Evaluación del impacto de gradientes de concentración sobre el metabolismo del carbono central microbiano mediante un enfoque de modelamiento multiescala
dc.contributor.advisor | Suárez Méndez, Camilo Alberto | |
dc.contributor.author | Moreno Otálvaro, Sebastián | |
dc.contributor.researchgroup | Bioprocesos y Flujos Reactivos | spa |
dc.date.accessioned | 2023-08-01T19:19:52Z | |
dc.date.available | 2023-08-01T19:19:52Z | |
dc.date.issued | 2022-12-04 | |
dc.description | Ilustraciones | spa |
dc.description.abstract | Modelar un bioproceso es crucial para tener un entendimiento y predecir variables de operación importantes en la industria. Para hacerlo no solo es pertinente modelar el biorreactor con sus fenómenos de transporte sino también algunos procesos intracelulares que transforman el sustrato disponible. De esta forma, el objetivo general de esta tesis es realizar un modelamiento multiescala que comprende la escala macro (reactor) y la escala micro (metabolismo celular). La descripción matemática del biorreactor consistió en un modelo de compartimentos, con el fin de calcular los gradientes de concentración. Para la configuración dada del reactor se calculó un tiempo de mezcla de 70s si la alimentación es en el medio del tanque. Por otro lado, se construyó un modelo cinético para predecir datos experimentales del metabolismo de carbono central de Saccharomyces cerevisiae; específicamente para la glucólisis, la ruta de las pentosas fosfato y el metabolismo de trehalosa y glucógeno. Se realizó la estimación de parámetros y se obtuvo diferentes respuestas. Por ejemplo, para la glucosa intracelular el error fue del 3.8% y para fructosa 6-fosfato del 1%. Además, el modelo derivado aquí para el pool de glucógeno funcionará como base para trabajos futuros, ya que su modelamiento no ha sido lo suficientemente explorado en la literatura. Después, se acoplaron ambos modelos a través de la tasa de consumo de sustrato 𝑞���𝑠��� . Se simuló un pulso de alimento y se construyeron mapas de calor que muestran los gradientes de concentración en el reactor para la glucosa extracelular, metabolitos intracelulares y 𝑞���𝑠��� . Por último, se hizo un análisis de sensibilidad según la velocidad de agitación y el número de pulsos. Se obtuvo que a una velocidad de 180 o 240 rpm se disminuyen en gran medida los gradientes. Con el segundo análisis, se concluyó que tanto la trehalosa como el glucógeno son pooles de carbono que funcionan como buffer frente a perturbaciones de concentración en el entorno del microorganismo. (texto tomado de la fuente) | spa |
dc.description.abstract | Modelling a bioprocess is key for general understanding and predicting important operation variables at industry level. To do so, it is not only relevant to model the bioreactor and the associated transport phenomena, but also to model intracellular processes in charge of converting the available substrate. In this direction, the general objective of this thesis is to perform multiscale modeling considering the macroscale (reactor) and the microscale (cellular metabolism). The mathematical description of the bioreactor consists of a compartment model to compute concentration gradients. For the chosen reactor configuration, a mixing time of 70s is estimated when the feeding point is located somewhere at the middle section of the vessel. On the other hand, a kinetic model is built to predict experimental data from central carbon metabolism of Saccharomyces cerevisiae; specifically, glycolysis, pentose phosphate pathway and the trehalose and glycogen metabolism. Parameter estimation is performed resulting in different responses. For instance, for intracellular glucose an error of approximately 3.8% is obtained while for fructose 6-phosphate the error is about 1%. In addition, the model derived here for the glycogen pool might serve as a basis for future work, because its modelling has not yet been explored enough in literature. Then, both models are coupled by the substrate consumption velocity 𝑞��𝑠�� . A feeding pulse is simulated, and heat maps are constructed showing concentration gradients throughout the reactor for the extracellular glucose, intracellular metabolites and 𝑞��𝑠�� . Finally, a sensitivity analysis is performed according to the agitation speed and the number of pulses. As a result, the observed concentration gradients are significantly reduced when a stirring speed of 180 or 240 rpm is used. From the second analysis, a notable remark is that both, trehalose, and glycogen carbon pools, seem to buffer the carbon flux against concentration perturbations in the microorganism environment. | eng |
dc.description.curriculararea | Área curricular de Ingeniería Química e Ingeniería de Petróleos | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería - Ingeniería Química | spa |
dc.format.extent | 166 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/84402 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | spa |
dc.publisher.faculty | Facultad de Minas | spa |
dc.publisher.place | Medellín, Colombia | spa |
dc.publisher.program | Medellín - Minas - Maestría en Ingeniería - Ingeniería Química | spa |
dc.relation.references | Antoniewicz, M. R. (2021). A guide to metabolic flux analysis in metabolic engineering: Methods, tools and applications. Metabolic Engineering, 63(November 2020), 2–12. https://doi.org/10.1016/j.ymben.2020.11.002 | spa |
dc.relation.references | Ascanio, G. (2015). Mixing time in stirred vessels: A review of experimental techniques. Chinese Journal of Chemical Engineering, 23(7), 1065–1076. https://doi.org/10.1016/j.cjche.2014.10.022 | spa |
dc.relation.references | Baskaran, S. (2010). Structure and Regulation of Yeast Glycogen Synthase (Issue August) [Indiana University]. https://doi.org/10.1007/978-3-319-43589-3_1 | spa |
dc.relation.references | Bond, C. J., Jurica, M. S., Mesecar, A., & Stoddard, B. L. (2000). Determinants of allosteric activation of yeast pyruvate kinase and identification of novel effectors using computational screening. Biochemistry, 39(50), 15333–15343. https://doi.org/10.1021/bi001443i | spa |
dc.relation.references | Chan, C. Y., & Parra, K. J. (2014). Yeast phosphofructokinase-1 subunit Pfk2p is necessary for pH homeostasis and glucose-dependent vacuolar ATPase reassembly. Journal of Biological Chemistry, 289(28), 19448–19457. https://doi.org/10.1074/jbc.M114.569855 | spa |
dc.relation.references | Charpentier, J. C. (2009). Perspective on multiscale methodology for product design and engineering. Computers and Chemical Engineering, 33(5), 936–946. https://doi.org/10.1016/j.compchemeng.2008.11.007 | spa |
dc.relation.references | Cleland, W. W. (1963a). Biochimica Et Biophysica Acta the Kinetics of Enzyme-Catalyzed Re Ti With Two or More Substrates or Pr D Ct I. Nomen Clature a Td Rate Equatio. Biochirn. Biophys. Acta, 67(2), 67. https://doi.org/10.1016/0926-6569(63)90211-6 | spa |
dc.relation.references | Cleland, W. W. (1963b). The kinetics of enzyme-catalyzed reactions with two or more substrates or products. II. Inhibition: Nomenclature and theory. BBA - Biochimica et Biophysica Acta, 67(C), 173–187. https://doi.org/10.1016/0006-3002(63)91815-8 | spa |
dc.relation.references | Cui, Y. Q., Van der Lans, R. G. J. M., & Luyben, K. C. A. M. (1996). Local Power Uptake in Gas-Liquid Systems With Single and Multiple Rushton Turbines. 51(1), 2631– 2636. | spa |
dc.relation.references | Doran, P. M. (2012). Bioprocess engineering principles: Second edition. In Bioprocess Engineering Principles: Second Edition (Vol. 9780080917). | spa |
dc.relation.references | Flamholz, A. (2018). eQuilibrator. https://equilibrator.weizmann.ac.il/ | spa |
dc.relation.references | François, J., & Parrou, J. L. (2001). Reserve carbohydrates metabolism in the yeast Saccharomyces cerevisiae. FEMS Microbiology Reviews, 25(1), 125–145. https://doi.org/10.1016/S0168-6445(00)00059-0 | spa |
dc.relation.references | Gao, H., & Leary, J. A. (2003). Multiplex inhibitor screening and kinetic constant determinations for yeast hexokinase using mass spectrometry based assays. Journal of the American Society for Mass Spectrometry, 14(3), 173–181. https://doi.org/10.1016/S1044-0305(02)00867-X | spa |
dc.relation.references | Geerlof, A., Travers, F., Barman, T., & Lionne, C. (2005). Perturbation of yeast 3- phosphoglycerate kinase reaction mixtures with ADP: Transient kinetics of formation of ATP from bound 1,3-bisphosphoglycerate. Biochemistry, 44(45), 14948–14955. https://doi.org/10.1021/bi0512290 | spa |
dc.relation.references | Gelves, R., Dietrich, A., & Takors, R. (2014). Modeling of gas-liquid mass transfer in a stirred tank bioreactor agitated by a Rushton turbine or a new pitched blade impeller. Bioprocess and Biosystems Engineering, 37(3), 365–375. https://doi.org/10.1007/s00449-013-1001-8 | spa |
dc.relation.references | Gikas, P., & Livingston, A. G. (1998). Use of specific ATP concentration and specific oxygen uptake rate to determine parameters of a structured model of biomass growth. Enzyme and Microbial Technology, 22(6), 500–510. https://doi.org/10.1016/S0141-0229(97)00242-1 | spa |
dc.relation.references | Hahn, J. (2020). From Parts to the Whole A Whole-Cell Model for Saccharomyces cerevisiae. Humboldt-university Berlin | spa |
dc.relation.references | Hajian, C. S. S., Haringa, C., Noorman, H., & Takors, R. (2020). Predicting by-product gradients of baker’s yeast production at industrial scale: A practical simulation approach. Processes, 8(12), 1–19. https://doi.org/10.3390/pr8121554 | spa |
dc.relation.references | Haringa, C., Tang, W., Deshmukh, A. T., Xia, J., Reuss, M., Heijnen, J. J., Mudde, R. F., & Noorman, H. J. (2016). Euler-Lagrange computational fluid dynamics for (bio)reactor scale down: An analysis of organism lifelines. Engineering in Life Sciences, 16(7), 652–663. https://doi.org/10.1002/elsc.201600061 | spa |
dc.relation.references | Haringa, C., Tang, W., Wang, G., Deshmukh, A. T., van Winden, W. A., Chu, J., van Gulik, W. M., Heijnen, J. J., Mudde, R. F., & Noorman, H. J. (2018). Computational fluid dynamics simulation of an industrial P. chrysogenum fermentation with a coupled 9-pool metabolic model: Towards rational scale-down and design optimization. Chemical Engineering Science, 175, 12–24. https://doi.org/10.1016/j.ces.2017.09.020 | spa |
dc.relation.references | Hess, B., & Plesser, T. (1979). Temporal and Spatial Order in Biochemical Systems. Annals of the New York Academy of Sciences, 316(1), 203–213. https://doi.org/10.1111/j.1749-6632.1979.tb29470.x | spa |
dc.relation.references | Hori, K., & Unno, H. (2011). Integrated Production and Separation. In Comprehensive Biotechnology, Second Edition (Second Edi, Vol. 2). Elsevier B.V. https://doi.org/10.1016/B978-0-08-088504-9.00116-1 | spa |
dc.relation.references | Ingram, G. D., Cameron, I. T., & Hangos, K. M. (2004). Classification and analysis of integrating frameworks in multiscale modelling. Chemical Engineering Science, 59(11), 2171–2187. https://doi.org/10.1016/j.ces.2004.02.010 | spa |
dc.relation.references | Johnson, K. A., & Goody, R. S. (2011). The original Michaelis constant: Translation of the 1913 Michaelis-Menten Paper. Biochemistry, 50(39), 8264–8269. https://doi.org/10.1021/bi201284u | spa |
dc.relation.references | Jourdan, N., Neveux, T., Potier, O., Kanniche, M., Wicks, J., Nopens, I., Rehman, U., & Le Moullec, Y. (2019). Compartmental Modelling in chemical engineering: A critical review. Chemical Engineering Science, 210, 115196. https://doi.org/10.1016/j.ces.2019.115196 | spa |
dc.relation.references | Kesten, D., Kummer, U., Sahle, S., & Hübner, K. (2015). A new model for the aerobic metabolism of yeast allows the detailed analysis of the metabolic regulation during glucose pulse. Biophysical Chemistry, 206, 40–57. https://doi.org/10.1016/j.bpc.2015.06.010 | spa |
dc.relation.references | King, E. L., & Altman, C. (1956). A schematic method of deriving the rate laws for enzyme-catalyzed reactions. Journal of Physical Chemistry, 60(10), 1375–1378. https://doi.org/10.1021/j150544a010 | spa |
dc.relation.references | Klipp, E., Herwig, P., Kowald, A., Wierling, C., & Lehrach, H. (2005). Systems Biology in Practice. | spa |
dc.relation.references | Lam, C. F., & Priest, D. G. (1972). Enzyme Kinetics: Systematic Generation of Valid KingAltman Patterns. Biophysical Journal, 12(3), 248–256. https://doi.org/10.1016/S0006-3495(72)86084-3 | spa |
dc.relation.references | Lapin, A., Schmid, J., & Reuss, M. (2006). Modeling the dynamics of E. coli populations in the three-dimensional turbulent field of a stirred-tank bioreactor-A structuredsegregated approach. Chemical Engineering Science, 61(14), 4783–4797. https://doi.org/10.1016/j.ces.2006.03.003 | spa |
dc.relation.references | Larsson, C., Påhlman, I. L., & Gustafsson, L. (2000). The importance of ATP as a regulator of glycolytic flux in Saccharomyces cerevisiae. Yeast, 16(9), 797–809. https://doi.org/10.1002/1097-0061(20000630)16:9<797::AID-YEA553>3.0.CO;2-5 | spa |
dc.relation.references | Larsson, M., & Arvidsson, L. (1971). Inhibition of Phosphoglycerate Kinase by Products and Product Homologues. 22, 506–512. | spa |
dc.relation.references | Leskovac, V. (2004). COMPREHENSIVE ENZYME KINETICS. Kluwer Academic Publishers, 438. https://doi.org/10.1007/0-306-48390-4_5 | spa |
dc.relation.references | Luo, Y., Kurian, V., & Ogunnaike, B. A. (2021). Bioprocess systems analysis, modeling, estimation, and control. Current Opinion in Chemical Engineering, 33, 100705. https://doi.org/10.1016/j.coche.2021.100705 | spa |
dc.relation.references | Mayr, B., Horvat, P., Nagy, E., & Moser, A. (1993). Mixing-models applied to industrial batch bioreactors. Bioprocess Engineering, 9(1), 1–12. https://doi.org/10.1007/BF00389534 | spa |
dc.relation.references | Messiha, H., Kent, E., Malys, N., Carroll, K., Mendes, P., & Smallbone, K. (2014). Enzyme characterisation and kinetic modelling of the pentose phosphate pathway in yeast. PeerJ PrePrints, April. https://doi.org/10.7287/peerj.preprints.146v4 | spa |
dc.relation.references | Moisset, P., Vaisman, D., Cintolesi, A., Urrutia, J., Rapaport, I., Andrews, B. A., & Asenjo, J. A. (2012). Continuous modeling of metabolic networks with gene regulation in yeast and in vivo determination of rate parameters. Biotechnology and Bioengineering, 109(9), 2325–2339. https://doi.org/10.1002/bit.24503 | spa |
dc.relation.references | Monod, J., Wyman, J., & Changeux, J. P. (1965). On the nature of allosteric transitions: A plausible model. Journal of Molecular Biology, 12(1), 88–118. https://doi.org/10.1016/S0022-2836(65)80285-6 | spa |
dc.relation.references | Morchain, J. (2017a). Bioreactor Modeling. In Bioreaction Engineering Principles. Elsevier. https://doi.org/10.1007/978-1-4757-4645-7_9 | spa |
dc.relation.references | Morchain, J. (2017b). Numerical Tools for Scaling Up Bioreactors. Current Developments in Biotechnology and Bioengineering: Bioprocesses, Bioreactors and Controls, 495– 523. https://doi.org/10.1016/B978-0-444-63663-8.00017-3 | spa |
dc.relation.references | Mulcahy, P., O’Flaherty, M., Jennings, L., & Griffin, T. (2002). Application of kinetic-based biospecific affinity chromatographic systems to ATP-dependent enzymes: Studies with yeast hexokinase. Analytical Biochemistry, 309(2), 279–292. https://doi.org/10.1016/S0003-2697(02)00307-X | spa |
dc.relation.references | Muloiwa, M., Nyende-Byakika, S., & Dinka, M. (2020). Comparison of unstructured kinetic bacterial growth models. South African Journal of Chemical Engineering, 33(July), 141–150. https://doi.org/10.1016/j.sajce.2020.07.006 | spa |
dc.relation.references | Nadal-Rey, G., McClure, D. D., Kavanagh, J. M., Cornelissen, S., Fletcher, D. F., & Gernaey, K. V. (2021). Understanding gradients in industrial bioreactors. Biotechnology Advances, 46(October 2020), 107660. https://doi.org/10.1016/j.biotechadv.2020.107660 | spa |
dc.relation.references | Neet, K. E. (1995). Cooperativity in enzyme function: Equilibrium and kinetic aspects. Methods in Enzymology, 249(C), 519–567. https://doi.org/10.1016/0076- 6879(95)49048-5 | spa |
dc.relation.references | Nielsen, J. (2014). Bioreaction Engineering Principles. In Psychological Science (Vol. 25, Issue 9). | spa |
dc.relation.references | Nienow, A. W. (1998). Hydrodynamics of stirred bioreactors. Applied Mechanics Reviews, 51(1), 3–32. https://doi.org/10.1115/1.3098990 | spa |
dc.relation.references | Noorman, H. J., & Heijnen, J. J. (2017). Biochemical engineering’s grand adventure. Chemical Engineering Science, 170, 677–693. https://doi.org/10.1016/j.ces.2016.12.065 | spa |
dc.relation.references | Oide, S., & Inui, M. (2017). Trehalose acts as a uridine 5′-diphosphoglucose-competitive inhibitor of trehalose 6-phosphate synthase in Corynebacterium glutamicum. FEBS Journal, 284(24), 4298–4313. https://doi.org/10.1111/febs.14309 | spa |
dc.relation.references | Papagianni, M. (2012). Recent advances in engineering the central carbon metabolism of industrially important bacteria. Microbial Cell Factories, 11, 1–13. https://doi.org/10.1186/1475-2859-11-50 | spa |
dc.relation.references | Pigou, M., & Morchain, J. (2015). Investigating the interactions between physical and biological heterogeneities in bioreactors using compartment, population balance and metabolic models. Chemical Engineering Science, 126(April), 267–282. https://doi.org/10.1016/j.ces.2014.11.035 | spa |
dc.relation.references | Purich, D. L. (2009). Contemporary Enzyme Kinetics and Mechanism: Reliable Lab Solutions. http://books.google.com/books?hl=en&lr=&id=Pr3V80HZLpkC&pgis=1 | spa |
dc.relation.references | Richter, O., Betz, A., & Giersch, C. (1975). The response of oscillating glycolysis to perturbations in the NADH/NAD system: A comparison between experiments and a computer model. BioSystems, 7(1), 137–146. https://doi.org/10.1016/0303- 2647(75)90051-9 | spa |
dc.relation.references | Rizzi, M., Baltes, M., Theobald, U., & Reuss, M. (1997). In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae: II. Mathematical model. Biotechnology and Bioengineering, 55(4), 592–608. https://doi.org/10.1002/(SICI)1097- 0290(19970820)55:4<592::AID-BIT2>3.0.CO;2-C | spa |
dc.relation.references | Rothman, L. B., & Cabib, E. (1967a). Allosteric Properties of Yeast Glycogen Synthetase. I. General Kinetic Study. Biochemical and Biophysical Research Communications, 6(7), 644–650. https://doi.org/10.1016/0006-291X(66)90503-1 | spa |
dc.relation.references | Rothman, L. B., & Cabib, E. (1967b). Allosteric Properties of Yeast Glycogen Synthetase. II. The Effect of pH on Inhibition and Its Physiological Implications. Biochemistry, 6(7), 2107–2112. | spa |
dc.relation.references | Rudolph, F. B., & Fromm, H. J. (1971). Computer simulation studies with yeast hexokinase and additional evidence for the random Bi Bi mechanism. Journal of Biological Chemistry, 246(21), 6611–6619. https://doi.org/10.1016/s0021- 9258(19)34158-4 | spa |
dc.relation.references | Saa, P. A., & Nielsen, L. K. (2017). Formulation, construction and analysis of kinetic models of metabolism: A review of modelling frameworks. Biotechnology Advances, 35(8), 981–1003. https://doi.org/10.1016/j.biotechadv.2017.09.005 | spa |
dc.relation.references | Siebler, F., Lapin, A., Hermann, M., & Takors, R. (2019). The impact of CO gradients on C. ljungdahlii in a 125 m3 bubble column: Mass transfer, circulation time and lifeline analysis. Chemical Engineering Science, 207, 410–423. https://doi.org/10.1016/j.ces.2019.06.018 | spa |
dc.relation.references | Smallbone, K., Malys, N., Messiha, H. L., Wishart, J. A., & Simeonidis, E. (2011). Building a kinetic model of trehalose biosynthesis in Saccharomyces cerevisiae. In Methods in Enzymology (1st ed., Vol. 500). Elsevier Inc. https://doi.org/10.1016/B978-0-12- 385118-5.00018-9 | spa |
dc.relation.references | Smallbone, K., Messiha, H. L., Carroll, K. M., Winder, C. L., Malys, N., Dunn, W. B., Murabito, E., Swainston, N., Dada, J. O., Khan, F., Pir, P., Simeonidis, E., Spasić, I., Wishart, J., Weichart, D., Hayes, N. W., Jameson, D., Broomhead, D. S., Oliver, S. G., … Mendes, P. (2013). A model of yeast glycolysis based on a consistent kinetic characterisation of all its enzymes. FEBS Letters, 587(17), 2832–2841. https://doi.org/10.1016/j.febslet.2013.06.043 | spa |
dc.relation.references | Suarez-Mendez, C. a. (2015). Dynamics of Storage Carbohydrates Metabolism in Saccharomyces cerevisiae: A Quantitative (Issue december). | spa |
dc.relation.references | Tanabe, S., Kobayashi, M., & Matsuda, K. (1987a). Yeast Glycogen Phosphorylase: Characterization of the Dimeric Form and Its Activation. Agricultural and Biological Chemistry, 51(9), 2465–2471. https://doi.org/10.1271/bbb1961.51.2465 | spa |
dc.relation.references | Tanabe, S., Kobayashi, M., & Matsuda, K. (1987b). Yeast Glycogen Phosphorylase: Kinetic Properties Compared with Muscle and Potato Enzymes. Agricultural and Biological Chemistry, 52(3), 757–764. https://doi.org/10.1271/bbb1961.52.757 | spa |
dc.relation.references | Tang, W., Deshmukh, A. T., Haringa, C., Wang, G., van Gulik, W., van Winden, W., Reuss, M., Heijnen, J. J., Xia, J., Chu, J., & Noorman, H. J. (2017). A 9-pool metabolic structured kinetic model describing days to seconds dynamics of growth and product formation by Penicillium chrysogenum. In Biotechnology and Bioengineering (Vol. 114, Issue 8). https://doi.org/10.1002/bit.26294 | spa |
dc.relation.references | Teusink, B., Passarge, J., Reijenga, C. A., Esgalhado, E., Van Der Weijden, C. C., Schepper, M., Walsh, M. C., Bakker, B. M., Van Dam, K., Westerhoff, H. V., & Snoep, J. L. (2000). Can yeast glycolysis be understood terms of vitro kinetics of the constituent enzymes? Testing biochemistry. European Journal of Biochemistry, 267(17), 5313–5329. https://doi.org/10.1046/j.1432-1327.2000.01527.x | spa |
dc.relation.references | Traut, T. (2008). Regulatory Allosteric Enzymes. Springer US. | spa |
dc.relation.references | Trevisol, E. T. V., Panek, A. D., De Mesquita, J. F., & Eleutherio, E. C. A. (2014). Regulation of the yeast trehalose-synthase complex by cyclic AMP-dependent phosphorylation. Biochimica et Biophysica Acta - General Subjects, 1840(6), 1646– 1650. https://doi.org/10.1016/j.bbagen.2013.12.010 | spa |
dc.relation.references | Tripodi, F., Nicastro, R., Reghellin, V., & Coccetti, P. (2015). Post-translational modifications on yeast carbon metabolism: Regulatory mechanisms beyond transcriptional control. Biochimica et Biophysica Acta - General Subjects, 1850(4), 620–627. https://doi.org/10.1016/j.bbagen.2014.12.010 | spa |
dc.relation.references | Turnquist, R., & Hansen, G. (1973). Uridine Diphosphoryl Glucose Pyrophosphorylase. 1, 51–71. | spa |
dc.relation.references | Van’t Riet, K. (1991). Basic Bioreactor Design. Marcel Dekker, Inc. | spa |
dc.relation.references | van Boekel, M. A. J. S., & Tijskens, L. M. M. (2001). Kinetic modelling. Food Process Modelling, December, 35–59. https://doi.org/10.1533/9781855736375.1.35 | spa |
dc.relation.references | van Leer, B., & Powell, K. G. (2010). Introduction to Computational Fluid Dynamics. Encyclopedia of Aerospace Engineering, October. https://doi.org/10.1002/9780470686652.eae048 | spa |
dc.relation.references | Vandercammen, A., François, J., & Hers, H. -G. (1989). Characterization of trehalose-6- phosphate synthase and trehalose-6-phosphate phosphatase of Saccharomyces cerevisiae. European Journal of Biochemistry, 182(3), 613–620. https://doi.org/10.1111/j.1432-1033.1989.tb14870.x | spa |
dc.relation.references | Vasconcelos, J. M. T., Alves, S. S., & Barata, J. M. (1995). Mixing in gas-liquid contactors agitated by multiple turbines. Chemical Engineering Science, 50(14), 2343–2354. https://doi.org/10.1016/0009-2509(95)00090-R | spa |
dc.relation.references | Vaseghi, S., Baumeister, A., Rizzi, M., & Reuss, M. (1999). In vivo dynamics of the pentose phosphate pathway in Saccharomyces cerevisiae. Metabolic Engineering, 1(2), 128–140. https://doi.org/10.1006/mben.1998.0110 | spa |
dc.relation.references | von Stockar, U. (2013). Biothermodynamics: Role, The Engineering, Biochemical. EPFL Press. | spa |
dc.relation.references | Vrábel, P., Van Der Lans, R. G. J. M., Cui, Y. Q., & Luyben, K. C. A. M. (1999). Compartment model approach: Mixing in large scale aerated reactors with multiple impellers. Chemical Engineering Research and Design, 77(4), 291–302. https://doi.org/10.1205/026387699526223 | spa |
dc.relation.references | Vrábel, P., Van Der Lans, R. G. J. M., Luyben, K. C. A. M., Boon, L., & Nienow, A. W. (2000). Mixing in large-scale vessels stirred with multiple radial or radial and axial uppumping impellers: Modelling and measurements. Chemical Engineering Science, 55(23), 5881–5896. https://doi.org/10.1016/S0009-2509(00)00175-5 | spa |
dc.relation.references | Vrábel, P., Van der Lans, R. G. J. M., Van der Schot, F. N., Luyben, K. C. A. M., Xu, B., & Enfors, S. O. (2001). CMA: Integration of fluid dynamics and microbial kinetics in modelling of large-scale fermentations. Chemical Engineering Journal, 84(3), 463– 474. https://doi.org/10.1016/S1385-8947(00)00271-0 | spa |
dc.relation.references | Wilson, W. A., Boyer, M. P., Davis, K. D., Burke, M., & Roach, P. J. (2010). The subcellular localization of yeast glycogen synthase is dependent upon glycogen content. Canadian Journal of Microbiology, 56(5), 408–420. https://doi.org/10.1139/W10-027 | spa |
dc.relation.references | Wilson, W. A., Roach, P. J., Montero, M., Baroja-Fernández, E., Muñoz, F. J., Eydallin, G., Viale, A. M., & Pozueta-Romero, J. (2010). Regulation of glycogen metabolism in yeast and bacteria. FEMS Microbiology Reviews, 34(6), 952–985. https://doi.org/10.1111/j.1574-6976.2010.00220.x | spa |
dc.relation.references | Xia, J., Wang, G., Lin, J., Wang, Y., Chu, J., Zhuang, Y., & Zhang, S. (2015). Advances and Practices of Bioprocess Scale-up. Advances in Biochemical Engineering/Biotechnology, January 2015. https://doi.org/10.1007/10 | spa |
dc.relation.references | Yavari, M., Ebrahimi, S., Aghazadeh, V., & Ghashghaee, M. (2019). Kinetics of different bioreactor systems with Acidithiobacillus ferrooxidans for ferrous iron oxidation. Reaction Kinetics, Mechanisms and Catalysis, 128(2), 611–627. https://doi.org/10.1007/s11144-019-01660-3 | spa |
dc.relation.references | Zahradník, J., Mann, R., Fialová, M., Vlaev, D., Vlaev, S. D., Lossev, V., & Seichter, P. (2001). A networks-of-zones analysis of mixing and mass transfer in three industrial bioreactors. Chemical Engineering Science, 56(2), 485–492. https://doi.org/10.1016/S0009-2509(00)00252-9 | spa |
dc.relation.references | Zhong, J. J. (2011). Bioreactor Engineering. In Comprehensive Biotechnology, Second Edition (Second Edi, Vol. 2). Elsevier B.V. https://doi.org/10.1016/B978-0-08- 088504-9.00097-0 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería | spa |
dc.subject.lemb | Bioreactores | |
dc.subject.lemb | Control de procesos biotecnológicos | |
dc.subject.proposal | Modelamiento multiescala | spa |
dc.subject.proposal | Modelo de compartimentos | spa |
dc.subject.proposal | Modelo cinético | spa |
dc.subject.proposal | Carbohidratos de reserva | spa |
dc.subject.proposal | Saccharomyces cerevisiae | other |
dc.subject.proposal | Metabolismo de carbono central | spa |
dc.subject.proposal | Multiscale modeling | eng |
dc.subject.proposal | Compartment model | eng |
dc.subject.proposal | Kinetic model | eng |
dc.subject.proposal | Storage carbohydrates | eng |
dc.subject.proposal | Central carbon metabolism | eng |
dc.title | Evaluación del impacto de gradientes de concentración sobre el metabolismo del carbono central microbiano mediante un enfoque de modelamiento multiescala | spa |
dc.title.translated | Evaluation of the impact of concentration gradients on the microbial carbon central metabolism by a multiscale modelling approach | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1036954383.2022.pdf
- Tamaño:
- 5.72 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Ingeniería Química
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: