 41:1899–1908. https://doi.org/10.1080/10934520600779158spa
dc.relation.referencesUN-WATER/WWAP. (2017). Informe Mundial de las Naciones Unidas sobre el Desarrollo de los Recursos Hídricos 2017. Aguas residuales: El recurso desaprovechado. París, Francia: Unesco.spa
dc.relation.referencesUppala, R.; Sundar, K.; Muthukumaran, A. (2019). Response surface methodology mediated optimization of decolorization of azo dye amido black 10B by Kocuria kristinae RC3. International Journal of Environmental Science and Technology, 16(8), 4203-4214. https://doi.org/10.1007/s13762-018-1888-3spa
dc.relation.referencesUPS. (2022). US Pharmacopeia [1225 Validation of Compendial Procedures]. The United States Pharmacopeial Convention. https://www.usp.org/spa
dc.relation.referencesUS EPA, O. (2015, septiembre 22). Chromium in Drinking Water [Overviews and Factsheets]. https://www.epa.gov/sdwa/chromium-drinking-waterspa
dc.relation.referencesVanhaecke, P., Persoone, G., Claus, C., Sorgeloos, P. (1981). Proposal for a short-term toxicity test with Artemia nauplii. Ecotoxicology and Environmental Safety. 5(3), 382-387. https://doi.org/10.1016/0147-6513(81)90012-9spa
dc.relation.referencesVeerakumar, P.; Jeyapragasam, T.; Surabhi Salamalai, K.; Maiyalagan, T.; Lin, K.-C. (2019). Functionalized Mesoporous Carbon Nanostructures for Efficient Removal of Eriochrome Black-T from Aqueous Solution. Journal of Chemical & Engineering Data, 64(4), 1305-1321. https://doi.org/10.1021/acs.jced.8b00878spa
dc.relation.referencesVepsäläinen, M.; Sillanpää, M. (2020). Chapter 1. Electrocoagulation in the treatment of industrial waters and wastewaters. En: Advanced Water Treatment (Editor: Mika Sillanpää), pp. 1 – 78. https://doi.org/10.1016/B978-0-12-819227-6.00001-2spa
dc.relation.referencesVerma, A. K. (2017). Treatment of textile wastewaters by electrocoagulation employing Fe-Al composite electrode. Journal of Water Process Engineering, 20, 168-172. https://doi.org/10.1016/j.jwpe.2017.11.001spa
dc.relation.referencesVerma, A. K.; Bhunia, P.; Dash, R. R. (2014). Reclamation of wastewater using composite coagulants: A sustainable solution to the textile industries. Chemical Engineering Transactions, 175-180. https://doi.org/10.3303/CET1442030spa
dc.relation.referencesVerma, A. K.; Dash, R. R.; Bhunia, P. (2012). A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. Journal of Environmental Management, 93(1), 154-168. https://doi.org/10.1016/j.jenvman.2011.09.012spa
dc.relation.referencesVerma, S. K.; Khandegar, V.; Saroha, A. K. (2013). Removal of chromium from electroplating industry effluent using electrocoagulation. J. Hazard. Toxic Radioact. Waste., 17, 146 – 152. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000170spa
dc.relation.referencesVidal, J.; Espinoza, C.; Contreras, N.; Salazar, R. (2017). Elimination of industrial textile dye by electrocoagulation using iron electrodes. Journal of the Chilean Chemical Society, 62(2), 3519-3524. https://doi.org/10.4067/S0717-97072017000200019spa
dc.relation.referencesVidal, J.; Villegas, L.; Peralta-Hernández, J. M.; Salazar González, R. (2016). Removal of Acid Black 194 dye from water by electrocoagulation with aluminum anode. Journal of Environmental Science and Health, Part A, 51(4), 289-296. https://doi.org/10.1080/10934529.2015.1109385spa
dc.relation.referencesVineta, S.; Silvana, Z.; Sanja, R.; Golomeova, S. (2014). Methods for waste waters treatment in textile industry. International Scientific Conference., 248-252.spa
dc.relation.referencesVogel, A. I.; Jeffery, G. H. (Eds.). (1989). Vogel’s textbook of quantitative chemical analysis (5 ed.). Longman.spa
dc.relation.referencesWalling, C.; Goosen, A. (1973). Mechanism of the ferric ion catalyzed decomposition of hydrogen peroxide. Effect of organic substrates. Journal of the American Chemical Society, 95(9), 2987-2991. https://doi.org/10.1021/ja00790a042spa
dc.relation.referencesWan, Z.; Hassan, H. (2012). Heterogeneous catalyst acid-activated clamshell for fenton-like oxidation of reactive black 5 solutions. 2012 IEEE Symposium on Humanities, Science and Engineering Research, 277-281. https://doi.org/10.1109/SHUSER.2012.6268861spa
dc.relation.referencesWang, L. P.; Chuan Guo, Y.; Zhong Chen, Y.; Deng Du, E.; Jing Mao, Y. (2011). The Treatment of Printing and Dyeing Wastewater by Using Coagulation and Fenton Reagent Oxidation Combined Process. Advanced Materials Research. 331:368-71. https://doi:10.4028/www.scientific.net/AMR.331.368spa
dc.relation.referencesWang, N.; Zheng, T.; Zhang, G.; Wang, P. (2016). A review on Fenton-like processes for organic wastewater treatment. J. Environ. Chem. Eng., 4: 762–787. https://doi.org/10.1016/j.jece.2015.12.016spa
dc.relation.referencesWang, S. (2008). A Comparative study of Fenton and Fenton-like reaction kinetics in decolourisation of wastewater. Dyes and Pigments, 76(3), 714-720. https://doi.org/10.1016/j.dyepig.2007.01.012spa
dc.relation.referencesWang, X.; Su, D.; Li, H. B. (2011). Treatment of Textile Dye Wastewater by Electrocoagulation Method. Advanced Materials Research, 281, 276-279. https://doi.org/10.4028/www.scientific.net/AMR.281.276spa
dc.relation.referencesWang, Z.; Fang, C.; Megharaj, M. (2014). Characterization of Iron–Polyphenol Nanoparticles Synthesized by Three Plant Extracts and Their Fenton Oxidation of Azo Dye. ACS Sustainable Chemistry & Engineering, 2(4), 1022-1025. https://doi.org/10.1021/sc500021nspa
dc.relation.referencesWang, Z.; Xue, M.; Huang, K.; Liu, Z. (2011). Textile Dyeing Wastewater Treatment. (Peter J. Hauser Ed.), Advances in Treating Textile Effluent. InTech. https://doi.org/10.5772/22670spa
dc.relation.referencesWang, Z.; Yu, C.; Fang, C.; Mallavarapu, M. (2014). Dye removal using iron–polyphenol complex nanoparticles synthesized by plant leaves. Environmental Technology & Innovation, 1-2, 29-34. https://doi.org/10.1016/j.eti.2014.08.003spa
dc.relation.referencesWHO. (2017). Guidelines for drinking-water quality.spa
dc.relation.referencesWin, T. T.; Swe, T. M.; Ei, H. H.; Win, N. N.; Swe, K. K.; Nandar, W.; Ko, T. K.; Fu, P. (2021). An evaluation into the biosorption and biodegradation of azo dyes by indigenous siderophores-producing bacteria immobilized in chitosan. Biodegradation 32(6):697-710. https://doi:10.1007/s10532-021-09961-yspa
dc.relation.referencesWojciechowski, K.; Szuster, L. (2016). [Azo-Hyd] Tautomerism and Structure of Selected Metal Complex Dyes AM1 and ZINDO/1 Methods. Computational Chemistry, 04(04), 97-118. https://doi.org/10.4236/cc.2016.44010spa
dc.relation.referencesWong, P. W.; Teng, T. T.; & Norulaini, N. A. R. N. (2007). Efficiency of the Coagulation-Flocculation Method for the Treatment of Dye Mixtures Containing Disperse and Reactive Dye. Water Quality Research Journal, 42(1), 54-62. https://doi.org/10.2166/wqrj.2007.008spa
dc.relation.referencesWorkman Jr., J. (2000). The Handbook of Organic Compounds, First edition. Academic Press, USA, eBook ISBN: 9780080533650spa
dc.relation.referencesWorld Health Organization, 2004. Guidelines for Drinking e Water Quality. World Health Organization, Geneva, Switzerland, pp. 301-303.spa
dc.relation.referencesWQA. (2012, agosto 2). Chromium in Drinking Water [Chromium in Drinking Water]. Water Quality Association. https://www.wqa.org/learn-aboutwater/commoncontaminants/chromiumspa
dc.relation.referencesXiao, X.; Sun, Y.; Sun, W.; Shen, H.; Zheng, H.; Xu, Y.; Zhao, J.; Wu, H.; Liu, C. (2017). Advanced treatment of actual textile dye wastewater by Fenton-flocculation process. The Canadian Journal of Chemical Engineering, 95(7), 1245-1252. https://doi.org/10.1002/cjce.22752spa
dc.relation.referencesXiaoxu, S.; Jin, X.; Xingyu, L. (2017). Experimental Study on Treatment of Dyeing Wastewater by Activated Carbon Adsorption, Coagulation and Fenton Oxidation. IOP Conference Series: Earth and Environmental Science, 100, 012199. https://doi.org/10.1088/1755-1315/100/1/012199spa
dc.relation.referencesXue, D.; Li, C.; Dengchao, L.; Jiang, H.; Xiaowen, L.; Zhang, H. (2014). Oxidation treatment of printing and dyeing wastewater by flocculation-Fenton reagent. Chinese Journal of Environmental Engineering. 8:3601-6.spa
dc.relation.referencesYadav, A.; Mukherji, S.; Garg, A. (2013). Removal of Chemical Oxygen Demand and Color from Simulated Textile Wastewater Using a Combination of Chemical/Physicochemical Processes. Industrial & Engineering Chemistry Research. 52(30):10063-71. https://doi: 10.1021/ie400855b.spa
dc.relation.referencesYaseen, D. A.; Scholz, M. (2019). Textile dye wastewater characteristics and constituents of synthetic effluents: A critical review. International Journal of Environmental Science and Technology, 16(2), 1193-1226. https://doi.org/10.1007/s13762-018-2130-zspa
dc.relation.referencesYaser, A. Z.; Nurmin, B.; Rosalam, S. (2013). Coagulation/Flocculation of Anaerobically Treated Palm Oil Mill Effluent (AnPOME): A Review. En: Pogaku, R.; Bono, A.; Chu, C. (Eds). Developments in Sustainable Chemical and Bioprocess Technology. Springer. New York.spa
dc.relation.referencesYavuz, Y.; Shahbazi, R.; Koparal, A. S.; Öğütveren, Ü. B. (2014). Treatment of Basic Red 29 dye solution using iron-aluminum electrode pairs by electrocoagulation and electro-Fenton methods. Environmental Science and Pollution Research, 21(14), 8603-8609. https://doi.org/10.1007/s11356-014-2789-8spa
dc.relation.referencesYe, C.; Wang, D.; Shi, B.; Yu, J.; Qu, J.; Edwards, M.; Tang, H. (2007), Alkalinity effect of coagulation with polyaluminum chlorides: Role of electrostatic patch. Colloids and Surfaces A: Physicochem. and Engin. Aspects, 294, 163–173. https://doi.org/10.1016/j.colsurfa.2006.08.005spa
dc.relation.referencesYesil, H.; Molaey, R.; Calli, B.; Tugtas, A. E. (2021). Removal and recovery of heavy metals from sewage sludge via three stage integrated process. Chemosphere 280, 130650. https://doi.org/10.1016/j.chemosphere.2021.130650spa
dc.relation.referencesYılmaz, A. (2012). Determination of the optimum conditions in the removal of color from synthetic textile wastewater using electrocoagulation method. Fresenius Environmental Bulletin, 21, 1052-1059.spa
dc.relation.referencesYoon, J.; Lee, Y.; Kim, S. (2001). Investigation of the reaction pathway of OH radicals produced by Fenton oxidation in the conditions of wastewater treatment. Water Science and Technology: A Journal of the International Association on Water Pollution Research, 44(5), 15-21.spa
dc.relation.referencesYuksel, E.; Eyvaz, M.; Gurbulak, E. (2013). Electrochemical treatment of colour index reactive orange 84 and textile wastewater by using stainless steel and iron electrodes. Environmental Progress Sustainable Energy, 32(1), 60-68. https://doi.org/10.1002/ep.10601spa
dc.relation.referencesYuksel, E.; Gurbulak, E.; Eyvaz, M. (2012). Decolorization of a reactive dye solution and treatment of a textile wastewater by electrocoagulation and chemical coagulation: Techno-economic comparison. Environmental Progress Sustainable Energy, 31(4), 524-535. https://doi.org/10.1002/ep.10574spa
dc.relation.referencesYukseler, H., Uzal, N., Sahinkaya, E., Kitis, M., Dilek, F.B., Yetis, U. (2017). Analysis of the best available techniques for wastewaters from a denim manufacturing textile mill. Journal of Environmental Management, 203, 1118-1125. https://doi.org/j.jenvman.2017.03.041spa
dc.relation.referencesZaharia, C.; Suteu, D. (2012). Textile Organic Dyes – Characteristics, Polluting Effects and Separation/Elimination Procedures from Industrial Effluents – A Critical Overview. En Tomasz Puzyn (Ed.), Organic Pollutants Ten Years After the Stockholm Convention—Environmental and Analytical Update. InTech. https://doi.org/10.5772/32373spa
dc.relation.referencesZarei, M.; Niaei, A.; Salari, D.; Khataee, A. (2010). Application of response surface methodology for optimization of peroxi-coagulation of textile dye solution using carbon nanotube–PTFE cathode. Journal of Hazardous Materials, 173(1-3), 544-551. https://doi.org/10.1016/j.jhazmat.2009.08.120spa
dc.relation.referencesZaroual, Z.; Azzi, M.; Saib, N.; Chainet, E. (2006). Contribution to the study of electrocoagulation mechanism in basic textile effluent. Journal of Hazardous Materials, 131(1-3), 73-78. https://doi.org/10.1016/j.jhazmat.2005.09.021spa
dc.relation.referencesZayed, M. A.; El-desawy, M.; Eladly, A. A. (2018). Experimental and theoretical spectroscopic studies in relation to molecular structure investigation of para chloro, para fluoro and para nitro maleanilinic acids. Computational Biology and Chemistry. 76, 338–356. https://doi.org/10.1016/j.compbiolchem.2018.08.006spa
dc.relation.referencesZazou, H.; Afanga, H.; Akhouairi, S.; Ouchtak, H.; Addi, A. A.; Akbour, R. A.; Assabbane, A.; Douch, J.; Elmchaouri, A.; Duplay, J.; Jada, A.; Hamdani, M. (2019). Treatment of textile industry wastewater by electrocoagulation coupled with electrochemical advanced oxidation process. Journal of Water Process Engineering, 28, 214-221. https://doi.org/10.1016/j.jwpe.2019.02.006spa
dc.relation.referencesZemskov, A. V.; Rodionova, G. N.; Tuchin, Yu. G.; Karpov, V. V. (1988). IR spectra and structure of some azo dyes - P-azobenzene derivatives - In various aggregate states. Journal of Applied Spectroscopy, 49(4), 1020-1024. https://doi.org/10.1007/BF00657220spa
dc.relation.referencesZhai, J.; Ma, H.; Liao, J.; Rahaman, M. H.; Yang, Z.; Chen, Z. (2018). Comparison of Fenton, ultraviolet–Fenton and ultrasonic–Fenton processes on organics and color removal from pre-treated natural gas produced water. International Journal of Environmental Science and Technology, 15(11), 2411-2422. https://doi.org/10.1007/s13762-017-1604-8spa
dc.relation.referencesZhang, M.; Dong, H.; Zhao, L.; Wang, D.; Meng, D. (2019). A review on Fenton process for organic wastewater treatment based on optimization perspective. Science of The Total Environment, 670, 110-121. https://doi.org/10.1016/j.scitotenv.2019.03.180spa
dc.relation.referencesZhang, Q.; Hu, J.; Lee, D-J.; Chang, Y.; Lee, Y-J. (2017). Sludge Treatment: Current Research Trends. Bioresource Technology, http://dx.doi.org/10.1016/j.biortech.2017.07.070spa
dc.relation.referencesZhao, M.; Wang, X.; Wang, S.; Mingming, G. (2024). Cr-containing wastewater treatment based on Cr self-catalysis: a critical review. Front. Environ. Sci. Eng., 18, 1-22. https://doi.org/10.1007/s11783-024-1761-1spa
dc.relation.referencesZhou, Y.-L.; Huang, W.; Yu, Y.-B.; Wu, L.-Y.; Hong, J.-M.; Zhang, Q. (2019). Electrocatalytic degradation of organic dye RBk5 by oxide graphene. China Environmental Science, 39(11), 4653-4659.spa
dc.relation.referencesZodi, S.; Potier, O.; Lapicque, F.; Leclerc, J.-P. (2010). Treatment of the industrial wastewaters by electrocoagulation: Optimization of coupled electrochemical and sedimentation processes. Desalination, 261(1-2), 186-190. https://doi.org/10.1016/j.desal.2010.04.024spa
dc.relation.referencesZonoozi, M. H.; Moghaddam, M. R. A.; Arami, M. (2009). Coagulation/flocculation of dye-containing solutions using polyaluminium chloride and alum. Water Science and Technology, 59(7), 1343-1351. https://doi.org/10.2166/wst.2009.128spa
dc.relation.referencesZuluaga, S.; Ibarra, H. N.; Dobrosz-Gómez, I.; Gómez, M.-Á. (2018). Ajuste de Parámetros Cinéticos y Cálculo de sus Desviaciones usando Matlab. Formación universitaria, 11(6), 53-62. https://doi.org/10.4067/S0718-50062018000600053spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc660 - Ingeniería químicaspa
dc.subject.proposalAguas residuales industriales textilesspa
dc.subject.proposalcolorante negro ácido 194spa
dc.subject.proposalcoagulación, floculaciónspa
dc.subject.proposalelectrocoagulaciónspa
dc.subject.proposalProcesos Avanzados de Oxidaciónspa
dc.subject.proposalOxidación Fentonspa
dc.subject.proposalProcesos de tratamiento secuencialesspa
dc.subject.proposalOptimizaciónspa
dc.subject.proposalTextile industrial wastewatereng
dc.subject.proposalacid black 194 dyeeng
dc.subject.proposalcoagulation, flocculationeng
dc.subject.proposalelectrocoagulation, Advanced Oxidation Processeseng
dc.subject.proposalFenton Oxidationeng
dc.subject.proposalSequential treatment processeseng
dc.subject.proposalOptimizationeng
dc.subject.unescoAgua residual
dc.subject.unescoWaste water
dc.titleProceso avanzado de oxidación fenton integrado con coagulación-floculación o electrocoagulación para el tratamiento de aguas residuales industriales textilesspa
dc.title.translatedFenton advanced oxidation process integrated with coagulation-flocculation or electrocoagulation for the treatment of industrial textile wastewatereng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/PVEspa
dc.type.versioninfo:eu-repo/semantics/draftspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleTratamiento de las aguas residuales industriales resultantes del teñido con colorante negro usando procesos avanzados de oxidación.spa
oaire.awardtitleTecnologías alternativas para el tratamiento de aguas residuales de la industria textilspa
oaire.fundernameMinisterio de Ciencia y Tecnologíaspa
oaire.fundernameUniversidad Nacional de Colombia sede Manizalesspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
16076865.2024.pdf
Tamaño:
7.98 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería - Ingeniería Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: