Interacción de Rhizophagus irregularis y microorganismos solubilizadores de fósforo y su efecto sobre el crecimiento de Gmelina arborea en vivero
| dc.contributor.advisor | Rodriguez Eraso, Nelly | spa |
| dc.contributor.advisor | Varón López, Maryeimy | spa |
| dc.contributor.author | Higuera Trujillo, Karen Julieth | spa |
| dc.contributor.cvlac | Higuera Trujillo, Karen [https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000103762] | spa |
| dc.date.accessioned | 2025-04-03T16:36:52Z | |
| dc.date.available | 2025-04-03T16:36:52Z | |
| dc.date.issued | 2024 | |
| dc.description | ilustraciones, diagramas, fotografías a color | spa |
| dc.description.abstract | Gmelina arborea es una especie importante para el desarrollo forestal, debido a su rápido crecimiento, facilidad de manejo y comercialización. Sin embargo, su producción enfrenta limitaciones asociadas a requerimientos nutricionales, particularmente de fósforo (P), un nutriente esencial que limita el crecimiento en más del 50% de las producciones forestales. Para mejorar la disponibilidad de P y reducir el uso de fertilizantes químicos en su etapa productiva, se ha propuesto el uso de microorganismos solubilizadores (MSF) y movilizadores de fósforo, cuyas interacciones aún no se comprenden del todo. Por lo tanto, este estudio evaluó la interacción entre (MSF) (Pseudomonas orientalis, Paenibacillus taichungensis, Penicillium chrysogenum y Penicillium citrinum) y el Hongo Formador de Micorrizas Arbusculares (HFMA) Rhizophagus irregularis en Gmelina arborea en condiciones de vivero bajo diferentes niveles de fertilización fosfatada. Se realizó un diseño factorial al azar con 3 factores, 18 tratamientos y 5 réplicas durante 120 días. Se analizaron variables de altura, diámetro del tallo, número de hojas, biomasa seca, área foliar, porcentaje de colonización y contenido de fósforo foliar. Los resultados indican que la fertilización y la inoculación con HFMA tuvieron un efecto positivo sobre la altura en plántulas de Gmelina arborea en condiciones de vivero con fertilización al 50% y 100%. El C1a tuvo un efecto positivo en ausencia de fertilización. Sin embargo, la longitud de la raíz disminuyó en presencia de consorcios microbianos y HFMA. La mayor colonización de HFMA se observó en ausencia de consorcios microbianos y fertilización, mientras que la aplicación de fertilización fosfatada al 100% redujo dicha colonización. Además, la concentración de fósforo foliar fue mayor en los tratamientos sin coinóculos ni HFMA. Estos hallazgos sugieren que la inoculación con consorcios microbianos y HFMA puede complejizar la dinámica de la rizosfera debido a la disponibilidad de recursos, y que la fertilización fosfatada influye en la interacción entre los microorganismos del suelo. Se recomienda que futuros estudios incluyan experimentos con fósforo marcado para comprender mejor su distribución en la planta y las interacciones entre los microorganismos inoculados y las comunidades microbianas nativas (Texto tomado de la fuente). | spa |
| dc.description.abstract | Gmelina arborea is an important species for forest development due to its rapid growth, ease of management, and marketability. However, its production faces limitations associated with nutritional requirements, particularly phosphorus (P), an essential nutrient that restricts growth in more than 50% of forest productions. To improve the availability of P and reduce the use of chemical fertilizers during its production phase, the use of phosphorus-solubilizing microorganisms (PSM) has been proposed, although their interactions are not yet fully understood. Therefore, this study evaluated the interaction between PSM (Pseudomonas orientalis, Paenibacillus taichungensis, Penicillium chrysogenum, and Penicillium citrinum) and the arbuscular mycorrhizal fungus (AMF) Rhizophagus irregularis in Gmelina arborea under nursery conditions with different levels of phosphorus fertilization. A completely randomized factorial design was conducted with three factors, 18 treatments, and five replicates over time. Variables analyzed included height, stem diameter, leaf number, dry biomass, leaf area, percentage of colonization, and leaf phosphorus content. The results indicate that fertilization and inoculation with HFMA had a positive effect on height in Gmelina arborea seedlings under nursery conditions with 50% and 100% fertilization. C1a had a positive effect in the absence of fertilization. However, root length decreased in the presence of microbial consortia and HFMA. The highest colonization of HFMA was observed in the absence of microbial consortia and fertilization, while the application of 100% phosphate fertilization reduced such colonization. In addition, the foliar phosphorus concentration was higher in the treatments without coinoculi or HFMA. These findings suggest that inoculation with microbial consortia and HFMA may complicate rhizosphere dynamics due to resource availability, and that phosphate fertilization influences the interaction between soil microorganisms. It is recommended that future studies include experiments with labeled phosphorus to better understand its distribution in the plant and the interactions between inoculated microorganisms and native microbial communities. | eng |
| dc.description.degreelevel | Maestría | spa |
| dc.description.degreename | Magíster en Ciencias - Biología | spa |
| dc.format.extent | 97 páginas | spa |
| dc.format.mimetype | application/pdf | spa |
| dc.identifier.instname | Universidad Nacional de Colombia | spa |
| dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
| dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87836 | |
| dc.language.iso | spa | spa |
| dc.publisher | Universidad Nacional de Colombia | spa |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
| dc.publisher.faculty | Facultad de Ciencias | spa |
| dc.publisher.place | Bogotá, Colombia | spa |
| dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Biología | spa |
| dc.relation.references | Abdel-Fattah, G. M., Asrar, A. A., Al-Amri, S. M., & Abdel-Salam, E. M. (2014). Influence of arbuscular mycorrhiza and phosphorus fertilization on the gas exchange, growth and phosphatase activity of soybean (Glycine max L.) plants. Photosynthetica, 52(4), 581–588. https://doi.org/10.1007/s11099-014-0067-0 | spa |
| dc.relation.references | Alewell, C., Ringeval, B., Ballabio, C., Robinson, D. A., Panagos, P., & Borrelli, P. (2020). Global phosphorus shortage will be aggravated by soil erosion. Nature Communications, 11(1), 4546. https://doi.org/10.1038/s41467-020-18326-7 | spa |
| dc.relation.references | Alfaro, M. M., & De Camino. (2002). Melina (Gmelina arborea) in Central America. Forest Plantations Working Paper 20 | spa |
| dc.relation.references | Arteaga, B., & Castelán, M. (2008). Evaluación dasométrica temprana de una plantación agroforestal de tres especies introducidas, en el municipio de Huehuetla, Hidalgo. Revista Chapingo Serie Ciencias Forestales y Del Ambiente, 14(2), 105–111. | spa |
| dc.relation.references | Avellán, M. J., Murillo, R., Alvarado, A., & Ávila, C. (2015). Variación del contenido foliar de nutrimentos de Gmelina arborea en los cantones de Osa, Golfito y Corredores, Costa Rica. Revista de Ciencias Ambientales, 49(1), 1. https://doi.org/10.15359/rca.49-1.1 | spa |
| dc.relation.references | Balestrini, R., Lumini, E., Borriello, R., & Bianciotto, V. (2015). Plant-Soil Biota Interactions. In Soil Microbiology, Ecology and Biochemistry (pp. 311–338). Elsevier. https://doi.org/10.1016/B978-0-12-415955-6.00011-6 | spa |
| dc.relation.references | Baltazar, O., Spinoso, J. L., Mancilla, E., & Bello, J. J. (2022). Arbuscular Mycorrhizal Fungi Induce Tolerance to Salinity Stress in Taro Plantlets (Colocasia esculenta L. Schott) during Acclimatization. Plants, 11(13), 1780. https://doi.org/10.3390/plants11131780 | spa |
| dc.relation.references | Balzergue, C., Puech-Pagès, V., Bécard, G., & Rochange, S. F. (2011). The regulation of arbuscular mycorrhizal symbiosis by phosphate in pea involves early and systemic signalling events. Journal of Experimental Botany, 62(3), 1049–1060. https://doi.org/10.1093/jxb/erq335 | spa |
| dc.relation.references | Barua, A., Gupta, S. D., Mridha, M. A. U., & Bhuiyan, M. K. (2010a). Effect of arbuscular mycorrhizal fungi on growth of Gmelina arborea in arsenic-contaminated soil. Journal of Forestry Research, 21(4), 423–432. https://doi.org/10.1007/s11676-010-0092-1 | spa |
| dc.relation.references | Bashan, Y., Puente, M. E., Salazar, B., De-Bashan, L. E., Bacilio, M., Hernandez, J.-P., Leyva, L. A., Romero, B., Villalpando, R., & Bethlenfalvay, G. J. (2015). Reforestation of eroded land in the desert. Role of plant growth promoting bacteria and organic matter. Suelos Ecuatoriales, 35(1), 70–77. | spa |
| dc.relation.references | Behera, B. C., Yadav, H., Singh, S. K., Mishra, R. R., Sethi, B. K., Dutta, S. K., & Thatoi, H. N. (2017). Phosphate solubilization and acid phosphatase activity of Serratia sp. isolated from mangrove soil of Mahanadi river delta, Odisha, India. Journal of Genetic Engineering and Biotechnology, 15(1), 169–178. https://doi.org/10.1016/j.jgeb.2017.01.003 | spa |
| dc.relation.references | Beltran, I., Romero, F., Molano, Lady, Gutiérrez, A. Y., Silva, A. M. M., & Estrada, G. (2023). Inoculation of phosphate-solubilizing bacteria improves soil phosphorus mobilization and maize productivity. Nutrient Cycling in Agroecosystems, 126(1), 21–34. https://doi.org/10.1007/s10705-023-10268-y | spa |
| dc.relation.references | Ben Zineb, A., Gargouri, M., López-Ráez, J. A., Trabelsi, D., Aroca, R., & Mhamdi, R. (2022). Interaction between P fertilizers and microbial inoculants at the vegetative and flowering stage of Medicago truncatula. Plant Growth Regulation, 98(3), 511–524. https://doi.org/10.1007/s10725-022-00886-x | spa |
| dc.relation.references | Bharadwaj, D. P., Alström, S., & Lundquist, P.-O. (2012). Interactions among Glomus irregulare, arbuscular mycorrhizal spore-associated bacteria, and plant pathogens under in vitro conditions. Mycorrhiza, 22(6), 437–447. https://doi.org/10.1007/s00572-011-0418-7 | spa |
| dc.relation.references | Bi, Q.-F., Li, K.-J., Zheng, B.-X., Liu, X.-P., Li, H.-Z., Jin, B.-J., Ding, K., Yang, X.-R., Lin, X.-Y., & Zhu, Y.-G. (2020). Partial replacement of inorganic phosphorus (P) by organic manure reshapes phosphate mobilizing bacterial community and promotes P bioavailability in a paddy soil. Science of The Total Environment, 703, 134977. https://doi.org/10.1016/j.scitotenv.2019.134977 | spa |
| dc.relation.references | Bradáčová, K., Sittinger, M., Tietz, K., Neuhäuser, B., Kandeler, E., Berger, N., Ludewig, U., & Neumann, G. (2019). Maize Inoculation with Microbial Consortia: Contrasting Effects on Rhizosphere Activities, Nutrient Acquisition and Early Growth in Different Soils. Microorganisms, 7(9), 329. https://doi.org/10.3390/microorganisms7090329 | spa |
| dc.relation.references | Brenner, K., You, L., & Arnold, F. H. (2008). Engineering microbial consortia: a new frontier in synthetic biology. Trends in Biotechnology, 26(9), 483–489. https://doi.org/10.1016/j.tibtech.2008.05.004 | spa |
| dc.relation.references | Breuillin, F., Schramm, J., Hajirezaei, M., Ahkami, A., Favre, P., Druege, U., Hause, B., Bucher, M., Kretzschmar, T., Bossolini, E., Kuhlemeier, C., Martinoia, E., Franken, P., Scholz, U., & Reinhardt, D. (2010). Phosphate systemically inhibits development of arbuscular mycorrhiza in Petunia hybrida and represses genes involved in mycorrhizal functioning. The Plant Journal, 64(6), 1002–1017. https://doi.org/10.1111/j.1365-313X.2010.04385.x | spa |
| dc.relation.references | Bücking, H., Mensah, J. A., & Fellbaum, C. R. (2016). Common mycorrhizal networks and their effect on the bargaining power of the fungal partner in the arbuscular mycorrhizal symbiosis. Communicative & Integrative Biology, 9(1), e1107684. https://doi.org/10.1080/19420889.2015.1107684 | spa |
| dc.relation.references | Cano, M. A. (2011). Interacción de microorganismos benéficos en plantas: Micorrizas, Trichoderma spp. y Pseudomonas spp. una revisión. Revista U.D.C.A Actualidad & Divulgación Científica, 14(2). https://doi.org/10.31910/rudca.v14.n2.2011.771 | spa |
| dc.relation.references | Carrasquero, A., & Adams, M. (1995). Estudio del complejo amarillo vanadomolibdofosfórico para el análisis de fósforo en suelos. VENESUELOS, 3(2), 83–88. | spa |
| dc.relation.references | Carrillo, P., Mejia, M., & Franco, A. (1995). Manual de laboratorio para análisis foliares. (pp. 1–52). | spa |
| dc.relation.references | Castilla, S. (2023). MICROORGANISMOS PROMOTORES DE CRECIMIENTO VEGETAL (MPCV) AISLADOS DE RELAVES MINEROS, Y SU POTENCIAL COMO BIOINOCULANTE. Universidad del Tolima | spa |
| dc.relation.references | Ceballos, I., Ruiz, M., Fernández, C., Peña, R., Rodríguez, A., & Sanders, I. R. (2013). The In Vitro Mass-Produced Model Mycorrhizal Fungus, Rhizophagus irregularis, Significantly Increases Yields of the Globally Important Food Security Crop Cassava. PLoS ONE, 8(8), e70633. https://doi.org/10.1371/journal.pone.0070633 | spa |
| dc.relation.references | Chaiyasen, A., Douds, D. D., Gavinlertvatana, P., & Lumyong, S. (2017). Diversity of arbuscular mycorrhizal fungi in Tectona grandis Linn.f. plantations and their effects on growth of micropropagated plantlets. New Forests, 48(4), 547–562. https://doi.org/10.1007/s11056-017-9584-6 | spa |
| dc.relation.references | Chenchouni, H., Mekahlia, M. N., & Beddiar, A. (2020). Effect of inoculation with native and commercial arbuscular mycorrhizal fungi on growth and mycorrhizal colonization of olive (Olea europaea L.). Scientia Horticulturae, 261, 108969. https://doi.org/10.1016/j.scienta.2019.108969 | spa |
| dc.relation.references | Choi, J., Summers, W., & Paszkowski, U. (2018). Mechanisms Underlying Establishment of Arbuscular Mycorrhizal Symbioses. Annual Review of Phytopathology, 56(1), 135–160. https://doi.org/10.1146/annurev-phyto-080516-035521 | spa |
| dc.relation.references | Cozzolino, V., Monda, H., Savy, D., Di Meo, V., Vinci, G., & Smalla, K. (2021). Cooperation among phosphate-solubilizing bacteria, humic acids and arbuscular mycorrhizal fungi induces soil microbiome shifts and enhances plant nutrient uptake. Chemical and Biological Technologies in Agriculture, 8(1), 31. https://doi.org/10.1186/s40538-021-00230-x | spa |
| dc.relation.references | Devi, R., Alsaffar, M. F., AL-Taey, D. K. A., Kumar, S., Negi, R., Sharma, B., Kaur, T., Rustagi, S., Kour, D., Yadav, A. N., & Ahluwalia, A. S. (2024). Synergistic effect of minerals solubilizing and siderophores producing bacteria as different microbial consortium for growth and nutrient uptake of oats (Avena sativa L.). Vegetos. https://doi.org/10.1007/s42535-024-00922-3 | spa |
| dc.relation.references | Dickson, A., Leaf, L., & Hosner, J. (1960). Quality appraisal of white spruce and white pine seedling stock in nurseries. The Forestry Chronicle, 36, 10–13. | spa |
| dc.relation.references | Dobbelaere, S., Croonenborghs, A., Thys, A., Vande Broek, A., & Vanderleyden, J. (1999). Phytostimulatory effect of A. brasilense wild type and mutant strains altered in IAA production on wheat. Plant and Soil, 212(2), 153–162. https://doi.org/10.1023/A:1004658000815 | spa |
| dc.relation.references | Dudhane, M. P., Borde, M. Y., & Jite, P. K. (2011). Effect of Arbuscular Mycorrhizal Fungi on Growth and Antioxidant Activity in Gmelina arborea Roxb. under Salt Stress Condition. Notulae Scientia Biologicae, 3(4), 71–78. https://doi.org/10.15835/nsb346230 | spa |
| dc.relation.references | Duncker, K. E., Holmes, Z. A., & You, L. (2021). Engineered microbial consortia: strategies and applications. Microbial Cell Factories, 20(1), 211. https://doi.org/10.1186/s12934-021-01699-9 | spa |
| dc.relation.references | Dvorak, W. S. (2004). World view of Gmelina arborea: opportunities and challenges. In New Forest (Vol. 28). Kluwer Academic Publishers | spa |
| dc.relation.references | El Attar, I., Hnini, M., Taha, K., & Aurag, J. (2022). Phosphorus Availability and its Sustainable Use. Journal of Soil Science and Plant Nutrition, 22(4), 5036–5048. https://doi.org/10.1007/s42729-022-00980-z | spa |
| dc.relation.references | Escobar, L. J. (2013). Relación de parámetros de fertilidad del suelo con el índice de sitio determinado para plantaciones forestales de melina (Gmelina arbórea) y ceiba (Pachira quinata) en Zambrano-Bolivar (Colombia). Universidad Nacional de Colombia. | spa |
| dc.relation.references | Estrada, E., Trejo, L. I., Gomez, F. C., Núñez, R., & Sandoval, M. (2011). Respuestas bioquímicas en fresa al suministro de fósforo en forma de fosfito. Revista Chapingo Serie Horticultura , 17(3), 129–138. | spa |
| dc.relation.references | Etesami, H. (2020). Enhanced Phosphorus Fertilizer Use Efficiency with Microorganisms. In Nutrient Dynamics for Sustainable Crop Production (pp. 215–245). Springer Singapore. https://doi.org/10.1007/978-981-13-8660-2_8 | spa |
| dc.relation.references | Etesami, H., Jeong, B. R., & Glick, B. R. (2021). Contribution of Arbuscular Mycorrhizal Fungi, Phosphate–Solubilizing Bacteria, and Silicon to P Uptake by Plant. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.699618 | spa |
| dc.relation.references | Facelli, E., Facelli, J. M., Smith, S. E., & Mclaughlin, M. J. (1999). Interactive effects of arbuscular mycorrhizal symbiosis, intraspecific competition and resource availability on Trifolium subterraneum cv. Mt. Barker. New Phytologist, 141(3), 535–547. https://doi.org/10.1046/j.1469-8137.1999.00367.x | spa |
| dc.relation.references | Fall, A. F., Nakabonge, G., Ssekandi, J., Founoune-Mboup, H., Apori, S. O., Ndiaye, A., Badji, A., & Ngom, K. (2022). Roles of Arbuscular Mycorrhizal Fungi on Soil Fertility: Contribution in the Improvement of Physical, Chemical, and Biological Properties of the Soil. Frontiers in Fungal Biology, 3. https://doi.org/10.3389/ffunb.2022.723892 | spa |
| dc.relation.references | FAO. (2021). Fertilizantes inorgánicos 1961–2019. Anal. Breve Ser, 27, 2–3. | spa |
| dc.relation.references | Fayiga, A. O., & Nwoke, O. C. (2016). Phosphate rock: origin, importance, environmental impacts, and future roles. Environmental Reviews, 24(4), 403–415. https://doi.org/10.1139/er-2016-0003 | spa |
| dc.relation.references | Fellbaum, C. R., Mensah, J. A., Cloos, A. J., Strahan, G. E., Pfeffer, P. E., Kiers, E. T., & Bücking, H. (2014). Fungal nutrient allocation in common mycorrhizal networks is regulated by the carbon source strength of individual host plants. New Phytologist, 203(2), 646–656. https://doi.org/10.1111/nph.12827 | spa |
| dc.relation.references | Ordoñez, Y. M., Fernandez, B. R., Lara, L. S., Rodriguez, A., Uribe-Vélez, D., & Sanders, I. R. (2016). Bacteria with Phosphate Solubilizing Capacity Alter Mycorrhizal Fungal Growth Both Inside and Outside the Root and in the Presence of Native Microbial Communities. PLOS ONE, 11(6), e0154438. https://doi.org/10.1371/journal.pone.0154438 | spa |
| dc.relation.references | Fernández Bidondo, L., Bompadre, J., Pergola, M., Silvani, V., Colombo, R., Bracamonte, F., & Godeas, A. (2012). Differential interaction between two Glomus intraradices strains and a phosphate solubilizing bacterium in maize rhizosphere. Pedobiologia, 55(4), 227–232. https://doi.org/10.1016/j.pedobi.2012.04.001 | spa |
| dc.relation.references | Figueiredo, M. do V. B., Seldin, L., de Araujo, F. F., & Mariano, R. de L. R. (2010). Plant Growth Promoting Rhizobacteria: Fundamentals and Applications (pp. 21–43). https://doi.org/10.1007/978-3-642-13612-2_2 | spa |
| dc.relation.references | Finlay, R. D. (2008a). Ecological aspects of mycorrhizal symbiosis: with special emphasis on the functional diversity of interactions involving the extraradical mycelium. Journal of Experimental Botany, 59(5), 1115–1126. https://doi.org/10.1093/jxb/ern059 | spa |
| dc.relation.references | Finlay, R. D. (2008b). Ecological aspects of mycorrhizal symbiosis: with special emphasis on the functional diversity of interactions involving the extraradical mycelium. Journal of Experimental Botany, 59(5), 1115–1126. https://doi.org/10.1093/jxb/ern059 | spa |
| dc.relation.references | Froese, S., Wiens, J. T., Warkentin, T., & Schoenau, J. J. (2020). Response of canola, wheat, and pea to foliar phosphorus fertilization at a phosphorus-deficient site in eastern Saskatchewan. Canadian Journal of Plant Science, 100(6), 642–652. https://doi.org/10.1139/cjps-2019-0276 | spa |
| dc.relation.references | Gamalero, E., & Glick, B. R. (2015). Bacterial Modulation of Plant Ethylene Levels. Plant Physiology, 169(1), 13–22. https://doi.org/10.1104/pp.15.00284 | spa |
| dc.relation.references | Gao, X., Guo, H., Zhang, Q., Guo, H., Zhang, L., Zhang, C., Gou, Z., Liu, Y., Wei, J., Chen, A., Chu, Z., & Zeng, F. (2020). Arbuscular mycorrhizal fungi (AMF) enhanced the growth, yield, fiber quality and phosphorus regulation in upland cotton (Gossypium hirsutum L.). Scientific Reports, 10(1), 2084. https://doi.org/10.1038/s41598-020-59180-3 | spa |
| dc.relation.references | Giri, B., Kapoor, R., & Mukerji, K. G. (2005). Effect of the arbuscular mycorrhizae Glomus fasciculatum and G. macrocarpum on the growth and nutrient content of Cassia siamea in a semi-arid Indian wasteland soil. New Forests, 29(1), 63–73. https://doi.org/10.1007/s11056-004-4689-0 | spa |
| dc.relation.references | Guether, M., Neuhäuser, B., Balestrini, R., Dynowski, M., Ludewig, U., & Bonfante, P. (2009). A Mycorrhizal-Specific Ammonium Transporter from Lotus japonicus Acquires Nitrogen Released by Arbuscular Mycorrhizal Fungi. Plant Physiology, 150(1), 73–83. https://doi.org/10.1104/pp.109.136390 | spa |
| dc.relation.references | Hansen, V., Bonnichsen, L., Nunes, I., Sexlinger, K., Lopez, S. R., van der Bom, F. J. T., Nybroe, O., Nicolaisen, M. H., & Jensen, L. S. (2020). Seed inoculation with Penicillium bilaiae and Bacillus simplex affects the nutrient status of winter wheat. Biology and Fertility of Soils, 56(1), 97–109. https://doi.org/10.1007/s00374-019-01401-7 | spa |
| dc.relation.references | Harrison, A. F. (1987). Soil organic phosphorus. A review of world literature. 1–257 | spa |
| dc.relation.references | Hijri, M. (2016). Analysis of a large dataset of mycorrhiza inoculation field trials on potato shows highly significant increases in yield. Mycorrhiza, 26(3), 209–214. https://doi.org/10.1007/s00572-015-0661-4 | spa |
| dc.relation.references | Iffis, B., St‐Arnaud, M., & Hijri, M. (2016). Petroleum hydrocarbon contamination, plant identity and arbuscular mycorrhizal fungal (AMF) community determine assemblages of the AMF spore‐associated microbes. Environmental Microbiology, 18(8), 2689–2704. https://doi.org/10.1111/1462-2920.13438 | spa |
| dc.relation.references | Jamiołkowska, A., Księżniak, A., Gałązka, A., Hetman, B., Kopacki, M., & Skwaryło-Bednarz, B. (2018). Impact of abiotic factors on development of the community of arbuscular mycorrhizal fungi in the soil: a Review. International Agrophysics, 32(1), 133–140. https://doi.org/10.1515/intag-2016-0090 | spa |
| dc.relation.references | Jangandi, S., Negalur*, C. B., Narayan, Mr., & Lakshman, H. C. (2016). Synergistic effect between phosphate solubilizing bacteria and vesicular-arbuscular mycorrhizal fungi on growth and p uptake in Cajanus cajana L. (Pigeon pea). International Journal of Bioassays, 6(01), 5211. https://doi.org/10.21746/ijbio.2017.01.005 | spa |
| dc.relation.references | Jansa, J., Bukovská, P., & Gryndler, M. (2013). Mycorrhizal hyphae as ecological niche for highly specialized hypersymbionts – or just soil free-riders? Frontiers in Plant Science, 4. https://doi.org/10.3389/fpls.2013.00134 | spa |
| dc.relation.references | Ji, L., Tan, W., & Chen, X. (2019). Arbuscular mycorrhizal mycelial networks and glomalin-related soil protein increase soil aggregation in Calcaric Regosol under well-watered and drought stress conditions. Soil and Tillage Research, 185, 1–8. https://doi.org/10.1016/j.still.2018.08.010 | spa |
| dc.relation.references | Juge, C., Prévost, D., Bertrand, A., Bipfubusa, M., & Chalifour, F.-P. (2012). Growth and biochemical responses of soybean to double and triple microbial associations with Bradyrhizobium, Azospirillum and arbuscular mycorrhizae. Applied Soil Ecology, 61, 147–157. https://doi.org/10.1016/j.apsoil.2012.05.006 | spa |
| dc.relation.references | Jyothi, E., Bagyaraj, D. J., & Rao, E. V. S. P. (2018). Microbial consortia developed for Ocimum tenuiflorum reduces application of chemical fertilizers by 50% under field conditions. Medicinal Plants - International Journal of Phytomedicines and Related Industries, 10(2), 138. https://doi.org/10.5958/0975-6892.2018.00022.9 | spa |
| dc.relation.references | Kapoor, R., Sharma, D., & Bhatnagar, A. K. (2008). Arbuscular mycorrhizae in micropropagation systems and their potential applications. Scientia Horticulturae, 116(3), 227–239. https://doi.org/10.1016/j.scienta.2008.02.002 | spa |
| dc.relation.references | Karthikeyan, A., Mahalingam, L., Chacko, J., Mayavel, A., Muthu Kumar, A., & Nair, SP. (2024). Establishment of Gmelina arborea plantation in an uncultivated farmland inoculated with arbuscular mycorrhizal fungi and plant growth promoting bacteria. Reforesta, 17, 18–31. | spa |
| dc.relation.references | Kaur, T., Devi, R., Negi, R., Kumar, S., Singh, S., Rustagi, S., Shreaz, S., Rai, A. K., Kour, D., & Yadav, A. N. (2024). Microbial consortium with multifunctional attributes for the plant growth of eggplant (Solanum melongena L.). Folia Microbiologica. https://doi.org/10.1007/s12223-024-01168-x | spa |
| dc.relation.references | Kefi, A., Guntoro, D., & Santosa, E. (2022). Pertumbuhan dan Hasil Tanaman Jagung Manis pada Berbagai Populasi Gulma Chloris barbata (Poaceae). Jurnal Agronomi Indonesia (Indonesian Journal of Agronomy), 50(1), 80–88. https://doi.org/10.24831/jai.v50i1.39708 | spa |
| dc.relation.references | Keymer, A., Pimprikar, P., Wewer, V., Huber, C., Brands, M., Bucerius, S. L., Delaux, P.-M., Klingl, V., Röpenack-Lahaye, E. von, Wang, T. L., Eisenreich, W., Dörmann, P., Parniske, M., & Gutjahr, C. (2017). Lipid transfer from plants to arbuscular mycorrhiza fungi. ELife, 6. https://doi.org/10.7554/eLife.29107 | spa |
| dc.relation.references | Khan, A., Zhang, G., Li, T., & He, B. (2023). Fertilization and cultivation management promotes soil phosphorus availability by enhancing soil P-cycling enzymes and the phosphatase encoding genes in bulk and rhizosphere soil of a maize crop in sloping cropland. Ecotoxicology and Environmental Safety, 264, 115441. https://doi.org/10.1016/j.ecoenv.2023.115441 | spa |
| dc.relation.references | Khan, M. S., Zaidi, A., & Wani, P. A. (2007). Role of phosphate-solubilizing microorganisms in sustainable agriculture — A review. Agronomy for Sustainable Development, 27(1), 29–43. https://doi.org/10.1051/agro:2006011 | spa |
| dc.relation.references | Klimek, A., & Rolbiecki, R. (2013). Effect of irrigation and organic fertilization on oribatid mites (Acari, Oribatida) in forest nursery Piotr Stachowski View project Effects of Mulching with Forest Litter and Compost Made of Savage Sludge on the Presence of Oribatida as Bioindicators of Soil Revitalization in Larch and Pine In-Ground Forest Nurseris View project. https://doi.org/10.5897/SRE12.680 | spa |
| dc.relation.references | Koch, A. M., Kuhn, G., Fontanillas, P., Fumagalli, L., Goudet, J., & Sanders, I. R. (2004). High genetic variability and low local diversity in a population of arbuscular mycorrhizal fungi. Proceedings of the National Academy of Sciences, 101(8), 2369–2374. https://doi.org/10.1073/pnas.0306441101 | spa |
| dc.relation.references | Kokkoris, V., Banchini, C., Paré, L., Abdellatif, L., Séguin, S., Hubbard, K., Findlay, W., Dalpé, Y., Dettman, J., Corradi, N., & Stefani, F. (2024). Rhizophagus irregularis, the model fungus in arbuscular mycorrhiza research, forms dimorphic spores. New Phytologist, 242(4), 1771–1784. https://doi.org/10.1111/nph.19121 | spa |
| dc.relation.references | Kong, Z., Wu, Z., Glick, B. R., He, S., Huang, C., & Wu, L. (2019). Co-occurrence patterns of microbial communities affected by inoculants of plant growth-promoting bacteria during phytoremediation of heavy metal-contaminated soils. Ecotoxicology and Environmental Safety, 183, 109504. https://doi.org/10.1016/j.ecoenv.2019.109504 | spa |
| dc.relation.references | Kouadio, A. N. M.-S., Nandjui, J., Krou, S. M., Séry, D. J.-M., Nelson, P. N., & Zézé, A. (2017). A native arbuscular mycorrhizal fungus inoculant outcompetes an exotic commercial species under two contrasting yam field conditions. Rhizosphere, 4, 112–118. https://doi.org/10.1016/j.rhisph.2017.10.001 | spa |
| dc.relation.references | Kruse, J., Abraham, M., Amelung, W., Baum, C., Bol, R., Kühn, O., Lewandowski, H., Niederberger, J., Oelmann, Y., Rüger, C., Santner, J., Siebers, M., Siebers, N., Spohn, M., Vestergren, J., Vogts, A., & Leinweber, P. (2015). Innovative methods in soil phosphorus research: A review. Journal of Plant Nutrition and Soil Science, 178(1), 43–88. https://doi.org/10.1002/jpln.201400327 | spa |
| dc.relation.references | Kucey, R. M. N. (1983). PHOSPHATE-SOLUBILIZING BACTERIA AND FUNGI IN VARIOUS CULTIVATED AND VIRGIN ALBERTA SOILS. Canadian Journal of Soil Science, 63(4), 671–678. https://doi.org/10.4141/cjss83-068 | spa |
| dc.relation.references | Kumar, K. S., Khanduri, V. P., & Tripathi, S. K. (2021). Reproductive adaptations and the availability of pollinating vectors in white Indian teak (Gmelina arborea Roxb.) in tropical rain forest of Indo-Burma Hotspot. Trees, Forests and People, 3, 100058. https://doi.org/10.1016/j.tfp.2020.100058 | spa |
| dc.relation.references | LAMBERS, H., SHANE, M. W., CRAMER, M. D., PEARSE, S. J., & VENEKLAAS, E. J. (2006). Root Structure and Functioning for Efficient Acquisition of Phosphorus: Matching Morphological and Physiological Traits. Annals of Botany, 98(4), 693–713. https://doi.org/10.1093/aob/mcl114 | spa |
| dc.relation.references | Larimer, A. L., Bever, J. D., & Clay, K. (2010). The interactive effects of plant microbial symbionts: a review and meta-analysis. Symbiosis, 51(2), 139–148. https://doi.org/10.1007/s13199-010-0083-1 | spa |
| dc.relation.references | Larimer, A. L., Clay, K., & Bever, J. D. (2014). Synergism and context dependency of interactions between arbuscular mycorrhizal fungi and rhizobia with a prairie legume. Ecology, 95(4), 1045–1054. https://doi.org/10.1890/13-0025.1 | spa |
| dc.relation.references | Levene, H. (1960). Robust tests for the equality of variance. In Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling, (pp. 278–292). https://books.google.com.cu/ books?id=ZUSsAAAAIAAJ. | spa |
| dc.relation.references | Li, H.-Z., Bi, Q., Yang, K., Zheng, B.-X., Pu, Q., & Cui, L. (2019). D 2 O-Isotope-Labeling Approach to Probing Phosphate-Solubilizing Bacteria in Complex Soil Communities by Single-Cell Raman Spectroscopy. Analytical Chemistry, 91(3), 2239–2246. https://doi.org/10.1021/acs.analchem.8b04820 | spa |
| dc.relation.references | Li, Q., Li, H., Yang, Z., Cheng, X., Zhao, Y., Qin, L., Bisseling, T., Cao, Q., & Willemsen, V. (2022). Plant growth‐promoting rhizobacterium Pseudomonas sp. CM11 specifically induces lateral roots. New Phytologist, 235(4), 1575–1588. https://doi.org/10.1111/nph.18199 | spa |
| dc.relation.references | Li, Y., Xu, J., Hu, J., Zhang, T., Wu, X., & Yang, Y. (2022). Arbuscular Mycorrhizal Fungi and Glomalin Play a Crucial Role in Soil Aggregate Stability in Pb-Contaminated Soil. International Journal of Environmental Research and Public Health, 19(9), 5029. https://doi.org/10.3390/ijerph19095029 | spa |
| dc.relation.references | Liang, J.-L., Liu, J., Jia, P., Yang, T., Zeng, Q., Zhang, S., Liao, B., Shu, W., & Li, J. (2020). Novel phosphate-solubilizing bacteria enhance soil phosphorus cycling following ecological restoration of land degraded by mining. The ISME Journal, 14(6), 1600–1613. https://doi.org/10.1038/s41396-020-0632-4 | spa |
| dc.relation.references | Liu, J., Liu, X., Zhang, Q., Li, S., Sun, Y., Lu, W., & Ma, C. (2020). Response of alfalfa growth to arbuscular mycorrhizal fungi and phosphate-solubilizing bacteria under different phosphorus application levels. AMB Express, 10(1), 200. https://doi.org/10.1186/s13568-020-01137-w | spa |
| dc.relation.references | Liu, J., Qi, W., Li, Q., Wang, S.-G., Song, C., & Yuan, X. (2020). Exogenous phosphorus-solubilizing bacteria changed the rhizosphere microbial community indirectly. 3 Biotech, 10(4), 164. https://doi.org/10.1007/s13205-020-2099-4 | spa |
| dc.relation.references | Liu, Y., He, J., Shi, G., An, L., Öpik, M., & Feng, H. (2011). Diverse communities of arbuscular mycorrhizal fungi inhabit sites with very high altitude in Tibet Plateau FEMS Microbiology Ecology, 78(2), 355–365. https://doi.org/10.1111/j.1574-6941.2011.01163.x | spa |
| dc.relation.references | Lopez, G., Ahmadi, S. H., Amelung, W., Athmann, M., Ewert, F., Gaiser, T., Gocke, M. I., Kautz, T., Postma, J., Rachmilevitch, S., Schaaf, G., Schnepf, A., Stoschus, A., Watt, M., Yu, P., & Seidel, S. J. (2023). Nutrient deficiency effects on root architecture and root-to-shoot ratio in arable crops. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.1067498 | spa |
| dc.relation.references | Magallon, P., Antoun, H., Taktek, S., & de-Bashan, L. E. (2020). Designing a multi-species inoculant of phosphate rock-solubilizing bacteria compatible with arbuscular mycorrhizae for plant growth promotion in low-P soil amended with PR. Biology and Fertility of Soils, 56(4), 521–536. https://doi.org/10.1007/s00374-020-01452-1 | spa |
| dc.relation.references | Maharana, R., Dobriyal, M., Behera, L., & Sukhadiya, M. (2018). Enhancement of seedling vigour through biofertilizers application in gamhar (Gmelina arborea Roxb.). International Journal of Chemical Studies, 6(6), 54–60 | spa |
| dc.relation.references | Mall, A., Kasarlawar, S., & Saini, S. (2022). Limited Pairwise Synergistic and Antagonistic Interactions Impart Stability to Microbial Communities. Frontiers in Ecology and Evolution, 10. https://doi.org/10.3389/fevo.2022.648997 | spa |
| dc.relation.references | Martínez, D. B., Barroetaveña, C., & Rajchenberg, M. (2007). Influencia del régimen de fertilización y del momento de inoculación en la micorrización de Pinus ponderosa en la etapa de vivero. Bosque (Valdivia), 28(3). https://doi.org/10.4067/S0717-92002007000300007 | spa |
| dc.relation.references | Massot, F., Bernard, N., Alvarez, L. M. M., Martorell, M. M., Mac Cormack, W. P., & Ruberto, L. A. M. (2022). Microbial associations for bioremediation. What does “microbial consortia” mean? Applied Microbiology and Biotechnology, 106(7), 2283–2297. https://doi.org/10.1007/s00253-022-11864-8 | spa |
| dc.relation.references | Mawarda, P. C., Le Roux, X., Dirk van Elsas, J., & Salles, J. F. (2020). Deliberate introduction of invisible invaders: A critical appraisal of the impact of microbial inoculants on soil microbial communities. Soil Biology and Biochemistry, 148, 107874. https://doi.org/10.1016/j.soilbio.2020.107874 | spa |
| dc.relation.references | Mawarda, P. C., Mallon, C. A., Le Roux, X., van Elsas, J. D., & Salles, J. F. (2022). Interactions between Bacterial Inoculants and Native Soil Bacterial Community: the Case of Spore-forming Bacillus spp. FEMS Microbiology Ecology, 98(12). https://doi.org/10.1093/femsec/fiac127 | spa |
| dc.relation.references | McCarty, N. S., & Ledesma-Amaro, R. (2019). Synthetic Biology Tools to Engineer Microbial Communities for Biotechnology. Trends in Biotechnology, 37(2), 181–197. https://doi.org/10.1016/j.tibtech.2018.11.002 | spa |
| dc.relation.references | McEwan, A., Marchi, E., Spinelli, R., & Brink, M. (2020). Past, present and future of industrial plantation forestry and implication on future timber harvesting technology. Journal of Forestry Research, 31(2), 339–351. https://doi.org/10.1007/s11676-019-01019-3 | spa |
| dc.relation.references | McGill, W. B., & Cole, C. V. (1981). Comparative aspects of cycling of organic C, N, S and P through soil organic matter. Geoderma, 26(4), 267–286. https://doi.org/10.1016/0016-7061(81)90024-0 | spa |
| dc.relation.references | Meza, FabricioB., Díaz, E. O., Harold Escobar, T., Pinargote, C. B., Jesica Cachipuendo, C., Gary Meza, B., Francel López, M., Carlos Meza, B., Jessica Meza, B., Judith Cachipuendo, C., & Rodrigo Cabrera, V. (2017). Identification of arbuscular mycorrhizal fungi in melina (Gmelina arborea ROXB) plantations in the ecuadorian humid tropics. Revista de Investigaciones Veterinarias Del Peru, 28(4), 969–975. https://doi.org/10.15381/rivep.v28i4.13883 | spa |
| dc.relation.references | Miao, F., Wang, S., Yuan, Y., Chen, Y., Guo, E., & Li, Y. (2023). The Addition of a High Concentration of Phosphorus Reduces the Diversity of Arbuscular Mycorrhizal Fungi in Temperate Agroecosystems. Diversity, 15(10), 1045. https://doi.org/10.3390/d15101045 | spa |
| dc.relation.references | Miller, R. M., Jastrow, J. D., & Reinhardt, D. R. (1995). External hyphal production of vesicular-arbuscular mycorrhizal fungi in pasture and tallgrass prairie communities. Oecologia, 103(1), 17–23. https://doi.org/10.1007/BF00328420 | spa |
| dc.relation.references | Min, K., Slessarev, E., Kan, M., McFarlane, K., Oerter, E., Pett-Ridge, J., Nuccio, E., & Berhe, A. A. (2021). Active microbial biomass decreases, but microbial growth potential remains similar across soil depth profiles under deeply-vs. shallow-rooted plants. Soil Biology and Biochemistry, 162, 108401. https://doi.org/10.1016/j.soilbio.2021.108401 | spa |
| dc.relation.references | Mogollón, J. M., Beusen, A. H. W., van Grinsven, H. J. M., Westhoek, H., & Bouwman, A. F. (2018). Future agricultural phosphorus demand according to the shared socioeconomic pathways. Global Environmental Change, 50, 149–163. https://doi.org/10.1016/j.gloenvcha.2018.03.007 | spa |
| dc.relation.references | Montgomery, D. C., & Runger, G. C. (2010). Applied Statistics and Probability for Engineers. (John Wiley & Sons). | spa |
| dc.relation.references | Morocho, A. (2020). Evaluación de la aplicación de consorcios microbianos en un sistema de producción de plántulas de aguacate (Persea americana Mill.) cultivar ‘criollo.’ Universidad de las Fuerzas Armadas, ESPE | spa |
| dc.relation.references | Murillo, O. (1991). Colección de guías silviculturales- Melina (Gmelina arborea). | spa |
| dc.relation.references | Murillo, Olman., & Valerio, Juvenal. (1991). Melina : Gmelina arborea Roxb., especie de árbol de uso multiple en América Central. CATIE, Programa de Producción y Desarrollo Agropecuario Sostenido, Area de Producción Forestal y Agroforestal. | spa |
| dc.relation.references | Nacoon, S., Jogloy, S., Riddech, N., Mongkolthanaruk, W., Kuyper, T. W., & Boonlue, S. (2020). Interaction between Phosphate Solubilizing Bacteria and Arbuscular Mycorrhizal Fungi on Growth Promotion and Tuber Inulin Content of Helianthus tuberosus L. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-61846-x | spa |
| dc.relation.references | Nadeem, S. M., Ahmad, M., Zahir, Z. A., Javaid, A., & Ashraf, M. (2014). The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnology Advances, 32(2), 429–448. https://doi.org/10.1016/j.biotechadv.2013.12.005 | spa |
| dc.relation.references | Nanjundappa, A., Bagyaraj, D. J., Saxena, A. K., Kumar, M., & Chakdar, H. (2019). Interaction between arbuscular mycorrhizal fungi and Bacillus spp. in soil enhancing growth of crop plants. Fungal Biology and Biotechnology, 6(1), 23. https://doi.org/10.1186/s40694-019-0086-5 | spa |
| dc.relation.references | Neetu, N., Aggarwal, A., Tanwar, A., & Alpa, A. (2012). Influence of Arbuscular Mycorrhizal Fungi and Pseudomonas fluorescens at Different Superphosphate Levels on Linseed (Linum usitatissimum L.) Growth Response. Chilean Journal of Agricultural Research, 72(2), 237–243. https://doi.org/10.4067/S0718-58392012000200012 | spa |
| dc.relation.references | Niu, Y. F., Chai, R. S., Jin, G. L., Wang, H., Tang, C. X., & Zhang, Y. S. (2013). Responses of root architecture development to low phosphorus availability: a review. Annals of Botany, 112(2), 391–408. https://doi.org/10.1093/aob/mcs285 | spa |
| dc.relation.references | Noack, S. R., McLaughlin, M. J., Smernik, R. J., McBeath, T. M., & Armstrong, R. D. (2012). Crop residue phosphorus: speciation and potential bio-availability. Plant and Soil, 359(1–2), 375–385. https://doi.org/10.1007/s11104-012-1216-5 | spa |
| dc.relation.references | Nurjaman, K. M., Wulandari, A. S., & Istikorini, Y. (2022). Effect of Endophytic Fungi Inoculation and Ecoenzyme on the Growth of Gmelina (Gmelina arborea (Roxb.)) Seedlings. IOP Conference Series: Earth and Environmental Science, 959(1), 012011. https://doi.org/10.1088/1755-1315/959/1/012011 | spa |
| dc.relation.references | Obrego, C. (2006). Gmelina arborea: versatilidad, renovación y productividad sostenible para el futuro. Revista El Mueble y La Madera (M&M), 50, 14–20. | spa |
| dc.relation.references | Ortiz, J. C. (2020). CAPACIDAD PROMOTORA DE CRECIMIENTO VEGETAL DE MICROORGANISMOS AISLADOS DE RELAVES MINEROS. Universidad del Tolima | spa |
| dc.relation.references | Oyekanmi, E. O., Coyne, D. L., Fagade, O. E., & Osonubi, O. (2007). Improving root-knot nematode management on two soybean genotypes through the application of Bradyrhizobium japonicum, Trichoderma pseudokoningii and Glomus mosseae in full factorial combinations. Crop Protection, 26(7), 1006–1012. https://doi.org/10.1016/j.cropro.2006.09.009 | spa |
| dc.relation.references | Padrón-Rodríguez, L., Arias-Mota, R. M., Medel-Ortiz, R., & De la Cruz-Elizondo, Y. (2020). Interacción de hongos micorrízicos arbusculares y una cepa fosfato solubilizadora en Canavalia ensiformis (Fabaceae). Botanical Sciences, 98(2), 278–287. https://doi.org/10.17129/botsci.2476 | spa |
| dc.relation.references | Pan, L., & Cai, B. (2023). Phosphate-Solubilizing Bacteria: Advances in Their Physiology, Molecular Mechanisms and Microbial Community Effects. Microorganisms, 11(12), 2904. https://doi.org/10.3390/microorganisms11122904 | spa |
| dc.relation.references | Panigrahi, M. R., Nayak, S. R., & Gupta, N. (2017). Effect of fungal inoculants on growth and establishment of Gmelina arborea Roxb. in transplantation conditions. Tropical Plant Research, 4(1), 176–179. https://doi.org/10.22271/tpr.2017.v4.i1.025 | spa |
| dc.relation.references | Patiño Torres, C., & Sánchez de Prager, M. (2014). Efecto de la aplicación de roca fosfórica y la inoculación con bacterias solubilizadoras de fosfatos sobre el crecimiento del ají (Capsicum annum). Acta Agronómica, 63(2), 136–144. https://doi.org/10.15446/acag.v63n2.36956 | spa |
| dc.relation.references | Peña, R. A., Lee, S.-J., Thuita, M., Mlay, D. P., Masso, C., Vanlauwe, B., Rodriguez, A., & Sanders, I. R. (2021). The Phosphate Inhibition Paradigm: Host and Fungal Genotypes Determine Arbuscular Mycorrhizal Fungal Colonization and Responsiveness to Inoculation in Cassava With Increasing Phosphorus Supply. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.693037 | spa |
| dc.relation.references | Peña-Quemba, D. C. (2022). Genetic variation in Rhizophagus irregularis influences soil carbon fluxes in tropical soils under cassava (Manihot esculenta Crantz) cultivation. Universidad Nacional de Colombia | spa |
| dc.relation.references | Peterson, R. L., Massicotte, H. B., & Melville, L. H. (2004). Mycorrhizas: anatomy and cell biology. | spa |
| dc.relation.references | Plaxton, W. C. (2004). Respuesta de la planta al estrés: adaptaciones bioquímicas a la deficiencia de fosfato. | spa |
| dc.relation.references | Prematuri, R., Turjaman, M., & Tawaraya, K. (2020). Effect of Arbuscular Mycorrhiza Fungal Inoculation on Growth of Tropical Tree Species under Nursery and Post-Opencast Bauxite Mining Field in Bintan Island, Indonesia. International Journal of Plant & Soil Science, 1–13. https://doi.org/10.9734/ijpss/2020/v32i2030397 | spa |
| dc.relation.references | Prigigallo, M. I., Staropoli, A., Vinale, F., & Bubici, G. (2023). Interactions between plant‐beneficial microorganisms in a consortium: Streptomyces microflavus and Trichoderma harzianum. Microbial Biotechnology, 16(12), 2292–2312. https://doi.org/10.1111/1751-7915.14311 | spa |
| dc.relation.references | Pu, Z., Zhang, R., Wang, H., Li, Q., Zhang, J., & Wang, X.-X. (2023). Root morphological and physiological traits and arbuscular mycorrhizal fungi shape phosphorus-acquisition strategies of 12 vegetable species. Frontiers in Plant Science, 14. https://doi.org/10.3389/fpls.2023.1150832 | spa |
| dc.relation.references | Puri, A., Padda, K. P., & Chanway, C. P. (2020). In vitro and in vivo analyses of plant-growth-promoting potential of bacteria naturally associated with spruce trees growing on nutrient-poor soils. Applied Soil Ecology, 149, 103538. https://doi.org/10.1016/j.apsoil.2020.103538 | spa |
| dc.relation.references | Rahman, Md., Lee, S.-H., Ji, H., Kabir, A., Jones, C., & Lee, K.-W. (2018). Importance of Mineral Nutrition for Mitigating Aluminum Toxicity in Plants on Acidic Soils: Current Status and Opportunities. International Journal of Molecular Sciences, 19(10), 3073. https://doi.org/10.3390/ijms19103073 | spa |
| dc.relation.references | Ramirez, J. (2017). DESARROLLO EN ETAPA DE VIVERO DE Gmelina arbórea Roxb. ex Sm SOMETIDA A TRES DOSIS DE FERTILIZACIÓN Y DOS SUSTRATOS. Cultivos Tropicales, 38(2), 45–52. | spa |
| dc.relation.references | Ramírez, J. G. (2019). Dependency, colonization, and growth in Gmelina arborea inoculated with five strains of Arbuscular Mycorrhizal Fungi. Revista Facultad Nacional de Agronomía Medellín, 72(2), 8775–8783. https://doi.org/10.15446/rfnam.v72n2.74691 | spa |
| dc.relation.references | Ramirez, M., Peñaranda, A. M., Perez, U. A., & Serralde, D. P. (2018). Biofertilización con hongos formadores de micorrizas arbusculares (HFMA) en especies forestales en vivero. Biotecnología En El Sector Agropecuario y Agroindustrial, 16, 15–25. | spa |
| dc.relation.references | Ramirez, R. A. (2023). CAPACIDAD DE TOLERANCIA A CADMIO Y PLOMO DE MICROORGANISMOS AISLADOS DE SUELO DE RELAVES MINEROS. Universidad del Tolima. | spa |
| dc.relation.references | Ramos, E. V., Delgado, Z. Y., & Solis, A. F. (2024). Use of Phosphorus-Solubilizing Microorganisms as a Biotechnological Alternative: A Review. Microorganisms, 12(8), 1591. https://doi.org/10.3390/microorganisms12081591 | spa |
| dc.relation.references | Rawat, P., Das, S., Shankhdhar, D., & Shankhdhar, S. C. (2021a). Phosphate-Solubilizing Microorganisms: Mechanism and Their Role in Phosphate Solubilization and Uptake. Journal of Soil Science and Plant Nutrition, 21(1), 49–68. https://doi.org/10.1007/s42729-020-00342-7 | spa |
| dc.relation.references | Raynaud, X., Jaillard, B., & Leadley, P. W. (2008). Plants May Alter Competition by Modifying Nutrient Bioavailability in Rhizosphere: A Modeling Approach. The American Naturalist, 171(1), 44–58. https://doi.org/10.1086/523951 | spa |
| dc.relation.references | Reichert, T., Rammig, A., Fuchslueger, L., Lugli, L. F., Quesada, C. A., & Fleischer, K. (2022). Plant phosphorus‐use and ‐acquisition strategies in Amazonia. New Phytologist, 234(4), 1126–1143. https://doi.org/10.1111/nph.17985 | spa |
| dc.relation.references | Remy, W., Taylor, T. N., Hass, H., & Kerp, H. (1994). Four hundred-million-year-old vesicular arbuscular mycorrhizae. Proceedings of the National Academy of Sciences, 91(25), 11841–11843. https://doi.org/10.1073/pnas.91.25.11841 | spa |
| dc.relation.references | Reyes, J., Pimienta de la Torre, D. de J., Rodríguez Morales, J. A., Fuentes Pérez, M. A., & Palomeque Figueroa, E. (2018). Calidad de planta de Gmelina arborea Roxb. producida con diferentes mezclas de sustratos en vivero. Revista Mexicana de Ciencias Forestales, 9(47), 111–130. https://doi.org/10.29298/rmcf.v9i47.163 | spa |
| dc.relation.references | Riaz, U., Murtaza, G., Anum, W., Samreen, T., Sarfraz, M., & Nazir, M. Z. (2021). Plant Growth-Promoting Rhizobacteria (PGPR) as Biofertilizers and Biopesticides. In Microbiota and Biofertilizers (pp. 181–196). Springer International Publishing. https://doi.org/10.1007/978-3-030-48771-3_11 | spa |
| dc.relation.references | Richardson, A. E., Hocking, P. J., Simpson, R. J., & George, T. S. (2009). Plant mechanisms to optimise access to soil phosphorus. Crop and Pasture Science, 60(2), 124. https://doi.org/10.1071/CP07125 | spa |
| dc.relation.references | Richardson, A. E., & Simpson, R. J. (2011). Soil Microorganisms Mediating Phosphorus Availability Update on Microbial Phosphorus. Plant Physiology, 156(3), 989–996. https://doi.org/10.1104/pp.111.175448 | spa |
| dc.relation.references | Rillig, M. C., Mummey, D. L., Ramsey, P. W., Klironomos, J. N., & Gannon, J. E. (2006). Phylogeny of arbuscular mycorrhizal fungi predicts community composition of symbiosis-associated bacteria. FEMS Microbiology Ecology, 57(3), 389–395. https://doi.org/10.1111/j.1574-6941.2006.00129.x | spa |
| dc.relation.references | Ringeval, B., Augusto, L., Monod, H., van Apeldoorn, D., Bouwman, L., Yang, X., Achat, D. L., Chini, L. P., Van Oost, K., Guenet, B., Wang, R., Decharme, B., Nesme, T., & Pellerin, S. (2017). Phosphorus in agricultural soils: drivers of its distribution at the global scale. Global Change Biology, 23(8), 3418–3432. https://doi.org/10.1111/gcb.13618 | spa |
| dc.relation.references | Rodríguez, D. A. (2008). Indicadores de calidad de planta forestal. In Mundi Prensa México (p. 156). | spa |
| dc.relation.references | Romano, I., Ventorino, V., & Pepe, O. (2020). Effectiveness of Plant Beneficial Microbes: Overview of the Methodological Approaches for the Assessment of Root Colonization and Persistence. Frontiers in Plant Science, 11. https://doi.org/10.3389/fpls.2020.00006 | spa |
| dc.relation.references | Ropars, J., Toro, K. S., Noel, J., Pelin, A., Charron, P., Farinelli, L., Marton, T., Krüger, M., Fuchs, J., Brachmann, A., & Corradi, N. (2016). Evidence for the sexual origin of heterokaryosis in arbuscular mycorrhizal fungi. Nature Microbiology, 1(6), 16033. https://doi.org/10.1038/nmicrobiol.2016.33 | spa |
| dc.relation.references | Ruttenberg, K. C. (2001). Phosphorus Cycle. In Encyclopedia of Ocean Sciences (pp. 2149–2162). Elsevier. https://doi.org/10.1006/rwos.2001.0277 | spa |
| dc.relation.references | Salmeron, I. A., Martínez, M., Valdez, J. J., Pedraza, M. E., Santoyo, G., Pozo, M. J., & Chávez, A. T. (2021). An Updated Review on the Modulation of Carbon Partitioning and Allocation in Arbuscular Mycorrhizal Plants. Microorganisms, 10(1), 75. https://doi.org/10.3390/microorganisms10010075 | spa |
| dc.relation.references | Sanders, I. R., & Rodriguez, A. (2016). Aligning molecular studies of mycorrhizal fungal diversity with ecologically important levels of diversity in ecosystems. The ISME Journal, 10(12), 2780–2786. https://doi.org/10.1038/ismej.2016.73 | spa |
| dc.relation.references | Sangwan, S., & Prasanna, R. (2022). Mycorrhizae Helper Bacteria: Unlocking Their Potential as Bioenhancers of Plant–Arbuscular Mycorrhizal Fungal Associations. Microbial Ecology, 84(1), 1–10. https://doi.org/10.1007/s00248-021-01831-7 | spa |
| dc.relation.references | Sarmah, R., & Sarma, A. K. (2023). Phosphate Solubilizing Microorganisms: A Review. Communications in Soil Science and Plant Analysis, 54(10), 1306–1315. https://doi.org/10.1080/00103624.2022.2142238 | spa |
| dc.relation.references | Saxena, J., Minaxi, & Jha, A. (2014). Impact of a Phosphate Solubilizing Bacterium and an Arbuscular Mycorrhizal Fungus ( Glomus etunicatum ) on Growth, Yield and P Concentration in Wheat Plants. CLEAN – Soil, Air, Water, 42(9), 1248–1252. https://doi.org/10.1002/clen.201300492 | spa |
| dc.relation.references | Saxena, J., Saini, A., Ravi, I., Chandra, S., & Garg, V. (2015). Consortium of Phosphate-solubilizing Bacteria and Fungi for Promotion of Growth and Yield of Chickpea ( Cicer arietinum ). Journal of Crop Improvement, 29(3), 353–369. https://doi.org/10.1080/15427528.2015.1027979 | spa |
| dc.relation.references | Schachtman, D. P., Reid, R. J., & Ayling, S. M. (1998). Phosphorus Uptake by Plants: From Soil to Cell. Plant Physiology, 116(2), 447–453. https://doi.org/10.1104/pp.116.2.447 | spa |
| dc.relation.references | Scheublin, T. R., Sanders, I. R., Keel, C., & van der Meer, J. R. (2010). Characterisation of microbial communities colonising the hyphal surfaces of arbuscular mycorrhizal fungi. The ISME Journal, 4(6), 752–763. https://doi.org/10.1038/ismej.2010.5 | spa |
| dc.relation.references | Scotti, M. R., Sá, N., Marriel, I., Carvalhais, L. C., Matias, S. R., Corrêa, E. J., Freitas, N., Sugai, M. A., & Pagano, M. C. (2007). Effect of plant species and mycorrhizal inoculation on soil phosphate-solubilizing microorganisms in semi-arid Brazil: Growth promotion effect of rhizospheric phosphate-solubilizing microorganisms on Eucalyptus camaldulensis. In First International Meeting on Microbial Phosphate Solubilization (pp. 167–172). Springer Netherlands. https://doi.org/10.1007/978-1-4020-5765-6_25 | spa |
| dc.relation.references | Semarnat. (2016). Anuario estadístico de la producción forestal 2016. | spa |
| dc.relation.references | Shah, C., Mali, H., Mesara, S., Dhameliya, H., & Subramanian, R. B. (2022). Combined inoculation of phosphate solubilizing bacteria with mycorrhizae to alleviate the phosphate deficiency in Banana. Biologia, 77(9), 2657–2666. https://doi.org/10.1007/s11756-022-01105-8 | spa |
| dc.relation.references | Sharma, S. B., Sayyed, R. Z., Trivedi, M. H., & Gobi, T. A. (2013). Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus, 2(1), 587. https://doi.org/10.1186/2193-1801-2-587 | spa |
| dc.relation.references | Sharma, S., Compant, S., Ballhausen, M. B., Ruppel, S., & Franken, P. (2020). The interaction between Rhizoglomus irregulare and hyphae attached phosphate solubilizing bacteria increases plant biomass of Solanum lycopersicum. Microbiological Research, 240. https://doi.org/10.1016/j.micres.2020.126556 | spa |
| dc.relation.references | Shen, J., Yuan, L., Zhang, J., Li, H., Bai, Z., Chen, X., Zhang, W., & Zhang, F. (2011). Phosphorus Dynamics: From Soil to Plant. Plant Physiology, 156(3), 997–1005. https://doi.org/10.1104/pp.111.175232 | spa |
| dc.relation.references | Singh, A. K., Zhu, X., Chen, C., Wu, J., Yang, B., Zakari, S., Jiang, X. J., Singh, N., & Liu, W. (2022). The role of glomalin in mitigation of multiple soil degradation problems. Critical Reviews in Environmental Science and Technology, 52(9), 1604–1638. https://doi.org/10.1080/10643389.2020.1862561 | spa |
| dc.relation.references | Singh, S., & Kapoor, K. K. (1998). Effects of inoculation of phosphate-solubilizing microorganisms and an arbuscular mycorrhizal fungus on mungbean grown under natural soil conditions. Mycorrhiza, 7(5), 249–253. https://doi.org/10.1007/s005720050188 | spa |
| dc.relation.references | Smith, S. E., Jakobsen, I., Grønlund, M., & Smith, F. A. (2011). Roles of Arbuscular Mycorrhizas in Plant Phosphorus Nutrition: Interactions between Pathways of Phosphorus Uptake in Arbuscular Mycorrhizal Roots Have Important Implications for Understanding and Manipulating Plant Phosphorus Acquisition. Plant Physiology, 156(3), 1050–1057. https://doi.org/10.1104/pp.111.174581 | spa |
| dc.relation.references | Smith, S. E., & Read, D. (2008). The symbionts forming arbuscular mycorrhizas. | spa |
| dc.relation.references | Smith, S. E., & Smith, F. A. (2011). Roles of Arbuscular Mycorrhizas in Plant Nutrition and Growth: New Paradigms from Cellular to Ecosystem Scales. Annual Review of Plant Biology, 62(1), 227–250. https://doi.org/10.1146/annurev-arplant-042110-103846 | spa |
| dc.relation.references | Souchie, E. L., Azcón, R., Barea, J. M., Silva, E. M. R., & Saggin-Júnior, O. J. (2010). Enhancement of clover growth by inoculation of P-solubilizing fungi and arbuscular mycorrhizal fungi. Anais Da Academia Brasileira de Ciências, 82(3), 771–777. https://doi.org/10.1590/S0001-37652010000300023 | spa |
| dc.relation.references | Souza, T. (2015). Handbook of Arbuscular Mycorrhizal Fungi. | spa |
| dc.relation.references | Tamang, M., Chettri, R., Vineeta, Shukla, G., Bhat, J. A., Kumar, A., Kumar, M., Suryawanshi, A., Cabral-Pinto, M., & Chakravarty, S. (2021). Stand Structure, Biomass and Carbon Storage in Gmelina arborea Plantation at Agricultural Landscape in Foothills of Eastern Himalayas. Land, 10(4), 387. https://doi.org/10.3390/land10040387 | spa |
| dc.relation.references | TAO, G.-C., TIAN, S.-J., CAI, M.-Y., & XIE, G.-H. (2008). Phosphate-Solubilizing and -Mineralizing Abilities of Bacteria Isolated from Soils. Pedosphere, 18(4), 515–523. https://doi.org/10.1016/S1002-0160(08)60042-9 | spa |
| dc.relation.references | Teng, W., Deng, Y., Chen, X.-P., Xu, X.-F., Chen, R.-Y., Lv, Y., Zhao, Y.-Y., Zhao, X.-Q., He, X., Li, B., Tong, Y.-P., Zhang, F.-S., & Li, Z.-S. (2013). Characterization of root response to phosphorus supply from morphology to gene analysis in field-grown wheat. Journal of Experimental Botany, 64(5), 1403–1411. https://doi.org/10.1093/jxb/ert023 | spa |
| dc.relation.references | Tennant, D. (1975). A test of a modified line intersect method of estimating root length. J. Ecol., 63, 995–1001. | spa |
| dc.relation.references | Thampi, M., Dhanraj, N. D., Prasad, A., Ganga, G., & Jisha, M. S. (2023). Phosphorus Solubilizing Microbes (PSM): Biological tool to combat salinity stress in crops. Symbiosis, 91(1–3), 15–32. https://doi.org/10.1007/s13199-023-00947-3 | spa |
| dc.relation.references | Thilagar, G., Bagyaraj, D. J., & Rao, M. S. (2016). Selected microbial consortia developed for chilly reduces application of chemical fertilizers by 50% under field conditions. Scientia Horticulturae, 198, 27–35. https://doi.org/10.1016/j.scienta.2015.11.021 | spa |
| dc.relation.references | Thomas Sims, J., & Pierzynski, G. M. (2005). Chemistry of phosphorus in soils. Chemical Processes in Soils, 8, 151–192. | spa |
| dc.relation.references | Tian, J., Ge, F., Zhang, D., Deng, S., & Liu, X. (2021). Roles of Phosphate Solubilizing Microorganisms from Managing Soil Phosphorus Deficiency to Mediating Biogeochemical P Cycle. Biology, 10(2), 158. https://doi.org/10.3390/biology10020158 | spa |
| dc.relation.references | Timofeeva, A., Galyamova, M., & Sedykh, S. (2022). Prospects for Using Phosphate-Solubilizing Microorganisms as Natural Fertilizers in Agriculture. Plants, 11(16), 2119. https://doi.org/10.3390/plants11162119 | spa |
| dc.relation.references | Tisserant, E., Malbreil, M., Kuo, A., Kohler, A., Symeonidi, A., Balestrini, R., Charron, P., Duensing, N., Frei dit Frey, N., Gianinazzi-Pearson, V., Gilbert, L. B., Handa, Y., Herr, J. R., Hijri, M., Koul, R., Kawaguchi, M., Krajinski, F., Lammers, P. J., Masclaux, F. G., … Martin, F. (2013). Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proceedings of the National Academy of Sciences, 110(50), 20117–20122. https://doi.org/10.1073/pnas.1313452110 | spa |
| dc.relation.references | Toljander, J. F., Artursson, V., Paul, L. R., Jansson, J. K., & Finlay, R. D. (2006). Attachment of different soil bacteria to arbuscular mycorrhizal fungal extraradical hyphae is determined by hyphal vitality and fungal species. FEMS Microbiology Letters, 254(1), 34–40. https://doi.org/10.1111/j.1574-6968.2005.00003.x | spa |
| dc.relation.references | Tomer, S., Suyal, D. C., & Goel, R. (2016). Biofertilizers: A Timely Approach for Sustainable Agriculture. In Plant-Microbe Interaction: An Approach to Sustainable Agriculture (pp. 375–395). Springer Singapore. https://doi.org/10.1007/978-981-10-2854-0_17 | spa |
| dc.relation.references | Trejo, D., Bañuelos, J., Gavito, M. E., & Sangabriel-Conde, W. (2020). High phosphorus fertilization reduces mycorrhizal colonization and plant biomass of three cultivars of pineapple. REVISTA TERRA LATINOAMERICANA, 38(4), 853–858. https://doi.org/10.28940/terra.v38i4.701 | spa |
| dc.relation.references | Trouvelot, A., Kough, J. L., & Gianinazzi-Pearson, V. (1986). Mesure du taux de mycorrhization VA d’ un systéme radiculaire. | spa |
| dc.relation.references | Vafadar, F., Amooaghaie, R., & Otroshy, M. (2014). Effects of plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungus on plant growth, stevioside, NPK, and chlorophyll content of Stevia rebaudiana. Journal of Plant Interactions, 9(1), 128–136. https://doi.org/10.1080/17429145.2013.779035 | spa |
| dc.relation.references | van der Heijden, M. G. A., Martin, F. M., Selosse, M., & Sanders, I. R. (2015). Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytologist, 205(4), 1406–1423. https://doi.org/10.1111/nph.13288 | spa |
| dc.relation.references | van Veen, J. A., van Overbeek, L. S., & van Elsas, J. D. (1997). Fate and activity of microorganisms introduced into soil. Microbiology and Molecular Biology Reviews : MMBR, 61(2), 121–135. https://doi.org/10.1128/.61.2.121-135.1997 | spa |
| dc.relation.references | Varga, S., Finozzi, C., Vestberg, M., & Kytöviita, M.-M. (2015). Arctic arbuscular mycorrhizal spore community and viability after storage in cold conditions. Mycorrhiza, 25(5), 335–343. https://doi.org/10.1007/s00572-014-0613-4 | spa |
| dc.relation.references | Vásquez, W., & Ugalde, L. A. (1995). Rendimiento y calidad de sitio para Gmelina arborea, Tectona grandis, Bombacopsis quinata y Pinus caribaea, en Guanacaste, Costa Rica. | spa |
| dc.relation.references | Velázquez, M. S., Cabello, M. N., Elíades, L. A., Russo, M. L., Allegrucci, N., & Schalamuk, S. (2017). Combination of phosphorus solubilizing and mobilizing fungi with phosphate rocks and volcanic materials to promote plant growth of lettuce (Lactuca sativa L.). Revista Argentina de Microbiologia, 49(4), 347–355. https://doi.org/10.1016/j.ram.2016.07.005 | spa |
| dc.relation.references | Vergara, C., & Araujo, K. E. C. (2024). Arbuscular Mycorrhizal Symbiosis: From Infection Signaling to Bidirectional Nutrient Exchanges. In Arbuscular Mycorrhizal Fungi in Sustainable Agriculture: Inoculum Production and Application (pp. 401–418). Springer Nature Singapore. https://doi.org/10.1007/978-981-97-0296-1_18 | spa |
| dc.relation.references | Vierheilig, H., Coughland, A., Wiss U, & Piche Y. (1998). nk and Vinegar, a simple staining technique for Arbuscular Mycorrhizal Fungi. Applied and Environmental Microbiology, 5004–5007 | spa |
| dc.relation.references | Villar, P. (2003). Importancia de la calidad de planta en los proyectos de revegetación. In T. Espigares Pinilla, J. M. Rey-Benayas, & J. M. Nicolau Ibarra (Eds.), Restauración de Ecosistemas Mediterráneos. Universidad de Alcalá / Asociación Española de Ecología Terrestre. | spa |
| dc.relation.references | Vučić, V., & Müller, S. (2021). New developments in biological phosphorus accessibility and recovery approaches from soil and waste streams. Engineering in Life Sciences, 21(3–4), 77–86. https://doi.org/10.1002/elsc.202000076 | spa |
| dc.relation.references | Wang, T., Camps-Arbestain, M., Hedley, M., & Bishop, P. (2012). Predicting phosphorus bioavailability from high-ash biochars. Plant and Soil, 357(1–2), 173–187. https://doi.org/10.1007/s11104-012-1131-9 | spa |
| dc.relation.references | Wang, Y., Wang, F., Lu, H., Liu, Y., & Mao, C. (2021). Phosphate Uptake and Transport in Plants: An Elaborate Regulatory System. Plant and Cell Physiology, 62(4), 564–572. https://doi.org/10.1093/pcp/pcab011 | spa |
| dc.relation.references | Wei, Z., Sixi, Z., Xiuqing, Y., Guodong, X., Baichun, W., & Baojing, G. (2023). Arbuscular mycorrhizal fungi alter rhizosphere bacterial community characteristics to improve Cr tolerance of Acorus calamus. Ecotoxicology and Environmental Safety, 253, 114652. https://doi.org/10.1016/j.ecoenv.2023.114652 | spa |
| dc.relation.references | Whitelaw, M. A. (1999). Growth Promotion of Plants Inoculated with Phosphate-Solubilizing Fungi (pp. 99–151). https://doi.org/10.1016/S0065-2113(08)60948-7 | spa |
| dc.relation.references | Williamson, J., Matthews, A. C., & Raymond, B. (2023). Competition and co-association, but not phosphorous availability, shape the benefits of phosphate-solubilizing root bacteria for maize (Zea mays). Access Microbiology, 5(12). https://doi.org/10.1099/acmi.0.000543.v3 | spa |
| dc.relation.references | Wilpiszeski, R. L., Aufrecht, J. A., Retterer, S. T., Sullivan, M. B., Graham, D. E., Pierce, E. M., Zablocki, O. D., Palumbo, A. V., & Elias, D. A. (2019). Soil Aggregate Microbial Communities: Towards Understanding Microbiome Interactions at Biologically Relevant Scales. Applied and Environmental Microbiology, 85(14). https://doi.org/10.1128/AEM.00324-19 | spa |
| dc.relation.references | Xiao, D., Che, R., Liu, X., Tan, Y., Yang, R., Zhang, W., He, X., Xu, Z., & Wang, K. (2019). Arbuscular mycorrhizal fungi abundance was sensitive to nitrogen addition but diversity was sensitive to phosphorus addition in karst ecosystems. Biology and Fertility of Soils, 55(5), 457–469. https://doi.org/10.1007/s00374-019-01362-x | spa |
| dc.relation.references | Xiao, L., Ma, Y., Yuwen, P., Du, D., Li, P., Sun, C., & Xue, S. (2022). Mixed grass species differ in rhizosphere microbial community structure and function response to drought compared to monocultures. Rhizosphere, 24, 100615. https://doi.org/10.1016/j.rhisph.2022.100615 | spa |
| dc.relation.references | Xing, Y., Wang, F., Yu, S., Zhu, Y., Ying, Y., & Shi, W. (2024). Enhancing Phyllostachys edulis seedling growth in phosphorus-deficient soil: complementing the role of phosphate-solubilizing microorganisms with arbuscular mycorrhizal fungi. Plant and Soil, 497(1–2), 449–466. https://doi.org/10.1007/s11104-023-06406-8 | spa |
| dc.relation.references | Yang, Y., Shi, X., Ballent, W., & Mayer, B. K. (2017). Biological Phosphorus Recovery: Review of Current Progress and Future Needs. Water Environment Research, 89(12), 2122–2135. https://doi.org/10.2175/106143017X15054988926424 | spa |
| dc.relation.references | Zapata, F., & Roy, R. N. (2007). Utilización de las rocas fosfóricas para una agricultura sostenible. FAO. | spa |
| dc.relation.references | Zhang, L., Ding, X., Chen, S., He, X., Zhang, F., & Feng, G. (2014). Reducing carbon: phosphorus ratio can enhance microbial phytin mineralization and lessen competition with maize for phosphorus. Journal of Plant Interactions, 9(1), 850–856. https://doi.org/10.1080/17429145.2014.977831 | spa |
| dc.relation.references | Zhang, L., Fan, J., Ding, X., He, X., Zhang, F., & Feng, G. (2014). Hyphosphere interactions between an arbuscular mycorrhizal fungus and a phosphate solubilizing bacterium promote phytate mineralization in soil. Soil Biology and Biochemistry, 74, 177–183. https://doi.org/10.1016/j.soilbio.2014.03.004 | spa |
| dc.relation.references | Zhang, L., Xu, M., Liu, Y., Zhang, F., Hodge, A., & Feng, G. (2016). Carbon and phosphorus exchange may enable cooperation between an arbuscular mycorrhizal fungus and a phosphate‐solubilizing bacterium. New Phytologist, 210(3), 1022–1032. https://doi.org/10.1111/nph.13838 | spa |
| dc.relation.references | Zhang, L., Zhou, J., George, T. S., Limpens, E., & Feng, G. (2022). Arbuscular mycorrhizal fungi conducting the hyphosphere bacterial orchestra. Trends in Plant Science, 27(4), 402–411. https://doi.org/10.1016/j.tplants.2021.10.008 | spa |
| dc.relation.references | Zhu, J., Li, M., & Whelan, M. (2018). Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: A review. Science of The Total Environment, 612, 522–537. https://doi.org/10.1016/j.scitotenv.2017.08.095 | spa |
| dc.relation.references | Zuluaga, J. J., Osorio, V. E., Gutiérrez, B. A., Romero, J. L., Rodríguez, M., Pérez, D., Solipa, F., Martínez, J., Baquero, C., Ramírez, M., & Roveda, G. (2011). Niveles nutricionales en vivero y en establecimiento de plantaciones de dos especies forestales (Gmelina arborea y Pachira quinata) en el Caribe colombiano. | spa |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
| dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
| dc.subject.ddc | 570 - Biología::579 - Historia natural microorganismos, hongos, algas | spa |
| dc.subject.ddc | 570 - Biología::571 - Fisiología y temas relacionados | spa |
| dc.subject.lemb | MICROORGANISMOS DE SUELOS | spa |
| dc.subject.lemb | Soil micro-organisms | eng |
| dc.subject.lemb | MICROBIOLOGIA AGRICOLA | spa |
| dc.subject.lemb | Agricultural microbiology | eng |
| dc.subject.lemb | HONGOS DE SUELOS | spa |
| dc.subject.lemb | Soil fungi | eng |
| dc.subject.lemb | MICORRIZAS | spa |
| dc.subject.lemb | Mycorrhizae | eng |
| dc.subject.lemb | DESARROLLO FORESTAL | spa |
| dc.subject.lemb | Forestry development | eng |
| dc.subject.lemb | CULTIVOS HORTICOLAS | spa |
| dc.subject.lemb | Horticultural Crops | eng |
| dc.subject.lemb | BACTERIOLOGIA AGRICOLA | spa |
| dc.subject.lemb | Bacteriology, agricultural | eng |
| dc.subject.lemb | SUELOS-CONTENIDO DE FOSFORO | spa |
| dc.subject.lemb | Soils - phosphorus content | eng |
| dc.subject.proposal | Hongos Formadores de Micorrizas Arbusculares (HFMA) | spa |
| dc.subject.proposal | Fertilización fosfatada | spa |
| dc.subject.proposal | Competencia | spa |
| dc.subject.proposal | Crecimiento radical | spa |
| dc.subject.proposal | Phosphorus fertilization | eng |
| dc.subject.proposal | Arbuscular Mycorrhizal Fungi (AMF) | eng |
| dc.subject.proposal | Root growth | eng |
| dc.subject.proposal | Competition | eng |
| dc.title | Interacción de Rhizophagus irregularis y microorganismos solubilizadores de fósforo y su efecto sobre el crecimiento de Gmelina arborea en vivero | spa |
| dc.title.translated | Interaction of Rhizophagus irregularis and phosphorus-solubilizing microorganisms and its effect on the growth and survival of Gmelina arborea in the nursery | eng |
| dc.type | Trabajo de grado - Maestría | spa |
| dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
| dc.type.content | DataPaper | spa |
| dc.type.content | Text | spa |
| dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
| dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
| dcterms.audience.professionaldevelopment | Investigadores | spa |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1010221587.2024.pdf
- Tamaño:
- 1.63 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias - Biología
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:

