En 18 día(s), 20 hora(s) y 7 minuto(s): El Repositorio Institucional UNAL informa a la comunidad universitaria que, con motivo del periodo de vacaciones colectivas, el servicio de publicación estará suspendido: Periodo de cierre: Del 20 de diciembre al 18 de enero de 2026. Sobre los depósitos: Durante este tiempo, los usuarios podrán continuar realizando el depósito respectivo de sus trabajos en la plataforma. Reanudación: Una vez reiniciadas las actividades administrativas, los documentos serán revisados y publicados en orden de llegada.

Análisis automatizado de comparación de productos con técnicas de procesamiento de lenguaje natural para artículos deportivos extraídos de canales de comercio electrónico

dc.contributor.advisorRestrepo Calle, Felipe
dc.contributor.authorCorrea Lombana, Juan Manuel
dc.contributor.researchgroupPlas Programming languages And Systems
dc.date.accessioned2025-11-26T12:55:53Z
dc.date.available2025-11-26T12:55:53Z
dc.date.issued2025
dc.descriptionilustraciones a color, diagramasspa
dc.description.abstractEn el dinámico entorno del comercio electrónico, el análisis competitivo de productos es un pilar estratégico, aunque su ejecución manual es ineficiente y propensa a errores debido a la heterogeneidad de la información. Este trabajo aborda la automatización de la comparación de artículos deportivos, específicamente calzado de running, extrayendo datos de múltiples plataformas de e-commerce. La contribución principal es un pipeline que implementa un paradigma de "extracción primero, comparación después". Se utiliza un Modelo de Lenguaje Grande (LLM) para transformar descripciones de producto no estructuradas en un conjunto normalizado de atributos técnicos clave, definidos mediante un consenso de expertos con el método Delphi. Posteriormente, sobre estas representaciones estructuradas, se aplican técnicas de embeddings y el algoritmo K-Vecinos más Cercanos (KNN) para cuantificar la similitud funcional e identificar productos equivalentes. Los resultados demuestran una reducción del tiempo de análisis superior al 99.9% en comparación con el proceso manual y una alta validación cualitativa por parte de expertos (4.35 sobre 5.0), validando la herramienta como un recurso eficaz para la inteligencia de negocio, la optimización de precios y la toma de decisiones estratégicas en el sector retail (Texto tomado de la fuente).spa
dc.description.abstractIn the dynamic e-commerce environment, competitive product analysis is a strategic pillar, although its manual execution is inefficient and error-prone due to information heterogeneity. This work addresses the automation of comparing sports goods, specifically running shoes, by extracting data from multiple e-commerce platforms. The main contribution is a pipeline that implements an "extract first, compare later" paradigm. A Large Language Model (LLM) is used to transform unstructured product descriptions into a normalized set of key technical attributes, defined through expert consensus using the Delphi method. Subsequently, on these structured representations, embedding techniques and the K-Nearest Neighbors (KNN) algorithm are applied to quantify functional similarity and identify equivalent products. The results show a reduction in analysis time of over 99.9% compared to the manual process and high qualitative validation from experts (4.35 out of 5.0), validating the tool as an effective resource for business intelligence, price optimization, and strategic decision-making in the retail sector.eng
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería - Ingeniería de Sistemas y Computación
dc.description.methodsPara alcanzar los objetivos planteados, se adoptó un enfoque metodológico mixto que combina un marco de gestión de proyectos de ciencia de datos con técnicas específicas de ingeniería de requisitos y aprendizaje automático. La metodología general se basa en el Proceso Estándar Inter-industrial para Minería de Datos (CRISP-DM), elegido por su naturaleza iterativa y su énfasis en la integración del conocimiento del negocio con el análisis técnico. El carácter cíclico de CRISP-DM demostró ser fundamental, permitiendo refinar los requisitos y la estrategia de datos a medida que se obtenía una comprensión más profunda de la información disponible, como se evidenció en los ciclos de retroalimentación entre las fases de “Comprensión del Negocio” y “Comprensión de los Datos”. En la fase inicial de “Comprensión del Negocio”, se empleó la metodología Delphi para obtener un consenso estructurado de un panel de expertos en productos deportivos para running. Este proceso permitió priorizar las características técnicas más relevantes para la comparación de calzado, asegurando que el desarrollo técnico estuviera alineado desde el principio con las necesidades reales de los analistas de producto.
dc.description.researchareaMachine Learning and Data Science
dc.format.extent94 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/89150
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBogotá, Colombia
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Sistemas y Computación
dc.relation.referencesAkritidis, L., Fevgas, A., y Bozanis, P. (2018). Effective Products Categorization with Importance Scores and Morphological Analysis of the Titles. Proceedings of the 2018 IEEE 30th International Conference on Tools with Artificial Intelligence (ICTAI), 849-856. https://doi.org/10.1109/ICTAI. 2018.00136
dc.relation.referencesAkritidis, L., y Bozanis, P. (2023). Matching Products with Deep NLP Models. Proceedings of the 14th International Conference on Information, Intelligence, Systems & Applications (IISA 2023), 1-8. https: //doi.org/10.1109/IISA59645.2023.10345922
dc.relation.referencesAnil, R., Atkins, T., y et al. (2023). PaLM 2 Technical Report [cs.CL]. arXiv, 2305.10403. https://arxiv. org/abs/2305.10403
dc.relation.referencesAnthropic. (2024). Claude 3 Model Card: Opus, Sonnet y Haiku (Model Card) (Versión inicial marzo 2024; actualización junio y octubre 2024). Anthropic PBC. https : / /www . anthropic . com / news / claude-3-model-card
dc.relation.referencesBansal, S. (2023). Evaluating the Impact of Data Quality on Machine Learning Model Performance [Preprint]. ResearchGate. https://www.researchgate.net/publication/376561510_Evaluating_ the_Impact_of_Data_Quality_on_Machine_Learning_Model_Performance
dc.relation.referencesBartlett, M., O’Donovan, B., y Simone, P. J. (2021). Adapting natural language processing for technical text. En M. E. Kuhl y S. M. T. L. T. S. Buckley (Eds.), Proceedings of the IISE Annual Conference & Expo 2021 (pp. 1-6). Institute of Industrial; Systems Engineers (IISE).
dc.relation.referencesBellman, R. (1957). Dynamic Programming. Princeton University Press.
dc.relation.referencesBhattacharya, I., y Getoor, L. (2007). Collective Entity Resolution in Relational Data. ACM Transactions on Knowledge Discovery from Data, 1(1), 5:1-5:36. https://doi.org/10.1145/1217299.1217304
dc.relation.referencesBrown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., … y Amodei, D. (2020). Language Models are Few-Shot Learners. En H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan y H. Lin (Eds.), Advances in Neural Information Processing Systems (pp. 1877-1901, Vol. 33). Curran Associates, Inc.
dc.relation.referencesBrunner, U., y Stockinger, K. (2020). Entity Matching with Transformer Architectures — A Step Forward in Data Integration. Proceedings of the 23rd International Conference on Extending Database Technology (EDBT 2020), 463-473. https://doi.org/10.5441/002/edbt.2020.58
dc.relation.referencesChandrawat, A. S., Kumar, N., y Bohra, V. (2023). Optimizing E-Commerce Decision Making Using Web Scraping. Proceedings of the 2023 International Conference on Disruptive Technologies for MultiDisciplinary Research and Applications (CENTCON). https://doi.org/10.1109/CENTCON52345. 2021.9687926
dc.relation.referencesChapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C., y Wirth, R. (2000). CRISP-DM 1.0: Step-by-step data mining guide[Consultado en https://www.the-modeling-agency.com/crispdm.pdf]. SPSS Inc
dc.relation.referencesChu, X., Ilyas, I. F., y Papotti, P. (2016). Distributed Data Deduplication. Proceedings of the VLDB Endowment, 9(9), 864-875.
dc.relation.referencesChugh, T., Tyagi, K., Seth, R., y Srinivasan, P. (2023). Intelligent Agents Driven Data Analytics Using Large Language Models. 2023 International Conference on Artificial Intelligence, Blockchain, Cloud Computing, and Data Analytics (ICoABCD), 152-157. https://doi.org/10.1109/ICoABCD59879. 2023.10390973
dc.relation.referencesCourt, D. (2020). The Consumer Decision Journey
dc.relation.referencesDenny, P., Lu, S., y Ko, A. J. (2024). Computational Thinking Through Generative AI. arXiv preprint arXiv:2401.10759
dc.relation.referencesEhsani, R., Pathak, S., y Chatterjee, P. (2025). Detecting Prompt Knowledge Gaps in LLMs. arXiv preprint arXiv:2501.04122.
dc.relation.referencesElmagarmid, A. K., Ipeirotis, P. G., y Verykios, V. S. (2007). Duplicate Record Detection: A Survey. IEEE Transactions on Knowledge and Data Engineering, 19(1), 1-16.
dc.relation.referenceset al., K. C. (2024). Structure Guided Prompt for Multi-Step Reasoning. arXiv preprint arXiv:2402.13415.
dc.relation.referenceset al., R. S. (2024). Prompting Reliable Responses from LLMs in Medical Practice. arXiv preprint arXiv:2407.21051
dc.relation.referenceset al., Z. W. (2025). Iterative Reasoning in Large Language Models. arXiv preprint arXiv:2502.10858
dc.relation.referencesFan, W., Ma, Y., Li, Q., He, Y., Zhao, E., Tang, J., y Yin, D. (2019). Graph Neural Networks for Social Recommendation. Proceedings of the 2019 World Wide Web Conference (WWW ’19), 417-427. https://doi.org/10.1145/3308558.3313488
dc.relation.referencesFellegi, I. P., y Sunter, A. B. (1969). A Theory for Record Linkage. Journal of the American Statistical Association, 64(328), 1183-1210. https://doi.org/10.1080/01621459.1969.10501049
dc.relation.referencesGao, T., Fisch, A., y Chen, D. (2021). Making Pre-trained Language Models Better Few-shot Learners. Journal of Artificial Intelligence Research, 71, 579-609
dc.relation.referencesGetoor, L., y Machanavajjhala, A. (2012). Entity Resolution: Theory, Practice & Open Challenges. Proceedings of the VLDB Endowment, 5(12), 2018-2019. https: / / doi.org / 10. 14778 / 2367502. 2367564
dc.relation.referencesGuo, R., Sun, P., Lindgren, E., Geng, Q., Simcha, D., Chern, F., y Kumar, S. (2020). Accelerating LargeScale Inference with Anisotropic Vector Quantization. Proceedings of the 37th International Conference on Machine Learning (ICML), 119, 3887-3897.
dc.relation.referencesGupte, K., Pang, L., Vuyyuri, H., y Pasumarty, S. (2021). Multimodal Product Matching and Category Mapping: Text+Image Based Deep Neural Network. 2021 IEEE International Conference on Big Data (Big Data), 4500-4506. https://doi.org/10.1109/BigData52589.2021.9671384
dc.relation.referencesHaCohen-Kerner, Y., Miller, D., y Yigal, Z. (2020). The influence of preprocessing on text classification using a deep learning model. Proceedings of the 12th Forum for Information Retrieval Evaluation (FIRE ’20), 42-45. https://doi.org/10.1145/3441501.3441516
dc.relation.referencesHernández, M. A., y Stolfo, S. J. (1998). Real-world Data is Dirty: Data Cleansing and the Merge/Purge Problem. Data Mining and Knowledge Discovery, 2(1), 9-37. https : / / doi . org / 10 . 1023 / A : 1009761603038
dc.relation.referencesHsu, C.-C., y Sandford, B. A. (2007). The Delphi technique: Making sense of consensus. Practical Assessment, Research, and Evaluation, 12(1), 10. https://doi.org/10.7275/pdz9-th90
dc.relation.referencesJohnson, J., Douze, M., y Jégou, H. (2021). Billion-Scale Similarity Search with GPUs. IEEE Transactions on Big Data, 7(3), 535-547. https://doi.org/10.1109/TBDATA.2019.2921572
dc.relation.referencesJohnson, J., Douze, M., y Jégou, H. (2024). The Faiss library. Software Impacts, 19, 100569.
dc.relation.referencesKo, E. (2021). Product Matching through Multimodal Image and Text Combined Similarity Matching [MSc Thesis]. KTH Royal Institute of Technology [IN DEGREE PROJECT COMPUTER SCIENCE AND ENGINEERING, SECOND CYCLE, 30 CREDITS].
dc.relation.referencesKojima, T., Gu, S. S., Reid, M., Matsuo, Y., e Iwasawa, Y. (2023). Large Language Models Are Zero-Shot Reasoners [36th Conference on Neural Information Processing Systems]. Advances in Neural Information Processing Systems 36 (NeurIPS 2023). https://arxiv.org/abs/2205.11916
dc.relation.referencesKöpcke, H., Thor, A., y Rahm, E. (2010). Evaluation of Entity Resolution Approaches on Real-World Match Problems. Proceedings of the VLDB Endowment, 3(1–2), 484-493. https:/ /doi.org/10. 14778/1920841.1920904
dc.relation.referencesLau, H., Chen, J., y Qin, L. (2025). Enhancing LLM Performance via Prompt Optimization. arXiv preprint arXiv:2502.04295.
dc.relation.referencesLee, J. H., y Shin, J. (2024). Optimizing Prompting for Clinical LLMs. Korean Journal of Radiology, 25(9), 1144-1147.
dc.relation.referencesLi, Y., Chen, J., y Qin, L. (2025). Prompt Optimization in Large Language Models: A Survey. arXiv preprint arXiv:2504.04717.
dc.relation.referencesLi, Y., Li, J., Suhara, Y., Doan, A., y Tan, W.-C. (2023a). Effective Entity Matching with Transformers. The VLDB Journal, 32(6), 1215-1235. https://doi.org/10.1007/s00778-023-00779-z
dc.relation.referencesLi, Y., Li, J., Suhara, Y., Doan, A., y Tan, W.-C. (2020). Ditto: Deep Entity Matching with Pre-Trained Transformers. arXiv preprint arXiv:2004.00584.
dc.relation.referencesLi, Y., Li, J., Suhara, Y., Doan, A., y Tan, W.-C. (2023b). Effective entity matching with transformers. The VLDB Journal, 32, 1215-1235. https://doi.org/10.1007/s00778-023-00779-z
dc.relation.referencesMalkov, Y. A., y Yashunin, D. A. (2020). Efficient and Robust Approximate Nearest Neighbor Search Using Hierarchical Navigable Small World Graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(4), 824-836. https://doi.org/10.1109/TPAMI.2018.2889473
dc.relation.referencesMaragheh, R. Y., Fang, C., Irugu, C. C., Parikh, P., Cho, J., Xu, J., Sukumar, S., Patel, M., Korpeoglu, E., Kumar, S., y Achan, K. (2023). LLM-TAKE: Theme Aware Keyword Extraction Using Large Language Models. arXiv preprint
dc.relation.referencesMarín, J. A. P., y García, J. C. R. (2023). Metodología para el desarrollo de prompts en ingeniería basada en un proceso iterativo. Ingeniería Solidaria, 19(3), 1-15.
dc.relation.referencesMeta AI. (2024, abril). Introducing Meta Llama 3: The Most Capable Openly Available LLM to Date [Blog post]. https://ai.meta.com/blog/meta-llama-3/
dc.relation.referencesMikolov, T., Chen, K., Corrado, G., y Dean, J. (2013). Efficient Estimation of Word Representations in Vector Space. arXiv preprint arXiv:1301.3781.
dc.relation.referencesMin, S., Lyu, X., Holtzman, A., Artetxe, M., Lewis, M., Hajishirzi, H., y Zettlemoyer, L. (2022). Rethinking the Role of Demonstrations: What Makes In-Context Learning Work? Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing (EMNLP 2022), 11048-11064. https://doi.org/10.18653/v1/2022.emnlp-main.759
dc.relation.referencesMiyajiwala, A., Ladkat, A., Jagadale, S., y Joshi, R. (2022). On Sensitivity of Deep Learning Based Text Classification Algorithms to Practical Input Perturbations. arXiv preprint arXiv:2201.00318
dc.relation.referencesOntotext. (2024). What Is a Large Language Model? [Accedido en mayo de 2024]. https : / /www . ontotext.com/knowledgehub/fundamentals/what-is-a-large-language-model/
dc.relation.referencesOpenAI. (2023). GPT–4 Technical Report [cs.CL]. arXiv, 2303.08774. https: / /arxiv.org /abs /2303. 08774
dc.relation.referencesOuyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C. L., Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray, A., Schulman, J., Hilton, J., Kelton, F., Miller, L., Simens, M., Askell, A., Welinder, P., Christiano, P., Leike, J., y Lowe, R. (2022). Training Language Models to Follow Instructions with Human Feedback. Advances in Neural Information Processing Systems 35 (NeurIPS 2022). https://arxiv.org/abs/2203.02155
dc.relation.referencesPapadakis, G., Koutras, P., Thanos, E., y Palpanas, T. (2020). A Survey on Blocking and Filtering Techniques for Entity Resolution. ACM Computing Surveys (CSUR), 53(3), 1-42.
dc.relation.referencesPerot, V., Kang, K., Luisier, F., Sun, G., Boppana, R. S., Wang, Z., Wang, Z., Mu, J., Zhang, H., Lee, C.-Y., y Hua, N. (2023). LMDX: Language Model-based Document Information Extraction and Localization [Preprint]. https://arxiv.org/abs/2307.07931
dc.relation.referencesRadford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J., Krueger, G., y Sutskever, I. (2021). Learning Transferable Visual Models From Natural Language Supervision. Proceedings of the 38th International Conference on Machine Learning (ICML), 8748-8763. http://proceedings.mlr.press/v139/radford21a.html
dc.relation.referencesReimers, N., y Gurevych, I. (2019). Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks. Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), 3982-3992.
dc.relation.referencesSchuhmann, C., Beaumont, R., Vencu, R., Gordon, C., Wightman, R., Cherti, M., Coombes, T., Katta, A., Mullis, C., Wortsman, M., et al. (2022). LAION-5B: An open large-scale dataset for training next generation image-text models. arXiv preprint arXiv:2210.08402
dc.relation.referencesSingh, N., Rana, A., y Chaudhary, A. (2023). Price Comparison Using Web Scraping and Machine Learning. Proceedings of the 2023 International Conference on Computer Science and Emerging Technologies (CSET). https://doi.org/10.1109/CSET58993.2023.10346784
dc.relation.referencesTeixeira, T., Ribeiro, C., y Vale, R. (2007). FERAPARDA: A Fast and Parallel Deduplication Algorithm. Database and Expert Systems Applications, 568-577.
dc.relation.referencesTouvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M., Lacroix, T., Rozière, B., Goyal, N., Hambro, E., Azhar, F., Rodriguez, A., Joulin, A., Grave, E., y Lample, G. (2023). LLaMA: Open and Efficient Foundation Language Models [cs.CL]. arXiv, 2302.13971. https://arxiv.org/abs/2302.13971
dc.relation.referencesTouvron, H., Martin, L., Stone, K., Scialom, T., y et al. (2023). Llama 2: Open Foundation and FineTuned Chat Models [cs.CL]. arXiv, 2307.09288. https://arxiv.org/abs/2307.09288
dc.relation.referencesTukey, J. W. (1977). Exploratory Data Analysis. Addison-Wesley.
dc.relation.referencesUysal, A. K., y Gunal, S. (2014). The impact of preprocessing on text classification. Information Processing & Management, 50(1), 104-112. https://doi.org/10.1016/j.ipm.2013.08.006
dc.relation.referencesVaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., y Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30.
dc.relation.referencesWang, X., He, X., Cao, Y., Liu, M., y Chua, T. (2019). KGAT: Knowledge Graph Attention Network for Recommendation. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD ’19), 950-958. https://doi.org/10.1145/3292500.3330989
dc.relation.referencesWang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E. H., Narang, S., Chowdhery, A., y Zhou, D. (2023). Self-Consistency Improves Chain of Thought Reasoning in Language Models. Proceedings of the 11th International Conference on Learning Representations (ICLR 2023). https: / /arxiv.org /abs / 2203.11171
dc.relation.referencesWei, J., Tay, Y., Bommasani, R., Raffel, C., Zoph, B., Borgeaud, S., Yogatama, D., Bosma, M., Zhou, D., Metzler, D., H. Chi, E., Hashimoto, T., Vinyals, O., Liang, P., Dean, J., y Fedus, W. (2022). Emergent Abilities of Large Language Models [TMLR – published 08/2022]. Transactions on Machine Learning Research, 2022. https://arxiv.org/abs/2206.07682
dc.relation.referencesWei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E., Le, Q., y Zhou, D. (2022). Chainof-Thought Prompting Elicits Reasoning in Large Language Models. En S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho y A. O. Matus (Eds.), Advances in Neural Information Processing Systems (pp. 24824-24837, Vol. 35). Curran Associates, Inc.
dc.relation.referencesWhite, J., Liu, Q., Xiong, C., Zhu, L., Hou, Y., Wu, Y.-L., Liu, J.-B., y Schmidt, D. C. (2023). A Prompt Pattern Catalog to Enhance Prompt Engineering with ChatGPT
dc.relation.referencesWirth, R., e Hipp, J. (2000). CRISP-DM: Towards a standard process model for data mining. Proceedings of the 4th International Conference on the Practical Applications of Knowledge Discovery and Data Mining, 29-39.
dc.relation.referencesWu, S., Sun, F., Zhang, W., Xie, X., y Cui, B. (2023). Graph Neural Networks in Recommender Systems: A Survey. ACM Computing Surveys, 55(5), 97:1-97:37. https://doi.org/10.1145/3535101
dc.relation.referencesWu, Z., Pan, S., Chen, F., Long, G., Zhang, C., y Yu, P. S. (2021). A Comprehensive Survey on Graph Neural Networks. IEEE Transactions on Neural Networks and Learning Systems, 32(1), 4-24.
dc.relation.referencesYao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T. L., Cao, Y., y Narasimhan, K. (2023). Tree of Thoughts: Deliberate Problem Solving with Large Language Models [Paper ID 145]. Proceedings of the 37th Conference on Neural Information Processing Systems (NeurIPS 2023). https://arxiv.org/abs/ 2305.10601
dc.relation.referencesYing, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W. L., y Leskovec, J. (2018). Graph Convolutional Neural Networks for Web-Scale Recommender Systems. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’18), 974-983. https://doi.org/10.1145/3219819.3219890
dc.relation.referencesZhang, H., Dong, Y., Xiao, C., y Oyamada, M. (2023). Large Language Models as Data Preprocessors [Preprint]. https://arxiv.org/abs/2305.10122
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-CompartirIgual 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::003 - Sistemas
dc.subject.lembLENGUAJES DE PROGRAMACION (COMPUTADORES ELECTRONICOS)spa
dc.subject.lembProgramming languages (electronic computers)eng
dc.subject.lembPROCESAMIENTO ELECTRONICO DE DATOSspa
dc.subject.lembElectronic data processingeng
dc.subject.lembINTELIGENCIA ARTIFICIALspa
dc.subject.lembArtificial intelligenceeng
dc.subject.lembAPRENDIZAJE SUPERVISADO (APRENDIZAJE AUTOMATICO)spa
dc.subject.lembSupervised learning (Machine learning)eng
dc.subject.lembAPRENDIZAJE AUTOMATICO (INTELIGENCIA ARTIFICIAL)spa
dc.subject.lembMachine learningeng
dc.subject.lembCOMERCIO ELECTRONICOspa
dc.subject.lembElectronic commerceeng
dc.subject.lembMERCADEO POR INTERNETspa
dc.subject.lembInternet marketingeng
dc.subject.lembEQUIPOS PARA DEPORTESspa
dc.subject.lembSporting goodseng
dc.subject.proposalLLMspa
dc.subject.proposalAnálisis Competitivospa
dc.subject.proposalExtracción de Atributosspa
dc.subject.proposalEquivalencia Funcionalspa
dc.subject.proposalLLM (Large Language Model)eng
dc.subject.proposalCompetitive Analysiseng
dc.subject.proposalAttribute Extractioneng
dc.subject.proposalFunctional-Equivalenceeng
dc.titleAnálisis automatizado de comparación de productos con técnicas de procesamiento de lenguaje natural para artículos deportivos extraídos de canales de comercio electrónicospa
dc.title.translatedAutomated product comparison analysis using natural language processing techniques for sporting goods extracted from E-commerce channelseng
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentPúblico general
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1013653882.2025.pdf
Tamaño:
1.2 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería de Sistemas y Computación

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: