En 6 día(s), 15 hora(s) y 0 minuto(s): El Repositorio Institucional UNAL informa a la comunidad universitaria que, con motivo del periodo de vacaciones colectivas, el servicio de publicación estará suspendido: Periodo de cierre: Del 20 de diciembre al 18 de enero de 2026. Sobre los depósitos: Durante este tiempo, los usuarios podrán continuar realizando el depósito respectivo de sus trabajos en la plataforma. Reanudación: Una vez reiniciadas las actividades administrativas, los documentos serán revisados y publicados en orden de llegada.

Simulación de una celda inorgánica tipo homojuntura n-p

dc.contributor.advisorFonseca Fonseca, Frank Rodolfospa
dc.contributor.authorRojas Bayona, Wilson Jesússpa
dc.date.accessioned2020-08-12T21:27:02Zspa
dc.date.available2020-08-12T21:27:02Zspa
dc.date.issued2020-06-12spa
dc.description.abstractLas ecuaciones del semiconductor han sido tema de interés en el análisis numérico de muchos matemáticos por décadas. En 1950 van Roosbroeck describió las ecuaciones fundamentales de los dispositivos semiconductores como un sistema de tres ecuaciones diferenciales en derivadas parciales no lineales acopladas. Este sistema presenta un desafío numérico por la no-linealidad y acoplamiento entre las ecuaciones, y a la di cultad de resolver simultáneamente estas ecuaciones que incluyen el modelo deriva-difusión (en inglés, drift-di usion) a través de las densidades de corriente de cada tipo de portador de carga, y la ecuación de Poisson. Este conjunto de ecuaciones se resuelve unidimensionalmente utilizando un lenguaje de alto nivel, Matlab, que permite el uso de herramientas computacionales so sticadas facilitando la búsqueda de la solución. Al día de hoy carecemos de una solución analítica general, por lo mismo resulta conveniente apelar a resolver el sistema van Roosbroeck numéricamente, con la disponibilidad de métodos matemáticos que se encuentran en la literatura de la física de dispositivos semiconductores. En el análisis unidimensional es muy versátil aplicar el método de diferencias nitas ya que abre el espacio a nuevos esquemas de discretización mucho más estables. En este trabajo se usa el esquema de Scharfetter y Gummel, el cual se caracteriza por utilizar funciones de crecimiento exponencial, adecuadas para manejar la variación espacial de las variables dependientes. La potencia del sistema van Roosbroeck se aplicó a una celda solar inorgánica de estructura cilíndrica.spa
dc.description.abstractThe semiconductor equations have been subject of interest in the numerical analysis for many mathematicians for decades. In 1950 van Roosbroeck described the fundamental equations of the semiconductor devices like a coupled system of three nonlinear partial di erential equations. This system presents a numerical challenge due to non-linearity and coupling between these equations, and to di culty to solve them simultaneously, that include the drift-di usion model through the current densities due to each kind of charge carrier in the continuity equations, and the Poisson equation. This set of equations was solved in one dimension in polar coordinates, using a high-level programming language, Matlab, which enables the use of sophisticated computing tools applied to nd the solution of the van Roosbroeck system. Today we lack of a general analytic solution, for this reason is more convenient to solve the van Roosbroeck system via numerical method, among several found in the literature of semiconductor devices. In one dimensional analysis is very common to apply the nite di erence method, since this opens the space related to the new schemes of discretizations more stable. In this work the Scharfetter-Gummel scheme was used, which is characterized by using growth exponential functions, suitable to drive the spatial variation of the dependent variables. The power of the van Roosbroeck system was applied to an dimensional solar cell with crystalline cylindrical structure.spa
dc.description.additionalMagíster en Ciencias-Física. Línea de Investigación: Física de Semiconductoresspa
dc.description.degreelevelMaestríaspa
dc.format.extent130spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78005
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Físicaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Físicaspa
dc.relation.referencesAdachi, S. (1999). Optical Constants of Crystalline and Amorphous Semiconductors Numerical Data and Graphical Information. Springer Science+ Business Media, LLC. DOI 10.1007/978-1-4615-5247-5. Hardcover ISBN 978-0-7923-8567-7. Number of Pages XX, 714, Department of Electronic Engineering, Gunma University, Kiryu-shi, Gunma 376-8515, Japan.spa
dc.relation.referencesAktsipetrov, O., Baranova, I., and Evtyukhov, K. N. ((26 de enero de 2016)). Second Order Non-linear Optics of Silicon and Silicon Nanostructures. CRC Press; Edición: 1. 592 páginas, U.S. ISBN-10: 1498724159. ISBN-13: 978-1498724159.spa
dc.relation.referencesAlexei, D. and Sajeev, J. (October 2012). Finite di erence discretization of semiconductor drift di usion equations for nanowire solar cells. Computer Physics Communications, Volume 183, Issue 10, DOI 10.1016/j.cpc.2012.05.016, 183:2128 2135.spa
dc.relation.referencesAshcroft, N. W. and Mermin, N. D. (1976). Solid State Physics. Thomson Learning. ISBN: 0030839939 9780030839931 0030493463 9780030493461., Cornell University. New York, Holt, Rinehart and Winston. xxi, 826 pages : illustrations ; 25 cm.spa
dc.relation.referencesASTM (11 January 2012). Standard G159 03 Standard Tables for Reference Solar Spec- tral Irradiances: Direct Normal and Hemispherical on 37 Tilted Surface. ICS 17.180.01 27.160. Publisher ASTM. Format A4., Descriptors: Direct normal, Hemispherical, Irradiance, Solar constant, Solar spectrum, Terrestrial, Wavelength.spa
dc.relation.referencesBalkanski, M. and Wallis, R. F. (9 November 2000). Semiconductor Physics and Appli- cations. Oxford University Press. ISBN: 9780198517412. 512 Pages, New York.spa
dc.relation.referencesBlakemore, J. (October 1, 1987). Semiconductor Statistics. Dover Pubns. 381 pages. ISBN-10: 0486653625. ISBN-13: 978-0486653624.spa
dc.relation.referencesBucher, K., Bruns, J., and Wagemann, H. (04 June 1998 Accepted: September 1993). Absorption coe cient of silicon, an assessment of measurements and the simulation of temperature variation. Journal of Applied Physics 75, 1127 (1994); DOI: https://doi.org/ 10.1063/1.356496.spa
dc.relation.referencesChin-Yi, T. (2018). Absorption coe cients of silicon: A theoretical treatment. Journal of Applied Physics, 123 183103 (2018); https://doi.org/10.1063/1.5028053 , pages 1 10.spa
dc.relation.referencesDe Mari, A. (1968). Accurate numerical steady state and transient one dimensional so- lutions on semiconductor devices. Dissertation (ph.d.), california institute of technology. doi:10.7907/ws5d-0211. https://resolver.caltech.edu/caltechetd:etd-09262002-154912, Pasadena, California.spa
dc.relation.referencesEmery, K. (Oct 1999). The rating of photovoltaic performance. IEEE Transactions on Electron Devices. Issue: 10, DOI: 10.1109/16.791980., Volume: 46.:Page(s): 1928 1931.spa
dc.relation.referencesFarrel, P., Koprucki, T., and Fuhrmann, J. (2017). Computational and analytical comparison of ux discretizations for the semiconductor device equations beyond boltzmann statistics. Weierstrass Institute, Berlin Germany. Journal of Computational Physics, vol. 346. DOI: 10.1016/j.jcp.2017.06.023., page 497 513.spa
dc.relation.referencesFerry, D. K. (2000). Semiconductor Transport. CRC Press. 1st Edition. 384 pages. DOI: https://doi.org/10.4324/9781315267548. Subjects: Engineering Technology, Physical Sciences., London.spa
dc.relation.referencesFerziger, J. (2002). Computational Methods for Fluid Dynamics IIIed. Springer-Verlag Berlin Heidelberg. Edition 3. DOI 10.1007/978-3-642-56026-2. Number of Pages XIV, 426, Switzerland.spa
dc.relation.referencesFossum, J. (1976). Computer aided numerical analysis of silicon solar cells. Solid-State Electronics, Issue 4, April 1976. https://doi.org/10.1016/0038-1101(76)90022-8 , 19:269 277.spa
dc.relation.referencesGerya, T. (2010). Numerical Geodynamic Modelling. Cambridge, Swiss Federal Institute of Technology (ETH-Zurich). January 2010. ISBN: 9780521887540. 358 pages.spa
dc.relation.referencesGhazarians, A. (2018). A numerical study of the van roosbroeck system for semiconductors. Master's thesis, San Jose State University. DOI: https://doi.org/10.31979/etd.k2yb- 6c32. Master's Theses. 4939.spa
dc.relation.referencesGiles, R. and Walker, A. (2016). Drift di usion modelling of charge transport in pho- tovoltaic devices. In, Unconventional Thin Film Photovoltaics. Energy and Environment Series, , (doi:10.1039/9781782624066-00297)) Royal Society of Chemistry, pp. 297-331.spa
dc.relation.referencesGreen, M. and Keevers, M. (1995). Optical properties of intrinsic silicon at 300 k. Progress in Photovoltaics Research and Appilications. DOI: https://doi.org/10.1002/ pip.4670030303, 3:1 4.spa
dc.relation.referencesGroves, C. (2017). Simulating charge transport in organic semiconductors and devices: a review. Reports on progress in physics. DOI: https://doi.org/10.1088/1361- 6633/80/2/026502, page :38 pages.spa
dc.relation.referencesHuang, K. (1987). Statistical Mechanics, IIed. John Wiley and Sons, Inc. ISBN: 978-0- 471-81518-1. 512 Pages, United States of America.spa
dc.relation.referencesJabr, R., Hamad, M., and Mohanna, M. (2007). Newton raphson solution of poisson's equation in a pn diode. International Journal of Electrical Engineering Education. DOI: https://doi.org/10.7227/IJEEE.44.1.3, page :13 pages.spa
dc.relation.referencesJentschura, U. (2017). Advanced Classical Electrodynamics. World Scienti c. DOI: https://doi.org/10.1142/10514. Pages: 372., Missouri University of Science and Technology, USA.spa
dc.relation.referencesKita, T., Harada, Y., and Asahi, S. (2019). Energy Conversion E ciency of Solar Cells. Springer Singapore. Springer Nature Singapore Pte Ltd. Edition Number: 1. DOI: 10.1007/978-981-13-9089-0. Number of Pages: XII, 202, Kobe, Hyogo, Japan.spa
dc.relation.referencesKoster, L. and Smits, E. (2005). Device model for the operation of polymer fullerene bulk heterojunction solar cells. Materials Science CentrePlus, Uni- versity of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands. DOI: https://doi.org/10.1103/PhysRevB.72.085205. Phys. Rev. B 72, 085205 Published 2 Au- gust 2005, page :9 pages.spa
dc.relation.referencesLi, Z., Qiao, Z., and Tang, T. (2017). Numerical Solution of di erential Equations, Intro- duction to nite Di erence and Finite Element Methods. Cambridge University Press. Online ISBN: 9781316678725. DOI: https://doi.org/10.1017/9781316678725., United Kingdom.spa
dc.relation.referencesLundstrom, M. (2009). Fundamentals of carrier transport IIed. Cambridge University Press; 2 edition (July 2, 2009). 440 pages. ISBN-10: 0521637244. ISBN-13: 978- 0521637244., United States of America.spa
dc.relation.referencesLuque, A. (2003). Handbook of Photovoltaic Science and Engineering. Wiley. ISBN: 978-0-470-72169-8. 1164 Pages., Instituto de Energía Solar, Universidad Politécnica de Madrid, España.spa
dc.relation.referencesMadelung, O. (1978). Introduction to Solid-State Theory. Springer-Verlag Berlin Heidelberg. DOI: 10.1007/978-3-642-61885-7. Series ISSN 0171-1873. Number of Pages XI, 491.spa
dc.relation.referencesMuramatsu, A. (2013). https://www.itp3.uni-stuttgart.de/teaching/archive/ss13/solid statetheory/, página de consulta en internet.spa
dc.relation.referencesMyers, D., Emery, K., and C, G. (2002). Proposed reference spectral irradiance standards to improve concentrating photovoltaic system design and performance evaluation. IEEE. Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, 2002. DOI: 10.1109/PVSC.2002.1190731. Conference Location: New Orleans, LA, USA, USA., page :5 pages.spa
dc.relation.referencesNelson, J. (2008). Physics of Solar Cell. Imperial College. DOI: https://doi.org/10.1142/ p276. Pages: 384. May 2003., UK.spa
dc.relation.referencesNouran, M., Ashraf, M., Abdel, H., Nageh, K., and Nadia, H. (2014). Analytical modeling of the radial pn junction nanowire solar cells. Journal of Applied Physics 116, 024308 (2014). DOI: https://doi.org/10.1063/1.4886596.spa
dc.relation.referencesNouran, M., Ashraf, M., Abdel, H., Nageh, K., and Nadia, H. (2016). Numerical simulation and a parametric study of inorganic nanowire solar cells. Internatio- nal Journal of Numerical Modelling, Electronic Networks, Devices and Fields. DOI: https://doi.org/10.1002/jnm.2176. First published: 02 June 2016, pages 1 15.spa
dc.relation.referencesParker, M. A. (2010). Solid State and Quantum Theory for Optoelectronics. CRC Press, Taylor Francis Group, Boca Raton, FL, 2010. ISBN 978-0-8493-3750-5. 828 pages.spa
dc.relation.referencesPeyghambarian, N., Koch, S., and Mysyrowicz, A. (1993). Introduction to Semicon- ductor Optics. Pearson College Div (August 1, 1993). Prentice Hall Series in Solid State Physical Electronics. 485 pages. ISBN-10: 0136389902. ISBN-13: 978-0136389903.spa
dc.relation.referencesRajkanan, K. and Singh, R. (1979). Absortion coe cient of silicon for solar cell calculations. Solid State Electronics Volume 22, Issue 9, September 1979. DOI: https://doi.org/10.1016/0038-1101(79)90128-X., pages 793 795.spa
dc.relation.referencesRichard, L. (2003). Introductory Quantum Mechanics. Addison-Wesley; Edición: 4 (18 de agosto de 2002). ISBN-10: 0805387145. ISBN-13: 978-0805387148. 900 páginas, University of Central Florida, USA.spa
dc.relation.referencesScharfetter, D. and Gummel, H. (1969). Large-signal analysis of a silicon read diode oscillator. IEEE Transactions on Electron Devices ( Volume: 16 , Issue: 1 , Jan 1969 ). DOI: 10.1109/T-ED.1969.16566. Date of Publication: Jan 1969, pages 64 77.spa
dc.relation.referencesSegura, A. (2002). Consulta página web https://www.uv.es/candid/docencia/tema3(01- 02).pdf, curso y material de consulta en semiconductores, tema 3: física de la unión pn - uv. universidad de valencia. Última actualización: 31/01/02.spa
dc.relation.referencesSelberherr, S. (1984). Analysis and Simulation of Semiconductor Devices. Springer- Verlag Wien, DOI: 10.1007/978-3-7091-8752-4. Number of Pages XIV, 296.spa
dc.relation.referencesShapiro, F. (1995). The numerical solution of poisson's equation in a pn diode using a spreadsheet. IEEE Transactions on Education, Volume 38, Issue 4. DOI: https://doi.org/ 10.1109/13.473161, pages 1 5.spa
dc.relation.referencesSmith, G. (1986). Numerical Solution of Partial Di erential Equations, Finite Di e- rence Methods IIIed. Oxford University Press, U.S.A.; Edición: 3 (16 de enero de 1986). Oxford Applied Mathematics and Computing Science Series. ISBN-10: 9780198596509. ISBN-13: 978-0198596509. ASIN: 0198596502. 354 páginas.spa
dc.relation.referencesSnowden, C. and Miles, R. (1993). Compound Semiconductor Device Modelling. Springer-Verlag London. DOI: 10.1007/978-1-4471-2048-3. Number of Pages X, 286.spa
dc.relation.referencesSujecki, S. (2014). Photonics Modelling and Design. CRC Press; Edición: 1 (3 de diciembre de 2014). ISBN-10: 9781466561267. ISBN-13: 978-1466561267. ASIN: 1466561262. 410 páginas.spa
dc.relation.referencesSze, S. and Kwok, K. (2007). Physics of Semiconductor Devices, Third Edition. John Wiley and Sons, Inc. DOI:10.1002/0470068329. ISBN: 978-0-471-14323-9. 832 Pages.spa
dc.relation.referencesVan Roosbroeck, W. ((Manuscript Received Mar. 30, 1950), First published: October 1950). Theory of the ow of electrons and holes in germanium and other semiconductors. Bell System Technical, https://doi.org/10.1002/j.1538-7305.1950.tb03653.x , 29:Bell System Technical Journal, Issue4, October 1950, Pages 560 607.spa
dc.relation.referencesVasileska, D. (2010). Computational Electronics: Semiclassical and Quantum Device Modeling and Simulation. CRC Press. DOI: https://doi.org/10.1201/b13776. 782 pages.spa
dc.relation.referencesWurfel, P. (2005). Physics of Solar Cells: From Principles to New Concepts. WILEYVCH Verlag GmbH Co. KGaA. DOI:10.1002/9783527618545.spa
dc.relation.referencesYan, Z. (2000). General thermal wavelength and its applications. European Journal of Physics, Volume 21, Number 6. DOI: 10.1088/0143-0807/21/6/314, page 625 631.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/spa
dc.subject.ddc530 - Físicaspa
dc.subject.proposalInorganic solar celleng
dc.subject.proposalCelda solar inorgánicaspa
dc.subject.proposalPn junctioneng
dc.subject.proposalJuntura n-pspa
dc.subject.proposalMétodo de diferencias nitasspa
dc.subject.proposalFinite difference methodeng
dc.subject.proposalScharfetter-Gummel schemeeng
dc.subject.proposalEsquema de Scharfetter y Gummelspa
dc.subject.proposalModelo deriva-difusiónspa
dc.subject.proposalDrift-diffusion modeleng
dc.subject.proposalPolar coordinateseng
dc.subject.proposalCoordenadas polaresspa
dc.subject.proposalBoltzmann transport equationeng
dc.subject.proposalEcuación de transporte de Boltzmannspa
dc.subject.proposalSistema van Roosbroeckspa
dc.subject.proposalTransport equationeng
dc.subject.proposalSimulación numérica en una dimensiónspa
dc.subject.proposalVan Roosbroeck systemeng
dc.subject.proposalOne dimensioneng
dc.subject.proposalOne dimensioneng
dc.subject.proposalNumeric simulationeng
dc.titleSimulación de una celda inorgánica tipo homojuntura n-pspa
dc.title.alternativeSimulation of an inorganic cell based in homojunction n-pspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
80122743.2020.pdf
Tamaño:
1.2 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.8 KB
Formato:
Item-specific license agreed upon to submission
Descripción: