Detección y clasificación de antracnosis en mango usando imágenes hiperespectrales y técnicas de aprendizaje profundo

Cargando...
Miniatura

Autores

Montenegro Bermudez, Andres Felipe

Document language:

Español

Fecha

Título de la revista

ISSN de la revista

Título del volumen

Documentos PDF

Resumen

Desde el surgimiento de las técnicas de inteligencia artificial han sido muchos los campos de producción que buscan usar estas técnicas para mejorar y automatizar sus procesos productivos. Uno de los campos que ha implementado dichas técnicas es la agricultura. Al combinar estos dos campos, la inteligencia artificial y la agricultura, nace una de las ramas de la agricultura de precisión, uno de los retos que se ha propuesto para esta rama es lograr diagnosticar enfermedades, o problemas en los cultivos, a través de la manipulación y entendimiento de imágenes. gracias a cambios en su morfología, color o reflectancia es posible determinar de manera temprana y poco invasiva los diferentes agentes que pueden estar afectando los cultivos. Un problema que no ha sido ampliamente estudiado es la antracnosis en cultivos de mango. Por ende este trabajo propone una solución de detección temprana de esta enfermedad, basada en el uso y análisis de imágenes hiperespectrales, mediante técnicas de aprendizaje profundo. En este estudio se mostraran conceptos acerca de la adquisición y procesamiento de este tipo de imágenes, así como el diseño y uso de algoritmos de aprendizaje profundo para la detección de antracnosis, sobre hojas de cultivos de mango en ambientes con iluminación controlada. Los resultados que se obtuvieron muestran lo útil que puede resultar aplicar esta tecnología, ya que se logró obtener un modelo basado en redes neuronales convolucionales en dos dimensiones el cual logra métricas de exactitud y precisión del 100%, y una función de pérdida loss del 0,001%, lo cual muestra el potencial de la fusión de la inteligencia artificial y el uso de las imágenes hiperespectrales para el desarrollo tecnológico de la agricultura de precisión. (Texto tomado de la fuente)

Abstract

Since the emergence of artificial intelligence techniques, many production fields have sought to use these techniques to improve and automate their production processes. One of the fields that has implemented these techniques is agriculture. By combining these two fields, artificial intelligence and agriculture, one of the branches of precision agriculture is born, one of the challenges that has been proposed for this branch is to diagnose diseases or problems in crops, through the manipulation and understanding of images. thanks to changes in morphology, color or reflectance it is possible to determine early and minimally invasive way the different agents that may be affecting crops. A problem that has not been widely studied is anthracnose in mango crops, therefore this work proposes a solution for early detection of this disease, based on the use and analysis of hyperspectral images, using deep learning techniques. This study will show concepts about the acquisition and processing of this type of images, as well as the design and use of deep learning algorithms for the detection of anthracnose on mango crop leaves in environments with controlled illumination. The results obtained show how useful it can be to apply this technology, since it was possible to obtain a model based on convolutional neural networks in two dimensions which achieves accuracy and precision metrics of 100%, and a loss function of 0.001%, which shows the potential of the fusion of artificial intelligence and the use of hyperspectral images for the technological development of precision agriculture.

Descripción

ilustraciones, fotografías, graficas, tablas

Palabras clave

Citación