Interacción de Rhizophagus irregularis y microorganismos solubilizadores de fósforo y su efecto sobre el crecimiento de Gmelina arborea en vivero

dc.contributor.advisorRodriguez Eraso, Nellyspa
dc.contributor.advisorVarón López, Maryeimyspa
dc.contributor.authorHiguera Trujillo, Karen Juliethspa
dc.contributor.cvlacHiguera Trujillo, Karen [https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000103762]spa
dc.date.accessioned2025-04-03T16:36:52Z
dc.date.available2025-04-03T16:36:52Z
dc.date.issued2024
dc.descriptionilustraciones, diagramas, fotografías a colorspa
dc.description.abstractGmelina arborea es una especie importante para el desarrollo forestal, debido a su rápido crecimiento, facilidad de manejo y comercialización. Sin embargo, su producción enfrenta limitaciones asociadas a requerimientos nutricionales, particularmente de fósforo (P), un nutriente esencial que limita el crecimiento en más del 50% de las producciones forestales. Para mejorar la disponibilidad de P y reducir el uso de fertilizantes químicos en su etapa productiva, se ha propuesto el uso de microorganismos solubilizadores (MSF) y movilizadores de fósforo, cuyas interacciones aún no se comprenden del todo. Por lo tanto, este estudio evaluó la interacción entre (MSF) (Pseudomonas orientalis, Paenibacillus taichungensis, Penicillium chrysogenum y Penicillium citrinum) y el Hongo Formador de Micorrizas Arbusculares (HFMA) Rhizophagus irregularis en Gmelina arborea en condiciones de vivero bajo diferentes niveles de fertilización fosfatada. Se realizó un diseño factorial al azar con 3 factores, 18 tratamientos y 5 réplicas durante 120 días. Se analizaron variables de altura, diámetro del tallo, número de hojas, biomasa seca, área foliar, porcentaje de colonización y contenido de fósforo foliar. Los resultados indican que la fertilización y la inoculación con HFMA tuvieron un efecto positivo sobre la altura en plántulas de Gmelina arborea en condiciones de vivero con fertilización al 50% y 100%. El C1a tuvo un efecto positivo en ausencia de fertilización. Sin embargo, la longitud de la raíz disminuyó en presencia de consorcios microbianos y HFMA. La mayor colonización de HFMA se observó en ausencia de consorcios microbianos y fertilización, mientras que la aplicación de fertilización fosfatada al 100% redujo dicha colonización. Además, la concentración de fósforo foliar fue mayor en los tratamientos sin coinóculos ni HFMA. Estos hallazgos sugieren que la inoculación con consorcios microbianos y HFMA puede complejizar la dinámica de la rizosfera debido a la disponibilidad de recursos, y que la fertilización fosfatada influye en la interacción entre los microorganismos del suelo. Se recomienda que futuros estudios incluyan experimentos con fósforo marcado para comprender mejor su distribución en la planta y las interacciones entre los microorganismos inoculados y las comunidades microbianas nativas (Texto tomado de la fuente).spa
dc.description.abstractGmelina arborea is an important species for forest development due to its rapid growth, ease of management, and marketability. However, its production faces limitations associated with nutritional requirements, particularly phosphorus (P), an essential nutrient that restricts growth in more than 50% of forest productions. To improve the availability of P and reduce the use of chemical fertilizers during its production phase, the use of phosphorus-solubilizing microorganisms (PSM) has been proposed, although their interactions are not yet fully understood. Therefore, this study evaluated the interaction between PSM (Pseudomonas orientalis, Paenibacillus taichungensis, Penicillium chrysogenum, and Penicillium citrinum) and the arbuscular mycorrhizal fungus (AMF) Rhizophagus irregularis in Gmelina arborea under nursery conditions with different levels of phosphorus fertilization. A completely randomized factorial design was conducted with three factors, 18 treatments, and five replicates over time. Variables analyzed included height, stem diameter, leaf number, dry biomass, leaf area, percentage of colonization, and leaf phosphorus content. The results indicate that fertilization and inoculation with HFMA had a positive effect on height in Gmelina arborea seedlings under nursery conditions with 50% and 100% fertilization. C1a had a positive effect in the absence of fertilization. However, root length decreased in the presence of microbial consortia and HFMA. The highest colonization of HFMA was observed in the absence of microbial consortia and fertilization, while the application of 100% phosphate fertilization reduced such colonization. In addition, the foliar phosphorus concentration was higher in the treatments without coinoculi or HFMA. These findings suggest that inoculation with microbial consortia and HFMA may complicate rhizosphere dynamics due to resource availability, and that phosphate fertilization influences the interaction between soil microorganisms. It is recommended that future studies include experiments with labeled phosphorus to better understand its distribution in the plant and the interactions between inoculated microorganisms and native microbial communities.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Biologíaspa
dc.format.extent97 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87836
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Biologíaspa
dc.relation.referencesAbdel-Fattah, G. M., Asrar, A. A., Al-Amri, S. M., & Abdel-Salam, E. M. (2014). Influence of arbuscular mycorrhiza and phosphorus fertilization on the gas exchange, growth and phosphatase activity of soybean (Glycine max L.) plants. Photosynthetica, 52(4), 581–588. https://doi.org/10.1007/s11099-014-0067-0spa
dc.relation.referencesAlewell, C., Ringeval, B., Ballabio, C., Robinson, D. A., Panagos, P., & Borrelli, P. (2020). Global phosphorus shortage will be aggravated by soil erosion. Nature Communications, 11(1), 4546. https://doi.org/10.1038/s41467-020-18326-7spa
dc.relation.referencesAlfaro, M. M., & De Camino. (2002). Melina (Gmelina arborea) in Central America. Forest Plantations Working Paper 20spa
dc.relation.referencesArteaga, B., & Castelán, M. (2008). Evaluación dasométrica temprana de una plantación agroforestal de tres especies introducidas, en el municipio de Huehuetla, Hidalgo. Revista Chapingo Serie Ciencias Forestales y Del Ambiente, 14(2), 105–111.spa
dc.relation.referencesAvellán, M. J., Murillo, R., Alvarado, A., & Ávila, C. (2015). Variación del contenido foliar de nutrimentos de Gmelina arborea en los cantones de Osa, Golfito y Corredores, Costa Rica. Revista de Ciencias Ambientales, 49(1), 1. https://doi.org/10.15359/rca.49-1.1spa
dc.relation.referencesBalestrini, R., Lumini, E., Borriello, R., & Bianciotto, V. (2015). Plant-Soil Biota Interactions. In Soil Microbiology, Ecology and Biochemistry (pp. 311–338). Elsevier. https://doi.org/10.1016/B978-0-12-415955-6.00011-6spa
dc.relation.referencesBaltazar, O., Spinoso, J. L., Mancilla, E., & Bello, J. J. (2022). Arbuscular Mycorrhizal Fungi Induce Tolerance to Salinity Stress in Taro Plantlets (Colocasia esculenta L. Schott) during Acclimatization. Plants, 11(13), 1780. https://doi.org/10.3390/plants11131780spa
dc.relation.referencesBalzergue, C., Puech-Pagès, V., Bécard, G., & Rochange, S. F. (2011). The regulation of arbuscular mycorrhizal symbiosis by phosphate in pea involves early and systemic signalling events. Journal of Experimental Botany, 62(3), 1049–1060. https://doi.org/10.1093/jxb/erq335spa
dc.relation.referencesBarua, A., Gupta, S. D., Mridha, M. A. U., & Bhuiyan, M. K. (2010a). Effect of arbuscular mycorrhizal fungi on growth of Gmelina arborea in arsenic-contaminated soil. Journal of Forestry Research, 21(4), 423–432. https://doi.org/10.1007/s11676-010-0092-1spa
dc.relation.referencesBashan, Y., Puente, M. E., Salazar, B., De-Bashan, L. E., Bacilio, M., Hernandez, J.-P., Leyva, L. A., Romero, B., Villalpando, R., & Bethlenfalvay, G. J. (2015). Reforestation of eroded land in the desert. Role of plant growth promoting bacteria and organic matter. Suelos Ecuatoriales, 35(1), 70–77.spa
dc.relation.referencesBehera, B. C., Yadav, H., Singh, S. K., Mishra, R. R., Sethi, B. K., Dutta, S. K., & Thatoi, H. N. (2017). Phosphate solubilization and acid phosphatase activity of Serratia sp. isolated from mangrove soil of Mahanadi river delta, Odisha, India. Journal of Genetic Engineering and Biotechnology, 15(1), 169–178. https://doi.org/10.1016/j.jgeb.2017.01.003spa
dc.relation.referencesBeltran, I., Romero, F., Molano, Lady, Gutiérrez, A. Y., Silva, A. M. M., & Estrada, G. (2023). Inoculation of phosphate-solubilizing bacteria improves soil phosphorus mobilization and maize productivity. Nutrient Cycling in Agroecosystems, 126(1), 21–34. https://doi.org/10.1007/s10705-023-10268-yspa
dc.relation.referencesBen Zineb, A., Gargouri, M., López-Ráez, J. A., Trabelsi, D., Aroca, R., & Mhamdi, R. (2022). Interaction between P fertilizers and microbial inoculants at the vegetative and flowering stage of Medicago truncatula. Plant Growth Regulation, 98(3), 511–524. https://doi.org/10.1007/s10725-022-00886-xspa
dc.relation.referencesBharadwaj, D. P., Alström, S., & Lundquist, P.-O. (2012). Interactions among Glomus irregulare, arbuscular mycorrhizal spore-associated bacteria, and plant pathogens under in vitro conditions. Mycorrhiza, 22(6), 437–447. https://doi.org/10.1007/s00572-011-0418-7spa
dc.relation.referencesBi, Q.-F., Li, K.-J., Zheng, B.-X., Liu, X.-P., Li, H.-Z., Jin, B.-J., Ding, K., Yang, X.-R., Lin, X.-Y., & Zhu, Y.-G. (2020). Partial replacement of inorganic phosphorus (P) by organic manure reshapes phosphate mobilizing bacterial community and promotes P bioavailability in a paddy soil. Science of The Total Environment, 703, 134977. https://doi.org/10.1016/j.scitotenv.2019.134977spa
dc.relation.referencesBradáčová, K., Sittinger, M., Tietz, K., Neuhäuser, B., Kandeler, E., Berger, N., Ludewig, U., & Neumann, G. (2019). Maize Inoculation with Microbial Consortia: Contrasting Effects on Rhizosphere Activities, Nutrient Acquisition and Early Growth in Different Soils. Microorganisms, 7(9), 329. https://doi.org/10.3390/microorganisms7090329spa
dc.relation.referencesBrenner, K., You, L., & Arnold, F. H. (2008). Engineering microbial consortia: a new frontier in synthetic biology. Trends in Biotechnology, 26(9), 483–489. https://doi.org/10.1016/j.tibtech.2008.05.004spa
dc.relation.referencesBreuillin, F., Schramm, J., Hajirezaei, M., Ahkami, A., Favre, P., Druege, U., Hause, B., Bucher, M., Kretzschmar, T., Bossolini, E., Kuhlemeier, C., Martinoia, E., Franken, P., Scholz, U., & Reinhardt, D. (2010). Phosphate systemically inhibits development of arbuscular mycorrhiza in Petunia hybrida and represses genes involved in mycorrhizal functioning. The Plant Journal, 64(6), 1002–1017. https://doi.org/10.1111/j.1365-313X.2010.04385.xspa
dc.relation.referencesBücking, H., Mensah, J. A., & Fellbaum, C. R. (2016). Common mycorrhizal networks and their effect on the bargaining power of the fungal partner in the arbuscular mycorrhizal symbiosis. Communicative & Integrative Biology, 9(1), e1107684. https://doi.org/10.1080/19420889.2015.1107684spa
dc.relation.referencesCano, M. A. (2011). Interacción de microorganismos benéficos en plantas: Micorrizas, Trichoderma spp. y Pseudomonas spp. una revisión. Revista U.D.C.A Actualidad & Divulgación Científica, 14(2). https://doi.org/10.31910/rudca.v14.n2.2011.771spa
dc.relation.referencesCarrasquero, A., & Adams, M. (1995). Estudio del complejo amarillo vanadomolibdofosfórico para el análisis de fósforo en suelos. VENESUELOS, 3(2), 83–88.spa
dc.relation.referencesCarrillo, P., Mejia, M., & Franco, A. (1995). Manual de laboratorio para análisis foliares. (pp. 1–52).spa
dc.relation.referencesCastilla, S. (2023). MICROORGANISMOS PROMOTORES DE CRECIMIENTO VEGETAL (MPCV) AISLADOS DE RELAVES MINEROS, Y SU POTENCIAL COMO BIOINOCULANTE. Universidad del Tolimaspa
dc.relation.referencesCeballos, I., Ruiz, M., Fernández, C., Peña, R., Rodríguez, A., & Sanders, I. R. (2013). The In Vitro Mass-Produced Model Mycorrhizal Fungus, Rhizophagus irregularis, Significantly Increases Yields of the Globally Important Food Security Crop Cassava. PLoS ONE, 8(8), e70633. https://doi.org/10.1371/journal.pone.0070633spa
dc.relation.referencesChaiyasen, A., Douds, D. D., Gavinlertvatana, P., & Lumyong, S. (2017). Diversity of arbuscular mycorrhizal fungi in Tectona grandis Linn.f. plantations and their effects on growth of micropropagated plantlets. New Forests, 48(4), 547–562. https://doi.org/10.1007/s11056-017-9584-6spa
dc.relation.referencesChenchouni, H., Mekahlia, M. N., & Beddiar, A. (2020). Effect of inoculation with native and commercial arbuscular mycorrhizal fungi on growth and mycorrhizal colonization of olive (Olea europaea L.). Scientia Horticulturae, 261, 108969. https://doi.org/10.1016/j.scienta.2019.108969spa
dc.relation.referencesChoi, J., Summers, W., & Paszkowski, U. (2018). Mechanisms Underlying Establishment of Arbuscular Mycorrhizal Symbioses. Annual Review of Phytopathology, 56(1), 135–160. https://doi.org/10.1146/annurev-phyto-080516-035521spa
dc.relation.referencesCozzolino, V., Monda, H., Savy, D., Di Meo, V., Vinci, G., & Smalla, K. (2021). Cooperation among phosphate-solubilizing bacteria, humic acids and arbuscular mycorrhizal fungi induces soil microbiome shifts and enhances plant nutrient uptake. Chemical and Biological Technologies in Agriculture, 8(1), 31. https://doi.org/10.1186/s40538-021-00230-xspa
dc.relation.referencesDevi, R., Alsaffar, M. F., AL-Taey, D. K. A., Kumar, S., Negi, R., Sharma, B., Kaur, T., Rustagi, S., Kour, D., Yadav, A. N., & Ahluwalia, A. S. (2024). Synergistic effect of minerals solubilizing and siderophores producing bacteria as different microbial consortium for growth and nutrient uptake of oats (Avena sativa L.). Vegetos. https://doi.org/10.1007/s42535-024-00922-3spa
dc.relation.referencesDickson, A., Leaf, L., & Hosner, J. (1960). Quality appraisal of white spruce and white pine seedling stock in nurseries. The Forestry Chronicle, 36, 10–13.spa
dc.relation.referencesDobbelaere, S., Croonenborghs, A., Thys, A., Vande Broek, A., & Vanderleyden, J. (1999). Phytostimulatory effect of A. brasilense wild type and mutant strains altered in IAA production on wheat. Plant and Soil, 212(2), 153–162. https://doi.org/10.1023/A:1004658000815spa
dc.relation.referencesDudhane, M. P., Borde, M. Y., & Jite, P. K. (2011). Effect of Arbuscular Mycorrhizal Fungi on Growth and Antioxidant Activity in Gmelina arborea Roxb. under Salt Stress Condition. Notulae Scientia Biologicae, 3(4), 71–78. https://doi.org/10.15835/nsb346230spa
dc.relation.referencesDuncker, K. E., Holmes, Z. A., & You, L. (2021). Engineered microbial consortia: strategies and applications. Microbial Cell Factories, 20(1), 211. https://doi.org/10.1186/s12934-021-01699-9spa
dc.relation.referencesDvorak, W. S. (2004). World view of Gmelina arborea: opportunities and challenges. In New Forest (Vol. 28). Kluwer Academic Publishersspa
dc.relation.referencesEl Attar, I., Hnini, M., Taha, K., & Aurag, J. (2022). Phosphorus Availability and its Sustainable Use. Journal of Soil Science and Plant Nutrition, 22(4), 5036–5048. https://doi.org/10.1007/s42729-022-00980-zspa
dc.relation.referencesEscobar, L. J. (2013). Relación de parámetros de fertilidad del suelo con el índice de sitio determinado para plantaciones forestales de melina (Gmelina arbórea) y ceiba (Pachira quinata) en Zambrano-Bolivar (Colombia). Universidad Nacional de Colombia.spa
dc.relation.referencesEstrada, E., Trejo, L. I., Gomez, F. C., Núñez, R., & Sandoval, M. (2011). Respuestas bioquímicas en fresa al suministro de fósforo en forma de fosfito. Revista Chapingo Serie Horticultura , 17(3), 129–138.spa
dc.relation.referencesEtesami, H. (2020). Enhanced Phosphorus Fertilizer Use Efficiency with Microorganisms. In Nutrient Dynamics for Sustainable Crop Production (pp. 215–245). Springer Singapore. https://doi.org/10.1007/978-981-13-8660-2_8spa
dc.relation.referencesEtesami, H., Jeong, B. R., & Glick, B. R. (2021). Contribution of Arbuscular Mycorrhizal Fungi, Phosphate–Solubilizing Bacteria, and Silicon to P Uptake by Plant. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.699618spa
dc.relation.referencesFacelli, E., Facelli, J. M., Smith, S. E., & Mclaughlin, M. J. (1999). Interactive effects of arbuscular mycorrhizal symbiosis, intraspecific competition and resource availability on Trifolium subterraneum cv. Mt. Barker. New Phytologist, 141(3), 535–547. https://doi.org/10.1046/j.1469-8137.1999.00367.xspa
dc.relation.referencesFall, A. F., Nakabonge, G., Ssekandi, J., Founoune-Mboup, H., Apori, S. O., Ndiaye, A., Badji, A., & Ngom, K. (2022). Roles of Arbuscular Mycorrhizal Fungi on Soil Fertility: Contribution in the Improvement of Physical, Chemical, and Biological Properties of the Soil. Frontiers in Fungal Biology, 3. https://doi.org/10.3389/ffunb.2022.723892spa
dc.relation.referencesFAO. (2021). Fertilizantes inorgánicos 1961–2019. Anal. Breve Ser, 27, 2–3.spa
dc.relation.referencesFayiga, A. O., & Nwoke, O. C. (2016). Phosphate rock: origin, importance, environmental impacts, and future roles. Environmental Reviews, 24(4), 403–415. https://doi.org/10.1139/er-2016-0003spa
dc.relation.referencesFellbaum, C. R., Mensah, J. A., Cloos, A. J., Strahan, G. E., Pfeffer, P. E., Kiers, E. T., & Bücking, H. (2014). Fungal nutrient allocation in common mycorrhizal networks is regulated by the carbon source strength of individual host plants. New Phytologist, 203(2), 646–656. https://doi.org/10.1111/nph.12827spa
dc.relation.referencesOrdoñez, Y. M., Fernandez, B. R., Lara, L. S., Rodriguez, A., Uribe-Vélez, D., & Sanders, I. R. (2016). Bacteria with Phosphate Solubilizing Capacity Alter Mycorrhizal Fungal Growth Both Inside and Outside the Root and in the Presence of Native Microbial Communities. PLOS ONE, 11(6), e0154438. https://doi.org/10.1371/journal.pone.0154438spa
dc.relation.referencesFernández Bidondo, L., Bompadre, J., Pergola, M., Silvani, V., Colombo, R., Bracamonte, F., & Godeas, A. (2012). Differential interaction between two Glomus intraradices strains and a phosphate solubilizing bacterium in maize rhizosphere. Pedobiologia, 55(4), 227–232. https://doi.org/10.1016/j.pedobi.2012.04.001spa
dc.relation.referencesFigueiredo, M. do V. B., Seldin, L., de Araujo, F. F., & Mariano, R. de L. R. (2010). Plant Growth Promoting Rhizobacteria: Fundamentals and Applications (pp. 21–43). https://doi.org/10.1007/978-3-642-13612-2_2spa
dc.relation.referencesFinlay, R. D. (2008a). Ecological aspects of mycorrhizal symbiosis: with special emphasis on the functional diversity of interactions involving the extraradical mycelium. Journal of Experimental Botany, 59(5), 1115–1126. https://doi.org/10.1093/jxb/ern059spa
dc.relation.referencesFinlay, R. D. (2008b). Ecological aspects of mycorrhizal symbiosis: with special emphasis on the functional diversity of interactions involving the extraradical mycelium. Journal of Experimental Botany, 59(5), 1115–1126. https://doi.org/10.1093/jxb/ern059spa
dc.relation.referencesFroese, S., Wiens, J. T., Warkentin, T., & Schoenau, J. J. (2020). Response of canola, wheat, and pea to foliar phosphorus fertilization at a phosphorus-deficient site in eastern Saskatchewan. Canadian Journal of Plant Science, 100(6), 642–652. https://doi.org/10.1139/cjps-2019-0276spa
dc.relation.referencesGamalero, E., & Glick, B. R. (2015). Bacterial Modulation of Plant Ethylene Levels. Plant Physiology, 169(1), 13–22. https://doi.org/10.1104/pp.15.00284spa
dc.relation.referencesGao, X., Guo, H., Zhang, Q., Guo, H., Zhang, L., Zhang, C., Gou, Z., Liu, Y., Wei, J., Chen, A., Chu, Z., & Zeng, F. (2020). Arbuscular mycorrhizal fungi (AMF) enhanced the growth, yield, fiber quality and phosphorus regulation in upland cotton (Gossypium hirsutum L.). Scientific Reports, 10(1), 2084. https://doi.org/10.1038/s41598-020-59180-3spa
dc.relation.referencesGiri, B., Kapoor, R., & Mukerji, K. G. (2005). Effect of the arbuscular mycorrhizae Glomus fasciculatum and G. macrocarpum on the growth and nutrient content of Cassia siamea in a semi-arid Indian wasteland soil. New Forests, 29(1), 63–73. https://doi.org/10.1007/s11056-004-4689-0spa
dc.relation.referencesGuether, M., Neuhäuser, B., Balestrini, R., Dynowski, M., Ludewig, U., & Bonfante, P. (2009). A Mycorrhizal-Specific Ammonium Transporter from Lotus japonicus Acquires Nitrogen Released by Arbuscular Mycorrhizal Fungi. Plant Physiology, 150(1), 73–83. https://doi.org/10.1104/pp.109.136390spa
dc.relation.referencesHansen, V., Bonnichsen, L., Nunes, I., Sexlinger, K., Lopez, S. R., van der Bom, F. J. T., Nybroe, O., Nicolaisen, M. H., & Jensen, L. S. (2020). Seed inoculation with Penicillium bilaiae and Bacillus simplex affects the nutrient status of winter wheat. Biology and Fertility of Soils, 56(1), 97–109. https://doi.org/10.1007/s00374-019-01401-7spa
dc.relation.referencesHarrison, A. F. (1987). Soil organic phosphorus. A review of world literature. 1–257spa
dc.relation.referencesHijri, M. (2016). Analysis of a large dataset of mycorrhiza inoculation field trials on potato shows highly significant increases in yield. Mycorrhiza, 26(3), 209–214. https://doi.org/10.1007/s00572-015-0661-4spa
dc.relation.referencesIffis, B., St‐Arnaud, M., & Hijri, M. (2016). Petroleum hydrocarbon contamination, plant identity and arbuscular mycorrhizal fungal (AMF) community determine assemblages of the AMF spore‐associated microbes. Environmental Microbiology, 18(8), 2689–2704. https://doi.org/10.1111/1462-2920.13438spa
dc.relation.referencesJamiołkowska, A., Księżniak, A., Gałązka, A., Hetman, B., Kopacki, M., & Skwaryło-Bednarz, B. (2018). Impact of abiotic factors on development of the community of arbuscular mycorrhizal fungi in the soil: a Review. International Agrophysics, 32(1), 133–140. https://doi.org/10.1515/intag-2016-0090spa
dc.relation.referencesJangandi, S., Negalur*, C. B., Narayan, Mr., & Lakshman, H. C. (2016). Synergistic effect between phosphate solubilizing bacteria and vesicular-arbuscular mycorrhizal fungi on growth and p uptake in Cajanus cajana L. (Pigeon pea). International Journal of Bioassays, 6(01), 5211. https://doi.org/10.21746/ijbio.2017.01.005spa
dc.relation.referencesJansa, J., Bukovská, P., & Gryndler, M. (2013). Mycorrhizal hyphae as ecological niche for highly specialized hypersymbionts – or just soil free-riders? Frontiers in Plant Science, 4. https://doi.org/10.3389/fpls.2013.00134spa
dc.relation.referencesJi, L., Tan, W., & Chen, X. (2019). Arbuscular mycorrhizal mycelial networks and glomalin-related soil protein increase soil aggregation in Calcaric Regosol under well-watered and drought stress conditions. Soil and Tillage Research, 185, 1–8. https://doi.org/10.1016/j.still.2018.08.010spa
dc.relation.referencesJuge, C., Prévost, D., Bertrand, A., Bipfubusa, M., & Chalifour, F.-P. (2012). Growth and biochemical responses of soybean to double and triple microbial associations with Bradyrhizobium, Azospirillum and arbuscular mycorrhizae. Applied Soil Ecology, 61, 147–157. https://doi.org/10.1016/j.apsoil.2012.05.006spa
dc.relation.referencesJyothi, E., Bagyaraj, D. J., & Rao, E. V. S. P. (2018). Microbial consortia developed for Ocimum tenuiflorum reduces application of chemical fertilizers by 50% under field conditions. Medicinal Plants - International Journal of Phytomedicines and Related Industries, 10(2), 138. https://doi.org/10.5958/0975-6892.2018.00022.9spa
dc.relation.referencesKapoor, R., Sharma, D., & Bhatnagar, A. K. (2008). Arbuscular mycorrhizae in micropropagation systems and their potential applications. Scientia Horticulturae, 116(3), 227–239. https://doi.org/10.1016/j.scienta.2008.02.002spa
dc.relation.referencesKarthikeyan, A., Mahalingam, L., Chacko, J., Mayavel, A., Muthu Kumar, A., & Nair, SP. (2024). Establishment of Gmelina arborea plantation in an uncultivated farmland inoculated with arbuscular mycorrhizal fungi and plant growth promoting bacteria. Reforesta, 17, 18–31.spa
dc.relation.referencesKaur, T., Devi, R., Negi, R., Kumar, S., Singh, S., Rustagi, S., Shreaz, S., Rai, A. K., Kour, D., & Yadav, A. N. (2024). Microbial consortium with multifunctional attributes for the plant growth of eggplant (Solanum melongena L.). Folia Microbiologica. https://doi.org/10.1007/s12223-024-01168-xspa
dc.relation.referencesKefi, A., Guntoro, D., & Santosa, E. (2022). Pertumbuhan dan Hasil Tanaman Jagung Manis pada Berbagai Populasi Gulma Chloris barbata (Poaceae). Jurnal Agronomi Indonesia (Indonesian Journal of Agronomy), 50(1), 80–88. https://doi.org/10.24831/jai.v50i1.39708spa
dc.relation.referencesKeymer, A., Pimprikar, P., Wewer, V., Huber, C., Brands, M., Bucerius, S. L., Delaux, P.-M., Klingl, V., Röpenack-Lahaye, E. von, Wang, T. L., Eisenreich, W., Dörmann, P., Parniske, M., & Gutjahr, C. (2017). Lipid transfer from plants to arbuscular mycorrhiza fungi. ELife, 6. https://doi.org/10.7554/eLife.29107spa
dc.relation.referencesKhan, A., Zhang, G., Li, T., & He, B. (2023). Fertilization and cultivation management promotes soil phosphorus availability by enhancing soil P-cycling enzymes and the phosphatase encoding genes in bulk and rhizosphere soil of a maize crop in sloping cropland. Ecotoxicology and Environmental Safety, 264, 115441. https://doi.org/10.1016/j.ecoenv.2023.115441spa
dc.relation.referencesKhan, M. S., Zaidi, A., & Wani, P. A. (2007). Role of phosphate-solubilizing microorganisms in sustainable agriculture — A review. Agronomy for Sustainable Development, 27(1), 29–43. https://doi.org/10.1051/agro:2006011spa
dc.relation.referencesKlimek, A., & Rolbiecki, R. (2013). Effect of irrigation and organic fertilization on oribatid mites (Acari, Oribatida) in forest nursery Piotr Stachowski View project Effects of Mulching with Forest Litter and Compost Made of Savage Sludge on the Presence of Oribatida as Bioindicators of Soil Revitalization in Larch and Pine In-Ground Forest Nurseris View project. https://doi.org/10.5897/SRE12.680spa
dc.relation.referencesKoch, A. M., Kuhn, G., Fontanillas, P., Fumagalli, L., Goudet, J., & Sanders, I. R. (2004). High genetic variability and low local diversity in a population of arbuscular mycorrhizal fungi. Proceedings of the National Academy of Sciences, 101(8), 2369–2374. https://doi.org/10.1073/pnas.0306441101spa
dc.relation.referencesKokkoris, V., Banchini, C., Paré, L., Abdellatif, L., Séguin, S., Hubbard, K., Findlay, W., Dalpé, Y., Dettman, J., Corradi, N., & Stefani, F. (2024). Rhizophagus irregularis, the model fungus in arbuscular mycorrhiza research, forms dimorphic spores. New Phytologist, 242(4), 1771–1784. https://doi.org/10.1111/nph.19121spa
dc.relation.referencesKong, Z., Wu, Z., Glick, B. R., He, S., Huang, C., & Wu, L. (2019). Co-occurrence patterns of microbial communities affected by inoculants of plant growth-promoting bacteria during phytoremediation of heavy metal-contaminated soils. Ecotoxicology and Environmental Safety, 183, 109504. https://doi.org/10.1016/j.ecoenv.2019.109504spa
dc.relation.referencesKouadio, A. N. M.-S., Nandjui, J., Krou, S. M., Séry, D. J.-M., Nelson, P. N., & Zézé, A. (2017). A native arbuscular mycorrhizal fungus inoculant outcompetes an exotic commercial species under two contrasting yam field conditions. Rhizosphere, 4, 112–118. https://doi.org/10.1016/j.rhisph.2017.10.001spa
dc.relation.referencesKruse, J., Abraham, M., Amelung, W., Baum, C., Bol, R., Kühn, O., Lewandowski, H., Niederberger, J., Oelmann, Y., Rüger, C., Santner, J., Siebers, M., Siebers, N., Spohn, M., Vestergren, J., Vogts, A., & Leinweber, P. (2015). Innovative methods in soil phosphorus research: A review. Journal of Plant Nutrition and Soil Science, 178(1), 43–88. https://doi.org/10.1002/jpln.201400327spa
dc.relation.referencesKucey, R. M. N. (1983). PHOSPHATE-SOLUBILIZING BACTERIA AND FUNGI IN VARIOUS CULTIVATED AND VIRGIN ALBERTA SOILS. Canadian Journal of Soil Science, 63(4), 671–678. https://doi.org/10.4141/cjss83-068spa
dc.relation.referencesKumar, K. S., Khanduri, V. P., & Tripathi, S. K. (2021). Reproductive adaptations and the availability of pollinating vectors in white Indian teak (Gmelina arborea Roxb.) in tropical rain forest of Indo-Burma Hotspot. Trees, Forests and People, 3, 100058. https://doi.org/10.1016/j.tfp.2020.100058spa
dc.relation.referencesLAMBERS, H., SHANE, M. W., CRAMER, M. D., PEARSE, S. J., & VENEKLAAS, E. J. (2006). Root Structure and Functioning for Efficient Acquisition of Phosphorus: Matching Morphological and Physiological Traits. Annals of Botany, 98(4), 693–713. https://doi.org/10.1093/aob/mcl114spa
dc.relation.referencesLarimer, A. L., Bever, J. D., & Clay, K. (2010). The interactive effects of plant microbial symbionts: a review and meta-analysis. Symbiosis, 51(2), 139–148. https://doi.org/10.1007/s13199-010-0083-1spa
dc.relation.referencesLarimer, A. L., Clay, K., & Bever, J. D. (2014). Synergism and context dependency of interactions between arbuscular mycorrhizal fungi and rhizobia with a prairie legume. Ecology, 95(4), 1045–1054. https://doi.org/10.1890/13-0025.1spa
dc.relation.referencesLevene, H. (1960). Robust tests for the equality of variance. In Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling, (pp. 278–292). https://books.google.com.cu/ books?id=ZUSsAAAAIAAJ.spa
dc.relation.referencesLi, H.-Z., Bi, Q., Yang, K., Zheng, B.-X., Pu, Q., & Cui, L. (2019). D 2 O-Isotope-Labeling Approach to Probing Phosphate-Solubilizing Bacteria in Complex Soil Communities by Single-Cell Raman Spectroscopy. Analytical Chemistry, 91(3), 2239–2246. https://doi.org/10.1021/acs.analchem.8b04820spa
dc.relation.referencesLi, Q., Li, H., Yang, Z., Cheng, X., Zhao, Y., Qin, L., Bisseling, T., Cao, Q., & Willemsen, V. (2022). Plant growth‐promoting rhizobacterium Pseudomonas sp. CM11 specifically induces lateral roots. New Phytologist, 235(4), 1575–1588. https://doi.org/10.1111/nph.18199spa
dc.relation.referencesLi, Y., Xu, J., Hu, J., Zhang, T., Wu, X., & Yang, Y. (2022). Arbuscular Mycorrhizal Fungi and Glomalin Play a Crucial Role in Soil Aggregate Stability in Pb-Contaminated Soil. International Journal of Environmental Research and Public Health, 19(9), 5029. https://doi.org/10.3390/ijerph19095029spa
dc.relation.referencesLiang, J.-L., Liu, J., Jia, P., Yang, T., Zeng, Q., Zhang, S., Liao, B., Shu, W., & Li, J. (2020). Novel phosphate-solubilizing bacteria enhance soil phosphorus cycling following ecological restoration of land degraded by mining. The ISME Journal, 14(6), 1600–1613. https://doi.org/10.1038/s41396-020-0632-4spa
dc.relation.referencesLiu, J., Liu, X., Zhang, Q., Li, S., Sun, Y., Lu, W., & Ma, C. (2020). Response of alfalfa growth to arbuscular mycorrhizal fungi and phosphate-solubilizing bacteria under different phosphorus application levels. AMB Express, 10(1), 200. https://doi.org/10.1186/s13568-020-01137-wspa
dc.relation.referencesLiu, J., Qi, W., Li, Q., Wang, S.-G., Song, C., & Yuan, X. (2020). Exogenous phosphorus-solubilizing bacteria changed the rhizosphere microbial community indirectly. 3 Biotech, 10(4), 164. https://doi.org/10.1007/s13205-020-2099-4spa
dc.relation.referencesLiu, Y., He, J., Shi, G., An, L., Öpik, M., & Feng, H. (2011). Diverse communities of arbuscular mycorrhizal fungi inhabit sites with very high altitude in Tibet Plateau FEMS Microbiology Ecology, 78(2), 355–365. https://doi.org/10.1111/j.1574-6941.2011.01163.xspa
dc.relation.referencesLopez, G., Ahmadi, S. H., Amelung, W., Athmann, M., Ewert, F., Gaiser, T., Gocke, M. I., Kautz, T., Postma, J., Rachmilevitch, S., Schaaf, G., Schnepf, A., Stoschus, A., Watt, M., Yu, P., & Seidel, S. J. (2023). Nutrient deficiency effects on root architecture and root-to-shoot ratio in arable crops. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.1067498spa
dc.relation.referencesMagallon, P., Antoun, H., Taktek, S., & de-Bashan, L. E. (2020). Designing a multi-species inoculant of phosphate rock-solubilizing bacteria compatible with arbuscular mycorrhizae for plant growth promotion in low-P soil amended with PR. Biology and Fertility of Soils, 56(4), 521–536. https://doi.org/10.1007/s00374-020-01452-1spa
dc.relation.referencesMaharana, R., Dobriyal, M., Behera, L., & Sukhadiya, M. (2018). Enhancement of seedling vigour through biofertilizers application in gamhar (Gmelina arborea Roxb.). International Journal of Chemical Studies, 6(6), 54–60spa
dc.relation.referencesMall, A., Kasarlawar, S., & Saini, S. (2022). Limited Pairwise Synergistic and Antagonistic Interactions Impart Stability to Microbial Communities. Frontiers in Ecology and Evolution, 10. https://doi.org/10.3389/fevo.2022.648997spa
dc.relation.referencesMartínez, D. B., Barroetaveña, C., & Rajchenberg, M. (2007). Influencia del régimen de fertilización y del momento de inoculación en la micorrización de Pinus ponderosa en la etapa de vivero. Bosque (Valdivia), 28(3). https://doi.org/10.4067/S0717-92002007000300007spa
dc.relation.referencesMassot, F., Bernard, N., Alvarez, L. M. M., Martorell, M. M., Mac Cormack, W. P., & Ruberto, L. A. M. (2022). Microbial associations for bioremediation. What does “microbial consortia” mean? Applied Microbiology and Biotechnology, 106(7), 2283–2297. https://doi.org/10.1007/s00253-022-11864-8spa
dc.relation.referencesMawarda, P. C., Le Roux, X., Dirk van Elsas, J., & Salles, J. F. (2020). Deliberate introduction of invisible invaders: A critical appraisal of the impact of microbial inoculants on soil microbial communities. Soil Biology and Biochemistry, 148, 107874. https://doi.org/10.1016/j.soilbio.2020.107874spa
dc.relation.referencesMawarda, P. C., Mallon, C. A., Le Roux, X., van Elsas, J. D., & Salles, J. F. (2022). Interactions between Bacterial Inoculants and Native Soil Bacterial Community: the Case of Spore-forming Bacillus spp. FEMS Microbiology Ecology, 98(12). https://doi.org/10.1093/femsec/fiac127spa
dc.relation.referencesMcCarty, N. S., & Ledesma-Amaro, R. (2019). Synthetic Biology Tools to Engineer Microbial Communities for Biotechnology. Trends in Biotechnology, 37(2), 181–197. https://doi.org/10.1016/j.tibtech.2018.11.002spa
dc.relation.referencesMcEwan, A., Marchi, E., Spinelli, R., & Brink, M. (2020). Past, present and future of industrial plantation forestry and implication on future timber harvesting technology. Journal of Forestry Research, 31(2), 339–351. https://doi.org/10.1007/s11676-019-01019-3spa
dc.relation.referencesMcGill, W. B., & Cole, C. V. (1981). Comparative aspects of cycling of organic C, N, S and P through soil organic matter. Geoderma, 26(4), 267–286. https://doi.org/10.1016/0016-7061(81)90024-0spa
dc.relation.referencesMeza, FabricioB., Díaz, E. O., Harold Escobar, T., Pinargote, C. B., Jesica Cachipuendo, C., Gary Meza, B., Francel López, M., Carlos Meza, B., Jessica Meza, B., Judith Cachipuendo, C., & Rodrigo Cabrera, V. (2017). Identification of arbuscular mycorrhizal fungi in melina (Gmelina arborea ROXB) plantations in the ecuadorian humid tropics. Revista de Investigaciones Veterinarias Del Peru, 28(4), 969–975. https://doi.org/10.15381/rivep.v28i4.13883spa
dc.relation.referencesMiao, F., Wang, S., Yuan, Y., Chen, Y., Guo, E., & Li, Y. (2023). The Addition of a High Concentration of Phosphorus Reduces the Diversity of Arbuscular Mycorrhizal Fungi in Temperate Agroecosystems. Diversity, 15(10), 1045. https://doi.org/10.3390/d15101045spa
dc.relation.referencesMiller, R. M., Jastrow, J. D., & Reinhardt, D. R. (1995). External hyphal production of vesicular-arbuscular mycorrhizal fungi in pasture and tallgrass prairie communities. Oecologia, 103(1), 17–23. https://doi.org/10.1007/BF00328420spa
dc.relation.referencesMin, K., Slessarev, E., Kan, M., McFarlane, K., Oerter, E., Pett-Ridge, J., Nuccio, E., & Berhe, A. A. (2021). Active microbial biomass decreases, but microbial growth potential remains similar across soil depth profiles under deeply-vs. shallow-rooted plants. Soil Biology and Biochemistry, 162, 108401. https://doi.org/10.1016/j.soilbio.2021.108401spa
dc.relation.referencesMogollón, J. M., Beusen, A. H. W., van Grinsven, H. J. M., Westhoek, H., & Bouwman, A. F. (2018). Future agricultural phosphorus demand according to the shared socioeconomic pathways. Global Environmental Change, 50, 149–163. https://doi.org/10.1016/j.gloenvcha.2018.03.007spa
dc.relation.referencesMontgomery, D. C., & Runger, G. C. (2010). Applied Statistics and Probability for Engineers. (John Wiley & Sons).spa
dc.relation.referencesMorocho, A. (2020). Evaluación de la aplicación de consorcios microbianos en un sistema de producción de plántulas de aguacate (Persea americana Mill.) cultivar ‘criollo.’ Universidad de las Fuerzas Armadas, ESPEspa
dc.relation.referencesMurillo, O. (1991). Colección de guías silviculturales- Melina (Gmelina arborea).spa
dc.relation.referencesMurillo, Olman., & Valerio, Juvenal. (1991). Melina : Gmelina arborea Roxb., especie de árbol de uso multiple en América Central. CATIE, Programa de Producción y Desarrollo Agropecuario Sostenido, Area de Producción Forestal y Agroforestal.spa
dc.relation.referencesNacoon, S., Jogloy, S., Riddech, N., Mongkolthanaruk, W., Kuyper, T. W., & Boonlue, S. (2020). Interaction between Phosphate Solubilizing Bacteria and Arbuscular Mycorrhizal Fungi on Growth Promotion and Tuber Inulin Content of Helianthus tuberosus L. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-61846-xspa
dc.relation.referencesNadeem, S. M., Ahmad, M., Zahir, Z. A., Javaid, A., & Ashraf, M. (2014). The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnology Advances, 32(2), 429–448. https://doi.org/10.1016/j.biotechadv.2013.12.005spa
dc.relation.referencesNanjundappa, A., Bagyaraj, D. J., Saxena, A. K., Kumar, M., & Chakdar, H. (2019). Interaction between arbuscular mycorrhizal fungi and Bacillus spp. in soil enhancing growth of crop plants. Fungal Biology and Biotechnology, 6(1), 23. https://doi.org/10.1186/s40694-019-0086-5spa
dc.relation.referencesNeetu, N., Aggarwal, A., Tanwar, A., & Alpa, A. (2012). Influence of Arbuscular Mycorrhizal Fungi and Pseudomonas fluorescens at Different Superphosphate Levels on Linseed (Linum usitatissimum L.) Growth Response. Chilean Journal of Agricultural Research, 72(2), 237–243. https://doi.org/10.4067/S0718-58392012000200012spa
dc.relation.referencesNiu, Y. F., Chai, R. S., Jin, G. L., Wang, H., Tang, C. X., & Zhang, Y. S. (2013). Responses of root architecture development to low phosphorus availability: a review. Annals of Botany, 112(2), 391–408. https://doi.org/10.1093/aob/mcs285spa
dc.relation.referencesNoack, S. R., McLaughlin, M. J., Smernik, R. J., McBeath, T. M., & Armstrong, R. D. (2012). Crop residue phosphorus: speciation and potential bio-availability. Plant and Soil, 359(1–2), 375–385. https://doi.org/10.1007/s11104-012-1216-5spa
dc.relation.referencesNurjaman, K. M., Wulandari, A. S., & Istikorini, Y. (2022). Effect of Endophytic Fungi Inoculation and Ecoenzyme on the Growth of Gmelina (Gmelina arborea (Roxb.)) Seedlings. IOP Conference Series: Earth and Environmental Science, 959(1), 012011. https://doi.org/10.1088/1755-1315/959/1/012011spa
dc.relation.referencesObrego, C. (2006). Gmelina arborea: versatilidad, renovación y productividad sostenible para el futuro. Revista El Mueble y La Madera (M&M), 50, 14–20.spa
dc.relation.referencesOrtiz, J. C. (2020). CAPACIDAD PROMOTORA DE CRECIMIENTO VEGETAL DE MICROORGANISMOS AISLADOS DE RELAVES MINEROS. Universidad del Tolimaspa
dc.relation.referencesOyekanmi, E. O., Coyne, D. L., Fagade, O. E., & Osonubi, O. (2007). Improving root-knot nematode management on two soybean genotypes through the application of Bradyrhizobium japonicum, Trichoderma pseudokoningii and Glomus mosseae in full factorial combinations. Crop Protection, 26(7), 1006–1012. https://doi.org/10.1016/j.cropro.2006.09.009spa
dc.relation.referencesPadrón-Rodríguez, L., Arias-Mota, R. M., Medel-Ortiz, R., & De la Cruz-Elizondo, Y. (2020). Interacción de hongos micorrízicos arbusculares y una cepa fosfato solubilizadora en Canavalia ensiformis (Fabaceae). Botanical Sciences, 98(2), 278–287. https://doi.org/10.17129/botsci.2476spa
dc.relation.referencesPan, L., & Cai, B. (2023). Phosphate-Solubilizing Bacteria: Advances in Their Physiology, Molecular Mechanisms and Microbial Community Effects. Microorganisms, 11(12), 2904. https://doi.org/10.3390/microorganisms11122904spa
dc.relation.referencesPanigrahi, M. R., Nayak, S. R., & Gupta, N. (2017). Effect of fungal inoculants on growth and establishment of Gmelina arborea Roxb. in transplantation conditions. Tropical Plant Research, 4(1), 176–179. https://doi.org/10.22271/tpr.2017.v4.i1.025spa
dc.relation.referencesPatiño Torres, C., & Sánchez de Prager, M. (2014). Efecto de la aplicación de roca fosfórica y la inoculación con bacterias solubilizadoras de fosfatos sobre el crecimiento del ají (Capsicum annum). Acta Agronómica, 63(2), 136–144. https://doi.org/10.15446/acag.v63n2.36956spa
dc.relation.referencesPeña, R. A., Lee, S.-J., Thuita, M., Mlay, D. P., Masso, C., Vanlauwe, B., Rodriguez, A., & Sanders, I. R. (2021). The Phosphate Inhibition Paradigm: Host and Fungal Genotypes Determine Arbuscular Mycorrhizal Fungal Colonization and Responsiveness to Inoculation in Cassava With Increasing Phosphorus Supply. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.693037spa
dc.relation.referencesPeña-Quemba, D. C. (2022). Genetic variation in Rhizophagus irregularis influences soil carbon fluxes in tropical soils under cassava (Manihot esculenta Crantz) cultivation. Universidad Nacional de Colombiaspa
dc.relation.referencesPeterson, R. L., Massicotte, H. B., & Melville, L. H. (2004). Mycorrhizas: anatomy and cell biology.spa
dc.relation.referencesPlaxton, W. C. (2004). Respuesta de la planta al estrés: adaptaciones bioquímicas a la deficiencia de fosfato.spa
dc.relation.referencesPrematuri, R., Turjaman, M., & Tawaraya, K. (2020). Effect of Arbuscular Mycorrhiza Fungal Inoculation on Growth of Tropical Tree Species under Nursery and Post-Opencast Bauxite Mining Field in Bintan Island, Indonesia. International Journal of Plant & Soil Science, 1–13. https://doi.org/10.9734/ijpss/2020/v32i2030397spa
dc.relation.referencesPrigigallo, M. I., Staropoli, A., Vinale, F., & Bubici, G. (2023). Interactions between plant‐beneficial microorganisms in a consortium: Streptomyces microflavus and Trichoderma harzianum. Microbial Biotechnology, 16(12), 2292–2312. https://doi.org/10.1111/1751-7915.14311spa
dc.relation.referencesPu, Z., Zhang, R., Wang, H., Li, Q., Zhang, J., & Wang, X.-X. (2023). Root morphological and physiological traits and arbuscular mycorrhizal fungi shape phosphorus-acquisition strategies of 12 vegetable species. Frontiers in Plant Science, 14. https://doi.org/10.3389/fpls.2023.1150832spa
dc.relation.referencesPuri, A., Padda, K. P., & Chanway, C. P. (2020). In vitro and in vivo analyses of plant-growth-promoting potential of bacteria naturally associated with spruce trees growing on nutrient-poor soils. Applied Soil Ecology, 149, 103538. https://doi.org/10.1016/j.apsoil.2020.103538spa
dc.relation.referencesRahman, Md., Lee, S.-H., Ji, H., Kabir, A., Jones, C., & Lee, K.-W. (2018). Importance of Mineral Nutrition for Mitigating Aluminum Toxicity in Plants on Acidic Soils: Current Status and Opportunities. International Journal of Molecular Sciences, 19(10), 3073. https://doi.org/10.3390/ijms19103073spa
dc.relation.referencesRamirez, J. (2017). DESARROLLO EN ETAPA DE VIVERO DE Gmelina arbórea Roxb. ex Sm SOMETIDA A TRES DOSIS DE FERTILIZACIÓN Y DOS SUSTRATOS. Cultivos Tropicales, 38(2), 45–52.spa
dc.relation.referencesRamírez, J. G. (2019). Dependency, colonization, and growth in Gmelina arborea inoculated with five strains of Arbuscular Mycorrhizal Fungi. Revista Facultad Nacional de Agronomía Medellín, 72(2), 8775–8783. https://doi.org/10.15446/rfnam.v72n2.74691spa
dc.relation.referencesRamirez, M., Peñaranda, A. M., Perez, U. A., & Serralde, D. P. (2018). Biofertilización con hongos formadores de micorrizas arbusculares (HFMA) en especies forestales en vivero. Biotecnología En El Sector Agropecuario y Agroindustrial, 16, 15–25.spa
dc.relation.referencesRamirez, R. A. (2023). CAPACIDAD DE TOLERANCIA A CADMIO Y PLOMO DE MICROORGANISMOS AISLADOS DE SUELO DE RELAVES MINEROS. Universidad del Tolima.spa
dc.relation.referencesRamos, E. V., Delgado, Z. Y., & Solis, A. F. (2024). Use of Phosphorus-Solubilizing Microorganisms as a Biotechnological Alternative: A Review. Microorganisms, 12(8), 1591. https://doi.org/10.3390/microorganisms12081591spa
dc.relation.referencesRawat, P., Das, S., Shankhdhar, D., & Shankhdhar, S. C. (2021a). Phosphate-Solubilizing Microorganisms: Mechanism and Their Role in Phosphate Solubilization and Uptake. Journal of Soil Science and Plant Nutrition, 21(1), 49–68. https://doi.org/10.1007/s42729-020-00342-7spa
dc.relation.referencesRaynaud, X., Jaillard, B., & Leadley, P. W. (2008). Plants May Alter Competition by Modifying Nutrient Bioavailability in Rhizosphere: A Modeling Approach. The American Naturalist, 171(1), 44–58. https://doi.org/10.1086/523951spa
dc.relation.referencesReichert, T., Rammig, A., Fuchslueger, L., Lugli, L. F., Quesada, C. A., & Fleischer, K. (2022). Plant phosphorus‐use and ‐acquisition strategies in Amazonia. New Phytologist, 234(4), 1126–1143. https://doi.org/10.1111/nph.17985spa
dc.relation.referencesRemy, W., Taylor, T. N., Hass, H., & Kerp, H. (1994). Four hundred-million-year-old vesicular arbuscular mycorrhizae. Proceedings of the National Academy of Sciences, 91(25), 11841–11843. https://doi.org/10.1073/pnas.91.25.11841spa
dc.relation.referencesReyes, J., Pimienta de la Torre, D. de J., Rodríguez Morales, J. A., Fuentes Pérez, M. A., & Palomeque Figueroa, E. (2018). Calidad de planta de Gmelina arborea Roxb. producida con diferentes mezclas de sustratos en vivero. Revista Mexicana de Ciencias Forestales, 9(47), 111–130. https://doi.org/10.29298/rmcf.v9i47.163spa
dc.relation.referencesRiaz, U., Murtaza, G., Anum, W., Samreen, T., Sarfraz, M., & Nazir, M. Z. (2021). Plant Growth-Promoting Rhizobacteria (PGPR) as Biofertilizers and Biopesticides. In Microbiota and Biofertilizers (pp. 181–196). Springer International Publishing. https://doi.org/10.1007/978-3-030-48771-3_11spa
dc.relation.referencesRichardson, A. E., Hocking, P. J., Simpson, R. J., & George, T. S. (2009). Plant mechanisms to optimise access to soil phosphorus. Crop and Pasture Science, 60(2), 124. https://doi.org/10.1071/CP07125spa
dc.relation.referencesRichardson, A. E., & Simpson, R. J. (2011). Soil Microorganisms Mediating Phosphorus Availability Update on Microbial Phosphorus. Plant Physiology, 156(3), 989–996. https://doi.org/10.1104/pp.111.175448spa
dc.relation.referencesRillig, M. C., Mummey, D. L., Ramsey, P. W., Klironomos, J. N., & Gannon, J. E. (2006). Phylogeny of arbuscular mycorrhizal fungi predicts community composition of symbiosis-associated bacteria. FEMS Microbiology Ecology, 57(3), 389–395. https://doi.org/10.1111/j.1574-6941.2006.00129.xspa
dc.relation.referencesRingeval, B., Augusto, L., Monod, H., van Apeldoorn, D., Bouwman, L., Yang, X., Achat, D. L., Chini, L. P., Van Oost, K., Guenet, B., Wang, R., Decharme, B., Nesme, T., & Pellerin, S. (2017). Phosphorus in agricultural soils: drivers of its distribution at the global scale. Global Change Biology, 23(8), 3418–3432. https://doi.org/10.1111/gcb.13618spa
dc.relation.referencesRodríguez, D. A. (2008). Indicadores de calidad de planta forestal. In Mundi Prensa México (p. 156).spa
dc.relation.referencesRomano, I., Ventorino, V., & Pepe, O. (2020). Effectiveness of Plant Beneficial Microbes: Overview of the Methodological Approaches for the Assessment of Root Colonization and Persistence. Frontiers in Plant Science, 11. https://doi.org/10.3389/fpls.2020.00006spa
dc.relation.referencesRopars, J., Toro, K. S., Noel, J., Pelin, A., Charron, P., Farinelli, L., Marton, T., Krüger, M., Fuchs, J., Brachmann, A., & Corradi, N. (2016). Evidence for the sexual origin of heterokaryosis in arbuscular mycorrhizal fungi. Nature Microbiology, 1(6), 16033. https://doi.org/10.1038/nmicrobiol.2016.33spa
dc.relation.referencesRuttenberg, K. C. (2001). Phosphorus Cycle. In Encyclopedia of Ocean Sciences (pp. 2149–2162). Elsevier. https://doi.org/10.1006/rwos.2001.0277spa
dc.relation.referencesSalmeron, I. A., Martínez, M., Valdez, J. J., Pedraza, M. E., Santoyo, G., Pozo, M. J., & Chávez, A. T. (2021). An Updated Review on the Modulation of Carbon Partitioning and Allocation in Arbuscular Mycorrhizal Plants. Microorganisms, 10(1), 75. https://doi.org/10.3390/microorganisms10010075spa
dc.relation.referencesSanders, I. R., & Rodriguez, A. (2016). Aligning molecular studies of mycorrhizal fungal diversity with ecologically important levels of diversity in ecosystems. The ISME Journal, 10(12), 2780–2786. https://doi.org/10.1038/ismej.2016.73spa
dc.relation.referencesSangwan, S., & Prasanna, R. (2022). Mycorrhizae Helper Bacteria: Unlocking Their Potential as Bioenhancers of Plant–Arbuscular Mycorrhizal Fungal Associations. Microbial Ecology, 84(1), 1–10. https://doi.org/10.1007/s00248-021-01831-7spa
dc.relation.referencesSarmah, R., & Sarma, A. K. (2023). Phosphate Solubilizing Microorganisms: A Review. Communications in Soil Science and Plant Analysis, 54(10), 1306–1315. https://doi.org/10.1080/00103624.2022.2142238spa
dc.relation.referencesSaxena, J., Minaxi, & Jha, A. (2014). Impact of a Phosphate Solubilizing Bacterium and an Arbuscular Mycorrhizal Fungus ( Glomus etunicatum ) on Growth, Yield and P Concentration in Wheat Plants. CLEAN – Soil, Air, Water, 42(9), 1248–1252. https://doi.org/10.1002/clen.201300492spa
dc.relation.referencesSaxena, J., Saini, A., Ravi, I., Chandra, S., & Garg, V. (2015). Consortium of Phosphate-solubilizing Bacteria and Fungi for Promotion of Growth and Yield of Chickpea ( Cicer arietinum ). Journal of Crop Improvement, 29(3), 353–369. https://doi.org/10.1080/15427528.2015.1027979spa
dc.relation.referencesSchachtman, D. P., Reid, R. J., & Ayling, S. M. (1998). Phosphorus Uptake by Plants: From Soil to Cell. Plant Physiology, 116(2), 447–453. https://doi.org/10.1104/pp.116.2.447spa
dc.relation.referencesScheublin, T. R., Sanders, I. R., Keel, C., & van der Meer, J. R. (2010). Characterisation of microbial communities colonising the hyphal surfaces of arbuscular mycorrhizal fungi. The ISME Journal, 4(6), 752–763. https://doi.org/10.1038/ismej.2010.5spa
dc.relation.referencesScotti, M. R., Sá, N., Marriel, I., Carvalhais, L. C., Matias, S. R., Corrêa, E. J., Freitas, N., Sugai, M. A., & Pagano, M. C. (2007). Effect of plant species and mycorrhizal inoculation on soil phosphate-solubilizing microorganisms in semi-arid Brazil: Growth promotion effect of rhizospheric phosphate-solubilizing microorganisms on Eucalyptus camaldulensis. In First International Meeting on Microbial Phosphate Solubilization (pp. 167–172). Springer Netherlands. https://doi.org/10.1007/978-1-4020-5765-6_25spa
dc.relation.referencesSemarnat. (2016). Anuario estadístico de la producción forestal 2016.spa
dc.relation.referencesShah, C., Mali, H., Mesara, S., Dhameliya, H., & Subramanian, R. B. (2022). Combined inoculation of phosphate solubilizing bacteria with mycorrhizae to alleviate the phosphate deficiency in Banana. Biologia, 77(9), 2657–2666. https://doi.org/10.1007/s11756-022-01105-8spa
dc.relation.referencesSharma, S. B., Sayyed, R. Z., Trivedi, M. H., & Gobi, T. A. (2013). Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus, 2(1), 587. https://doi.org/10.1186/2193-1801-2-587spa
dc.relation.referencesSharma, S., Compant, S., Ballhausen, M. B., Ruppel, S., & Franken, P. (2020). The interaction between Rhizoglomus irregulare and hyphae attached phosphate solubilizing bacteria increases plant biomass of Solanum lycopersicum. Microbiological Research, 240. https://doi.org/10.1016/j.micres.2020.126556spa
dc.relation.referencesShen, J., Yuan, L., Zhang, J., Li, H., Bai, Z., Chen, X., Zhang, W., & Zhang, F. (2011). Phosphorus Dynamics: From Soil to Plant. Plant Physiology, 156(3), 997–1005. https://doi.org/10.1104/pp.111.175232spa
dc.relation.referencesSingh, A. K., Zhu, X., Chen, C., Wu, J., Yang, B., Zakari, S., Jiang, X. J., Singh, N., & Liu, W. (2022). The role of glomalin in mitigation of multiple soil degradation problems. Critical Reviews in Environmental Science and Technology, 52(9), 1604–1638. https://doi.org/10.1080/10643389.2020.1862561spa
dc.relation.referencesSingh, S., & Kapoor, K. K. (1998). Effects of inoculation of phosphate-solubilizing microorganisms and an arbuscular mycorrhizal fungus on mungbean grown under natural soil conditions. Mycorrhiza, 7(5), 249–253. https://doi.org/10.1007/s005720050188spa
dc.relation.referencesSmith, S. E., Jakobsen, I., Grønlund, M., & Smith, F. A. (2011). Roles of Arbuscular Mycorrhizas in Plant Phosphorus Nutrition: Interactions between Pathways of Phosphorus Uptake in Arbuscular Mycorrhizal Roots Have Important Implications for Understanding and Manipulating Plant Phosphorus Acquisition. Plant Physiology, 156(3), 1050–1057. https://doi.org/10.1104/pp.111.174581spa
dc.relation.referencesSmith, S. E., & Read, D. (2008). The symbionts forming arbuscular mycorrhizas.spa
dc.relation.referencesSmith, S. E., & Smith, F. A. (2011). Roles of Arbuscular Mycorrhizas in Plant Nutrition and Growth: New Paradigms from Cellular to Ecosystem Scales. Annual Review of Plant Biology, 62(1), 227–250. https://doi.org/10.1146/annurev-arplant-042110-103846spa
dc.relation.referencesSouchie, E. L., Azcón, R., Barea, J. M., Silva, E. M. R., & Saggin-Júnior, O. J. (2010). Enhancement of clover growth by inoculation of P-solubilizing fungi and arbuscular mycorrhizal fungi. Anais Da Academia Brasileira de Ciências, 82(3), 771–777. https://doi.org/10.1590/S0001-37652010000300023spa
dc.relation.referencesSouza, T. (2015). Handbook of Arbuscular Mycorrhizal Fungi.spa
dc.relation.referencesTamang, M., Chettri, R., Vineeta, Shukla, G., Bhat, J. A., Kumar, A., Kumar, M., Suryawanshi, A., Cabral-Pinto, M., & Chakravarty, S. (2021). Stand Structure, Biomass and Carbon Storage in Gmelina arborea Plantation at Agricultural Landscape in Foothills of Eastern Himalayas. Land, 10(4), 387. https://doi.org/10.3390/land10040387spa
dc.relation.referencesTAO, G.-C., TIAN, S.-J., CAI, M.-Y., & XIE, G.-H. (2008). Phosphate-Solubilizing and -Mineralizing Abilities of Bacteria Isolated from Soils. Pedosphere, 18(4), 515–523. https://doi.org/10.1016/S1002-0160(08)60042-9spa
dc.relation.referencesTeng, W., Deng, Y., Chen, X.-P., Xu, X.-F., Chen, R.-Y., Lv, Y., Zhao, Y.-Y., Zhao, X.-Q., He, X., Li, B., Tong, Y.-P., Zhang, F.-S., & Li, Z.-S. (2013). Characterization of root response to phosphorus supply from morphology to gene analysis in field-grown wheat. Journal of Experimental Botany, 64(5), 1403–1411. https://doi.org/10.1093/jxb/ert023spa
dc.relation.referencesTennant, D. (1975). A test of a modified line intersect method of estimating root length. J. Ecol., 63, 995–1001.spa
dc.relation.referencesThampi, M., Dhanraj, N. D., Prasad, A., Ganga, G., & Jisha, M. S. (2023). Phosphorus Solubilizing Microbes (PSM): Biological tool to combat salinity stress in crops. Symbiosis, 91(1–3), 15–32. https://doi.org/10.1007/s13199-023-00947-3spa
dc.relation.referencesThilagar, G., Bagyaraj, D. J., & Rao, M. S. (2016). Selected microbial consortia developed for chilly reduces application of chemical fertilizers by 50% under field conditions. Scientia Horticulturae, 198, 27–35. https://doi.org/10.1016/j.scienta.2015.11.021spa
dc.relation.referencesThomas Sims, J., & Pierzynski, G. M. (2005). Chemistry of phosphorus in soils. Chemical Processes in Soils, 8, 151–192.spa
dc.relation.referencesTian, J., Ge, F., Zhang, D., Deng, S., & Liu, X. (2021). Roles of Phosphate Solubilizing Microorganisms from Managing Soil Phosphorus Deficiency to Mediating Biogeochemical P Cycle. Biology, 10(2), 158. https://doi.org/10.3390/biology10020158spa
dc.relation.referencesTimofeeva, A., Galyamova, M., & Sedykh, S. (2022). Prospects for Using Phosphate-Solubilizing Microorganisms as Natural Fertilizers in Agriculture. Plants, 11(16), 2119. https://doi.org/10.3390/plants11162119spa
dc.relation.referencesTisserant, E., Malbreil, M., Kuo, A., Kohler, A., Symeonidi, A., Balestrini, R., Charron, P., Duensing, N., Frei dit Frey, N., Gianinazzi-Pearson, V., Gilbert, L. B., Handa, Y., Herr, J. R., Hijri, M., Koul, R., Kawaguchi, M., Krajinski, F., Lammers, P. J., Masclaux, F. G., … Martin, F. (2013). Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proceedings of the National Academy of Sciences, 110(50), 20117–20122. https://doi.org/10.1073/pnas.1313452110spa
dc.relation.referencesToljander, J. F., Artursson, V., Paul, L. R., Jansson, J. K., & Finlay, R. D. (2006). Attachment of different soil bacteria to arbuscular mycorrhizal fungal extraradical hyphae is determined by hyphal vitality and fungal species. FEMS Microbiology Letters, 254(1), 34–40. https://doi.org/10.1111/j.1574-6968.2005.00003.xspa
dc.relation.referencesTomer, S., Suyal, D. C., & Goel, R. (2016). Biofertilizers: A Timely Approach for Sustainable Agriculture. In Plant-Microbe Interaction: An Approach to Sustainable Agriculture (pp. 375–395). Springer Singapore. https://doi.org/10.1007/978-981-10-2854-0_17spa
dc.relation.referencesTrejo, D., Bañuelos, J., Gavito, M. E., & Sangabriel-Conde, W. (2020). High phosphorus fertilization reduces mycorrhizal colonization and plant biomass of three cultivars of pineapple. REVISTA TERRA LATINOAMERICANA, 38(4), 853–858. https://doi.org/10.28940/terra.v38i4.701spa
dc.relation.referencesTrouvelot, A., Kough, J. L., & Gianinazzi-Pearson, V. (1986). Mesure du taux de mycorrhization VA d’ un systéme radiculaire.spa
dc.relation.referencesVafadar, F., Amooaghaie, R., & Otroshy, M. (2014). Effects of plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungus on plant growth, stevioside, NPK, and chlorophyll content of Stevia rebaudiana. Journal of Plant Interactions, 9(1), 128–136. https://doi.org/10.1080/17429145.2013.779035spa
dc.relation.referencesvan der Heijden, M. G. A., Martin, F. M., Selosse, M., & Sanders, I. R. (2015). Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytologist, 205(4), 1406–1423. https://doi.org/10.1111/nph.13288spa
dc.relation.referencesvan Veen, J. A., van Overbeek, L. S., & van Elsas, J. D. (1997). Fate and activity of microorganisms introduced into soil. Microbiology and Molecular Biology Reviews : MMBR, 61(2), 121–135. https://doi.org/10.1128/.61.2.121-135.1997spa
dc.relation.referencesVarga, S., Finozzi, C., Vestberg, M., & Kytöviita, M.-M. (2015). Arctic arbuscular mycorrhizal spore community and viability after storage in cold conditions. Mycorrhiza, 25(5), 335–343. https://doi.org/10.1007/s00572-014-0613-4spa
dc.relation.referencesVásquez, W., & Ugalde, L. A. (1995). Rendimiento y calidad de sitio para Gmelina arborea, Tectona grandis, Bombacopsis quinata y Pinus caribaea, en Guanacaste, Costa Rica.spa
dc.relation.referencesVelázquez, M. S., Cabello, M. N., Elíades, L. A., Russo, M. L., Allegrucci, N., & Schalamuk, S. (2017). Combination of phosphorus solubilizing and mobilizing fungi with phosphate rocks and volcanic materials to promote plant growth of lettuce (Lactuca sativa L.). Revista Argentina de Microbiologia, 49(4), 347–355. https://doi.org/10.1016/j.ram.2016.07.005spa
dc.relation.referencesVergara, C., & Araujo, K. E. C. (2024). Arbuscular Mycorrhizal Symbiosis: From Infection Signaling to Bidirectional Nutrient Exchanges. In Arbuscular Mycorrhizal Fungi in Sustainable Agriculture: Inoculum Production and Application (pp. 401–418). Springer Nature Singapore. https://doi.org/10.1007/978-981-97-0296-1_18spa
dc.relation.referencesVierheilig, H., Coughland, A., Wiss U, & Piche Y. (1998). nk and Vinegar, a simple staining technique for Arbuscular Mycorrhizal Fungi. Applied and Environmental Microbiology, 5004–5007spa
dc.relation.referencesVillar, P. (2003). Importancia de la calidad de planta en los proyectos de revegetación. In T. Espigares Pinilla, J. M. Rey-Benayas, & J. M. Nicolau Ibarra (Eds.), Restauración de Ecosistemas Mediterráneos. Universidad de Alcalá / Asociación Española de Ecología Terrestre.spa
dc.relation.referencesVučić, V., & Müller, S. (2021). New developments in biological phosphorus accessibility and recovery approaches from soil and waste streams. Engineering in Life Sciences, 21(3–4), 77–86. https://doi.org/10.1002/elsc.202000076spa
dc.relation.referencesWang, T., Camps-Arbestain, M., Hedley, M., & Bishop, P. (2012). Predicting phosphorus bioavailability from high-ash biochars. Plant and Soil, 357(1–2), 173–187. https://doi.org/10.1007/s11104-012-1131-9spa
dc.relation.referencesWang, Y., Wang, F., Lu, H., Liu, Y., & Mao, C. (2021). Phosphate Uptake and Transport in Plants: An Elaborate Regulatory System. Plant and Cell Physiology, 62(4), 564–572. https://doi.org/10.1093/pcp/pcab011spa
dc.relation.referencesWei, Z., Sixi, Z., Xiuqing, Y., Guodong, X., Baichun, W., & Baojing, G. (2023). Arbuscular mycorrhizal fungi alter rhizosphere bacterial community characteristics to improve Cr tolerance of Acorus calamus. Ecotoxicology and Environmental Safety, 253, 114652. https://doi.org/10.1016/j.ecoenv.2023.114652spa
dc.relation.referencesWhitelaw, M. A. (1999). Growth Promotion of Plants Inoculated with Phosphate-Solubilizing Fungi (pp. 99–151). https://doi.org/10.1016/S0065-2113(08)60948-7spa
dc.relation.referencesWilliamson, J., Matthews, A. C., & Raymond, B. (2023). Competition and co-association, but not phosphorous availability, shape the benefits of phosphate-solubilizing root bacteria for maize (Zea mays). Access Microbiology, 5(12). https://doi.org/10.1099/acmi.0.000543.v3spa
dc.relation.referencesWilpiszeski, R. L., Aufrecht, J. A., Retterer, S. T., Sullivan, M. B., Graham, D. E., Pierce, E. M., Zablocki, O. D., Palumbo, A. V., & Elias, D. A. (2019). Soil Aggregate Microbial Communities: Towards Understanding Microbiome Interactions at Biologically Relevant Scales. Applied and Environmental Microbiology, 85(14). https://doi.org/10.1128/AEM.00324-19spa
dc.relation.referencesXiao, D., Che, R., Liu, X., Tan, Y., Yang, R., Zhang, W., He, X., Xu, Z., & Wang, K. (2019). Arbuscular mycorrhizal fungi abundance was sensitive to nitrogen addition but diversity was sensitive to phosphorus addition in karst ecosystems. Biology and Fertility of Soils, 55(5), 457–469. https://doi.org/10.1007/s00374-019-01362-xspa
dc.relation.referencesXiao, L., Ma, Y., Yuwen, P., Du, D., Li, P., Sun, C., & Xue, S. (2022). Mixed grass species differ in rhizosphere microbial community structure and function response to drought compared to monocultures. Rhizosphere, 24, 100615. https://doi.org/10.1016/j.rhisph.2022.100615spa
dc.relation.referencesXing, Y., Wang, F., Yu, S., Zhu, Y., Ying, Y., & Shi, W. (2024). Enhancing Phyllostachys edulis seedling growth in phosphorus-deficient soil: complementing the role of phosphate-solubilizing microorganisms with arbuscular mycorrhizal fungi. Plant and Soil, 497(1–2), 449–466. https://doi.org/10.1007/s11104-023-06406-8spa
dc.relation.referencesYang, Y., Shi, X., Ballent, W., & Mayer, B. K. (2017). Biological Phosphorus Recovery: Review of Current Progress and Future Needs. Water Environment Research, 89(12), 2122–2135. https://doi.org/10.2175/106143017X15054988926424spa
dc.relation.referencesZapata, F., & Roy, R. N. (2007). Utilización de las rocas fosfóricas para una agricultura sostenible. FAO.spa
dc.relation.referencesZhang, L., Ding, X., Chen, S., He, X., Zhang, F., & Feng, G. (2014). Reducing carbon: phosphorus ratio can enhance microbial phytin mineralization and lessen competition with maize for phosphorus. Journal of Plant Interactions, 9(1), 850–856. https://doi.org/10.1080/17429145.2014.977831spa
dc.relation.referencesZhang, L., Fan, J., Ding, X., He, X., Zhang, F., & Feng, G. (2014). Hyphosphere interactions between an arbuscular mycorrhizal fungus and a phosphate solubilizing bacterium promote phytate mineralization in soil. Soil Biology and Biochemistry, 74, 177–183. https://doi.org/10.1016/j.soilbio.2014.03.004spa
dc.relation.referencesZhang, L., Xu, M., Liu, Y., Zhang, F., Hodge, A., & Feng, G. (2016). Carbon and phosphorus exchange may enable cooperation between an arbuscular mycorrhizal fungus and a phosphate‐solubilizing bacterium. New Phytologist, 210(3), 1022–1032. https://doi.org/10.1111/nph.13838spa
dc.relation.referencesZhang, L., Zhou, J., George, T. S., Limpens, E., & Feng, G. (2022). Arbuscular mycorrhizal fungi conducting the hyphosphere bacterial orchestra. Trends in Plant Science, 27(4), 402–411. https://doi.org/10.1016/j.tplants.2021.10.008spa
dc.relation.referencesZhu, J., Li, M., & Whelan, M. (2018). Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: A review. Science of The Total Environment, 612, 522–537. https://doi.org/10.1016/j.scitotenv.2017.08.095spa
dc.relation.referencesZuluaga, J. J., Osorio, V. E., Gutiérrez, B. A., Romero, J. L., Rodríguez, M., Pérez, D., Solipa, F., Martínez, J., Baquero, C., Ramírez, M., & Roveda, G. (2011). Niveles nutricionales en vivero y en establecimiento de plantaciones de dos especies forestales (Gmelina arborea y Pachira quinata) en el Caribe colombiano.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc570 - Biología::579 - Historia natural microorganismos, hongos, algasspa
dc.subject.ddc570 - Biología::571 - Fisiología y temas relacionadosspa
dc.subject.lembMICROORGANISMOS DE SUELOSspa
dc.subject.lembSoil micro-organismseng
dc.subject.lembMICROBIOLOGIA AGRICOLAspa
dc.subject.lembAgricultural microbiologyeng
dc.subject.lembHONGOS DE SUELOSspa
dc.subject.lembSoil fungieng
dc.subject.lembMICORRIZASspa
dc.subject.lembMycorrhizaeeng
dc.subject.lembDESARROLLO FORESTALspa
dc.subject.lembForestry developmenteng
dc.subject.lembCULTIVOS HORTICOLASspa
dc.subject.lembHorticultural Cropseng
dc.subject.lembBACTERIOLOGIA AGRICOLAspa
dc.subject.lembBacteriology, agriculturaleng
dc.subject.lembSUELOS-CONTENIDO DE FOSFOROspa
dc.subject.lembSoils - phosphorus contenteng
dc.subject.proposalHongos Formadores de Micorrizas Arbusculares (HFMA)spa
dc.subject.proposalFertilización fosfatadaspa
dc.subject.proposalCompetenciaspa
dc.subject.proposalCrecimiento radicalspa
dc.subject.proposalPhosphorus fertilizationeng
dc.subject.proposalArbuscular Mycorrhizal Fungi (AMF)eng
dc.subject.proposalRoot growtheng
dc.subject.proposalCompetitioneng
dc.titleInteracción de Rhizophagus irregularis y microorganismos solubilizadores de fósforo y su efecto sobre el crecimiento de Gmelina arborea en viverospa
dc.title.translatedInteraction of Rhizophagus irregularis and phosphorus-solubilizing microorganisms and its effect on the growth and survival of Gmelina arborea in the nurseryeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentDataPaperspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1010221587.2024.pdf
Tamaño:
1.63 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Biología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: