Evaluación del desempeño sísmico de estructuras de acero que emplean dispositivos de disipación de energía tipo mariposa en diafragmas de sección compuesta

dc.contributor.advisorPadilla Llanos, David Alberto
dc.contributor.advisorMolina Villegas, Juan Camilo
dc.contributor.authorAcevedo Mejía, Dorian Augusto
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000185584spa
dc.contributor.orcidAcevedo Mejía, Dorian Augusto [0000-0001-6699-3058]spa
dc.contributor.orcidMolina Villegas, Juan Camilo [0000-0001-9546-2299]spa
dc.contributor.researchgatehttps://www.researchgate.net/profile/Dorian-Acevedo-Mejiaspa
dc.date.accessioned2023-01-24T14:44:36Z
dc.date.available2023-01-24T14:44:36Z
dc.date.issued2020
dc.descriptionilustraciones, diagramasspa
dc.description.abstractEn este proyecto se analizan los beneficios del comportamiento sísmico en estructuras de acero conectando los sistemas de resistencia a la fuerza lateral vertical con los diafragmas a través de disipadores de energía en forma de mariposa. Para ello, se llevaron a cabo análisis sobre diferentes configuraciones estructurales, comparando la simulación de elementos finitos con estructuras diseñadas con sistemas convencionales de resistencia a la fuerza lateral ("pórticos arriostrados concéntricamente" como arriostramiento X, arriostramiento en V y arriostramiento en V invertido) de acuerdo con la ASCE7 -16. Con el fin de ampliar el conocimiento para los ingenieros estructurales e investigadores del comportamiento sísmico de las estructuras de acero que utilizan elementos de disipación de energía en sus diafragmas, se generará un ejemplo de aplicación para servir como guía de análisis no lineal y además, mostrar los beneficios con respecto a la reducción del cortante basal, derivas, aceleraciones en los diafragmas y tensiones en los elementos estructurales que podrían conducir a una reducción del peso de la estructura y, en consecuencia, tener beneficios económicos. (Texto tomado de la fuente)spa
dc.description.abstractThe main objective of this project is to explore the benefits of the seismic behavior on steel structures by connecting the vertical lateral force resistance systems with the diaphragms through butterfly shaped energy dissipators. For this, studies on different structural configurations, will be carried out, comparing finite element simulation against structures designed with conventional lateral force resistance systems (“Special Concentrically braced frames” such as X bracing, V bracing and inverted V bracing) according to the ASCE7-16. In order to extend the knowledge to structural engineers and researchers of the seismic behavior of the steel structures using energy dissipation elements in their diaphragms, an application example will be generated to serve as an analysis guide and to show the benefits regarding the reduction of the basal shear, drifts, accelerations in the diaphragms, and stresses in the structural elements which would potentially lead to a reduction of the weight of the structure and consequently to have economic benefits.eng
dc.description.curricularareaÁrea Curricular de Ingeniería Civilspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Estructurasspa
dc.description.researchareaEstructuras de Acero- Comportamiento No-Lineal-Control Estructuralspa
dc.format.extentxvi, 99 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83085
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Estructurasspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesASCE, Minimum Design Loads and Associated Criteria for Buildings and Other Structures. American Society of Civil Engineers, 2017. doi: 10.1061/9780784412916.spa
dc.relation.referencesM. R. Eatherton, “Large-scale cyclic and hybrid simulation testing and development of a controlled-rocking steel building system with replaceable fuses,” p. 893, 2010, [Online]. Available: http://hdl.handle.net/2142/16718spa
dc.relation.referencesM. T. Al Harash, A. Rathore, and N. Panahshahi, “Inelastic Seismic Response of Rectangular RC Buildings with Plan Aspect Ratio of 3:1 with Floor Diaphragm Openings,” Struct. Congr. 2010, vol. 41130, no. March, pp. 1971–1980, 2010, doi: 10.1061/41130(369)179.spa
dc.relation.referencesR. I. Skinner, J. M. Kelly, and A. J. Heine, “Hysteretic dampers for earthquake‐resistant structures,” Earthq. Eng. Struct. Dyn., vol. 3, no. 3, pp. 287–296, 1974, doi: 10.1002/eqe.4290030307.spa
dc.relation.referencesG. Tsampras, R. Sause, R. B. Fleischman, and J. I. Restrepo, “An earthquake-resistant building system to reduce floor accelerations,” New Zeal. Soc. Earthq. Eng., pp. 445–453, 2015, [Online]. Available: http://www.nzsee.org.nz/db/2015/Papers/O-48_Tsampras.pdfspa
dc.relation.referencesD. Zhang, R. B. Fleischman, and Z. Zhang, “Analytical Investigation of Seismic Behavior of Building Structures with an Inertial Force-Limiting Floor Anchorage System,” Int. J. Eng. Technol., vol. 8, no. 4, pp. 234–240, 2016, doi: 10.7763/IJET.2016.V8.891.spa
dc.relation.referencesC. S. Walter Yang, R. DesRoches, and R. T. Leon, “Design and analysis of braced frames with shape memory alloy and energy-absorbing hybrid devices,” Eng. Struct., vol. 32, no. 2, pp. 498–507, 2010, doi: 10.1016/j.engstruct.2009.10.011.spa
dc.relation.referencesC. Zhang, T. C. Steele, and L. D. A. Wiebe, “Design-level estimation of seismic displacements for self-centering SDOF systems on stiff soil,” Eng. Struct., vol. 177, no. February 2017, pp. 431–443, 2018, doi: 10.1016/j.engstruct.2018.09.067.spa
dc.relation.referencesConstantin Christopoulos; Andre Filiatrault, Principles of Passive Supplemental Damping and Seismic Isolation. 2007spa
dc.relation.referencesR. S. Henry, S. Sritharan, and J. M. Ingham, “Recentering requirements for the seismic design of self-centering systems,” 9th Pacific Conf. Earthq. Eng. Build. an Earthquake-Resilient Soc., no. 104, 2011.spa
dc.relation.referencesB. Wang, S. Zhu, C. X. Qiu, and H. Jin, “High-performance self-centering steel columns with shape memory alloy bolts: Design procedure and experimental evaluation,” Eng. Struct., vol. 182, no. December 2018, pp. 446–458, 2019, doi: 10.1016/j.engstruct.2018.12.077.spa
dc.relation.referencesD. A. Padilla-llano and J. F. Hajjar, “Postdoctoral Research Associate Category : Engineering and Technology Abstract ID # 1953 Composite Floor Diaphragms with Energy Dissipating Fuses in the Seismic Performance of Steel Buildings Example of Energy Dissipating Fuses,” no. April, p. 20014397, 2015, doi: 10.4231/D3FQ9Q536.spa
dc.relation.referencesZ. Zhang et al., “Shake-table test performance of an inertial force-limiting floor anchorage system,” Earthq. Eng. Struct. Dyn., vol. 47, no. 10, pp. 1987–2011, 2018, doi: 10.1002/eqe.3047spa
dc.relation.referencesATC, “FEMA P-695: Quantification of building seismic performance factors.,” no. June, p. 421, 2009, [Online]. Available: http://www.fema.gov/media-library-data/20130726-1716-25045-9655/fema_p695.pdfspa
dc.relation.referencesN. Chancellor, M. Eatherton, D. Roke, and T. Akbaş, “Self-Centering Seismic Lateral Force Resisting Systems: High Performance Structures for the City of Tomorrow,” Buildings, vol. 4, no. 3, pp. 520–548, 2014, doi: 10.3390/buildings4030520.spa
dc.relation.referencesG. C. Clifton, H. Nashid, G. Ferguson, M. Hodgson, C. Seal, and G. A. Macrae, “Performance of Eccentrically Braced Framed Buildings In The Christchurch Earthquake Series of 2010 / 2011,” 15 World Conf. Earthq. Eng., no. February, 2012.spa
dc.relation.referencesA. S. Elnashai, FUNDAMENTALS OF EARTHQUAKE, 2008th ed. United Kingdom, 2008.spa
dc.relation.referencesR. Sabelli, T. a Sabol, and S. W. Easterling, “Seismic Design of Composite Steel Deck and Concrete-Filled Diaphragms - A Guide for Practicing Engineers,” NEHRP Seism. Des. Tech. Br. No. 5, no. 5, p. 38, 2011, doi: 10.1002/2015WR017408.Receivedspa
dc.relation.referencesH. Foroughi, G. Wei, S. Torabian, M. R. Eatherton, and B. W. Schafer, “Seismic Demands on Steel Diaphragms for 3D Archetype Buildings with Concentric Braced Frames,” pp. 1–8.spa
dc.relation.referencesG. Tsampras, R. Sause, R. B. Fleischman, J. I. Restrepo, and D. Zhang, “Deformable Connection for Earthquake-Resistant Building Systems,” no. April 2016, pp. 1–8, 2015.spa
dc.relation.referencesP. O’Brien, S. Florig, C. D. Moen, and M. R. Eatherton, “Characterizing the Load Deformation Behavior of Steel Deck Diaphragms,” Proc. Twentythird Int. Spec. Conf. Cold-Formed Steel Struct., pp. 1–15, 2016spa
dc.relation.referencesN. F. Roth, “Parametric Study of Self-Centering Concentrically- Braced Frames in Response to Earthquakes,” 2015.spa
dc.relation.referencesK. S. Hall, M. R. Eatherton, and J. Hajjar, “Nonlinear Behavior of Controlled Rocking Steel-Framed Building Systems with Replaceable Energy Dissipating Fuses,” Newmark Struct. Eng. Lab. Rep. Ser., no. NSEL-026, pp. 1–45, 2010, doi: 10.1080/00380768.2004.10408490.spa
dc.relation.referencesC. Naresh, P. S. C. Bose, and C. S. P. Rao, “Shape memory alloys: A state of art review,” IOP Conf. Ser. Mater. Sci. Eng., vol. 149, no. 1, 2016, doi: 10.1088/1757-899X/149/1/012054spa
dc.relation.referencesM. S. Speicher, R. DesRoches, and R. T. Leon, “Investigation of an articulated quadrilateral bracing system utilizing shape memory alloys,” J. Constr. Steel Res., vol. 130, pp. 65–78, 2017, doi: 10.1016/j.jcsr.2016.11.022spa
dc.relation.referencesP. M. Clayton et al., “Self-centering steel plate shear walls for improving seismic resilience,” Front. Struct. Civ. Eng., vol. 10, no. 3, pp. 283–290, 2016, doi: 10.1007/s11709-016-0344-z.spa
dc.relation.referencesD. M. Dowden and M. Bruneau, “Quasi-static cyclic testing and analytical investigation of steel plate shear walls with different post-tensioned beam-to-column rocking connections,” Eng. Struct., vol. 187, no. November 2018, pp. 43–56, 2019, doi: 10.1016/j.engstruct.2019.02.048spa
dc.relation.referencesB. Erkmen and A. E. Schultz, “Self-centering behavior of unbonded, post-tensioned precast concrete shear walls,” J. Earthq. Eng., vol. 13, no. 7, pp. 1047–1064, 2009, doi: 10.1080/13632460902859136.spa
dc.relation.referencesF. J. Perez, S. Pessiki, and R. Sause, “Lateral load behavior of unbonded post-tensioned precast concrete walls with vertical joints,” PCI J., vol. 49, no. 2, pp. 48–64, 2004, doi: 10.15554/pcij.03012004.48.64.spa
dc.relation.referencesM. A. Eusuf, K. A. Rashid, W. M. Noor, and A. Al Hasan, “Shear wall construction in buildings: A conceptual framework on the aspect of analysis and design,” Appl. Mech. Mater., vol. 268, no. PART 1, pp. 706–711, 2013, doi: 10.4028/www.scientific.net/AMM.268-270.706spa
dc.relation.referencesL. Xu, S. Xiao, and Z. Li, “Hysteretic behavior and parametric studies of a self-centering RC wall with disc spring devices,” Soil Dyn. Earthq. Eng., vol. 115, no. September, pp. 476–488, 2018, doi: 10.1016/j.soildyn.2018.09.017.spa
dc.relation.referencesX. Geng and W. Zhou, “Cyclic experimental response of self-centering concrete frames with slotted columns,” Constr. Build. Mater., vol. 195, pp. 363–375, 2019, doi: 10.1016/j.conbuildmat.2018.11.079.spa
dc.relation.referencesY. Shen, X. Liu, Y. Li, and J. Li, “Cyclic tests of precast post-tensioned concrete filled steel tubular (PCFT) columns with internal energy-dissipating bars,” Eng. Struct., vol. 229, no. December 2020, p. 111651, 2021, doi: 10.1016/j.engstruct.2020.111651.spa
dc.relation.referencesR. Wen, O. Seker, B. Akbas, and J. Shen, “Designs of Special Concentrically Braced Frame Using AISC 341-05 and AISC 341-10,” Pract. Period. Struct. Des. Constr., vol. 21, no. 1, p. 04015011, 2015, doi: 10.1061/(asce)sc.1943-5576.0000256.spa
dc.relation.referencesP. O’brien, M. R. Eatherton, and W. S. Easterling, “Characterizing the load-deformation behavior of steel deck diaphragms using past test data SDII Steel Diaphragm Innovation Initiative,” 2017. [Online]. Available: https://jscholarship.library.jhu.edu/handle/1774.2/40427.spa
dc.relation.referencesFEMA, “NEHRP Recommended seismic provisions for new buildings and other structures,” Build. Seism. Saf. Counc., vol. II, no. September, p. 388, 2020, [Online]. Available: http://www.fema.gov/media-library-data/20130726-1730-25045-1580/femap_750.pdfspa
dc.relation.referencesG. Wei et al., “Development of Steel Deck Diaphragm Seismic Design Provisions for ASCE 41/AISC 342,” Cold-formed steel Res. Consort. Rep. Ser., no. January, p. 21, 2019.spa
dc.relation.referencesT. L. Bruce, “Behavior of post-tensioning strand systems subjected to inelastic cyclic loading,” Thesis Submitt. to Fac. Virginia Polytech. Inst. State Univ. Partial fulfillment Requir. degree Master Sci., 2014, [Online]. Available: http://weekly.cnbnews.com/news/article.html?no=124000spa
dc.relation.referencesM. R. Eatherton and J. F. Hajjar, “Large-Scale Cyclic and Hybrid Simulation Testing and Development of a Controlled- Rocking Steel Building System with Replaceable Fuses. Report No. NSEL-025.,” 2010.spa
dc.relation.referencesX. Ma, E. Borchers, A. Pena, H. Krawinkler, S. Billington, and G. G. Deierlein, “Design and Behavior of Steel Shear Plates with Openings as Energy-Dissipating Fuses,” Intern. Report, John A. Blume Earthq. Eng. Center, Stanford Univ., no. 17, 2010.spa
dc.relation.referencesL. Liu, J. Zhao, and S. Li, “Nonlinear displacement ratio for seismic design of self-centering buckling-restrained braced steel frame considering trilinear hysteresis behavior,” Eng. Struct., vol. 158, no. August 2017, pp. 199–222, 2018, doi: 10.1016/j.engstruct.2017.12.026.spa
dc.relation.referencesMatthew roy eatherton, “Large-scale cyclic and hybrid simulation testing and development of a controlled rocking steel building system with replaceable fuses,” Proc. - 2014 IEEE Int. Conf. Big Data, IEEE Big Data 2014, no. September, pp. 736–741, 2015, doi: 10.1109/BigData.2014.7004298.spa
dc.relation.referencesH. Gholi Pour, M. Ansari, and M. Bayat, “A new lateral load pattern for pushover analysis in structures,” Earthq. Struct., vol. 6, no. 4, pp. 437–455, 2014, doi: 10.12989/eas.2014.6.4.437.spa
dc.relation.referencesF. R. Rofooei, “COMPARISON OF STATIC AND DYNAMIC PUSHOVER ANALYSIS IN ASSESSMENT OF THE TARGET DISPLACEMENT,” 2006. [Online]. Available: www.SID.irspa
dc.relation.referencesG. Chu, W. Wang, and Y. Zhang, “Nonlinear seismic performance of beam-through steel frames with self-centering modular panel and replaceable hysteretic dampers,” J. Constr. Steel Res., vol. 170, p. 106091, 2020, doi: 10.1016/j.jcsr.2020.106091.spa
dc.relation.referencesM. Xian, H. Krawinkler, and G. G. Deierlein, “Seismic Design and Behavior of Self-Centering Braced Frame with Controlled Rocking and Energy–Dissipating Fuses,” John A. Blume Earthq. Eng. Cent., no. August, p. 438, 2010, [Online]. Available: http://nees.illinois.edu/hosted/ControlledRocking/papers/Ma Xiang Dissertation 2010 Stanford University.pdfspa
dc.relation.referencesD. A. Padilla-Llano, C. D. Moen, and M. R. Eatherton, “Cyclic axial response and energy dissipation of cold-formed steel framing members,” Thin-Walled Struct., vol. 78, pp. 95–107, 2014, doi: 10.1016/j.tws.2013.12.011.spa
dc.relation.referencesS. Karimzadeh, A. Askan, A. Yakut, and G. Ameri, “Assessment of alternative simulation techniques in nonlinear time history analyses of multi-story frame buildings: A case study,” Soil Dyn. Earthq. Eng., vol. 98, pp. 38–53, Jul. 2017, doi: 10.1016/j.soildyn.2017.04.004.spa
dc.relation.referencesM. N. Eldin, A. J. Dereje, and J. Kim, “Seismic retrofit of RC buildings using self-centering PC frames with friction-dampers,” Eng. Struct., vol. 208, Apr. 2020, doi: 10.1016/j.engstruct.2019.109925.spa
dc.relation.referencesN. D. Dao, H. Nguyen-Van, T. H. A. Nguyen, and A. B. Chung, “A new statistical equation for predicting nonlinear time history displacement of seismic isolation systems,” Structures, vol. 24, pp. 177–190, Apr. 2020, doi: 10.1016/j.istruc.2020.01.019.spa
dc.relation.referencesG. Wei, M. R. Eatherton, H. Foroughi, S. Torabian, and B. W. Schafer, “Seismic Behavior of Steel BRBF Buildings Including Consideration of Diaphragm Inelasticity,” 2020. [Online]. Available: https://jscholarship.library.jhu.edu/handle/1774.2/40427.spa
dc.relation.referencesS. Mazzoni, F. McKenna, M. H. Scott, and G. L. Fenves, “Open System for Earthquake Engineering Simulation (OpenSEES) user command-language manual,” Pacific Earthq. Eng. Res. Cent., p. 465, 2006.spa
dc.relation.referencesD. A. Padilla-llano, A Framework for Cyclic Simulation of Thin-Walled Cold-Formed Steel Members in Structural Systems. 2015spa
dc.relation.referencesR. L. Iman, “Latin Hypercube Sampling,” Encycl. Quant. Risk Anal. Assess., no. January 1999, 2008, doi: 10.1002/9780470061596.risk0299.spa
dc.relation.referencesMcLeod, Núñez-, J. E., and J. H. Barón, “Técnicas estadísticas avanzadas en el análisis de grandes modelos computacionales,” Mecánica Comput., vol. XIX, no. 14, pp. 1–7, 1999.spa
dc.relation.referencesSheikholeslami, “Progressive Latin Hypercube Sampling: An efficient approach for robust sampling-based analysis of environmental models,” Environ. Model. Softw., vol. 93, pp. 109–126, 2017, doi: 10.1016/j.envsoft.2017.03.010.spa
dc.relation.referencesR. Sheikholeslami and S. Razavi, “Progressive Latin Hypercube Sampling: An efficient approach for robust sampling-based analysis of environmental models,” Environ. Model. Softw., vol. 93, pp. 109–126, 2017, doi: 10.1016/j.envsoft.2017.03.010.spa
dc.relation.referencesA. Saltelli et al., Global Sensitivity Analysis. The Primer. 2008. doi: 10.1002/9780470725184.spa
dc.relation.referencesA. Saltelli, S. Tarantola, F. Campolongo, and M. Ratto, Sensitivity analysis in practice: a guide to assessing scientific models (Google eBook). 2004.spa
dc.relation.referencesS. Panda, A. K. Mishra, and U. C. Biswal, “Manganese induced peroxidation of thylakoid lipids and changes in chlorophyll-α fluorescence during aging of cell free chloroplasts in light,” Phytochemistry, vol. 26, no. 12, pp. 3217–3219, 1987, doi: 10.1016/S0031-9422(00)82472-3.spa
dc.relation.referencesE. Lahura, “El Coeficiente De Correlación Y Correlaciones Espúreas,” Univ. Catol. del Perú, pp. 1–64, 2003.spa
dc.relation.referencesC. Araya Alpízar, “Análisis de datos multivariantes con coordenadas paralelas,” Análisis datos multivariantes con Coord. paralelas, vol. 11, no. 16, pp. 81–91, 2011.spa
dc.relation.referencesS. Latinoamericana para la calidad, “Histograma,” pp. 1–7, 2000.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::624 - Ingeniería civilspa
dc.subject.ddc690 - Construcción de edificios::693 - Construcción en tipos específicos de materiales y propósitos específicosspa
dc.subject.lembEstructuras de acerospa
dc.subject.lembBuilding iron and steeleng
dc.subject.proposalSistema estructural autocentrantespa
dc.subject.proposalDisipación de energíaspa
dc.subject.proposalAnálisis no linealspa
dc.subject.proposalDiafragmaspa
dc.subject.proposalFusibles mariposaspa
dc.subject.proposalSelf-centering structural systemeng
dc.subject.proposalEnergy dissipationeng
dc.subject.proposalNonlinear analysiseng
dc.subject.proposalDiaphragmeng
dc.subject.proposalButterfly fuseseng
dc.titleEvaluación del desempeño sísmico de estructuras de acero que emplean dispositivos de disipación de energía tipo mariposa en diafragmas de sección compuestaspa
dc.title.translatedSeismic performance evaluation of steel structures that use butterfly-type energy dissipation devices in composite section diaphragmseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
71371001.2021.pdf
Tamaño:
19.35 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Estructuras

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: