Síntesis de bioMOFs a partir de ácidos fenólicos presentes en residuos agroindustriales de cacao como agentes terapéuticos antioxidantes

dc.contributor.advisorSierra Ávila, César Augusto
dc.contributor.advisorUmaña Pérez, Yadi Adriana
dc.contributor.authorGarzón Serrano, Andrea Yulieth
dc.contributor.cvlacGarzón-Serrano, Andrea Yuliethspa
dc.contributor.orcid0000-0002-0750-0601spa
dc.contributor.researchgroupGrupo de Investigación en Hormonasspa
dc.contributor.researchgroupGrupo de Investigación en Macromoléculasspa
dc.date.accessioned2025-04-22T16:51:56Z
dc.date.available2025-04-22T16:51:56Z
dc.date.issued2024
dc.descriptionilustraciones, diagramas, fotografíasspa
dc.description.abstractEn esta tesis doctoral, inicialmente se describe la síntesis de un novedoso bioMOF y la optimización de la síntesis un bioMOF ya reportado. Síntesis que paralelamente llevaron a la obtención de un material adicional, una estructura de coordinación de zirconio, con características estructurales atractivas para el área de catálisis. En todos estos casos se buscaron condiciones de síntesis escalables y ambientalmente amigables usando ácidos fenólicos (reactivos comerciales) presentes en residuos agroindustriales de cacao. Teniendo en cuenta esto último, se optimizó el proceso de purificación de los ácidos fenólicos, especialmente ácido gálico y ácido protocatéquico, desde los extractos obtenidos de dichos residuos. Adicionalmente, se estudió el potencial de los bioMOFs sintetizados como sistemas de liberación controlada de ligantes y moléculas con interés terapéutico como curcumina y rodamina, y frente a paneles celulares, una de ellas de alta resistencia, en donde se determinó la citotoxicidad frente a cada material sintetizado (Texto tomado de la fuente).spa
dc.description.abstractIn this doctoral thesis, we initially describe the synthesis of a novel bioMOF and the optimization of the synthesis of an already reported bioMOF. Syntheses that in parallel led to the obtaining of an additional material, a zirconium coordination structure, with attractive structural features for the area of catalysis. In all these cases, scalable and environmentally friendly synthesis conditions were sought using phenolic acids (commercial reagents) present in agroindustrial cocoa residues. Considering the latter, the purification process of phenolic acids, especially gallic acid and protocatechuic acid, from the extracts obtained from these residues was optimized. Additionally, the potential of the synthesized bioMOFs was studied as controlled release systems of binders and molecules with therapeutic interest such as curcumin and rhodamine, and against cellular panels, one of them of high resistance, where the cytotoxicity against each synthesized material was determined.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctora en Cienciasspa
dc.description.researchareaSíntesis de materialesspa
dc.format.extent145 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88048
dc.language.isospaspa
dc.publisherUniversidad Nacional de colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Químicaspa
dc.relation.referencesTulande, F. En Cumaribo, Vichada, se graduaron 250 familias en sustitución de cultivos ilícitos, y ahora le apuestan al cacao https://id.presidencia.gov.co/Paginas/prensa/2020/En-Cumaribo-Vichada-se-graduaron-250-familias-en-sustitucion-de-cultivos-ilicitos-y-ahora-le-apuestan-al-cacao-200304.aspxspa
dc.relation.referencesFEDECACAO. Produccion Nacional de Cacao https://www.fedecacao.com.co/economianacional.spa
dc.relation.referencesJozinović, A.; Panak Balentić, J.; Ačkar, Đ.; Babić, J.; Pajin, B.; Miličević, B.; Guberac, S.; Vrdoljak, A.; Šubarić, D. Cocoa Husk Application in the Enrichment of Extruded Snack Products. J. Food Process. Preserv. 2019, 43 (2), 1–9. https://doi.org/10.1111/jfpp.13866.spa
dc.relation.referencesAgencia de Noticias UN. Jabones, mermeladas o mascarillas a partir de residuos del cacao https://agenciadenoticias.unal.edu.co/detalle/article/jabones-mermeladas-o-mascarillas-a-partir-de-residuos-del-cacao.html.spa
dc.relation.referencesPrada Salazar, J. L.; Manrique Acero, L. C.; Santos Cepeda, J. X. Análisis de Costos de Producción Agrícola de Cacao En Función de Los Precios de Mercado, La Productividad Del Cultivo, El Beneficio Económico y La Rentabilidad, Univeridad Cooperativa de Colombia, 2015.spa
dc.relation.referencesVásquez, Z. S.; Carvalho, D. P. De; Pereira, G. V. M.; Vandenberghe, L. P. S.; Oliveira, P. Z. De; Tiburcio, P. B.; Rogez, H. L. G.; Góes, A.; Soccol, C. R. Biotechnological Approaches for Cocoa Waste Management : A Review. Waste Manag. 2019, 90, 72–83. https://doi.org/10.1016/j.wasman.2019.04.030.spa
dc.relation.referencesFranco, M.; Ramírez, M.; García, R.; Bernal, M.; Espinosa, B.; Solís, J.; Durán, C. Reaprovechamiento Integral de Residuos Agroindustriales: Cáscara y Pulpa de Cacao Para La Producción de Pectinas. Rev. Latinoam. el Ambient. y las Ciencias 2010, 1 (2), 45–66.spa
dc.relation.referencesTapia Yánez, C. A. Aprovechamiento de Residuos Agroindustriales, Cascarilla de Cacao (Theobroma Cacao l.) Variedad Arriba y Ccn51 Para La Elaboración de Una Infusión, Universidad Técnica de Ambato, 2015.spa
dc.relation.referencesRebollo-Hernanz, M.; Zhang, Q.; Aguilera, Y.; Martín-Cabrejas, M. A.; Gonzalez de Mejia, E. Relationship of the Phytochemicals from Coffee and Cocoa By-Products with Their Potential to Modulate Biomarkers of Metabolic Syndrome In Vitro. Antioxidants 2019, 8 (8), 279. https://doi.org/10.3390/antiox8080279.spa
dc.relation.referencesPorto de Souza Vandenberghe, L.; Kley Valladares-Diestra, K.; Amaro Bittencourt, G.; Fátima Murawski de Mello, A.; Sarmiento Vásquez, Z.; Zwiercheczewski de Oliveira, P.; Vinícius de Melo Pereira, G.; Ricardo Soccol, C. Added-Value Biomolecules’ Production from Cocoa Pod Husks: A Review. Bioresour. Technol. 2022, 344 (October 2021). https://doi.org/10.1016/j.biortech.2021.126252.spa
dc.relation.referencesMcKinlay, A. C.; Morris, R. E.; Horcajada, P.; Férey, G.; Gref, R.; Couvreur, P.; Serre, C. BioMOFs: Metal-Organic Frameworks for Biological and Medical Applications. Angew. Chemie - Int. Ed. 2010, 49 (36), 6260–6266. https://doi.org/10.1002/anie.201000048.spa
dc.relation.referencesRojas, S.; Arenas-vivo, A.; Horcajada, P. Metal-Organic Frameworks : A Novel Platform for Combined Advanced Therapies. Coord. Chem. Rev. 2019, 388, 202–226. https://doi.org/10.1016/j.ccr.2019.02.032.spa
dc.relation.referencesRojas, S.; Devic, T.; Horcajada, P. Metal Organic Frameworks Based on Bioactive Components. J. Mater. Chem. B 2017, 5 (14), 2560–2573. https://doi.org/10.1039/C6TB03217F.spa
dc.relation.referencesCai, H.; Huang, Y. L.; Li, D. Biological Metal–Organic Frameworks: Structures, Host–Guest Chemistry and Bio-Applications. Coord. Chem. Rev. 2019, 378, 207–221. https://doi.org/10.1016/j.ccr.2017.12.003.spa
dc.relation.referencesIsmail, M.; Bustam, M. A.; Yeong, Y. F. Gallate-Based Metal–Organic Frameworks, a New Family of Hybrid Materials and Their Applications: A Review. Crystals 2020, 10 (11), 1–16. https://doi.org/10.3390/cryst10111006.spa
dc.relation.referencesAngkawijaya, A. E.; Bundjaja, V.; Santoso, S. P.; Go, A. W.; Lin, S. P.; Cheng, K. C.; Soetaredjo, F. E.; Ismadji, S. Biocompatible and Biodegradable Copper-Protocatechuic Metal-Organic Frameworks as Rifampicin Carrier. Biomater. Adv. 2023, 146 (December 2022), 213269. https://doi.org/10.1016/j.bioadv.2022.213269.spa
dc.relation.referencesZeraati, M.; Rahdar, A.; Medina, D. I.; Sargazi, G. Synthesis of Al-Based Metal-Organic Framework in Water With Caffeic Acid Ligand and NaOH as Linker Sources With Highly Efficient Anticancer Treatment. Front. Chem. 2021, 9 (November 2021), 1–9. https://doi.org/10.3389/fchem.2021.784461.spa
dc.relation.referencesWang, H. S.; Wang, Y. H.; Ding, Y. Development of Biological Metal-Organic Frameworks Designed for Biomedical Applications: From Bio-Sensing/Bio-Imaging to Disease Treatment. Nanoscale Adv. 2020, 2 (9), 3788–3797. https://doi.org/10.1039/d0na00557f.spa
dc.relation.referencesChattopadhyay, K. A Review on Zirconium-Based Metal–Organic Frameworks: Synthetic Approaches and Biomedical Applications. Mater. Adv. Adv. 2024, 5, 51–67. https://doi.org/10.1039/d3ma00735a.spa
dc.relation.referencesCapanoglu, E.; Nemli, E.; Tomas-Barberan, F. Novel Approaches in the Valorization of Agricultural Wastes and Their Applications. J. Agric. Food Chem. 2022, 70 (23), 6787–6804. https://doi.org/10.1021/acs.jafc.1c07104.spa
dc.relation.referencesSaravanan, A.; Karishma, S.; Senthil Kumar, P.; Rangasamy, G. A Review on Regeneration of Biowaste into Bio-Products and Bioenergy: Life Cycle Assessment and Circular Economy. Fuel 2023, 338 (November 2022), 127221. https://doi.org/10.1016/j.fuel.2022.127221.spa
dc.relation.referencesRao, P.; Rathod, V. Valorization of Food and Agricultural Waste: A Step towards Greener Future. Chem. Rec. 2019, 19 (9), 1858–1871. https://doi.org/10.1002/tcr.201800094.spa
dc.relation.referencesInternational Cocoa Organization (ICCO). Statistics https://www.icco.org/statistics/#production.spa
dc.relation.referencesGutiérrez-Macías, P.; Mirón-Mérida, V. A.; Rodríguez-Nava, C. O.; Barragán-Huerta, B. E. Cocoa: Beyond Chocolate, a Promising Material for Potential Value-Added Products. Valorization Agri-Food Wastes By-Products Recent Trends, Innov. Sustain. Challenges 2021, 267–288. https://doi.org/10.1016/B978-0-12-824044-1.00038-6.spa
dc.relation.referencesGuirlanda, C. P.; da Silva, G. G.; Takahashi, J. A. Cocoa Honey: Agro-Industrial Waste or Underutilized Cocoa by-Product? Futur. Foods 2021, 4 (July), 100061. https://doi.org/10.1016/j.fufo.2021.100061.spa
dc.relation.referencesSaavedra-Sanabria, O. L.; Durán, D.; Cabezas, J.; Hernández, I.; Blanco-Tirado, C.; Combariza, M. Y. Cellulose Biosynthesis Using Simple Sugars Available in Residual Cacao Mucilage Exudate. Carbohydr. Polym. 2021, 274 (April), 1–12. https://doi.org/10.1016/j.carbpol.2021.118645.spa
dc.relation.referencesSánchez, M.; Laca, A.; Laca, A.; Díaz, M. Cocoa Bean Shell as Promising Feedstock for the Production of Poly(3-Hydroxybutyrate) (PHB). Appl. Sci. 2023, 13 (2). https://doi.org/10.3390/app13020975.spa
dc.relation.referencesRojo-poveda, O.; Barbosa-pereira, L.; Zeppa, G.; St, C. Cocoa Bean Shell — A By-Product with Nutritional. Mdpi 2020, 1–29.spa
dc.relation.referencesRojo-Poveda, O.; Barbosa-Pereira, L.; Mateus-Reguengo, L.; Bertolino, M.; Stévigny, C.; Zeppa, G. Effects of Particle Size and Extraction Methods on Cocoa Bean Shell Functional Beverage. Nutrients 2019, 11 (4), 1–19. https://doi.org/10.3390/nu11040867.spa
dc.relation.referencesSoares, T. F.; Oliveira, M. B. P. P. Cocoa By-Products: Characterization of Bioactive Compounds and Beneficial Health Effects. Molecules 2022, 27 (5). https://doi.org/10.3390/molecules27051625.spa
dc.relation.referencesMartínez, R.; Torres, P.; Meneses, M. A.; Figueroa, J. G.; Pérez-Álvarez, J. A.; Viuda-Martos, M. Chemical, Technological and in Vitro Antioxidant Properties of Cocoa (Theobroma Cacao L.) Co-Products. Food Res. Int. 2012, 49 (1), 39–45. https://doi.org/10.1016/j.foodres.2012.08.005.spa
dc.relation.referencesValadez-Carmona, L.; Plazola-Jacinto, C. P.; Hernández-Ortega, M.; Hernández-Navarro, M. D.; Villarreal, F.; Necoechea-Mondragón, H.; Ortiz-Moreno, A.; Ceballos-Reyes, G. Effects of Microwaves, Hot Air and Freeze-Drying on the Phenolic Compounds, Antioxidant Capacity, Enzyme Activity and Microstructure of Cacao Pod Husks (Theobroma Cacao L.). Innov. Food Sci. Emerg. Technol. 2017, 41, 378–386. https://doi.org/10.1016/j.ifset.2017.04.012.spa
dc.relation.referencesCampos-Vega, R.; Nieto-Figueroa, K. H.; Oomah, B. D. Cocoa (Theobroma Cacao L.) Pod Husk: Renewable Source of Bioactive Compounds. Trends Food Sci. Technol. 2018, 81, 172–184. https://doi.org/10.1016/j.tifs.2018.09.022.spa
dc.relation.referencesFreund, R.; Zaremba, O.; Arnauts, G.; Ameloot, R.; Skorupskii, G.; Dincă, M.; Bavykina, A.; Gascon, J.; Ejsmont, A.; Goscianska, J.; Kalmutzki, M.; Lächelt, U.; Ploetz, E.; Diercks, C. S.; Wuttke, S. The Current Status of MOF and COF Applications. Angew. Chemie - Int. Ed. 2021, 60 (45), 23975–24001. https://doi.org/10.1002/anie.202106259.spa
dc.relation.referencesFurukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The Chemistry and Applications of Metal-Organic Frameworks. Science (80-. ). 2013, 341 (6149). https://doi.org/10.1126/science.1230444.spa
dc.relation.referencesRubio-Martinez, M.; Avci-Camur, C.; Thornton, A. W.; Imaz, I.; Maspoch, D.; Hill, M. R. New Synthetic Routes towards MOF Production at Scale. Chem. Soc. Rev. 2017, 46 (11), 3453–3480. https://doi.org/10.1039/c7cs00109f.spa
dc.relation.referencesHao, F.; Yan, Z.; Yan, X. Recent Advances in Research on the Effect of Physicochemical Properties on the Cytotoxicity of Metal – Organic Frameworks. Small Sci. 2022, 2200044. https://doi.org/10.1002/smsc.202200044.spa
dc.relation.referencesSharmin, E.; Zafar, F. Introductory Chapter: Metal Organic Frameworks (MOFs). In Metal-Organic Frameworks; 2016. https://doi.org/10.5772/64797.spa
dc.relation.referencesJulien, P. A.; Mottillo, C.; Friščić, T. Metal-Organic Frameworks Meet Scalable and Sustainable Synthesis. Green Chem. 2017, 19 (12), 2729–2747. https://doi.org/10.1039/c7gc01078h.spa
dc.relation.referencesLiu, J.; Li, Y.; Lou, Z. Recent Advancements in MOF/Biomass and Bio-MOF Multifunctional Materials: A Review. Sustain. 2022, 14 (10), 1–17. https://doi.org/10.3390/su14105768.spa
dc.relation.referencesZhao, X.; Bu, X.; Wu, T.; Zheng, S. T.; Wang, L.; Feng, P. Zeolitic Metal−Organic Frameworks Based on Amino Acid. Nat. Commun. 2013, 4, 10027–10029. https://doi.org/10.1038/ncomms3344.spa
dc.relation.referencesCarbonell, C.; Stylianou, K. C.; Hernando, J.; Evangelio, E.; Barnett, S. A.; Nettikadan, S.; Imaz, I.; Maspoch, D. Femtolitre Chemistry Assisted by Microfluidic Pen Lithography. Nat. Commun. 2013, 4, 1–7. https://doi.org/10.1038/ncomms3173.spa
dc.relation.referencesBurneo, I.; Stylianou, K. C.; Rodríguez-Hermida, S.; Juanhuix, J.; Fontrodona, X.; Imaz, I.; Maspoch, D. Two New Adenine-Based Co(II) Coordination Polymers: Synthesis, Crystal Structure, Coordination Modes, and Reversible Hydrochromic Behavior. Cryst. Growth Des. 2015, 15 (7), 3182–3189. https://doi.org/10.1021/acs.cgd.5b00218.spa
dc.relation.referencesGassensmith, J. J.; Smaldone, R. A.; Forgan, R. S.; Wilmer, C. E.; Cordes, D. B.; Botros, Y. Y.; Slawin, A. M. Z.; Snurr, R. Q.; Stoddart, J. F. Polyporous Metal-Coordination Frameworks. 2012, No. 4, 6115–6118.spa
dc.relation.referencesHorcajada, P.; Chalati, T.; Serre, C.; Gillet, B.; Sebrie, C.; Baati, T.; Eubank, J. F.; Heurtaux, D.; Clayette, P.; Kreuz, C.; Chang, J. S.; Hwang, Y. K.; Marsaud, V.; Bories, P. N.; Cynober, L.; Gil, S.; Férey, G.; Couvreur, P.; Gref, R. Porous Metal-Organic-Framework Nanoscale Carriers as a Potential Platform for Drug Deliveryand Imaging. Nat. Mater. 2010, 9 (2), 172–178. https://doi.org/10.1038/nmat2608.spa
dc.relation.referencesAnderson, S. L.; Stylianou, K. C. Biologically Derived Metal Organic Frameworks. Coord. Chem. Rev. 2017, 349, 102–128. https://doi.org/10.1016/j.ccr.2017.07.012.spa
dc.relation.referencesMiller, S. R.; Heurtaux, D.; Baati, T.; Horcajada, P.; Grenèche, J. M.; Serre, C. Biodegradable Therapeutic MOFs for the Delivery of Bioactive Molecules. Chem. Commun. 2010, 46 (25), 4526–4528. https://doi.org/10.1039/c001181a.spa
dc.relation.referencesKumar, N.; Goel, N. Phenolic Acids: Natural Versatile Molecules with Promising Therapeutic Applications. Biotechnol. Reports 2019, 24, e00370. https://doi.org/10.1016/j.btre.2019.e00370.spa
dc.relation.referencesKhatri, S.; Paramanya, A.; Ali, A. Phenolic Acids and Their Health-Promoting Activity. Plant Hum. Heal. Vol. 2 2019, 2, 661–680. https://doi.org/10.1007/978-3-030-03344-6_27.spa
dc.relation.referencesZhang, H.; Tsao, R. Dietary Polyphenols, Oxidative Stress and Antioxidant and Anti-Inflammatory Effects. Curr. Opin. Food Sci. 2016, 8, 33–42. https://doi.org/10.1016/j.cofs.2016.02.002.spa
dc.relation.referencesGarcía Beltrán, J. M.; Esteban, M. Á. Nature-Identical Compounds as Feed Additives in Aquaculture. Fish Shellfish Immunol. 2022, 123 (March), 409–416. https://doi.org/10.1016/j.fsi.2022.03.010.spa
dc.relation.referencesDemir, S.; Merve Çepni, H.; Topcu, Y.; Hołyńska, M.; Keskin, S. A Phytochemical-Containing Metal–Organic Framework: Synthesis, Characterization and Molecular Simulations for Hydrogen Adsorption. Inorganica Chim. Acta 2015, 427, 138–143. https://doi.org/10.1016/j.ica.2014.12.010.spa
dc.relation.referencesZeraati, M.; Alizadeh, V.; Chupradit, S.; Chauhan, N. P. S.; Sargazi, G. Green Synthesis and Mechanism Analysis of a New Metal-Organic Framework Constructed from Al (III) and 3,4-Dihydroxycinnamic Acid Extracted from Satureja Hortensis and Its Anticancerous Activities. J. Mol. Struct. 2022, 1250, 131712. https://doi.org/10.1016/j.molstruc.2021.131712.spa
dc.relation.referencesCooper, L.; Hidalgo, T.; Gorman, M.; Lozano-Fernández, T.; Simón-Vázquez, R.; Olivier, C.; Guillou, N.; Serre, C.; Martineau, C.; Taulelle, F.; Damasceno-Borges, D.; Maurin, G.; González-Fernández, Á.; Horcajada, P.; Devic, T. A Biocompatible Porous Mg-Gallate Metal–Organic Framework as an Antioxidant Carrier. Chem. Commun. 2015, No. 27. https://doi.org/10.1039/C5CC00745C.spa
dc.relation.referencesHidalgo, T.; Cooper, L.; Gorman, M.; Lozano-ferna, T.; Simo, R. Crystal Structure Dependent in Vitro Antioxidant Activity of Biocompatible Calcium Gallate MOFs †. J. Mater. Chem. B 2017, 5 (15), 2813–2822. https://doi.org/10.1039/c6tb03101c.spa
dc.relation.referencesSharma, S.; Mittal, Di.; Verma, A. K.; Roy, I. Copper-Gallic Acid Nanoscale Metal-Organic Framework for Combined Drug Delivery and Photodynamic Therapy. ACS Appl. Bio Mater. 2019, 2 (5), 2092–2101. https://doi.org/10.1021/acsabm.9b00116.spa
dc.relation.referencesCooper, L.; Guillou, N.; Martineau, C.; Elkaim, E.; Taulelle, F.; Serre, C.; Devic, T. Zr IV Coordination Polymers Based on a Naturally Occurring Phenolic Derivative. Eur. J. Inorg. Chem. 2014, No. 36, 1–10. https://doi.org/10.1002/ejic.201402891.spa
dc.relation.referencesLin, X.; Ning, E.; Li, X.; Li, Q. Construction of Mixed Carboxylate and Pyrogallate Building Units for Luminescent Metal – Organic Frameworks. Chinese Chem. Lett. 2019. https://doi.org/10.1016/j.cclet.2019.05.055.spa
dc.relation.referencesEchenique-errandonea, E.; Rojas, S.; Abdelkader-fern, K.; Manuel, P.; Mendes, R. F.; Barbosa, P.; Figueiredo, F.; Paz, F. A. A.; Delgado-l, M.; Rodr, A.; Seco, M. Adsorptive Capacity, Inhibitory Activity and Processing Techniques for a Copper-MOF Based on the 3,4-Dihydroxybenzoate Ligand. Molecules 2022, 27.spa
dc.relation.referencesSala, A.; Diouf, M. D. F.; Marchetti, D.; Pasquale, L.; Gemmi, M. Mechanochemical Synthesis and Three-Dimensional Electron Diffraction Structure Solution of a Novel Cu-Based Protocatechuate Metal − Organic Framework. Cryst. Growth Des. 2024, 24, 3246–3255. https://doi.org/10.1021/acs.cgd.3c01494.spa
dc.relation.referencesRahim, M. A.; Kristufek, S. L.; Pan, S.; Richardson, J. J.; Caruso, F. Phenolic Building Blocks for the Assembly of Functional Materials. Angew. Chemie - Int. Ed. 2019, 58 (7), 1904–1927. https://doi.org/10.1002/anie.201807804.spa
dc.relation.referencesKumar, S.; Jain, S.; Nehra, M.; Dilbaghi, N.; Marrazza, G.; Kim, K. H. Green Synthesis of Metal–Organic Frameworks: A State-of-the-Art Review of Potential Environmental and Medical Applications. Coord. Chem. Rev. 2020, 420, 213407. https://doi.org/10.1016/j.ccr.2020.213407.spa
dc.relation.referencesEl-Sayed, E. S. M.; Yuan, D. Waste to MOFs: Sustainable Linker, Metal, and Solvent Sources for Value-Added MOF Synthesis and Applications. Green Chem. 2020, 22 (13), 4082–4104. https://doi.org/10.1039/d0gc00353k.spa
dc.relation.referencesRen, J.; Dyosiba, X.; Musyoka, N. M.; Langmi, H. W.; North, B. C.; Mathe, M.; Onyango, M. S. Green Synthesis of Chromium-Based Metal-Organic Framework ( Cr-MOF ) from Waste Polyethylene Terephthalate ( PET ) Bottles for Hydrogen Storage Applications. Int. J. Hydrogen Energy 2016, 41 (40), 18141–18146. https://doi.org/10.1016/j.ijhydene.2016.08.040.spa
dc.relation.referencesKo, Y.; Azbell, T. J.; Milner, P.; Hinestroza, J. P. Upcycling of Dyed Polyester Fabrics into Copper-1,4-Benzenedicarboxylate (CuBDC) Metal-Organic Frameworks. Ind. Eng. Chem. Res. 2023. https://doi.org/10.1021/acs.iecr.3c00226.spa
dc.relation.referencesZhan, G.; Ng, W. C.; Lin, W. Y.; Koh, S. N.; Wang, C. Effective Recovery of Vanadium from Oil Refinery Waste into Vanadium-Based Metal−Organic Frameworks. Environ. Sci. Technol. 2018, 52, 3008–3015. https://doi.org/10.1021/acs.est.7b04989.spa
dc.relation.referencesKy, T.; Kim, J.; Taek, H.; Kim, J. Journal of Industrial and Engineering Chemistry Cost-Effective and Eco-Friendly Synthesis of MIL-101 ( Cr ) from Waste Hexavalent Chromium and Its Application for Carbon Monoxide Separation. J. Ind. Eng. Chem. 2019, 80, 345–351. https://doi.org/10.1016/j.jiec.2019.08.013.spa
dc.relation.referencesCognet, M.; Condomines, J.; Cambedouzou, J.; Madhavi, S.; Carboni, M.; Meyer, D. An Original Recycling Method for Li-Ion Batteries through Large Scale Production of Metal Organic Frameworks. J. Hazard. Mater. 2020, 385 (November 2019), 121603. https://doi.org/10.1016/j.jhazmat.2019.121603.spa
dc.relation.referencesZhang, S.; Jian, M.; Zhang, Q.; Xu, R.; Qu, J.; Luo, X.; Li, X.; Hu, J.; Liu, R.; Zhang, X. Recyclable Printed Circuit Boards and Alkali Reduction Wastewater: Approach to a Sustainable Copper-Based Metal − Organic Framework. 2020. https://doi.org/10.1021/acssuschemeng.9b04754.spa
dc.relation.referencesCrickmore, T. S.; Begum Sana, H.; Mitchell, H.; Clark, M.; Bradshaw, D. Toward Sustainable Syntheses of Ca-Based MOFs. Chem. Commun. 2021, 57, 10592–10595. https://doi.org/10.1039/D1CC04032D.spa
dc.relation.referencesFarajmand, B.; Dalali, N.; Keshavarz, S.; Lakmehsari, M. S. Application of MIL-53 ( Al ) Prepared from Waste Materials for Solid-Phase Microextraction of Propranolol Followed by Corona Discharge-Ion Mobility Spectrometry ( CD-IMS ). J. Pharm. Biomed. Anal. 2020, 189, 113418. https://doi.org/10.1016/j.jpba.2020.113418.spa
dc.relation.referencesBoukayouht, K.; Bazzi, L.; El Hankari, S. Sustainable Synthesis of Metal-Organic Frameworks and Their Derived Materials from Organic and Inorganic Wastes. Coord. Chem. Rev. 2023, 478, 214986. https://doi.org/10.1016/j.ccr.2022.214986.spa
dc.relation.referencesOkumura, H. Application of Phenolic Compounds in Plants for Green Chemical Materials. Curr. Opin. Green Sustain. Chem. 2021, 27, 100418. https://doi.org/10.1016/j.cogsc.2020.100418.spa
dc.relation.referencesFeng, Y.; Li, P.; Wei, J. Engineering Functional Mesoporous Materials from Plant Polyphenol Based Coordination Polymers. Coord. Chem. Rev. 2022, 468, 214649. https://doi.org/10.1016/j.ccr.2022.214649.spa
dc.relation.referencesGhosh, M. K.; Tamang, A. M.; Chandraker, S. K.; Sikdar, S.; Jana, B.; Ghorai, T. K. Zn(II)-Formate Framework of Mab Topology: Synthesis from Tea Extract, Electronic Structure, and DNA-Binding. J. Mol. Struct. 2022, 1270, 133913. https://doi.org/10.1016/j.molstruc.2022.133913.spa
dc.relation.referencesSirajunnisa, P.; Sreelakshmi, S.; Prathapan, S.; Sailaja, G. S. Room Temperature Synthesized Metal Organic Frameworks of Lawsonia Inermis: Potential Candidates for Sensing and Cellular Imaging. J. Lumin. 2023, 261 (February). https://doi.org/10.1016/j.jlumin.2023.119899.spa
dc.relation.referencesBeg, S.; Rahman, M.; Jain, A.; Saini, S.; Midoux, P.; Pichon, C.; Ahmad, F. J.; Akhter, S. Nanoporous Metal Organic Frameworks as Hybrid Polymer–Metal Composites for Drug Delivery and Biomedical Applications. Drug Discov. Today 2017, 22 (4), 625–637. https://doi.org/10.1016/j.drudis.2016.10.001.spa
dc.relation.referencesChen, W.; Wu, C. Synthesis, Functionalization, and Applications of Metal-Organic Frameworks in Biomedicine. Dalt. Trans. 2018, 47 (7), 2114–2133. https://doi.org/10.1039/c7dt04116k.spa
dc.relation.referencesSun, B.; Bilal, M.; Jia, S.; Jiang, Y.; Cui, J. Design and Bio-Applications of Biological Metal-Organic Frameworks. Korean J. Chem. Eng. 2019, 36 (12), 1949–1964. https://doi.org/10.1007/s11814-019-0394-8.spa
dc.relation.referencesQuaresma, S.; André, V.; Antunes, A. M. M.; Vilela, S. M. F.; Amariei, G.; Arenas-Vivo, A.; Rosal, R.; Horcajada, P.; Duarte, M. T. Novel Antibacterial Azelaic Acid BioMOFs. Cryst. Growth Des. 2020, 20 (1), 370–382. https://doi.org/10.1021/acs.cgd.9b01302.spa
dc.relation.referencesAndré, V.; Da Silva, A. R. F.; Fernandes, A.; Frade, R.; Garcia, C.; Rijo, P.; Antunes, A. M. M.; Rocha, J.; Duarte, M. T. Mg- A Nd Mn-MOFs Boost the Antibiotic Activity of Nalidixic Acid. ACS Appl. Bio Mater. 2019, 2 (6), 2347–2354. https://doi.org/10.1021/acsabm.9b00046.spa
dc.relation.referencesMaranescu, B.; Visa, A. Applications of Metal-Organic Frameworks as Drug Delivery Systems. Int. J. Mol. Sci. 2022, 23 (8). https://doi.org/10.3390/ijms23084458.spa
dc.relation.referencesTajnšek, T. K.; Svensson Grape, E.; Willhammar, T.; Antonić Jelić, T.; Javornik, U.; Dražić, G.; Zabukovec Logar, N.; Mazaj, M. Design and Degradation of Permanently Porous Vitamin C and Zinc-Based Metal-Organic Framework. Commun. Chem. 2022, 5 (1). https://doi.org/10.1038/s42004-022-00639-x.spa
dc.relation.referencesSu, H.; Sun, F.; Jia, J.; He, H.; Wang, A. A Highly Porous Medical Metal – Organic Framework Constructed from Bioactive Curcumin †. Chem. Commun. 2015, 51, 5774–5777. https://doi.org/10.1039/C4CC10159F.spa
dc.relation.referencesSharma, A.; Kumar, A.; Changning, L.; Panwar Hazari, P.; Mahajan, S. D.; Aalinkeel, R.; Kumar Sharma, R.; Swihart, M. T. A Cannabidiol-Loaded Mg-Gallate Metal–Organic Framework-Based Potential Therapeutic for Glioblastomas. J. Mater. Chem. B 2021, 9, 2505–2514. https://doi.org/10.1039/D0TB02780D.spa
dc.relation.referencesRabiee, N.; Ahmadi, S.; Iravani, S.; Varma, R. S. Natural Resources for Sustainable Synthesis of Nanomaterials with Anticancer Applications: A Move toward Green Nanomedicine. Environ. Res. 2023, 216 (P4), 114803. https://doi.org/10.1016/j.envres.2022.114803.spa
dc.relation.referencesChakraborty, D.; Yurdusen, A.; Mouchaham, G.; Nouar, F.; Serre, C. Large-Scale Production of Metal – Organic Frameworks. 2023, 2309089, 1–23. https://doi.org/10.1002/adfm.202309089.spa
dc.relation.referencesZahn, G.; Schulze, H. A.; Lippke, J.; König, S.; Sazama, U.; Fröba, M.; Behrens, P. A Water-Born Zr-Based Porous Coordination Polymer: Modulated Synthesis of Zr-Fumarate MOF. Microporous Mesoporous Mater. 2015, 203 (C), 186–194. https://doi.org/10.1016/j.micromeso.2014.10.034.spa
dc.relation.referencesArdila-Suárez, C.; Díaz-Lasprilla, A. M.; Díaz-Vaca, L. A.; Balbuena, P. B.; Baldovino-Medrano, V. G.; Ramírez-Caballero, G. E. Synthesis, Characterization, and Post-Synthetic Modification of a Micro/Mesoporous Zirconium-Tricarboxylate Metal-Organic Framework: Towards the Addition of Acid Active Sites. CrystEngComm 2019, 21 (19), 3014–3030. https://doi.org/10.1039/c9ce00218a.spa
dc.relation.referencesPapageorgiou, S. K.; Kouvelos, E. P.; Favvas, E. P.; Sapalidis, A. A.; Romanos, G. E.; Katsaros, F. K. Metal-Carboxylate Interactions in Metal-Alginate Complexes Studied with FTIR Spectroscopy. Carbohydr. Res. 2010, 345 (4), 469–473. https://doi.org/10.1016/j.carres.2009.12.010.spa
dc.relation.referencesSutton, C. C. R.; Silva, G.; Franks, G. V. Modeling the IR Spectra of Aqueous Metal Carboxylate Complexes : Correlation between Bonding Geometry and Stretching Mode Wavenumber Shifts. 2015, 6801–6805. https://doi.org/10.1002/chem.201406516.spa
dc.relation.referencesBrubach, J. B.; Mermet, A.; Filabozzi, A.; Gerschel, A.; Roy, P. Signatures of the Hydrogen Bonding in the Infrared Bands of Water. J. Chem. Phys. 2005, 122 (18). https://doi.org/10.1063/1.1894929.spa
dc.relation.referencesOvalles, F.; Gallignani, M.; Rondón, R.; Brunetto, M. R.; Luna, R. Determination of Sulphate for Measuring Magnesium Sulphate in Pharmaceuticals by Flow Analysis-Fourier Transforms Infrared Spectroscopy. Lat. Am. J. Pharm. 2009, 28 (2), 173–182.spa
dc.relation.referencesHenry, B.; Samokhvalov, A. Hygroscopic Metal-Organic Framework MIL-160 ( Al ): In-Situ Time- Dependent ATR-FTIR and Gravimetric Study of Mechanism and Kinetics of Water Vapor Sorption. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 267, 120550. https://doi.org/10.1016/j.saa.2021.120550.spa
dc.relation.referencesIsmail, M.; Bustam, M. A.; Kari, N. E. F.; Yeong, Y. F. Ideal Adsorbed Solution Theory (IAST) of Carbon Dioxide and Methane Adsorption Using Magnesium Gallate Metal-Organic Framework (Mg-Gallate). Molecules 2023, 28 (7). https://doi.org/10.3390/molecules28073016.spa
dc.relation.referencesVaitsis, C.; Sourkouni, G.; Argirusis, C. Metal Organic Frameworks (MOFs) and Ultrasound: A Review. Ultrason. Sonochem. 2019, 52 (July 2018), 106–119. https://doi.org/10.1016/j.ultsonch.2018.11.004.spa
dc.relation.referencesBarahuie, F.; Hussein, M. Z.; Hussein-Al-Ali, S. H.; Arulselvan, P.; Fakurazi, S.; Zainal, Z. Preparation and Controlled-Release Studies of a Protocatechuic Acid-Magnesium/Aluminumlayered Double Hydroxide Nanocomposite. Int. J. Nanomedicine 2013, 8 (May), 1975–1987. https://doi.org/10.2147/IJN.S42718.spa
dc.relation.referencesBarahuie, F.; Hussein, M. Z.; Abd Gani, S.; Fakurazi, S.; Zainal, Z. Anticancer Nanodelivery System with Controlled Release Property Based on Protocatechuate-Zinc Layered Hydroxide Nanohybrid. Int. J. Nanomedicine 2014, 9 (1), 3137–3149. https://doi.org/10.2147/IJN.S59541.spa
dc.relation.referencesSigma Aldrich. Mesoporous Materials: Properties and Applications https://www.sigmaaldrich.com/CO/es/technical-documents/technical-article/materials-science-and-engineering/nanoparticle-and-microparticle-synthesis/mesoporous-materials.spa
dc.relation.referencesScherrer, P. Bestimmung Der Größe Und Der Inneren Struktur von Kolloidteilchen Mittels Röntgenstrahlen. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Math. Klasse 1918 1918, 98–100.spa
dc.relation.referencesD, B. A. . & L. Powder Pattern Indexing with the Dichotomy Method. J. Appl. Crystallogr. 2004, 37 (5), 724–731.spa
dc.relation.referencesD., B. J. R. . P. R. J. . & L. PreDICT: A Graphical User Interface to the DICVOL14 Indexing Software Program for Powder Diffraction Data. Powder Diffraction. 2019, 34 (3), 233–241.spa
dc.relation.referencesAltomare, A., Corriero, N., Cuocci, C., Falcicchio, A., Moliterni, A., & Rizzi, R. EXPO Software for Solving Crystal Structures by Powder Diffraction Data: Methods and Application. Cryst. Res. Technol. 2015, 50 (9–10), 737–742.spa
dc.relation.referencesB., T. B. H. . & V. D. R. GSAS-II: The Genesis of a Modern Open-Source All Purpose Crystallography Software Package. J. Appl. Crystallogr. 2013, 46 (2), 544–549.spa
dc.relation.referencesMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T., McCabe, P., Pidcock, E., ... & Wood, P. A. Mercury 4.0: From Visualization to Analysis, Design and Prediction. J. Appl. Crystallogr. 2020, 53 (1), 226–235.spa
dc.relation.referencesThe Cambridge Structural Database (CCDC) https://www.ccdc.cam.ac.uk/solutions/software/csd/.spa
dc.relation.referencesMarcus D Hanwell, Donald E Curtis, David C Lonie, Tim Vandermeersch, E. Z. and G. R. H. Avogadro: An Advanced Semantic Chemical Editor, Visualization, and Analysis Platform. J. Cheminform. 2012, 4 (17).spa
dc.relation.referencesMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., ... & Streek, J. V. D. Mercury: Visualization and Analysis of Crystal Structures. J. Appl. Crystallogr. 2006, 39 (3), 453–457.spa
dc.relation.referencesMartí-Rujas, J. Structural Elucidation of Microcrystalline MOFs from Powder X-Ray Diffraction. Dalt. Trans. 2020, 49, 13897–13916. https://doi.org/10.1039/D0DT02802A.spa
dc.relation.referencesGalano, A.; Pérez-González, A. On the Free Radical Scavenging Mechanism of Protocatechuic Acid, Regeneration of the Catechol Group in Aqueous Solution. Theor. Chem. Acc. 2012, 131 (9), 1–13. https://doi.org/10.1007/s00214-012-1265-0.spa
dc.relation.referencesSani, M.; Mohd, U.; Hussein, Z.; Umar, A.; Sharida, K.; Mas, F.; Masarudin, J. Synthesis and Characterization of Protocatechuic Acid ‑ Loaded Gadolinium ‑ Layered Double Hydroxide and Gold Nanocomposite for Theranostic Application. Appl. Nanosci. 2018, 8 (5), 973–986. https://doi.org/10.1007/s13204-018-0752-6.spa
dc.relation.referencesThommes, M.; Kaneko, K.; Neimark, A. V.; Olivier, J. P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K. S. W. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87 (9–10), 1051–1069. https://doi.org/10.1515/pac-2014-1117.spa
dc.relation.referencesAlothman, Z. A. A Review: Fundamental Aspects of Silicate Mesoporous Materials. Materials (Basel). 2012, 5 (January). https://doi.org/10.3390/ma5122874.spa
dc.relation.referencesTao, L.; Chen, D.-L.; Sullivan, J. E.; Kozlowski, M. T.; Johnson, J. K.; Rosi, N. L. Systematic Modulation and Enhancement of CO2:N2 Selectivity and Water Stability in an Isoreticular Series of Bio-MOF-11 Analogues. Chem. Sci. 2013, 4 (March). https://doi.org/10.1039/C3SC22207A.spa
dc.relation.referencesZahn, G.; Zerner, P.; Lippke, J.; Kempf, F. L.; Lilienthal, S.; Schröder, C. A.; Schneider, A. M.; Behrens, P. Insight into the Mechanism of Modulated Syntheses: In Situ Synchrotron Diffraction Studies on the Formation of Zr-Fumarate MOF. CrystEngComm 2014, 16 (39), 9198–9207. https://doi.org/10.1039/c4ce01095g.spa
dc.relation.referencesYuan, S.; Feng, L.; Wang, K.; Pang, J.; Bosch, M.; Lollar, C. Stable Metal – Organic Frameworks : Design , Synthesis , and Applications. Adv. Mater. 2018, No. February. https://doi.org/10.1002/adma.201704303.spa
dc.relation.referencesSun, Q.; Liu, C.; Zhang, G.; Zhang, J.; Tung, C.-H.; Wang, Y. Aqueous Isolation of 17-Nuclear Zr-/Hf- Oxide Clusters during the Hydrothermal Synthesis of ZrO2/HfO2. Chem. - A Eur. J. 2018, 24, 14701–14706. https://doi.org/10.1002/chem.201801267.spa
dc.relation.referencesGarzón-Serrano, A. Y.; Lozano, J. D.; Perez, L. D.; Sierra, C. A.; Macías, M. A. RSC Advances Zr 6 O 8 Core Cluster with Formula Unit. RSC Adv. 2024, 4, 29910–29918. https://doi.org/10.1039/D4RA03940H.spa
dc.relation.referencesXu, D.; Ma, H.; Cheng, F. Preparation and Application of Zirconium Sulfate Supported on SAPO-34 Molecular Sieve as Solid Acid Catalyst for Esterification. Mater. Res. Bull. 2014, 53, 15–20. https://doi.org/10.1016/j.materresbull.2014.01.029.spa
dc.relation.referencesTesta, M. L.; Parola, V. La; Mesrar, F.; Ouanji, F.; Kacimi, M.; Ziyad, M.; Liotta, L. F. Use of Zirconium Phosphate-Sulphate as Acid Catalyst for Synthesis of Glycerol-Based Fuel Additives. Catalysts 2019, 9 (2). https://doi.org/10.3390/catal9020148.spa
dc.relation.referencesAgbor, G.; Vinson, J. A.; Donnelly, P. E. Folin-Ciocalteau Reagent for Polyphenolic Assay. Int. J. Food Sci. Nutr. Diet. 2014, No. December, 147–156. https://doi.org/10.19070/2326-3350-1400028.spa
dc.relation.referencesValadez-Carmona, L.; Plazola-Jacinto, C. P.; Hernández-Ortega, M.; Hernández-Navarro, M. D.; Villarreal, F.; Necoechea-Mondragón, H.; Ortiz-Moreno, A.; Ceballos-Reyes, G. Effects of Microwaves, Hot Air and Freeze-Drying on the Phenolic Compounds, Antioxidant Capacity, Enzyme Activity and Microstructure of Cacao Pod Husks (Theobroma Cacao L.). Innov. Food Sci. Emerg. Technol. 2017, 41 (February), 378–386. https://doi.org/10.1016/j.ifset.2017.04.012.spa
dc.relation.referencesZadernowski, R.; Naczk, M.; Nowak-Polakowska, H. Phenolic Acids of Borage (Borago Officinalis L.) and Evening Primrose (Oenothera Biennis L.). JAOCS, J. Am. Oil Chem. Soc. 2002, 79 (4), 335–338. https://doi.org/10.1007/s11746-002-0484-8.spa
dc.relation.referencesKusrini, D.; Fachriyah, E.; Prinanda, G. R. Isolation of Phenolic Acid in Acalypha Indica l Plants and Test Total Phenol Also Antioxidant Test Using DPPH Method. IOP Conf. Ser. Mater. Sci. Eng. 2019, 509 (1). https://doi.org/10.1088/1757-899X/509/1/012033.spa
dc.relation.referencesLi, J.; Huang, G. Extraction, Purification, Separation, Structure, Derivatization and Activities of Polysaccharide from Chinese Date. Process Biochem. 2021, 110 (August), 231–242. https://doi.org/10.1016/j.procbio.2021.08.018.spa
dc.relation.referencesFajardo Daza, J. A.; Ibarra, C. A.; Arturo Perdomo, D.; Herrera Ruales, F. C. Optimization of Ultrasound Assisted Extraction of Polyphenols in Cocoa Beans. Vitae 2020, 27 (1), 1–8. https://doi.org/10.17533/udea.vitae.v27n1a01.spa
dc.relation.referencesJia, J.; Wei, L.; Li, F.; Yu, C.; Yang, K.; Liang, T. In Situ Growth of NiFe MOF / NF by Controlling Solvent Mixtures as Efficient Electrocatalyst in Oxygen Evolution. Inorg. Chem. Commun. 2021, 128 (April), 108605. https://doi.org/10.1016/j.inoche.2021.108605.spa
dc.relation.referencesPinelo, M.; Sineiro, J.; Núñez, M. J. Mass Transfer during Continuous Solid-Liquid Extraction of Antioxidants from Grape Byproducts. J. Food Eng. 2006, 77 (1), 57–63. https://doi.org/10.1016/j.jfoodeng.2005.06.021.spa
dc.relation.referencesAkinoso, R.; Osunrinade, O. A. Mass Transfer during Oil Extraction from Palm Kernel, Cocoa and Groundnut. J. Eng. Appl. Sci. 2012, 7 (4), 326–330. https://doi.org/10.3923/jeasci.2012.326.330.spa
dc.relation.referencesPutra, N. R.; Rizkiyah, D. N.; Zaini, A. S.; Yunus, M. A. C.; Machmudah, S.; Idham, Z. binti; Hazwan Ruslan, M. S. Effect of Particle Size on Yield Extract and Antioxidant Activity of Peanut Skin Using Modified Supercritical Carbon Dioxide and Soxhlet Extraction. J. Food Process. Preserv. 2018, 42 (8), 1–9. https://doi.org/10.1111/jfpp.13689.spa
dc.relation.referencesPinelo, M.; Zornoza, B.; Meyer, A. S. Selective Release of Phenols from Apple Skin: Mass Transfer Kinetics during Solvent and Enzyme-Assisted Extraction. Sep. Purif. Technol. 2008, 63 (3), 620–627. https://doi.org/10.1016/j.seppur.2008.07.007.spa
dc.relation.referencesAguilera, Y.; Rebollo-Hernanz, M.; Cañas, S.; Taladrid, D.; Martín-Cabrejas, M. A. Response Surface Methodology to Optimise the Heat-Assisted Aqueous Extraction of Phenolic Compounds from Coffee Parchment and Their Comprehensive Analysis. Food Funct. 2019, 10 (8), 4739–4750. https://doi.org/10.1039/c9fo00544g.spa
dc.relation.referencesLiyana-Pathirana, C.; Shahidi, F. Optimization of Extraction of Phenolic Compounds from Wheat Using Response Surface Methodology. Food Chem. 2005, 93 (1), 47–56. https://doi.org/10.1016/j.foodchem.2004.08.050.spa
dc.relation.referencesTakó, M.; Beáta, E.; Zambrano, C.; Kotogán, A.; Papp, T.; Krisch, J.; Vágvölgyi, C. Plant Phenolics and Phenolic-Enriched Extracts as Antimicrobial Agents Against. Antioxidants (Basel) 2020, 9 (2). https://doi.org/10.3390/antiox9020165.spa
dc.relation.referencesOracz, J.; Zyzelewicz, D.; Nebesny, E. The Content of Polyphenolic Compounds in Cocoa Beans (Theobroma Cacao L.), Depending on Variety, Growing Region and Processing Operations: A Review. Food Sci. Nutr. 2013, 55 (9), 1176–1192. https://doi.org/10.1080/10408398.2012.686934.spa
dc.relation.referencesCañas, S.; Rebollo-Hernanz, M.; Aguilera, Y.; Benítez, V.; Braojos, C.; Arribas, S.; Martín-Cabrejas, M. Bioaccessibility of Phenolic Compounds from Cocoa Shell Subjected to In Vitro Digestion and Its Antioxidant Activity in Intestinal and Hepatic Cells. Med. Sci. Forum 2020, 2 (1), 5. https://doi.org/10.3390/cahd2020-08612.spa
dc.relation.referencesOrdoñez, E. S.; Leon-Arevalo, A.; Rivera-Rojas, H.; Vargas, E. Quantification of Total Polyphenols and Antioxidant Capacity in Skins and Seeds from Cacao (Theobroma Cacao L.), Tuna (Opuntia Ficus Indica Mill), Grape (Vitis Vinífera) and Uvilla (Pourouma Cecropiifolia). Sci. Agropecu. 2019, 10 (2), 175–183. https://doi.org/10.17268/sci.agropecu.2019.02.02.spa
dc.relation.referencesArdila-Suárez, C.; Molina V., D. R.; Alemd, H.; Baldovino-Medrano, V. G.; Ramírez-Caballero, G. E. Synthesis of Ordered Microporous/Macroporous MOF-808 through Modulator-Induced Defect-Formation, and Surfactant Self-Assembly Strategies. Phys. Chem. Chem. Phys. 2020, 22, 12591–12604. https://doi.org/10.1039/D0CP00287A.spa
dc.relation.referencesAkimbekov, Z.; Wu, D.; Brozek, C.; Dinca, M.; Navrotsky, A. Thermodynamics of Solvent Interaction with the Metal – Organic Framework MOF-5. Phys. Chem. Chem. Phys. 2016, 18, 1158–1162. https://doi.org/10.1039/C5CP05370F.spa
dc.relation.referencesKaragiaridi, O.; Bury, W.; Mondloch, J. E.; Hupp, J. T.; Farha, O. K. Solvent-Assisted Linker Exchange : An Alternative to the De Novo Synthesis of Unattainable Metal – Organic Frameworks Angewandte. Angew. Rev. 2014, 53, 2–13. https://doi.org/10.1002/anie.201306923.spa
dc.relation.referencesXiang, W.; Zhang, Y.; Chen, Y.; Liu, C.; Tu, X. Synthesis, Characterization and Application of Defective Metal–Organic Frameworks: Current Status and Perspectives. J. Mater. Chem. A 2020, 8, 21526–21546. https://doi.org/10.1039/d0ta08009h.spa
dc.relation.referencesSoni, S.; Bajpai, P. K.; Arora, C. A Review on Metal-Organic Framework : Synthesis , Properties and Application. Charact. Appl. Nanomater. 2020, 3 (2), 87–106. https://doi.org/10.24294/can.v3i2.551.spa
dc.relation.referencesBagheri, M.; Masoomi, M. Y. Quasi-Metal Organic Frameworks : Preparation , Applications and Future Perspectives. Coord. Chem. Rev. 2022, 468, 214643. https://doi.org/10.1016/j.ccr.2022.214643.spa
dc.relation.referencesMiranda M, C. D.; Ramírez S, A. E.; Jurado, S. G.; Vera, C. R. Superficial Effects and Catalytic Activity of ZrO2-SO42- as a Function of the Crystal Structure. J. Mol. Catal. A Chem. 2015, 398 (July 2019), 325–335. https://doi.org/10.1016/j.molcata.2014.12.015.spa
dc.relation.referencesMotakef-Kazemi, N.; Shojaosadati, S. A.; Morsali, A. In Situ Synthesis of a Drug-Loaded MOF at Room Temperature. Microporous Mesoporous Mater. 2014, 186, 73–79. https://doi.org/10.1016/j.micromeso.2013.11.036.spa
dc.relation.referencesBenny, A.; Devi, S.; Rajendra, K.; Pinheiro, D.; Chundattu, S. J. Metal Organic Frameworks in Biomedicine : Innovations in Drug Delivery. Results Chem. 2024, 7 (January), 101414. https://doi.org/10.1016/j.rechem.2024.101414.spa
dc.relation.referencesPatel, S. S.; Acharya, A.; Ray, R. S.; Agrawal, R. Cellular and Molecular Mechanisms of Curcumin in Prevention and Treatment of Disease. Crit. Rev. Food Sci. Nutr. 2019, 0 (0), 1–53. https://doi.org/10.1080/10408398.2018.1552244.spa
dc.relation.referencesShuang, Z.; Xiaosheng, L.; Yves, S. K.; Heejeong, K.; Jingyun, W.; Xiaojun, P.; Haidong, L.; Juyoung, Y. Fluorescent Dyes Based on Rhodamine Derivatives for Bioimaging and Therapeutics: Recent Progress, Challenges, and Prospects. Chem. Soc. Rev. 2023, 52, 5607–5651. https://doi.org/10.1039/D2CS00799A.spa
dc.relation.referencesXiao, F.; Zhang, J.; Gan, J. Controlled Dye Release from a Metalorganic Framework : A New Luminescent Sensor for Water. RSC Adv. 2020, 10, 2722–2726. https://doi.org/10.1039/c9ra08753b.spa
dc.relation.referencesWang, K. IRMOF-8-Encapsulated Curcumin as a Biocompatible , Sustained-Release Nano-Preparation. Appl. Organomet. Chem. 2022, 36 (March), 1–14. https://doi.org/10.1002/aoc.6680.spa
dc.relation.referencesZhang, Q.; Cui, H.; Myint, A.; Lian, M.; Liu, L. Sensitive Determination of Phenolic Compounds Using High-Performance Liquid Chromatography with Cerium ( IV ) -Rhodamine 6G-Phenolic Compound Chemiluminescence Detection. J. Chromatogr. A 2005, 1095, 94–101. https://doi.org/10.1016/j.chroma.2005.08.001.spa
dc.relation.referencesPosada, N. C.; Sierra, C. A.; Perez, L. D. Synthesis of Lipid-Modified Copolymers Based on Caprolactone via Enzymatic Ring-Opening Polymerization and Click Chemistry and Evaluation of Their Potential as Vehicles in Drug Delivery. 2024, No. September, 1–14. https://doi.org/10.1002/app.56325.spa
dc.relation.referencesMejia-ariza, R.; Huskens, J. The Effect of PEG Length on the Size and Guest Uptake of PEG-Capped MIL-88A Particles †. J. Mater. Chem. B 2016, 4, 1108–1115. https://doi.org/10.1039/C5TB01949D.spa
dc.relation.referencesYang, Y.; Hu, Q.; Zhang, Q.; Jiang, K.; Lin, W.; Yang, Y.; Cui, Y.; Qian, G. A Large Capacity Cationic Metal − Organic Framework Nanocarrier for Physiological PH Responsive Drug Delivery. Mol. Pharm. 2016, 13, 2782–2786. https://doi.org/10.1021/acs.molpharmaceut.6b00374.spa
dc.relation.referencesRiedl, S.; Leber, R.; Rinner, B.; Schaider, H.; Lohner, K.; Zweytick, D. Human Lactoferricin Derived Di-Peptides Deploying Loop Structures Induce Apoptosis Specifically in Cancer Cells through Targeting Membranous Phosphatidylserine. BBA - Biomembr. 2015, 1848 (11), 2918–2931. https://doi.org/10.1016/j.bbamem.2015.07.018.spa
dc.relation.referencesBondar, O. V; Saifullina, D. V; Shakhmaeva, I. I.; Mavlyutova, I. I.; Abdullin, T. I. Monitoring of the Zeta Potential of Human Cells upon Reduction in Their Viability and Interaction with Polymers. Acta Naturae 2012, 4 (12), 78–81.spa
dc.relation.referencesKumar, A.; Alami-mejjati, N.; Bouvet, M.; Meunier-prest, R. Electrochemical Oxidation of Gallic Acid : A Reexamination of the Reaction Mechanism in Aqueous Medium. Electrochim. Acta 2023, 460 (May), 142622. https://doi.org/10.1016/j.electacta.2023.142622.spa
dc.relation.referencesFriedman, M.; Ju, H. S. Effect of PH on the Stability of Plant Phenolic Compounds. J. Agric. Food Chem 2000, 48, 2101–2110.spa
dc.relation.referencesBolton, J. L.; Dunlap, T. L.; Dietz, B. M. Formation and Biological Targets of Botanical o -Quinones. Food Chem. Toxicol. 2018, 120 (July), 700–707. https://doi.org/10.1016/j.fct.2018.07.050.spa
dc.relation.referencesFaizan, S.; Mohammed, M.; Mohsen, A.; Amarakanth, C.; Justin, A.; Ravishankar, R.; Chandrashekar, H. R.; Kumar, B. R. P. Quinone Scaffolds as Potential Therapeutic Anticancer Agents : Chemistry , Mechanism of Actions , Structure-Activity Relationships and Future Perspectives. Results Chem. 2024, 7 (February), 101432. https://doi.org/10.1016/j.rechem.2024.101432.spa
dc.relation.referencesCretu, C.; Nicola, R.; Marinescu, S.; Piciorus, E.; Suba, M. Performance of Zr-Based Metal – Organic Framework Materials as In Vitro Systems for the Oral Delivery of Captopril and Ibuprofen. Int. J. Mol. Sci. 2023, 24, 13887.spa
dc.relation.referencesGautam, S.; Lakhanpal, I.; Sonowal, L.; Goyal, N. Recent Advances in Targeted Drug Delivery Using Metal-Organic Frameworks : Toxicity and Release Kinetics. Next Nanotechnol. 2023, 3–4 (December), 100027. https://doi.org/10.1016/j.nxnano.2023.100027.spa
dc.relation.referencesBruschi, M. 5 - Mathematical Models of Drug Release. In Strategies to Modify the Drug Release from Pharmaceutical Systems; Bruschi, M. L. B. T.-S. to M. the D. R. from P. S., Ed.; Woodhead Publishing, 2015; pp 63–86. https://doi.org/https://doi.org/10.1016/B978-0-08-100092-2.00005-9.spa
dc.relation.referencesAguila-Rosas, J.; Quirino-Barreda, T.; Leyva-Gómez, G.; González-Zamora, E.; Ibarra, I. A.; Lima, E. Sulfadiazine Hosted in MIL-53(Al) as a Biocide Topical Delivery System. RSC Adv. 2020, 10, 25645–25651. https://doi.org/10.1039/d0ra03636f.spa
dc.relation.referencesWang, H.; Li, S.; Yang, Y.; Zhang, L.; Zhang, Y.; Wei, T. Perspectives of Metal-Organic Framework Nanosystem to Overcome Tumor Drug Resistance. Cancer Drug Resist 2022, 5, 954–970. https://doi.org/10.20517/cdr.2022.76.spa
dc.relation.referencesLoera-serna, S.; Medina, D.; Ortiz, E. Encapsulation of Urea and Caffeine in Cu 3 ( BTC ) 2 Metal – Organic Framework. 2015, 3 (May 2018). https://doi.org/10.1680/jsuin.15.00017.spa
dc.relation.referencesTiwari, A.; Singh, A.; Garg, N.; Randhawa, J. K. Curcumin Encapsulated Zeolitic Imidazolate Frameworks as Stimuli Responsive Drug Delivery System and Their Interaction with Biomimetic Environment. Sci. Rep. 2017, No. September, 1–12. https://doi.org/10.1038/s41598-017-12786-6.spa
dc.relation.referencesMihoub, A. Ben; Acherar, S.; Frochot, C.; Yen, F.; Arab-tehrany, E.; Mihoub, A. Ben; Acherar, S.; Frochot, C.; Malaplate-armand, C.; Yen, F.; Mihoub, A. Ben; Acherar, S.; Frochot, C.; Malaplate, C.; Yen, F. T. Synthesis of New Water Soluble β -Cyclodextrin @ Curcumin Conjugates and in Vitro Safety Evaluation in Primary Cultures of Rat Cortical Neurons. Int. J. Mol. Sci. 2023, 22, 0–13.spa
dc.relation.referencesQiu, S.; Chu, H.; Zou, Y.; Xiang, C. Thermochemical Studies of Rhodamine B and Rhodamine 6G by Modulated Differential Scanning Calorimetry and Thermogravimetric Analysis. J. Therm. Anal. Calorim. 2016, 123 (2), 1611–1618. https://doi.org/10.1007/s10973-015-5055-5.spa
dc.relation.referencesChen, W.; Zhuang, Y.; Wang, L.; Lv, Y.; Liu, J.; Zhou, T.-L.; Xie, R.-J. Color-Tunable and High-Efficiency Dye-Encapsulated Metal-Organic Framework ( MOF ) Composites Used for Smart White LEDs. Appl. Mater. Interfaces 2018, 10 (22), 18910–18917. https://doi.org/10.1021/acsami.8b04937.spa
dc.relation.referencesBlasio, C. De. Chapter 7: Thermogravimetric Analysis (TGA). In Fundamentals of Biofuels Engineering and Technology.; 2019; pp 91–102.spa
dc.relation.referencesWang, C.; Liu, X.; Yang, T.; Sridhar, D.; Algadi, H.; Bin, B.; El-bahy, Z. M.; Li, H.; Ma, Y.; Li, T.; Guo, Z. An Overview of Metal-Organic Frameworks and Their Magnetic Composites for the Removal of Pollutants. Sep. Purif. Technol. 2023, 320 (March), 124144. https://doi.org/10.1016/j.seppur.2023.124144.spa
dc.relation.referencesAlmoslem, M.; Sonego, E.; Cristofoletti, R. Kinetics of Drug Action :A PKPD Approach. In The ADME Encyclopedia; 2022.spa
dc.relation.referencesPaarakh, M. P.; Jose, P. A. N. I.; Setty, C. M.; Peter, G. V. RELEASE KINETICS – CONCEPTS AND APPLICATIONS. 2018, 12–20.spa
dc.relation.referencesLi, C.; Feng, X.; Yang, S.; Xu, H.; Yin, X.; Yu, Y. Capture, Detection, and Simultaneous Identi Fi Cation of Rare Circulating Tumor Cells Based on a Rhodamine 6G-Loaded Metal − Organic Framework. Appl. Mater. Interfaces 2021, 13, 52406–52416. https://doi.org/10.1021/acsami.1c15838.spa
dc.relation.referencesRaven, P.; Johnson, G.; Mason, K.; Losos, J.; Singer, S. How Cells Divide. In Biology; McGraw Hill: New York, 2013; p 192.spa
dc.relation.referencesAbotaleb, M.; Liskova, A.; Kubatka, P.; Büsselberg, D. Therapeutic Potential of Plant Phenolic Acids in the Treatment of Cancer. Biomolecules 2020, 10 (2), 1–23. https://doi.org/10.3390/biom10020221.spa
dc.relation.referencesDando, I.; Pozza, E. D.; Ambrosini, G.; Torrens-mas, M.; Butera, G.; Mullappilly, N.; Pacchiana, R.; Palmieri, M.; Donadelli, M. Oncometabolites in Cancer Aggressiveness and Tumour Repopulation. Biol. Rev. 2019, 1539, 1530–1546. https://doi.org/10.1111/brv.12513.spa
dc.relation.referencesChen, Y.; Li, X.; Yang, M. Research Progress on Morphology and Mechanism of Programmed Cell Death. Cell Death Dis. 2024, 15 (December 2023), 327. https://doi.org/10.1038/s41419-024-06712-8.spa
dc.relation.referencesRich, A. L.; Lin, P.; Gamazon, E. R.; Zinkel, S. S. The Broad Impact of Cell Death Genes on the Human Disease Phenome. Cell Death Dis. 2024, 15 (September 2023), 251. https://doi.org/10.1038/s41419-024-06632-7.spa
dc.relation.referencesAshrafizadeh, M.; Zarrabi, A.; Mirzaei, S.; Hashemi, F.; Samarghandian, S.; Zabolian, A.; Hushmandi, K.; Ang, H. L.; Sethi, G.; Kumar, A. P.; Ahn, K. S.; Nabavi, N.; Khan, H.; Makvandi, P.; Varma, R. S. Gallic Acid for Cancer Therapy: Molecular Mechanisms and Boosting Efficacy by Nanoscopical Delivery. Food Chem. Toxicol. 2021, 157 (November 2020), 112576. https://doi.org/10.1016/j.fct.2021.112576.spa
dc.relation.referencesCadena-Iñiguez, J.; Santiago-Osorio, E.; Sánchez-Flores, N.; Salazar-Aguilar, S.; Soto-Hernández, R. M.; Riviello-Flores, M. de la L.; Macías-Zaragoza, V. M.; Aguiñiga-Sánchez, I. The Cancer-Protective Potential of Protocatechuic Acid: A Narrative Review. Molecules 2024, 29 (7). https://doi.org/10.3390/molecules29071439.spa
dc.relation.referencesTerry Riss; Andrew Niles; Rich Moravec; Natashia Karassina; Jolanta Vidugiriene. Cytotoxicity Assays: In Vitro Methods to Measure Dead Cells. Assay Guid. Man. [Internet] 2019, No. Md, 1–15.spa
dc.relation.referencesMartínez-torres, A. C.; Reyes-ruiz, A.; Calvillo-rodriguez, K. M.; Alvarez-valadez, K. M.; Uscanga-palomeque, A. C.; Tamez-guerra, R. S.; Rodríguez-padilla, C. IMMUNEPOTENT CRP Induces DAMPS Release and ROS-Dependent Autophagosome Formation in HeLa And. BMC Cancer 2020, 20, 1–11.spa
dc.relation.referencesFawzy, R. M.; Abdel-aziz, A. A.; Bassiouny, K.; Fayed, A. M. Phytocompounds-Based Therapeutic Approach : Investigating Curcumin and Green Tea Extracts on MCF-7 Breast Cancer Cell Line. J. Genet. Eng. Biotechnol. 2024, 22 (1), 100339. https://doi.org/10.1016/j.jgeb.2023.100339.spa
dc.relation.referencesJaworska, A.; Wojcik, T.; Malek, K.; Kwolek, U.; Kepczynski, M.; Ansary, A. A.; Chlopicki, S.; Baranska, M. Rhodamine 6G Conjugated to Gold Nanoparticles as Labels for Both SERS and Fluorescence Studies on Live Endothelial Cells. Microchim Acta 2015, 182, 119–127. https://doi.org/10.1007/s00604-014-1307-5.spa
dc.relation.referencesLinnane, E.; Haddad, S.; Melle, F.; Mei, Z.; Fairen-jimenez, D. Chem Soc Rev The Uptake of Metal – Organic Frameworks : A Journey into the Cell. Chem Soc Rev 2022, 51, 6065–6086. https://doi.org/10.1039/d0cs01414a.spa
dc.relation.referencesRajasekar, M. Recent Trends in Rhodamine Derivatives as Fluorescent Probes for Biomaterial Applications. J. Mol. Struct. 2021, 1235, 130232. https://doi.org/10.1016/j.molstruc.2021.130232.spa
dc.relation.referencesMagut, P. K. S.; Das, S.; Fernand, V. E.; Losso, J.; Mcdonough, K.; Naylor, B. M.; Aggarwal, S.; Warner, I. M. Tunable Cytotoxicity of Rhodamine 6G via Anion Variations. J. Am. Chem. Soc. 2013, 135, 15873–15879.spa
dc.relation.referencesMassum, A. Al; Chakraborty, M.; Ghosh, S.; Laha, D.; Karmakar, P.; Islam, M.; Mukhopadhyay, S. Biochemical Activity of a Fluorescent Dye Rhodamine 6G : Molecular Modeling , Electrochemical , Spectroscopic and Thermodynamic Studies. J. Photochem. Photobiol. B Biol. 2016, 164, 369–379. https://doi.org/10.1016/j.jphotobiol.2016.10.002.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.subject.ddc540 - Química y ciencias afinesspa
dc.subject.otherCompuestos Fenólicosspa
dc.subject.otherÁcido Gálicospa
dc.subject.proposalbioMOFother
dc.subject.proposalácidos fenólicosspa
dc.subject.proposalácido gálicospa
dc.subject.proposalácido protocatéquicospa
dc.subject.proposalcurcuminaspa
dc.subject.proposalrodaminaspa
dc.subject.wikidataCurcuminaspa
dc.subject.wikidataRodaminaspa
dc.titleSíntesis de bioMOFs a partir de ácidos fenólicos presentes en residuos agroindustriales de cacao como agentes terapéuticos antioxidantesspa
dc.title.translatedSynthesis of bioMOFs from phenolic acids present in agroindustrial cocoa wastes as antioxidant therapeutic agentseng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPadres y familiasspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
TesisDoctorado_FinalRepositorioUNAL.pdf
Tamaño:
8.37 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ciencias - Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: