En 3 día(s), 8 hora(s) y 53 minuto(s): El Repositorio Institucional UNAL informa a la comunidad universitaria que, con motivo del periodo de vacaciones colectivas, el servicio de publicación estará suspendido: Periodo de cierre: Del 20 de diciembre al 18 de enero de 2026. Sobre los depósitos: Durante este tiempo, los usuarios podrán continuar realizando el depósito respectivo de sus trabajos en la plataforma. Reanudación: Una vez reiniciadas las actividades administrativas, los documentos serán revisados y publicados en orden de llegada.

Diseño y evaluación de nanomateriales tipo janus para aplicaciones en procesos de recobro químico mejorado (EOR)

dc.contributor.advisorCortés Correa, Farid Bernardospa
dc.contributor.advisorFranco Ariza, Camilo Andrésspa
dc.contributor.authorGiraldo Pedroza, Lady Johanaspa
dc.contributor.corporatenameUniversidad Nacional de Colombia - Sede Medellínspa
dc.contributor.researchgroupFenómenos de Superficie - Michael Polanyispa
dc.date.accessioned2020-03-11T20:55:02Zspa
dc.date.available2020-03-11T20:55:02Zspa
dc.date.issued2019-04-05spa
dc.description.abstractLa tecnología de inyección de nanofluidos (nanopartículas dispersas en un fluido de acarreo) ha sido estudiada en reducciones de tensión interfacial, aumentos de viscosidad de fase desplazante y en alteraciones de humectabilidad en la roca; factores que impactan directamente en el número de capilar, favoreciendo aumentos en la recuperación del petróleo. Sin embargo, esta técnica usualmente requiere grandes concentraciones de nanopartículas para ser eficiente en los procesos EOR. Por ello, en este estudio se busca mejorar los nanofluidos con un diseño de nanopartículas novedosas con comportamiento anfifílico, desarrollando nanopartículas Janus con contenido de NiO y surfactante basadas en nanopartículas de SiO2 de dimensión cero (0-D) que pueden ser efectivas en bajas concentraciones. Las nanopartículas sintetizadas fueron caracterizadas por microscopía electrónica de transmisión (TEM), microscopía electrónica de barrido (SEM), análisis DRX, área superficial (SBET), potencial zeta, tensión interfacial (IFT), medidas de reología y alteraciones de humectabilidad y pruebas de desplazamiento. Los resultados mostraron un fuerte aumento del número capilar a concentración muy bajas de nanopartículas Janus, atribuido principalmente a la reducción de IFT en el rango bajo y ultra bajo debido a la alta actividad interfacial de las nanopartículas, conllevando a incrementos en la recuperación de crudo. Las pruebas de desplazamiento presentan un aumento en la eficiencia de hasta un 50% solo con la adición de 100 mg/L de nanopartículas Janus dispersadas en agua, al igual cuando se combinan estas partículas en inyección de surfactantes, donde además de reducir la adsorción del químico (surfactante) en el medio poroso hasta en un 41% también se favorece la disminución de IFT en valores ultrabajospa
dc.description.abstractNanofluid (nanoparticles dispersed in carried fluid) flooding technology has been studied for reduction the interfacial tension, increasing the viscosity of the displacement phase and to alter the rock wettability, which impact directly in capillary number and hence increase the crude oil recovery. However, this technique requires usually large concentration of nanoparticles for being efficient in EOR processes. Therefore, this study aims at improve the nanofluids with a novel design of nanoparticles of amphiphilic behavior, developing NiO and surfactant -containing Janus nanoparticles based on zero-dimension (0-D) SiO2 nanoparticles which can be effective at low concentrations. The nanoparticles synthesized were characterized by Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), DRX analysis, Surface area (SBET), zeta potential, interfacial tension (IFT), rheology and wettability alteration measurements and coreflooding tests. The results showed a sharply increases of the capillary number at very low concentration of Janus nanoparticles attributed to the decrease of IFT (low and ultra-low values) due to high interfacial activity of nanoparticles, which lead to the increasing of the crude oil recovery. Displacement test present an increase in efficiency up to 50% only with 100 mg/L of Janus nanoparticles dispersed in water, besides when is combined Janus nanoparticles in surfactant flooding too is possible reduce adsorption of the chemical (surfactant) in the porous medium up to 41% and reduce IFT in ultralow values..spa
dc.description.additionalMagister en Ingeniería de Petróleosspa
dc.description.degreelevelMaestríaspa
dc.format.extent102spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/76056
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Procesos y Energíaspa
dc.relation.referencesA. Karimi, Z. Fakhroueian, A. Bahramian, N. Pour Khiabani, J. B. Darabad, R. Azin, et al., "Wettability alteration in carbonates using zirconium oxide nanofluids: EOR implications," Energy & Fuels, vol. 26, pp. 1028-1036, 2012.spa
dc.relation.referencesF. Birol, "World energy outlook," Paris: International Energy Agency, vol. 23, p. 329, 2008spa
dc.relation.referencesA. Muggeridge, A. Cockin, K. Webb, H. Frampton, I. Collins, T. Moulds, et al., "Recovery rates, enhanced oil recovery and technological limits," Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 372, p. 20120320, 2014.spa
dc.relation.referencesR. CASTRO and G. GORDILLO, "Historia y criterios empíricos en la aplicación de inyección de agua en la Cuenca del Valle Medio del Magdalena," Revista de investigación Universidad América, Colombia, vol. 1, pp. 32-51, 2008.spa
dc.relation.referencesG. A. Maya, D. P. Mercado Sierra, R. Castro, M. L. Trujillo Portillo, C. P. Soto, and H. Pérez, "Enhanced Oil Recovery (EOR) Status-Colombia," in SPE Latin American and Caribbean Petroleum Engineering Conference, 2010.spa
dc.relation.referencesM. P. De Ferrer, Inyección de agua y gas en yacimientos petrolíferos: Ediciones astro data SA Maracaibo, Venezuela, 2001.spa
dc.relation.referencesL. W. Lake and P. B. Venuto, "A niche for enhanced oil recovery in the 1990s," Oil & Gas Journal, vol. 88, pp. 62-67, 1990.spa
dc.relation.referencesD. Green and G. Willhite, "Enhanced oil Recovery, vol. 6," SPE Textbook Series, TX, USA, 1998.spa
dc.relation.referencesS. Thomas, "Enhanced oil recovery-an overview," Oil & Gas Science and Technology-Revue de l'IFP, vol. 63, pp. 9-19, 2008.spa
dc.relation.referencesR. Schmidt, "Thermal enhanced oil recovery current status and future needs," Chemical Engineering Progress;(USA), vol. 86, 1990.spa
dc.relation.referencesK. Hong, "Recent advances in steamflood technology," 1989.spa
dc.relation.referencesJ. Sheng, Modern chemical enhanced oil recovery: theory and practice: Gulf Professional Publishing, 2010.spa
dc.relation.referencesB. Caudle and A. Dyes, "Improving miscible displacement by gas-water injection," 1958.spa
dc.relation.referencesJ. Sheng, Enhanced oil recovery field case studies: Gulf Professional Publishing, 2013.spa
dc.relation.referencesL. L. Schramm, E. N. Stasiuk, and D. G. Marangoni, "2 Surfactants and their applications," Annual Reports Section" C"(Physical Chemistry), vol. 99, pp. 3-48, 2003.spa
dc.relation.referencesC. Negin, S. Ali, and Q. Xie, "Most common surfactants employed in chemical enhanced oil recovery," Petroleum, vol. 3, pp. 197-211, 2017.spa
dc.relation.referencesL. L. Schramm, Surfactants: fundamentals and applications in the petroleum industry: Cambridge University Press, 2000.spa
dc.relation.referencesT. R. French and T. E. Burchfield, "Design and optimization of alkaline flooding formulations," in SPE/DOE Enhanced Oil Recovery Symposium, 1990.spa
dc.relation.referencesW. Zhou, M. Dong, Q. Liu, and H. Xiao, "Experimental investigation of surfactant adsorption on sand and oil-water interface in heavy oil/water/sand systems," in Canadian International Petroleum Conference, 2005.spa
dc.relation.referencesA. A. Olajire, "Review of ASP EOR (alkaline surfactant polymer enhanced oil recovery) technology in the petroleum industry: Prospects and challenges," Energy, vol. 77, pp. 963-982, 2014.spa
dc.relation.referencesJ. Guo, Q. Liu, M. Li, Z. Wu, and A. A. Christy, "The effect of alkali on crude oil/water interfacial properties and the stability of crude oil emulsions," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 273, pp. 213-218, 2006.spa
dc.relation.referencesT. Jacobs, "Industry and Academia Continue Working on Big Ideas for Nanotechnology," Journal of Petroleum Technology, vol. 69, pp. 34-38, 2017.spa
dc.relation.referencesF. Salamanca-Buentello, D. L. Persad, D. K. Martin, A. S. Daar, and P. A. Singer, "Nanotechnology and the developing world," PLoS Medicine, vol. 2, p. e97, 2005.spa
dc.relation.referencesM. Zargartalebi, R. Kharrat, and N. Barati, "Enhancement of surfactant flooding performance by the use of silica nanoparticles," Fuel, vol. 143, pp. 21-27, 2015.spa
dc.relation.referencesJ. Giraldo, P. Benjumea, S. Lopera, F. B. Cortés, and M. A. Ruiz, "Wettability alteration of sandstone cores by alumina-based nanofluids," Energy & Fuels, vol. 27, pp. 3659-3665, 2013.spa
dc.relation.referencesA. Karimi, Z. Fakhroueian, A. Bahramian, N. Pour Khiabani, J. B. Darabad, R. Azin, et al., "Wettability alteration in carbonates using zirconium oxide nanofluids: EOR implications," Energy & Fuels, vol. 26, pp. 1028-1036, 2012.spa
dc.relation.referencesE. A. Taborda, C. A. Franco, S. H. Lopera, V. Alvarado, and F. B. Cortés, "Effect of nanoparticles/nanofluids on the rheology of heavy crude oil and its mobility on porous media at reservoir conditions," Fuel, vol. 184, pp. 222-232, 2016.spa
dc.relation.referencesE. A. Taborda, V. Alvarado, C. A. Franco, and F. B. Cortés, "Rheological demonstration of alteration in the heavy crude oil fluid structure upon addition of nanoparticles," Fuel, vol. 189, pp. 322-333, 2017.spa
dc.relation.referencesL. J. Giraldo, M. A. Giraldo, S. Llanos, G. Maya, R. D. Zabala, N. N. Nassar, et al., "The effects of SiO2 nanoparticles on the thermal stability and rheological behavior of hydrolyzed polyacrylamide based polymeric solutions," Journal of Petroleum Science and Engineering, vol. 159, pp. 841-852, 2017.spa
dc.relation.referencesN. Y. T. Le, D. K. Pham, K. H. Le, and P. T. Nguyen, "Design and screening of synergistic blends of SiO2 nanoparticles and surfactants for enhanced oil recovery in high-temperature reservoirs," Advances in Natural Sciences: Nanoscience and Nanotechnology, vol. 2, p. 035013, 2011.spa
dc.relation.referencesM. Mohajeri, M. Hemmati, and A. S. Shekarabi, "An experimental study on using a nanosurfactant in an EOR process of heavy oil in a fractured micromodel," Journal of petroleum Science and engineering, vol. 126, pp. 162-173, 2015.spa
dc.relation.referencesB. M. Amin and P. Peyman, "Improvement of surfactant flooding performance by application of nanoparticles in sandstone reservoirs," Journal of the Japan Petroleum Institute, vol. 58, pp. 97-102, 2015.spa
dc.relation.referencesW. Kuang, S. Saraji, and M. Piri, "A systematic experimental investigation on the synergistic effects of aqueous nanofluids on interfacial properties and their implications for enhanced oil recovery," Fuel, vol. 220, pp. 849-870, 2018.spa
dc.relation.referencesY. Wu, W. Chen, C. Dai, Y. Huang, H. Li, M. Zhao, et al., "Reducing surfactant adsorption on rock by silica nanoparticles for enhanced oil recovery," Journal of Petroleum Science and Engineering, vol. 153, pp. 283-287, 2017.spa
dc.relation.referencesM. F. Fakoya and S. N. Shah, "Emergence of nanotechnology in the oil and gas industry: Emphasis on the application of silica nanoparticles," Petroleum, 2017.spa
dc.relation.referencesN. Ogolo, O. Olafuyi, and M. Onyekonwu, "Enhanced oil recovery using nanoparticles," in SPE Saudi Arabia section technical symposium and exhibition, 2012.spa
dc.relation.referencesC. A. Franco, R. Zabala, and F. B. Cortés, "Nanotechnology applied to the enhancement of oil and gas productivity and recovery of Colombian fields," Journal of Petroleum Science and Engineering, vol. 157, pp. 39-55, 2017.spa
dc.relation.referencesG. Cheraghian and L. Hendraningrat, "A review on applications of nanotechnology in the enhanced oil recovery part B: effects of nanoparticles on flooding," International Nano Letters, vol. 6, pp. 1-10, 2016.spa
dc.relation.referencesM.-A. Ahmadi, Z. Ahmad, L. T. K. Phung, T. Kashiwao, and A. Bahadori, "Experimental investigation the effect of nanoparticles on micellization behavior of a surfactant: application to EOR," Petroleum Science and Technology, vol. 34, pp. 1055-1061, 2016.spa
dc.relation.referencesK. Rahimi and M. Adibifard, "Experimental study of the nanoparticles effect on surfactant absorption and oil recovery in one of the Iranian oil reservoirs," Petroleum Science and Technology, vol. 33, pp. 79-85, 2015.spa
dc.relation.referencesX.-k. Ma, N.-H. Lee, H.-J. Oh, J.-W. Kim, C.-K. Rhee, K.-S. Park, et al., "Surface modification and characterization of highly dispersed silica nanoparticles by a cationic surfactant," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 358, pp. 172-176, 2010.spa
dc.relation.referencesM. Zargartalebi, R. Kharrat, N. Barati, and A. Zargartalebi, "Slightly hydrophobic silica nanoparticles for enhanced oil recovery: interfacial and rheological behaviour," International Journal of Oil, Gas and Coal Technology, vol. 6, pp. 408-421, 2013.spa
dc.relation.referencesY. Song and S. Chen, "Janus nanoparticles: preparation, characterization, and applications," Chemistry–An Asian Journal, vol. 9, pp. 418-430, 2014.spa
dc.relation.referencesB. Binks, "Particles as surfactants—similarities and differences," Current opinion in colloid & interface science, vol. 7, pp. 21-41, 2002.spa
dc.relation.referencesM. R.-V. M. C.-V. M. H.-A. Fernandez-Rodriguez, "Surface activity of Janus particles adsorbed at fluid–fluid interfaces: theoretical and experimental aspects," Advances in colloid and interface science, vol. 233, pp. 240-254, 2016.spa
dc.relation.referencesJ. Zhang, B. A. Grzybowski, and S. Granick, "Janus particle synthesis, assembly, and application," Langmuir, vol. 33, pp. 6964-6977, 2017.spa
dc.relation.referencesT. Yang, L. Wei, L. Jing, J. Liang, X. Zhang, M. Tang, et al., "Dumbbell‐Shaped Bi‐component Mesoporous Janus Solid Nanoparticles for Biphasic Interface Catalysis," Angewandte Chemie, vol. 129, pp. 8579-8583, 2017.spa
dc.relation.referencesY. L. Fan, C. H. Tan, Y. Lui, D. Zudhistira, and S. C. J. Loo, "Mechanistic formation of drug-encapsulated Janus particles through emulsion solvent evaporation," RSC Advances, vol. 8, pp. 16032-16042, 2018.spa
dc.relation.referencesF. Tu and D. Lee, "One-step encapsulation and triggered release based on Janus particle-stabilized multiple emulsions," Chemical Communications, vol. 50, pp. 15549-15552, 2014.spa
dc.relation.referencesL. C. Bradley, W.-H. Chen, K. J. Stebe, and D. Lee, "Janus and patchy colloids at fluid interfaces," Current opinion in colloid & interface science, vol. 30, pp. 25-33, 2017.spa
dc.relation.referencesP. Yánez-Sedeño, S. Campuzano, and J. Pingarrón, "Janus particles for (bio) sensing," Applied Materials Today, vol. 9, pp. 276-288, 2017.spa
dc.relation.referencesD. Rojas, B. Jurado-Sánchez, and A. Escarpa, "“Shoot and sense” Janus micromotors-based strategy for the simultaneous degradation and detection of persistent organic pollutants in food and biological samples," Analytical chemistry, vol. 88, pp. 4153-4160, 2016.spa
dc.relation.referencesM. Lattuada and T. A. Hatton, "Synthesis, properties and applications of Janus nanoparticles," Nano Today, vol. 6, pp. 286-308, 2011.spa
dc.relation.referencesP.-G. De Gennes, "Soft matter," Reviews of modern physics, vol. 64, p. 645, 1992.spa
dc.relation.referencesJ. A. Schwarz, C. I. Contescu, and K. Putyera, Dekker encyclopedia of nanoscience and nanotechnology vol. 3: CRC press, 2004.spa
dc.relation.referencesA. Perro, S. Reculusa, S. Ravaine, E. Bourgeat-Lami, and E. Duguet, "Design and synthesis of Janus micro-and nanoparticles," Journal of materials chemistry, vol. 15, pp. 3745-3760, 2005.spa
dc.relation.referencesD. Luo, F. Wang, J. Zhu, F. Cao, Y. Liu, X. Li, et al., "Nanofluid of graphene-based amphiphilic Janus nanosheets for tertiary or enhanced oil recovery: High performance at low concentration," Proceedings of the National Academy of Sciences, vol. 113, pp. 7711-7716, 2016.spa
dc.relation.referencesJ. Moghadasi, H. Müller-Steinhagen, M. Jamialahmadi, and A. Sharif, "Theoretical and experimental study of particle movement and deposition in porous media during water injection," Journal of petroleum science and engineering, vol. 43, pp. 163-181, 2004.spa
dc.relation.referencesF. Sagala, T. Montoya, A. Hethnawi, G. Vitale, and N. N. Nassar, "Nanopyroxene-based Nanofluids for Enhanced Oil Recovery in Sandstone Cores," Energy & Fuels, 2019.spa
dc.relation.referencesR. E. Terry, "Enhanced oil recovery," Encyclopedia of physical science and technology, vol. 18, pp. 503-518, 2001.spa
dc.relation.referencesD. W. Green and G. P. Willhite, Enhanced oil recovery vol. 6: Henry L. Doherty Memorial Fund of AIME, Society of Petroleum Engineers Richardson, TX, 1998.spa
dc.relation.referencesE. C. Donaldson, G. V. Chilingarian, and T. F. Yen, Enhanced oil recovery, I: fundamentals and analyses vol. 17: Elsevier, 1985.spa
dc.relation.referencesP. Clark and J. Hyne, "Studies on the chemical reactions of heavy oils under steam stimulation condition," Aostra J Res, vol. 29, pp. 29-39, 1990.spa
dc.relation.referencesF. Hongfu, L. Yongjian, Z. Liying, and Z. Xiaofei, "The study on composition changes of heavy oils during steam stimulation processes," Fuel, vol. 81, pp. 1733-1738, 2002.spa
dc.relation.referencesM. Greaves and T. Xia, "CAPRI-Downhole Catalytic Process for Upgrading Heavy Oil: Produced Oil Properties and Composition," in Canadian International Petroleum Conference, 2001.spa
dc.relation.referencesF. I. Stalkup, "Miscible displacement," 1983spa
dc.relation.referencesH. Koch Jr and C. Hutchinson Jr, "Miscible displacements of reservoir oil using flue gas," 1958.spa
dc.relation.referencesA. Zaltoun, N. Kohler, and Y. Guerrinl, "Improved polyacrylamide treatments for water control in producing wells," Journal of Petroleum Technology, vol. 43, pp. 862-867, 1991.spa
dc.relation.referencesD.-K. Han, C.-Z. Yang, Z.-Q. Zhang, Z.-H. Lou, and Y.-I. Chang, "Recent development of enhanced oil recovery in China," Journal of Petroleum Science and Engineering, vol. 22, pp. 181-188, 1999.spa
dc.relation.referencesJ. L. Salager, "Physico-chemical properties of surfactant-water-oil mixtures: phase behavior, micro-emulsion formation and interfacial tension," Citeseer, 1977.spa
dc.relation.referencesS. Thomas, S. Ali, and N. Thomas, "Scale-up methods for micellar flooding and their verification," Journal of Canadian Petroleum Technology, vol. 39, 2000.spa
dc.relation.referencesK. L. Mittal and D. O. Shah, Surfactants in solution vol. 11: Springer Science & Business Media, 2013.spa
dc.relation.referencesE. Mayer, R. Berg, J. Carmichael, and R. Weinbrandt, "Alkaline injection for enhanced oil recovery-A status report," Journal of Petroleum Technology, vol. 35, pp. 209-221, 1983.spa
dc.relation.referencesA. Witthayapanyanon, J. Harwell, and D. Sabatini, "Hydrophilic–lipophilic deviation (HLD) method for characterizing conventional and extended surfactants," Journal of colloid and interface science, vol. 325, pp. 259-266, 2008.spa
dc.relation.referencesJ. L. Salager, R. E. Antón, D. A. Sabatini, J. H. Harwell, E. J. Acosta, and L. I. Tolosa, "Enhancing solubilization in microemulsions—state of the art and current trends," Journal of surfactants and detergents, vol. 8, pp. 3-21, 2005spa
dc.relation.referencesJ. C. Melrose, "Wettability as related to capillary action in porous media," Society of Petroleum Engineers Journal, vol. 5, pp. 259-271, 1965.spa
dc.relation.referencesJ. Melrose, "Interfacial phenomena as related to oil recovery mechanisms," Canadian Journal of Chemical Engineering, vol. 48, pp. 638-&, 1970.spa
dc.relation.referencesJ. Melrose, "Role of capillary forces in detennining microscopic displacement efficiency for oil recovery by waterflooding," Journal of Canadian Petroleum Technology, vol. 13, 1974.spa
dc.relation.referencesJ. L. Cayias, "Shapes of drops in centrifugal fields and their utilization for low interfacial tension investigations," 1975.spa
dc.relation.referencesA. Bashiri and N. Kasiri, "Properly use effect of capillary number on residual oil saturation," in Nigeria Annual International Conference and Exhibition, 2011.spa
dc.relation.referencesT. Moore and R. Slobod, "Displacement of oil by water-effect of wettability, rate, and viscosity on recovery," in Fall Meeting of the Petroleum Branch of AIME, 1955.spa
dc.relation.referencesM. V. Bennetzen and K. Mogensen, "Novel Applications of Nanoparticles for Future Enhanced Oil Recovery," in International Petroleum Technology Conference, 2014.spa
dc.relation.referencesA. Khezrnejad, L. James, and T. Johansen, "NANOFLUID ENHANCED OIL RECOVERY–MOBILITY RATIO, SURFACE CHEMISTRY, OR BOTH?."spa
dc.relation.referencesS. Ayatollahi and M. M. Zerafat, "Nanotechnology-assisted EOR techniques: New solutions to old challenges," in SPE International Oilfield Nanotechnology Conference and Exhibition, 2012.spa
dc.relation.referencesD. Zhu, Y. Han, J. Zhang, X. Li, and Y. Feng, "Enhancing rheological properties of hydrophobically associative polyacrylamide aqueous solutions by hybriding with silica nanoparticles," Journal of Applied Polymer Science, vol. 131, 2014.spa
dc.relation.referencesH. Yousefvand and A. Jafari, "Enhanced oil recovery using polymer/nanosilica," Procedia Materials Science, vol. 11, pp. 565-570, 2015.spa
dc.relation.referencesN. K. Maurya and A. Mandal, "Studies on behavior of suspension of silica nanoparticle in aqueous polyacrylamide solution for application in enhanced oil recovery," Petroleum Science and Technology, vol. 34, pp. 429-436, 2016.spa
dc.relation.referencesG. Cheraghian, S. S. K. Nezhad, M. Kamari, M. Hemmati, M. Masihi, and S. Bazgir, "Adsorption polymer on reservoir rock and role of the nanoparticles, clay and SiO2," International Nano Letters, vol. 4, p. 114, 2014.spa
dc.relation.referencesR. Liu, W.-F. Pu, and D.-J. Du, "Synthesis and characterization of core–shell associative polymer that prepared by oilfield formation water for chemical flooding," Journal of Industrial and Engineering Chemistry, vol. 46, pp. 80-90, 2017.spa
dc.relation.referencesS. Mobaraki, S. S. Khalilinezhad, M. O. Sorkhabadi, and K. Jarrahian, "Performance Evaluation of Surfactant and Hydrophilic Nanoparticles Assembly for Enhnaced Oil Recovery," 2018spa
dc.relation.referencesH. Radnia, A. Rashidi, A. R. S. Nazar, M. M. Eskandari, and M. Jalilian, "A novel nanofluid based on sulfonated graphene for enhanced oil recovery," Journal of Molecular Liquids, vol. 271, pp. 795-806, 2018.spa
dc.relation.referencesE. Nourafkan, Z. Hu, and D. Wen, "Nanoparticle-enabled delivery of surfactants in porous media," Journal of colloid and interface science, vol. 519, pp. 44-57, 2018.spa
dc.relation.referencesC. Chen, S. Wang, M. J. Kadhum, J. H. Harwell, and B.-J. Shiau, "Using carbonaceous nanoparticles as surfactant carrier in enhanced oil recovery: A laboratory study," Fuel, vol. 222, pp. 561-568, 2018.spa
dc.relation.referencesS. a. Betancur, F. Carrasco-Marín, C. A. Franco, and F. B. Cortés, "Development of Composite Materials Based on the Interaction between Nanoparticles and Surfactants for Application in Chemical Enhanced Oil Recovery," Industrial & Engineering Chemistry Research, vol. 57, pp. 12367-12377, 2018.spa
dc.relation.referencesW. Stöber, A. Fink, and E. Bohn, "Controlled growth of monodisperse silica spheres in the micron size range," Journal of colloid and interface science, vol. 26, pp. 62-69, 1968.spa
dc.relation.referencesM. Echeverri, L. F. Giraldo, and B. L. López, "Síntesis y funcionalización de nanopartículas de sílica con morfología esférica," Scientia et technica, vol. 13, 2007.spa
dc.relation.referencesA. Perro, F. Meunier, V. Schmitt, and S. Ravaine, "Production of large quantities of “Janus” nanoparticles using wax-in-water emulsions," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 332, pp. 57-62, 2009.spa
dc.relation.referencesS. B. Márquez, F. B. Cortés, and F. C. Marín, "Desarrollo de Nanopartículas Basadas en Sílice para la Inhibición de la Precipitación/Depositación de Asfaltenos," MSc Investigación, Ingenieria de Petróleos, Universidad Nacional de Medellin, 2015.spa
dc.relation.referencesC. A. Franco, M. Martínez, P. Benjumea, E. Patiño, and F. B. Cortés, "Water remediation based on oil adsorption using nanosilicates functionalized with a petroleum vacuum residue," Adsorption Science & Technology, vol. 32, pp. 197-207, 2014.spa
dc.relation.referencesS. Brunauer, P. H. Emmett, and E. Teller, "Adsorption of gases in multimolecular layers," Journal of the American chemical society, vol. 60, pp. 309-319, 1938.spa
dc.relation.referencesD. López, L. J. Giraldo, J. P. Salazar, D. M. Zapata, D. C. Ortega, C. A. Franco, et al., "Metal Oxide Nanoparticles Supported on Macro-Mesoporous Aluminosilicates for Catalytic Steam Gasification of Heavy Oil Fractions for On-Site Upgrading," Catalysts, vol. 7, p. 319, 2017.spa
dc.relation.referencesS. Betancur, J. C. Carmona, N. N. Nassar, C. A. Franco, and F. B. Cortés, "Role of particle size and surface acidity of silica gel nanoparticles in inhibition of formation damage by asphaltene in oil reservoirs," Industrial & Engineering Chemistry Research, vol. 55, pp. 6122-6132, 2016.spa
dc.relation.referencesS. K. Park, K. Do Kim, and H. T. Kim, "Preparation of silica nanoparticles: determination of the optimal synthesis conditions for small and uniform particles," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 197, pp. 7-17, 2002.spa
dc.relation.referencesI. Rahman, P. Vejayakumaran, C. Sipaut, J. Ismail, M. A. Bakar, R. Adnan, et al., "An optimized sol–gel synthesis of stable primary equivalent silica particles," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 294, pp. 102-110, 2007.spa
dc.relation.referencesG. Socrates, Infrared and Raman characteristic group frequencies: tables and charts: John Wiley & Sons, 2004.spa
dc.relation.referencesT. Souza, V. Ciminelli, and N. Mohallem, "A comparison of TEM and DLS methods to characterize size distribution of ceramic nanoparticles," in Journal of Physics: Conference Series, 2016, p. 012039.spa
dc.relation.referencesM. Franco-Aguirre, R. Zabala, S. H. Lopera, C. A. Franco, and F. B. Cortés, "Interaction of anionic surfactant-nanoparticles for gas-Wettability alteration of sandstone in tight gas-condensate reservoirs," Journal of Natural Gas Science and Engineering, 2018.spa
dc.relation.referencesD. C. Montgomery, "Design and analysis of experiments. New York: J," Wiley, vol. 1, pp. 6-37, 1991.spa
dc.relation.referencesL. J. Giraldo, J. Gallego, J. P. Villegas, C. A. Franco, and F. B. Cortés, "Enhanced waterflooding with NiO/SiO2 0-D Janus nanoparticles at low concentration," Journal of Petroleum Science and Engineering, vol. 174, pp. 40-48, 2019.spa
dc.relation.referencesS. Al-Anssari, S. Wang, A. Barifcani, and S. Iglauer, "Oil-water interfacial tensions of silica nanoparticle-surfactant formulations," Tenside Surfactants Detergents, vol. 54, pp. 334-341, 2017.spa
dc.relation.referencesS. Betancur, J. C. Carmona, N. N. Nassar, C. A. Franco, and F. B. Cortés, "Role of Particle Size and Surface Acidity of Silica Gel Nanoparticles in Inhibition of Formation Damage by Asphaltene in Oil Reservoirs," Industrial & Engineering Chemistry Research, 2016.spa
dc.relation.referencesF. B. Cortés, J. M. Mejía, M. A. Ruiz, P. Benjumea, and D. B. Riffel, "Sorption of asphaltenes onto nanoparticles of nickel oxide supported on nanoparticulated silica gel," Energy & Fuels, vol. 26, pp. 1725-1730, 2012.spa
dc.relation.referencesC. A. Franco, N. N. Nassar, M. A. Ruiz, P. Pereira-Almao, and F. B. Cortés, "Nanoparticles for inhibition of asphaltenes damage: adsorption study and displacement test on porous media," Energy & Fuels, vol. 27, pp. 2899-2907, 2013.spa
dc.relation.referencesP. Esmaeilzadeh, N. Hosseinpour, A. Bahramian, Z. Fakhroueian, and S. Arya, "Effect of ZrO2 nanoparticles on the interfacial behavior of surfactant solutions at air–water and n-heptane–water interfaces," Fluid Phase Equilibria, vol. 361, pp. 289-295, 2014.spa
dc.relation.referencesK. Du, E. Glogowski, T. Emrick, T. P. Russell, and A. D. Dinsmore, "Adsorption energy of nano-and microparticles at liquid− liquid interfaces," Langmuir, vol. 26, pp. 12518-12522, 2010.spa
dc.relation.referencesM. Peter, J. M. Flores Camacho, S. Adamovski, L. K. Ono, K. H. Dostert, C. P. O'Brien, et al., "Trends in the binding strength of surface species on nanoparticles: how does the adsorption energy scale with the particle size?," Angewandte Chemie International Edition, vol. 52, pp. 5175-5179, 2013.spa
dc.relation.referencesS. Rosales, I. Machín, M. Sánchez, G. Rivas, and F. Ruette, "Theoretical modeling of molecular interactions of iron with asphaltenes from heavy crude oil," Journal of Molecular Catalysis A: Chemical, vol. 246, pp. 146-153, 2006.spa
dc.relation.referencesC. A. Franco, T. Montoya, N. N. Nassar, P. Pereira-Almao, and F. B. Cortés, "Adsorption and subsequent oxidation of colombian asphaltenes onto nickel and/or palladium oxide supported on fumed silica nanoparticles," Energy & Fuels, vol. 27, pp. 7336-7347, 2013.spa
dc.relation.referencesY. Wu, D. Wang, P. Zhao, Z. Niu, Q. Peng, and Y. Li, "Monodispersed Pd− Ni nanoparticles: composition control synthesis and catalytic properties in the Miyaura− Suzuki reaction," Inorganic chemistry, vol. 50, pp. 2046-2048, 2011.spa
dc.relation.referencesI. Machín, J. C. de Jesús, G. Rivas, I. Higuerey, J. Córdova, P. Pereira, et al., "Theoretical study of catalytic steam cracking on a asphaltene model molecule," Journal of Molecular Catalysis A: Chemical, vol. 227, pp. 223-229, 2005.spa
dc.relation.referencesG. Cheraghian, "Effects of nanoparticles on wettability: A review on applications of nanotechnology in the enhanced Oil recovery," International Journal of Nano Dimension, vol. 6, p. 443, 2015.spa
dc.relation.referencesC. Xie, W. Lv, and M. Wang, "Shear-thinning or shear-thickening fluid for better EOR?—A direct pore-scale study," Journal of Petroleum Science and Engineering, 2017.spa
dc.relation.referencesC. Wang, A. D. Bobba, R. Attinti, C. Shen, V. Lazouskaya, L.-P. Wang, et al., "Retention and transport of silica nanoparticles in saturated porous media: effect of concentration and particle size," Environmental science & technology, vol. 46, pp. 7151-7158, 2012.spa
dc.relation.referencesA. E. Bayat, R. Junin, S. Shamshirband, and W. T. Chong, "Transport and retention of engineered Al 2 O 3, TiO 2, and SiO 2 nanoparticles through various sedimentary rocks," Scientific reports, vol. 5, p. 14264, 2015.spa
dc.relation.referencesR. Suresh, O. Kuznetsov, D. Agrawal, Q. Darugar, and V. Khabashesku, "Reduction of Surfactant Adsorption in Porous Media Using Silica Nanoparticles," in Offshore Technology Conference, 2018.spa
dc.relation.referencesD. Xu, B. Bai, Z. Meng, Q. Zhou, Z. Li, Y. Lu, et al., "A Novel Ultra-Low Interfacial Tension Nanofluid for Enhanced Oil Recovery in Super-Low Permeability Reservoirs," in SPE Asia Pacific Oil and Gas Conference and Exhibition, 2018.spa
dc.relation.referencesC. Verdier, H. T. Vinagre, M. Piau, and D. D. Joseph, "High temperature interfacial tension measurements of PA6/PP interfaces compatibilized with copolymers using a spinning drop tensiometer," Polymer, vol. 41, pp. 6683-6689, 2000.spa
dc.relation.referencesK. M. Ko, B. H. Chon, S. B. Jang, and H. Y. Jang, "Surfactant flooding characteristics of dodecyl alkyl sulfate for enhanced oil recovery," Journal of Industrial and Engineering Chemistry, vol. 20, pp. 228-233, 2014.spa
dc.relation.referencesJ. Elmendorp and G. De Vos, "Measurement of interfacial tensions of molten polymer systems by means of the spinning drop method," Polymer Engineering & Science, vol. 26, pp. 415-417, 1986.spa
dc.relation.referencesL. Cardona, D. Arias-Madrid, F. B. Cortés, S. H. Lopera, and C. A. Franco, "Heavy Oil Upgrading and Enhanced Recovery in a Steam Injection Process Assisted by NiO-and PdO-Functionalized SiO2 Nanoparticulated Catalysts," Catalysts, vol. 8, p. 132, 2018.spa
dc.relation.referencesJ. Eastoe and J. Dalton, "Dynamic surface tension and adsorption mechanisms of surfactants at the air–water interface," Advances in colloid and interface science, vol. 85, pp. 103-144, 2000.spa
dc.relation.referencesM. Franco-Aguirre, R. D. Zabala, S. H. Lopera, C. A. Franco, and F. B. Cortés, "Interaction of anionic surfactant-nanoparticles for gas-Wettability alteration of sandstone in tight gas-condensate reservoirs," Journal of Natural Gas Science and Engineering, vol. 51, pp. 53-64, 2018.spa
dc.relation.referencesA. S. f. Testing and Materials, "ASTM D2358, Standard Test Method for Separation of Active Ingredient from Surfactant and Syndet Compositions," ed: ASTM International West Conshohocken, PA, 2016.spa
dc.relation.referencesW. Y. Xue, Hengquan; Du, Zhiping, "Synthesis of pH-Responsive Inorganic Janus Nanoparticles and Experimental Investigation of the Stability of Their Pickering Emulsions," Langmuir, vol. 33, pp. 10283-10290, 2017.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::622 - Minería y operaciones relacionadasspa
dc.subject.proposalNanofluidosspa
dc.subject.proposalNanofluidseng
dc.subject.proposalJanusspa
dc.subject.proposalJanuseng
dc.subject.proposalEOReng
dc.subject.proposalEORspa
dc.subject.proposalInyección de Aguaspa
dc.subject.proposalWaterfloodingeng
dc.subject.proposalSurfactant floodingeng
dc.subject.proposalInyección de surfactantesspa
dc.titleDiseño y evaluación de nanomateriales tipo janus para aplicaciones en procesos de recobro químico mejorado (EOR)spa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1122136538.2019.pdf.pdf
Tamaño:
2.03 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería de Petróleos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.9 KB
Formato:
Item-specific license agreed upon to submission
Descripción: