Evaluación de la estimación espaciotemporal de la recarga mediante un modelo hidrológico utilizando una calibración multiobjetivo que incorpore información de sensores remotos

dc.contributor.advisorPiña Fulano, Adriana Patriciaspa
dc.contributor.advisorDonado Garzón, Leonardo Davidspa
dc.contributor.authorCortés Ramos, Diego Albertospa
dc.contributor.financerProyecto MEGIAspa
dc.contributor.orcidhttps://orcid.org/0000-0002-7218-6970spa
dc.contributor.researchgroupHyds Hidrodinámica del Medio Naturalspa
dc.date.accessioned2024-06-05T20:24:09Z
dc.date.available2024-06-05T20:24:09Z
dc.date.issued2024-05
dc.descriptionilustraciones, diagramasspa
dc.description.abstractLa recarga es la cantidad de agua que alimenta los sistemas de aguas subterráneas, sistemas que abastecen aproximadamente a dos mil millones de personas. Para su estimación existen variedad de técnicas entre las cuales está la modelación hidrológica. En la presente investigación se realizó la implementación del modelo hidrológico TETIS para estimar la recarga de aguas subterráneas en la cuenca del río Lebrija ubicada en la Cordillera Oriental de Los Andes colombianos. Esta es una cuenca tropical con un promedio anual de precipitación de 1675 mm, que se presenta en un régimen mixto, con picos a mediados de cada semestre. La cuenca tiene un fuerte cambio de elevaciones desde 4200 hasta 28 msnm en el punto de delimitación. En la implementación se utilizó información de superficie registrada por estaciones del IDEAM. Para mejorar las estimaciones se utilizó una calibración multiobjetivo que involucró información de evapotranspiración y humedad del suelo registrada por sensores remotos. Para la validación de la recarga se utilizó información de GRACE y GLDAS para tener una aproximación a valores medidos de recarga. Se evaluó el desempeño espacial con la métrica de eficiencia de patrones espaciales; para lo cual se realizó un acople del modelo con un código de R que permitiera la inclusión de nuevas funciones objetivo. Como algoritmo de calibración multiobjetivo se utilizó Pareto Archived Dynamically Dimensioned Search mediante el programa Ostrich. Con la metodología propuesta se mejoró el desempeño espacial del modelo hasta en 47.9 % y en la simulación de caudales se alcanzaron mejoras de 20.8 %. La recarga estimada mejoró en 31.9 %, pasando de 218 a 695 mm anuales en promedio. (Texto tomado de la fuente).spa
dc.description.abstractGroundwater recharge is the amount of water that feeds groundwater systems, which supply water to two billion people globally. Various techniques exist for estimating groundwater recharge, including hydrological modeling. In this research, the TETIS hydrological model was implemented to estimate groundwater recharge in the Lebrija river basin, located in the Colombian eastern mountain range. This tropical basin experiences an average annual rainfall of 1675 mm, with a mixed regime peaking in the middle of each semester. The Lebrija basin features significant elevation variations, ranging from over 4200 meters above sea level (masl) to 28 masl at the delimitation point. Surface information from IDEAM stations was used during the implementation phase. To enhance estimations, a multi-objective calibration was performed, incorporating evapotranspiration (ET) and soil moisture (SM) data obtained through remote sensing. Additionally, GRACE and GLDAS data were used to approximate measured recharge values for groundwater recharge validation. Spatial performance was assessed using the spatial pattern efficiency metric, which required coupling the model with an R script to incorporate new objective functions. The Pareto Archived Dynamically Dimensioned Search algorithm was implemented via Ostrich software. The proposed methodology demonstrated an enhancement in spatial performance by up to 47.9 %, leading to a 20.8 % improvement in flow simulation. Furthermore, recharge estimation showed a significant improvement of 31.9 %, increasing from 218 to 695 mm of annual average.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Recursos Hidráulicosspa
dc.description.researchareaHidrología y meteorologíaspa
dc.description.sponsorshipMODELO MULTIESCALA DE GESTIÓN INTEGRAL DEL AGUA CON ANÁLISIS DE INCERTIDUMBRE DE LA INFORMACIÓN PARA LA REALIZACIÓN DE LA EVALUACIÓN AMBIENTAL ESTRATÉGICA (EAE) DEL SUBSECTOR DE HIDROCARBUROS EN EL VALLE MEDIO DEL MAGDALENAspa
dc.format.extentxxi, 93 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86208
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Recursos Hidráulicosspa
dc.relation.referencesAquanty Inc. (2013). HydroGeoSphere user manual. 1.0.spa
dc.relation.referencesArenas-Bautista, M. C., Duque-Gardeazabal, N., Arboleda-Obando, P., Guadagnini, A., Riva, M., & Donado, L. (2017). Hydrological Modelling the Middle Magdalena Valley (Colombia).spa
dc.relation.referencesArenas-Bautista, M. C. (2020). Integration of Hydrological and Economical Aspects for Water Management in Tropical Regions . Case Study : Middle Magdalena Valley , Colombia . [Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/77944spa
dc.relation.referencesAsadzadeh, M., & Tolson, B. (2013). Pareto archived dynamically dimensioned search with hypervolume-based selection for multi-objective optimization. Engineering Optimization, 45(12), 1489–1509. https://doi.org/10.1080/0305215X.2012.748046spa
dc.relation.referencesAsadzadeh, M., & Tolson, B. A. (2009). A new multi-objective algorithm, pareto archived DDS. January, 1963. https://doi.org/10.1145/1570256.1570259spa
dc.relation.referencesBeven, K. (2012). Rainfall-Runoff Modelling (Second Edi). John Wiley & Sons, Ltd.spa
dc.relation.referencesBeven, K., & Binley, A. (1992). The future of distributed models: Model calibration and uncertainty prediction. Hydrological Processes, 6(3), 279–298. https://doi.org/10.1002/hyp.3360060305spa
dc.relation.referencesBeven, K. J., & Kirkby, M. J. (1979). A physically based, variable contributing area model of basin hydrology. Hydrological Sciences Bulletin, 24(1), 43–69. https://doi.org/10.1080/02626667909491834spa
dc.relation.referencesBomba Estéreo. (2015). Soy Yo.spa
dc.relation.referencesBrocca, L., Hasenauer, S., Lacava, T., Melone, F., Moramarco, T., Wagner, W., Dorigo, W., Matgen, P., Martínez-Fernández, J., Llorens, P., Latron, J., Martin, C., & Bittelli, M. (2011). Soil moisture estimation through ASCAT and AMSR-E sensors: An intercomparison and validation study across Europe. Remote Sensing of Environment, 115(12), 3390–3408. https://doi.org/10.1016/j.rse.2011.08.003spa
dc.relation.referencesBudyko, M. I. (1961). The Heat Balance of the Earth’s Surface. Soviet Geography, 2(4), 3–13. https://doi.org/10.1080/00385417.1961.10770761spa
dc.relation.referencesCalifornia Institute of Technology. (2014). SMAP Handbook. In Mapping Soil Moisture and Freezs/Thaw from Space (p. 192).spa
dc.relation.referencesCalifornia Institute of Technology. (2015). SMAP. https://smap.jpl.nasa.gov/spa
dc.relation.referencesCalifornia Institute of Technology. (2019). Soil Moisture Active Passive (SMAP) Algorithm Theoretical Basis Document L2 & L3 Radar/Radiometer Soil Moisture (Active/Passive) Data Products. Jpl, 1–89.spa
dc.relation.referencesCalifornia Institute of Technology. (2021). GRACE Tellus. https://grace.jpl.nasa.gov/spa
dc.relation.referencesCAS. (2018). Plan de Ordenación y Manejo de la Cuenca Hidrográfica Afluentes Directos del Río Lebrija Medio (mi) - NSS (2319-04).spa
dc.relation.referencesCDMB. (2019). Plan de Ordenación y Manejo de la Cuenca Hidrográfica del Río Cáchira Sur (2319-02). Corporación Autónoma Regional para la Defensa de la Meseta de Bucaramanga.spa
dc.relation.referencesCDMB. (2020). Plan de Ordenación y Manejo de la Cuenca Hidrográfica del Río Alto Lebrija (2319-01). Corporación Autónoma Regional para la Defensa de la Meseta de Bucaramanga.spa
dc.relation.referencesCDMB, CORPONOR, CAS, & CORPOCESAR. (2014). Plan de Ordenación y Manejo de la Cuenca Hidrográfica del Río Lebrija Medio-NSS (2319-03).spa
dc.relation.referencesChaturvedi, R. S. (1973). A Note on the Investigation of Groundwater Resources in Western Districts of Uttar Pradesh. Annual Report. Irrigation Research Institute, 86–122.spa
dc.relation.referencesCheo, A. E., Voigt, H. J., & Wendland, F. (2017). Modeling groundwater recharge through rainfall in the Far-North region of Cameroon. Groundwater for Sustainable Development, 5(June), 118–130. https://doi.org/10.1016/j.gsd.2017.06.001spa
dc.relation.referencesCleugh, H. A., Leuning, R., Mu, Q., & Running, S. W. (2007). Regional evaporation estimates from flux tower and MODIS satellite data. Remote Sensing of Environment, 106(3), 285–304. https://doi.org/10.1016/j.rse.2006.07.007spa
dc.relation.referencesCollischonn, W., Allasia, D., da Silva, B. C., & Tucci, C. E. M. (2007). The MGB-IPH model for large-scale rainfall-runoff modelling. Hydrological Sciences Journal, 52(5), 878–895. https://doi.org/10.1623/hysj.52.5.878spa
dc.relation.referencesCordano, E. (2017). RGENERATE: Tools To Generate Vector Time Series. https://cran.r-project.org/package=RGENERATEspa
dc.relation.referencesCordano, E., & Eccel, E. (2017). RMAWGEN: Multi-Site Auto-Regressive Weather GENerator. https://cran.r-project.org/package=RMAWGENspa
dc.relation.referencesCustodio, E. (2002). Aquifer overexploitation: What does it mean? Hydrogeology Journal, 10(2), 254–277. https://doi.org/10.1007/s10040-002-0188-6spa
dc.relation.referencesde Silva, C. S., & Rushton, K. R. (2007). Groundwater recharge estimation using improved soil moisture balance methodology for a tropical climate with distinct dry seasons. Hydrological Sciences Journal, 52(5), 1051–1067. https://doi.org/10.1623/hysj.52.5.1051spa
dc.relation.referencesDell’Oca, A., Riva, M., & Guadagnini, A. (2017). Moment-based metrics for global sensitivity analysis of hydrological systems. Hydrology and Earth System Sciences, 21(12), 6219–6234. https://doi.org/10.5194/hess-21-6219-2017spa
dc.relation.referencesDembélé, M., Ceperley, N., Zwart, S. J., Salvadore, E., Mariethoz, G., & Schaefli, B. (2020). Potential of satellite and reanalysis evaporation datasets for hydrological modelling under various model calibration strategies. Advances in Water Resources, 143(March). https://doi.org/10.1016/j.advwatres.2020.103667spa
dc.relation.referencesDembélé, M., Hrachowitz, M., Savenije, H. H. G., Mariéthoz, G., & Schaefli, B. (2020). Improving the Predictive Skill of a Distributed Hydrological Model by Calibration on Spatial Patterns With Multiple Satellite Data Sets. Water Resources Research, 56(1), 0–3. https://doi.org/10.1029/2019WR026085spa
dc.relation.referencesDu, H., Fok, H. S., Chen, Y., & Ma, Z. (2020). Characterization of the recharge-storage-runoff process of the Yangtze river source region under climate change. Water (Switzerland), 12(7). https://doi.org/10.3390/w12071940spa
dc.relation.referencesFlint, A. L., Flint, L. E., Hevesi, J. A., D’agnese, F., & Faunt, C. (2000). Estimation of regional recharge and travel time through the unsaturated zone in arid climates. Geophysical Monograph Series, 122, 115–128. https://doi.org/10.1029/GM122p0115spa
dc.relation.referencesFlint, A. L., Flint, L. E., Kwicklis, E. M., Fabryka-Martin, J. T., & Bodvarsson, G. S. (2002). Estimating recharge at Yucca Mountain, Nevada, USA: Comparison of methods. Hydrogeology Journal, 10(1), 180–204. https://doi.org/10.1007/s10040-001-0169-1spa
dc.relation.referencesGarcía-Echeverri, C. (2022). Evaluación del Modelo Hidrológico Dynamic Water Balance a Escala Diaria en Cuencas Tropicales.spa
dc.relation.referencesGDAL/OGR contributors (2023). GDAL/OGR Geospatial Data Abstraction software Library. Open Source Geospatial Foundation.spa
dc.relation.referencesGIMHA. (2021). Descripción del Modelo Conceptual Distribuido de Simulación Hidrológica TETIS v.9 (9.1). Instituto Universitario de Investigación de Ingeniería del Agua y Medio Ambiente - Universitat Politècnica de València. http://lluvia.dihma.upv.es/spa
dc.relation.referencesGIMHA. (2021). Manual de Usuario Programa TETIS v.9. Instituto Universitario de Investigación de Ingeniería del Agua y Medio Ambiente - Universitat Politècnica de València. http://www.etitudela.com/entrenadorcomunicaciones/downloads/gsmmanualsmsconfiguratorl.pdfspa
dc.relation.referencesGogolev, M. I. (2002). Assessing groundwater recharge with two unsaturated zone modeling technologies. Environmental Geology, 42(2–3), 248–258. https://doi.org/10.1007/s00254-001-0494-7spa
dc.relation.referencesGómez-Blanco, J. A., & Cadena, M. C. (2018). Validación de las Fórmulas de Evapotranspiración de Referencia (ETo) para Colombia. In IDEAM.spa
dc.relation.referencesGómez-Medina, D. (2023). Assessment of methodologies to estimate aquifer recharge in a Tropical Climate Zone. Universidad Nacional de Colombia.spa
dc.relation.referencesGRASS Development Team (2023). Geographic Resources Analysis Support System (GRASS GIS) Software, Version 8.3. Open Source Geospatial Foundation, USA.spa
dc.relation.referencesHargreaves, G. H., & Samani, Z. A. (1982). Estimating potential evapotranspiration. Journal of the Irrigation & Drainage Division, 108(IR3), 225–230.spa
dc.relation.referencesHenry, C. M., Allen, D. M., & Huang, J. (2011). Groundwater storage variability and annual recharge using well-hydrograph and GRACE satellite data. Hydrogeology Journal, 19(4), 741–755. https://doi.org/10.1007/s10040-011-0724-3spa
dc.relation.referencesIDEAM. (2013). Aguas Subterráneas en Colombia Una Visión General.spa
dc.relation.referencesIDEAM. (2018). Metodología de la operación estadística variables meteorológicas. Instituto de Hidrología Meteorología y Estudios Ambientales, 113. https://www.gob.pe/institucion/midagri/informes-publicaciones/558835-boletin-estadistico-mensual-el-agro-en-cifras-2020spa
dc.relation.referencesIDEAM. (2018). Protocolo De Modelación Hidrológica e Hidráulica. http://documentacion.ideam.gov.co/openbiblio/bvirtual/023833/Protocolo_Modelacion_HH.pdfspa
dc.relation.referencesIDEAM. (2019). Estudio Nacional del Agua 2018.spa
dc.relation.referencesIDEAM. (2021). Mapa de Coberturas de la Tierra. Metodología Corine Land Cover. Escala 1:100.000. Periodo 2018. Instituto de Hidrología Meteorología y Estudios Ambientales.spa
dc.relation.referencesIDEAM. (2023). Estudio Nacional del Agua. In Ministerio de Medio Ambiente. Instituto de Hidrología Meteorología y Estudios Ambientales.spa
dc.relation.referencesIGAC. (2017). Mapa Digital de Suelos del Departamento de Santander, República de Colombia. Escala 1:100.000. Año 2002. Instituto Geográfico Agustín Codazzi.spa
dc.relation.referencesIGAC. (2017). Mapa Digital de Suelos del Departamento de Norte de Santander, República de Colombia. Escala 1:100.000. Año 2006. Instituto Geográfico Agustín Codazzi.spa
dc.relation.referencesImmerzeel, W. W., & Droogers, P. (2008). Calibration of a distributed hydrological model based on satellite evapotranspiration. Journal of Hydrology, 349(3–4), 411–424. https://doi.org/10.1016/j.jhydrol.2007.11.017spa
dc.relation.referencesJAXA EORC. (2013). GCOM-W1. https://suzaku.eorc.jaxa.jp/GCOM_W/w_amsr2/whats_amsr2.htmlspa
dc.relation.referencesJiang, L., Wu, H., Tao, J., Kimball, J. S., Alfieri, L., & Chen, X. (2020). Satellite-based evapotranspiration in hydrological model calibration. Remote Sensing, 12(3). https://doi.org/10.3390/rs12030428spa
dc.relation.referencesJimenez, M., Velásquez, N., Jimenez, J. E., Barco, J., Blessent, D., López-Sánchez, J., Castrillón, S. C., Valenzuela, C., Therrien, R., Boico, V. F., & Múnera, J. C. (2022). Sequential surface and subsurface flow modeling in a tropical aquifer under different rainfall scenarios. Environmental Modelling and Software, 149(January). https://doi.org/10.1016/j.envsoft.2022.105328spa
dc.relation.referencesKunnath-Poovakka, A., Ryu, D., Renzullo, L. J., & George, B. (2016). The efficacy of calibrating hydrologic model using remotely sensed evapotranspiration and soil moisture for streamflow prediction. Journal of Hydrology, 535, 509–524. https://doi.org/10.1016/j.jhydrol.2016.02.018spa
dc.relation.referencesLi, Y., Grimaldi, S., Pauwels, V. R. N., & Walker, J. P. (2018). Hydrologic model calibration using remotely sensed soil moisture and discharge measurements: The impact on predictions at gauged and ungauged locations. Journal of Hydrology, 557, 897–909. https://doi.org/10.1016/j.jhydrol.2018.01.013spa
dc.relation.referencesLi, Z., Liu, P., Feng, M., Cui, X., He, P., Wang, C., & Zhang, J. (2020). Evaluating the Effect of Transpiration in Hydrologic Model Simulation through Parameter Calibration. Journal of Hydrologic Engineering, 25(5), 04020007. https://doi.org/10.1061/(asce)he.1943-5584.0001895spa
dc.relation.referencesLiang, X., Lettenmaier, D. P., Wood, E. F., & Burges, S. J. (1994). A simple hydrologically based model of land surface water and energy fluxes for general circulation model. JOURNAL OF GEOPHYSICAL RESEARC, 99(D7), 14415–14428. https://doi.org/10.1029/94JD00483spa
dc.relation.referencesMilzow, C., Krogh, P. E., & Bauer-Gottwein, P. (2011). Combining satellite radar altimetry, SAR surface soil moisture and GRACE total storage changes for hydrological model calibration in a large poorly gauged catchment. Hydrology and Earth System Sciences, 15(6), 1729–1743. https://doi.org/10.5194/hess-15-1729-2011spa
dc.relation.referencesMonteith, J. (1965). Evaporation and environment. The State and Movement of Water in Living Organisms. XIXth Symposium, 19.spa
dc.relation.referencesMoriasi, D. N., Gitau, M. W., Pai, N., & Daggupati, P. (2015). Hydrologic and water quality models: Performance measures and evaluation criteria. Transactions of the ASABE, 58(6), 1763–1785. https://doi.org/10.13031/trans.58.10715spa
dc.relation.referencesPALSAR, J. A. (2006). ALOS Phased Array type L-band Synthetic Aperture Radar. https://asf.alaska.edu/datasets/daac/alos-palsar/spa
dc.relation.referencesPettitt, A. N. (1979). A Non-Parametric Approach to the Change-Point Problem. Applied Statistics, 28(2), 126. https://doi.org/10.2307/2346729spa
dc.relation.referencesPohlert, T. (2023). Non-Parametric Trend Tests and Change-Point Detection. CRAN.spa
dc.relation.referencesPushpalatha, R., Perrin, C., Moine, N. Le, & Andréassian, V. (2012). A review of efficiency criteria suitable for evaluating low-flow simulations. Journal of Hydrology, 420–421, 171–182. https://doi.org/10.1016/j.jhydrol.2011.11.055spa
dc.relation.referencesRajib, A., Merwade, V., & Yu, Z. (2018). Rationale and Efficacy of Assimilating Remotely Sensed Potential Evapotranspiration for Reduced Uncertainty of Hydrologic Models. Water Resources Research, 54(7), 4615–4637. https://doi.org/10.1029/2017WR021147spa
dc.relation.referencesRiano Neira, M. F., Beltran Huertas, D. C., & Mancipe Munoz, N. A. (2022). Challenges of Using Remote Sensor Products in Colombian Regional Hydrological Models. Proceedings of the 39th IAHR World Congress, 5340–5350. https://doi.org/10.3850/IAHR-39WC252171192022956spa
dc.relation.referencesRichey, A. S., Thomas, B. F., Lo, M. H., Reager, J. T., Famiglietti, J. S., Voss, K., Swenson, S., & Rodell, M. (2015). Quantifying renewable groundwater stress with GRACE. Water Resources Research, 51(7), 5217–5237. https://doi.org/10.1002/2015WR017349spa
dc.relation.referencesRodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng, C.-J., Arsenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin, J. K., Walker, J. P., Lohmann, D., & Toll, D. (2004). The Global Land Data Assimilation System. Bulletin of the American Meteorological Society, 85(3), 381–394. https://doi.org/10.1175/BAMS-85-3-381spa
dc.relation.referencesRodríguez, E., Sánchez, I., Duque, N., Arboleda, P., Vega, C., Zamora, D., López, P., Kaune, A., Werner, M., García, C., & Burke, S. (2020). Combined Use of Local and Global Hydro Meteorological Data with Hydrological Models for Water Resources Management in the Magdalena - Cauca Macro Basin – Colombia. Water Resources Management, 34(7), 2179–2199. https://doi.org/10.1007/s11269-019-02236-5spa
dc.relation.referencesRomero-León, P. (2023). Assemblage of satellite information to produce insights into groundwater storage in Colombia’s five major basins. Universidad Nacional de Colombia.spa
dc.relation.referencesRuggieri, G., Allocca, V., Borfecchia, F., Cusano, D., Marsiglia, P., & De Vita, P. (2021). Testing evapotranspiration estimates based on MODIS satellite data in the assessment of the groundwater recharge of karst aquifers in southern Italy. Water (Switzerland), 13(2). https://doi.org/10.3390/w13020118spa
dc.relation.referencesRunning, S. W., Mu, Q., Zhao, M., & Moreno, A. (2019). MOD16A2 MODIS/Terra Net Evapotranspiration 8-Day L4 Global 500m SIN Grid V006 [Data set]. https://doi.org/https://doi.org/10.5067/MODIS/MOD16A2.006spa
dc.relation.referencesScanlon, B. R., Healy, R. W., & Cook, P. G. (2002). Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeology Journal, 10(1), 18–39. https://doi.org/10.1007/s10040-001-0176-2spa
dc.relation.referencesSchosinsky N., G. (2006). Cálculo de la recarga potencial de acuíferos mediante un balance hídrico de suelos. Revista Geológica de América Central, 34–35, 13–30. https://doi.org/10.15517/rgac.v0i34-35.4223spa
dc.relation.referencesSchosinsky N., G., & Losilla, M. (2000). Modelo Analítico para Determinar la Infiltración con Base en la Lluvia Mensual. Revista Geológica de América Central, 23, 43–55.spa
dc.relation.referencesSendiña Nadal, I., & Pérez Muñuzuri, V. (2006). Fundamentos de meteorología.spa
dc.relation.referencesSGC. (2019). Modelo Hidrogeológico Conceptual del Valle Medio Del Magdalena. Planchas 108 Y 119 Puerto Wilches, Barrancabermeja, Sabana de Torres y San Vicente de Chucurí.spa
dc.relation.referencesShawn Matott, L.-. (2017). OSTRICH – An Optimization Software Toolkit for Research Involving Computational Heuristics Documentation and User ’ s Guide by L . Shawn Matott , Ph . D . State University of New York at Buffalo Center for Computational Research (p. 79). www.eng.buffalo.edu/~lsmatott/Ostrich/OstrichMain.html.spa
dc.relation.referencesSingh, A., Panda, S. N., Uzokwe, V. N. E., & Krause, P. (2019). An assessment of groundwater recharge estimation techniques for sustainable resource management. Groundwater for Sustainable Development, 9(April), 100218. https://doi.org/10.1016/j.gsd.2019.100218spa
dc.relation.referencesSinghal, B. B. S., & Gupta, R. P. (2010). Applied Hydrogeology of Fractured Rocks (Springer (ed.); Second Edi).spa
dc.relation.referencesSobol, I. M. (1990). On sensitivity estimation for nonlinear mathematical models. Matematicheskoe Modelirovanie, 2(1).spa
dc.relation.referencesThe European Space Agency. (2009). SMOS. https://earth.esa.int/eogateway/missions/smosspa
dc.relation.referencesThirel, G., Andréassian, V., Perrin, C., Audouy, J. N., Berthet, L., Edwards, P., Folton, N., Furusho, C., Kuentz, A., Lerat, J., Lindström, G., Martin, E., Mathevet, T., Merz, R., Parajka, J., Ruelland, D., & Vaze, J. (2015). Hydrologie sous changement: un protocole d’évaluation pour examiner comment les modèles hydrologiques s’accommodent des bassins changeants. Hydrological Sciences Journal, 60(7–8), 1184–1199. https://doi.org/10.1080/02626667.2014.967248spa
dc.relation.referencesThornthwaite, C. W., & Mather, J. R. (1957). Instructions and tables for computing potential evapotranspiration and the water balance. Laboratory of Climatology.spa
dc.relation.referencesTolson, B. A., & Shoemaker, C. A. (2007). Dynamically dimensioned search algorithm for computationally efficient watershed model calibration. Water Resources Research, 43(1), 1–16. https://doi.org/10.1029/2005WR004723spa
dc.relation.referencesTurc, L. (1961). évolution des besoins en eau d’irrigation. évapotranspiration potentielle. Formule climatique simplifiée et mise à jour. Annuaire Agronomie, 12, 13–49.spa
dc.relation.referencesTurc, L. (1954). Le bilan d’eau des sols: Relations entre les precipitations, l’evaporation et l’ecoulement. Annales Agronomiques.spa
dc.relation.referencesUniversidad Nacional de Colombia. (2018). Contrato Interadministrativo No. 01226 de 2017 Diseñar e implementar un programa de modelación matemática que permita consolidar y analizar la información obtenida de los monitoreos a las estaciones hidrometeorológicas según requerimientos de los autos (U.spa
dc.relation.referencesUSDA-ARS, & Texas A&M. (n.d.). SWAT+ Documentation. Retrieved October 3, 2023, from https://swatplus.gitbook.io/io-docs/spa
dc.relation.referencesWang, F., Wang, Z., Yang, H., Di, D., Zhao, Y., & Liang, Q. (2020). Utilizing GRACE-based groundwater drought index for drought characterization and teleconnection factors analysis in the North China Plain. Journal of Hydrology, 585(November 2019), 124849. https://doi.org/10.1016/j.jhydrol.2020.124849spa
dc.relation.referencesWestenbroek, J. A., Stephen, M., Engott, V. A., Kelson, & Hunt, R. J. (2018). Water Availability and Use Science Program National Water Quality Program SWB Version 2.0-A Soil-Water-Balance Code for Estimating Net Infiltration and Other Water-Budget Components Book 6, Modeling Techniques. https://pubs.usgs.gov/tm/06/a59/tm6a59.pdfspa
dc.relation.referencesYin, L., Hu, G., Huang, J., Wen, D., Dong, J., Wang, X., & Li, H. (2011). Groundwater-recharge estimation in the Ordos Plateau, China: comparison of methods. Hydrogeology Journal, 19(8), 1563–1575. https://doi.org/10.1007/s10040-011-0777-3spa
dc.relation.referencesZhang, G., Su, X., Ayantobo, O. O., Feng, K., & Guo, J. (2020). Remote-sensing precipitation and temperature evaluation using soil and water assessment tool with multiobjective calibration in the Shiyang River Basin, Northwest China. Journal of Hydrology, 590(July), 125416. https://doi.org/10.1016/j.jhydrol.2020.125416spa
dc.relation.referencesZhang, L., Potter, N., Hickel, K., Zhang, Y., & Shao, Q. (2008). Water balance modeling over variable time scales based on the Budyko framework - Model development and testing. Journal of Hydrology, 360(1–4), 117–131. https://doi.org/10.1016/j.jhydrol.2008.07.021spa
dc.relation.referencesZhang, Y., Chiew, F. H. S., Liu, C., Tang, Q., Xia, J., Tian, J., Kong, D., & Li, C. (2020). Can Remotely Sensed Actual Evapotranspiration Facilitate Hydrological Prediction in Ungauged Regions Without Runoff Calibration? Water Resources Research, 56(1). https://doi.org/10.1029/2019WR026236spa
dc.relation.referencesZhao, Y., & Wang, L. (2021). Determination of groundwater recharge processes and evaluation of the ‘two water worlds’ hypothesis at a check dam on the Loess Plateau. Journal of Hydrology, 595(July 2020), 125989. https://doi.org/10.1016/j.jhydrol.2021.125989spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc550 - Ciencias de la tierra::551 - Geología, hidrología, meteorologíaspa
dc.subject.ddc620 - Ingeniería y operaciones afines::624 - Ingeniería civilspa
dc.subject.proposalRecargaspa
dc.subject.proposalAgua subterráneaspa
dc.subject.proposalModelación hidrológicaspa
dc.subject.proposalSensores remotosspa
dc.subject.proposalCalibración multiobjetivospa
dc.subject.proposalOstricheng
dc.subject.proposalGRACEeng
dc.subject.proposalGroundwater rechargeeng
dc.subject.proposalHidrologic modelingeng
dc.subject.proposalRemote sensingeng
dc.subject.proposalMultiobjective calibrationeng
dc.subject.unescoHidrogeologíaspa
dc.subject.unescoHydrogeologyeng
dc.subject.unescoModelo de simulaciónspa
dc.subject.unescoSimulation modelseng
dc.subject.unescoInstrumento de medidaspa
dc.subject.unescoMeasuring instrumentseng
dc.titleEvaluación de la estimación espaciotemporal de la recarga mediante un modelo hidrológico utilizando una calibración multiobjetivo que incorpore información de sensores remotosspa
dc.title.translatedEvaluation of the spatiotemporal estimation of recharge by a hydrological model using a multi-objective calibration incorporating remote sensing informationeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameProyecto MEGIAspa

Archivos

Bloque original

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
1022407177.2024.pdf
Tamaño:
13.5 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Recursos Hidráulicos
Cargando...
Miniatura
Nombre:
ANEXOS.zip
Tamaño:
55.91 MB
Formato:
Comprimido
Descripción:
Anexos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: