Análisis de estabilidad fenotípica paramétrica de híbridos apomícticos de Brachiaria (Brachiaria humidicola) en múltiples ambientes
dc.contributor.advisor | Rodríguez Molano, Luis Ernesto | |
dc.contributor.author | Guevara Ruiz, Dylan Mauricio | |
dc.contributor.other | Darghan Contreras, Aquiles Enrique | |
dc.date.accessioned | 2023-01-30T21:57:46Z | |
dc.date.available | 2023-01-30T21:57:46Z | |
dc.date.issued | 2023-01-30 | |
dc.description | ilustraciones | spa |
dc.description.abstract | Brachiaria (Brachiaria humidicola) es una especie de amplia adopción como forraje para la alimentación bovina adaptada a amplias zonas tropicales y subtropicales de Sudamérica, África y Asia. El programa de mejoramiento genético de brachiaria, que adelanta el Centro internacional de Agricultura Tropical (CIAT) en Colombia, busca seleccionar híbridos estables de alto rendimiento para suelos ácidos. Sin embargo, la interacción genotipo por ambiente (IGA) dificulta la selección y estabilidad fenotípica, sin embargo, no existe un consenso común sobre la definición de estabilidad ni como estimarla. Para el análisis de estabilidad se han utilizado desde métodos univariados hasta modelos multivariados, donde existe una tendencia actual por el uso de modelos lineales multivariados. El objetivo de esta investigación fue comparar la precisión en la estimación de la IGA mediante modelos univariados, el modelo de efectos principales aditivos e interacción multiplicativa de efectos fijos (AMMI) y el modelo best linear unbiased prediction (BLUP). Se encontró que los métodos explicaron la estabilidad de diferentes formas, algunos se relacionan más con el concepto biológico de la estabilidad, mientras que otros explican el concepto agronómico de la estabilidad. El modelo BLUP tuvo mayor precisión predictiva que el modelo AMMI. Por lo tanto, se recomienda el uso del modelo BLUP para la selección de híbridos de brachiaria, aunque, la selección de híbridos estables de brachiaria dependerá del concepto de estabilidad que están alineados con los objetivos de mejoramiento. (Texto tomado de la fuente) | spa |
dc.description.abstract | Brachiaria (Brachiaria humidicola) is a widely adopted specie as forage for cattle feed in Latin America. The brachiaria breeding program seeks to select high-yielding hybrids for acid soils. However, the genotype by environment (IGA) interaction makes it difficult to select superior hybrids. The IGA is related to stability. However, there is no common consensus on the definition of stability or how to estimate it. For the stability analysis, from univariate methods to multivariate models have been used, where there is a current trend for the use of multivariate linear models. The objective of this research was to evaluate univariate models, the model of additive main effects and multiplicative interaction (AMMI) and the model BLUP. It was found that the methods explained stability in different ways, some are more related to the biological concept of stability, while others explain the agronomic concept of stability. The model BLUP had a higher predictive accuracy than AMMI model. Therefore, model BLUP is recommended for selection of brachiaria hybrids, although also it is recommended that the selection of stable brachiaria hybrids be carried out in accordance with the objectives of the breeding program and stability concepts. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.researcharea | Genética y Fitomejoramiento | spa |
dc.format.extent | xvi, 34 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/83197 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias Agrarias | spa |
dc.publisher.place | Bogotá - Colombia | spa |
dc.publisher.program | Bogotá - Ciencias Agrarias - Maestría en Ciencias Agrarias | spa |
dc.relation.references | Annicchiarico, P. (1992). Cultivar adaptation and recommendation from alfalfa trials in northern Italy. J. Genet. Breed., 46: 269-278. J. Genet. & Breed, 46(November), 269–296. https://www.researchgate.net/profile/Paolo_Annicchiarico/publication/292006732_Cultivar_adaptation_and_recommendation_from_alfalfa_trials_in_Northern_Italy/links/58382a1608aed5c614880f4c/Cultivar-adaptation-and-recommendation-from-alfalfa-trials-in-Northe | spa |
dc.relation.references | Becker, H. C., & Léon, J. (1988). Stability Analysis in Plant Breeding. Plant Breeding, 101(1), 1–23. https://doi.org/10.1111/j.1439-0523.1988.tb00261.x | spa |
dc.relation.references | Catchpole, W. R., & Wheelert, C. J. (1992). Review Estimating plant biomass: A review of techniques. In Australian Journal of Ecology {\992) (Vol. 17). | spa |
dc.relation.references | CGIAR. (2018). Tropical Forages and the DiFusion of Brachiaria Cultivars in Latin America (Issue 70). https://cas.cgiar.org/sites/default/files/pdf/ispc_brief_70_brachiaria.pdf | spa |
dc.relation.references | Cubero, J., & Flores, F. (2003). Métodos estadísticos para el estudio de la estabilidad varietal en ensayos agrícolas. In Junta de Andalucía (2nd ed., Issue 2). https://doi.org/10.5281/zenodo.1477753 | spa |
dc.relation.references | Eberhart, S. A., & Russell, W. A. (1966). Stability Parameters for Comparing Varieties. Crop Science, 6(1), 36–40. https://doi.org/10.2135/cropsci1966.0011183x000600010011x | spa |
dc.relation.references | Falconer, D., & Mackay, D. (1996). Introduction to Quantitative Genetic (Cuarta). | spa |
dc.relation.references | Fasahat, P. (2015). An Overview on the Use of Stability Parameters in Plant Breeding. Biometrics & Biostatistics International Journal, 2(5). https://doi.org/10.15406/bbij.2015.02.00043 | spa |
dc.relation.references | Federer, W. (1956). Augmented (or Hoonuiaku) design. Cornell University, 1–33. https://ecommons.cornell.edu/handle/1813/32841 | spa |
dc.relation.references | Ferraudo, G. M., & Perecin, D. (2014). Mixed Model, AMMI and Eberhart-Russel Comparison via Simulation on Genotype × Environment Interaction Study in Sugarcane. Applied Mathematics, 05(14), 2107–2119. https://doi.org/10.4236/am.2014.514205 | spa |
dc.relation.references | Finlay, K. W., & Wilkinson, G. N. (1963). THE ANALYSIS OF ADAPTATION IN A PLANT-BREEDING PROGRAMME. Australian Journal of Agricultural Research, 14(1958), 742–754. | spa |
dc.relation.references | Flores, F., Moreno, M. T., & Cubero, J. I. (1998). A comparison of univariate and multivariate methods to analyze genotype by environment interaction. Field Crops Research, 56, 271–286. | spa |
dc.relation.references | Fox, P. N., Skovmand, B., Thompson, B. K., Braun, H. J., & Cormier, R. (1990). Yield and adaptation of hexaploid spring triticale. Euphytica, 47(1), 57–64. https://doi.org/10.1007/BF00040364 | spa |
dc.relation.references | Francis, T., & Kannenberg, L. (1978). YIELD STABILITY STUDIES IN SHORT-SEASON MAIZE. I. A DESCRIPTIVE METHOD FOR GROUPING GENOTYPES. Can. J. Plant Sci., 58, 1029–1034. | spa |
dc.relation.references | Gauch, H. G. (1988). Model Selection and Validation for Yield Trials with Interaction (Vol. 44, Issue 3). | spa |
dc.relation.references | Gauch, H. G., & Zobei, R. W. (1988). Predictive and postdictive success of statistical analyses of yield trials*. Theor Appl Genet. | spa |
dc.relation.references | Henderson, C. (1975). Best Linear Unbiased Estimation and Prediction under a Selection Model (Vol. 31, Issue 2). | spa |
dc.relation.references | Jarquín, D., Lemes da Silva, C., Gaynor, R. C., Poland, J., Fritz, A., Howard, R., Battenfield, S., & Crossa, J. (2017). Increasing Genomic‐Enabled Prediction Accuracy by Modeling Genotype × Environment Interactions in Kansas Wheat. The Plant Genome, 10(2). https://doi.org/10.3835/plantgenome2016.12.0130 | spa |
dc.relation.references | Kang, M. (1988). rank–sum method for selectig high-yielding, stable corn genotypes. Cereal Res, 16(1), 113–115. | spa |
dc.relation.references | Lin, C. S., & Binns, M. R. (1988). A Superiority Measure of Cultivar Performance for Cultivar × Location Data. Canadian Journal of Plant Science, 68(1), 193–198. https://doi.org/10.4141/cjps88-018 | spa |
dc.relation.references | Miles, J. W. (2007). Apomixis for cultivar development in tropical forage grasses. Crop Science, 47(SUPPL. DEC.). https://doi.org/10.2135/cropsci2007.04.0016IPBS | spa |
dc.relation.references | Miles, J. W., do Valle, C. B., Rao, I. M., & Euclides, V. P. B. (2004). Brachiaria grasses. In L. Sollenberger, L. Moser, & B. Burson (Eds.), Warm-season grasses (1st ed., Issue 45, pp. 745–783). https://doi.org/10.2134/agronmonogr45.c22 | spa |
dc.relation.references | Oliveira, E., Freitas, J., & Jesus, O. (2013). AMMI analysis of yellow passion fruit Scientia Agricola. Scientia Agricola, 71(2), 139–145. | spa |
dc.relation.references | Olivoto, T., Lúcio, A. D. C., da Silva, J. A. G., Marchioro, V. S., de Souza, V. Q., & Jost, E. (2019). Mean performance and stability in multi-environment trials i: Combining features of AMMI and BLUP techniques. Agronomy Journal, 111(6), 2949–2960. https://doi.org/10.2134/agronj2019.03.0220 | spa |
dc.relation.references | Piepho, H. P. (1994). Best Linear Unbiased Prediction (BLUP) for regional yield trials: a comparison to additive main effects and multiplicative interaction (AMMI) analysis. Theoretical and Applied Genetics, 89(5), 647–654. https://doi.org/10.1007/BF00222462 | spa |
dc.relation.references | Purchase, J. L., Hatting, H., & van Deventer, C. S. (2000). Genotype × environment interaction of winter wheat (Triticum aestivum L.) in South Africa: II. Stability analysis of yield performance. South African Journal of Plant and Soil, 17(3), 101–107. https://doi.org/10.1080/02571862.2000.10634878 | spa |
dc.relation.references | Sa’diyah, H., & Hadi, A. F. (2016). AMMI Model for Yield Estimation in Multi-Environment Trials: A Comparison to BLUP. Agriculture and Agricultural Science Procedia, 9, 163–169. https://doi.org/10.1016/j.aaspro.2016.02.113 | spa |
dc.relation.references | Shukla, G. K. (1972). Some statistical aspects of partitioning genotype-environmental components of variability. Heredity, 29(2), 237–245. https://doi.org/10.1038/hdy.1972.87 | spa |
dc.relation.references | Tai, G. C. C. (1971). Genotypic Stability Analysis and Its Application to Potato Regional Trials. Crop Science, 11(2), 184–190. https://doi.org/10.2135/cropsci1971.0011183x001100020006x | spa |
dc.relation.references | van Eeuwijk, F. A. (2006). Plant Breeding: The Arnel R. Hallauer International Symposium. In Plant Breeding: The Arnel R. Hallauer International Symposium (1st ed., pp. 155–170). Blackwell Publishing. https://doi.org/10.1002/9780470752708 | spa |
dc.relation.references | van Eeuwijk, F. A., Bustos-Korts, D. v., & Malosetti, M. (2016). What should students in plant breeding know about the statistical aspects of genotype × Environment interactions? Crop Science, 56(5), 2119–2140. https://doi.org/10.2135/cropsci2015.06.0375 | spa |
dc.relation.references | Yaseen, M., Eskridge, K., & Murtaza, G. (2018). Package ‘stability.’ CRAN, 1(1), 1–22. https://doi.org/10.2135/cropsci1966.0011183x000600010011x | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-CompartirIgual 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | spa |
dc.subject.ddc | 630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales | spa |
dc.subject.lemb | Forraje | spa |
dc.subject.lemb | Forage | eng |
dc.subject.lemb | Alimento para animales | spa |
dc.subject.lemb | Feeds | eng |
dc.subject.proposal | Interacción genotipo por ambiente | spa |
dc.subject.proposal | Selección | spa |
dc.subject.proposal | Diseño de bloques aumentados | spa |
dc.subject.proposal | Forrajes | spa |
dc.title | Análisis de estabilidad fenotípica paramétrica de híbridos apomícticos de Brachiaria (Brachiaria humidicola) en múltiples ambientes | spa |
dc.title.translated | Analysis of parametric phenotypic stability in multiple environments for yield trials in Brachiaria (Brachiaria humidicola) | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1018480868.2022.pdf
- Tamaño:
- 1.17 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias Agrarias
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: