Kinetic wealth-exchange model of economic growth
| dc.contributor.advisor | Quimbay Herrera, Carlos José | spa |
| dc.contributor.author | Quevedo Vega, David Santiago | spa |
| dc.contributor.corporatename | Universidad Nacional de Colombia | spa |
| dc.contributor.researchgroup | Econofisica y Sociofisica | spa |
| dc.date.accessioned | 2020-09-01T03:23:42Z | spa |
| dc.date.available | 2020-09-01T03:23:42Z | spa |
| dc.date.issued | 2019 | spa |
| dc.description.abstract | En esta tesis se propone un modelo cinético de intercambio de riqueza con crecimiento económico (KWEMEG) en el que se explora el efecto del ahorro de la producción, los im- puestos con beneficio tributario y la aversión al intercambio, sobre las distribuciones de riqueza y de dinero. Este modelo se obtiene a partir de una extensión al formalismo mi- croeconómico del modelo de Chakraborti y Chakrabarti (CCM), donde las preferencias de consumo se describen mediante funciones de utilidad tipo Cobb-Douglas. Al maximizar es- tas funciones, sujetas a ciertas restricciones sobre el consumo, se obtienen reglas generales de interacción entre agentes económicos, caracterizadas por la emergencia de un régimen conservativo, donde la riqueza total se mantiene constante en el tiempo y las interacciones entre agentes se reducen a meros intercambios monetarios; y un régimen no conservativo, en el cual la riqueza crece exponencialmente, induciendo un efecto de crecimiento económi- co a tasa constante. Como casos particulares del KWEMEG se presentan por separado en esta tesis tres nuevos modelos en el contexto de la econofı́sica, que extienden el CCM. Su dinámica macroscópica se estudia analı́ticamente en todos los casos, utilizando la ecuación cinética de Boltzmann; y numéricamente por medio de simulaciones de Monte Carlo. Esto permite ajustar las distribuciones emergentes a densidades de probabilidad tipo gamma, y establecer relaciones analı́ticas para sus parámetros, ası́ como para el ı́ndice de Gini, con el cual se estudia el nivel de desigualdad en las distribuciones. Adicionalemente, en el régimen no conservativo es posible estudiar distribuciones auto-semejantes utilizando una aproxima- ción de campo medio, que abre la puerta a la discusión sobre la posible existencia de colas de Pareto. Como un resultado general, al agregar en el modelo un efecto relacionado con el ingreso por salario, se obtiene como una propiedad emergente la Segunda ley fundamental del capitalismo, de Piketty. Las ideas propuestas en este trabajo atan algunos de los problemas de la economı́a moderna con el discurso tradicional de los modelos cinéticos de intercambio y proponen un puente que conecta de forma efectiva la microfundamentación basada en la maximización de la función de utilidad y los modelos no conservativos. Ambos resultados son novedosos en el contexto de la econofı́sica. | spa |
| dc.description.abstract | This thesis proposes a Kinetic wealth-exchange model of economic growth (KWEMEG) which explores the effects of saving of production, tax benefits with redistribution, and exchange aversion, over the wealth and the money distributions. The model is achieved extending the microeconomic formalism of the Chakraborti and Chakrabarti model (CCM), based on the Cobb-Douglas utility functions describing the preferences for consumption. The maximization of this functions, subjected to certain constraints over consumption leads to general rules of interaction between economic agents that induces the emergence of a conservative regime, where the total wealth of the system remains constant in time, and the interactions between agents are reduced to mere monetary exchanges; and a non-conservative regime, where the wealth and income increase exponentially, inducing an effect of economic growth with a constant rate. The particular cases of the KWEMEG set three new models in the context of econophysics that extend the CCM. All the cases are presented separately in the thesis, and their macroscopic dynamics are studied using the Boltzmann kinetic equation and Monte Carlo simulations, which allows to fit the emergent distributions to the gamma probability density function and to establish analytical relations for its parameters and the evolution of the economic inequality in terms of the Gini index. In addition, it is possible to study a mean field approach for self-similar distributions that allows to discuss the possibility of Pareto tails in the non-conservative regime. As a general result, the model leads to Piketty’s second fundamental law of capitalism as an emergent property, by adding an effect of income due to salary. The ideas developed in this work tie some of the problems of modern economics with the traditional speech of kinetic exchange models of markets, and propose an effective bridge between the microfoundation based on the maximization of the utility function and the non-conservative models. Both results are new in the context of econophysics. | spa |
| dc.description.degreelevel | Maestría | spa |
| dc.format.extent | 77 | spa |
| dc.format.mimetype | application/pdf | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/78347 | |
| dc.language.iso | eng | spa |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
| dc.publisher.department | Departamento de Física | spa |
| dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Física | spa |
| dc.relation.references | B. B. Mandelbrot. The fractal geometry of nature. Freeman, 1982. | spa |
| dc.relation.references | V. Pareto. Cours d’économie politique. Lausanne, 1897. | spa |
| dc.relation.references | A. Dragulescu and V. Yakovenko. Exponential and power-law probability distributions of wealth and income in the united kingdom and the united states. Physica A: Statistical Mechanics and its Applications, 299:213, 2001. | spa |
| dc.relation.references | M. J. Moura Jr and M. B Ribeiro. Evidence for the gompertz curve in the income distribution of brazil 1978–2005. European Physical Journal B: Condensed Matter and Complex Systems, 67:101, 2009. | spa |
| dc.relation.references | A. Dragulescu and V. Yakovenko. Evidence for the exponential distribution of income in the usa. European Physical Journal B: Condensed Matter and Complex Systems, 20:585, 2001. | spa |
| dc.relation.references | M. Patriarca, A. Chakraborti, and K. Kaski. Gibbs versus non-gibbs distributions in money dynamics. Physica A: Statistical Mechanics and its Applications, 340:334, 2004. | spa |
| dc.relation.references | M. A. Saif and Prashant M. Gade. Emergence of power-law in a market with mixed models. Physica A: Statistical Mechanics and its Applications, 384:448, 2007. | spa |
| dc.relation.references | A. Dragulescu and V. Yakovenko. Statistical mechanics of money. European Physical Journal B: Condensed Matter and Complex Systems, 17:723, 2000. | spa |
| dc.relation.references | A. Chakraborti and B. K. Chakrabarti. Statistical mechanics of money: how saving propensity affects its distribution. European Physical Journal B: Condensed Matter and Complex Systems, 17:167, 2000. | spa |
| dc.relation.references | J. P. Bouchaud and M. Mézard. Wealth condensation in a simple model of economy. Physica A: Statistical Mechanics and its Applications, 282:536, 2000. | spa |
| dc.relation.references | F. Slanina. Inelastically scattering particles and wealth distribution in an open economy. Physical Review E, 69:04602, 2004. | spa |
| dc.relation.references | S. Cordier, L. Pareschi, and G. Toscani. On a kinetic model for a simple market economy. Journal of Statistical Physics, 120:253, 2005. | spa |
| dc.relation.references | B. B. Mandelbrot. The pareto-levy law and the distribution of income. International Economic Review, 1:79, 1960. | spa |
| dc.relation.references | M. Gallegati, M. Keen, T. Lux, and P. Ormerod. Worrying trends in econophysics. Physica A: Statistical Mechanics and its Applications, 370:1, 2006. | spa |
| dc.relation.references | J. Angle. The surplus theory of social stratification and the size distribution of personal wealth. Social Forces, 65:293, 1986. | spa |
| dc.relation.references | S. Ispolatov, P. L. Krapivsky, and S. Redner. Wealth distributions in asset exchange models. European Physical Journal B: Condensed Matter and Complex Systems, 2:267, 1998. | spa |
| dc.relation.references | V. M. Yakovenko and J. B. Rosser Jr. Colloquium: Statistical mechanics of money, wealth, and income. Reviews of Modern Physics, 81:1703, 2009. | spa |
| dc.relation.references | M. Patriarca, A. Chakraborti, and K. Kaski. Statistical model with a standard Γ distribution. Physical Review E, 70:016104, 2004. | spa |
| dc.relation.references | J. Angle. The inequality process vs. the saved wealth model. two particle systems of income distribution: which does better empirically? Munich Personal RePEc Archive. See http://econpapers.repec.org/RePEc:pra:mprapa:20835, 2010. | spa |
| dc.relation.references | T. Lux. Emergent statistical wealth distributions in simple monetary exchange models: a critical review, page 51. Springer Milan, Milano, 2005. | spa |
| dc.relation.references | J. Silver, E. Slud, and K. Takamoto. Statistical equilibrium wealth distributions in an exchange economy with stochastic preferences. Journal of Economic Theory, 106:417, 2002. | spa |
| dc.relation.references | H. Varian. Microeconomic Analysis. Norton, 3rd ed edition, 1992. | spa |
| dc.relation.references | A. S. Chakrabarti and B. K Chakrabarti. Microeconomics of the ideal gas like market models. Physica A: Statistical Mechanics and its Applications, 388(19):4151, 2009. | spa |
| dc.relation.references | B. K. Chakrabarti, A. Chakraborti, S. Chakravarty, and A. Chatterjee. Econophysics of income and wealth distributions. Cambridge University Press, Cambridge, 2013. | spa |
| dc.relation.references | R. Coelho, P. Richmond, P. Barry, and S. Hutzler. Double power laws in income and wealth distributions. Physica A: Statistical Mechanics and its Applications, 387:3847, 2008. | spa |
| dc.relation.references | B. M. Boghosian. Kinetics of wealth and the pareto law. Physical Review E, 89:042804, 2014. | spa |
| dc.relation.references | B. Düring, L. Pareschi, and G. Toscani. Kinetic models for optimal control of wealth inequalities. European Physical Journal B: Condensed Matter and Complex Systems, 91:265, 2018. | spa |
| dc.relation.references | J. Li, B. M. Boghosian, and C. Li. The affine wealth model: An agent-based model of asset exchange that allows for negative-wealth agents and its empirical validation. Physica A: Statistical Mechanics and its Applications, 516:423, 2019. | spa |
| dc.relation.references | L. Pareschi and G. Toscani. Self-similarity and power-like tails in nonconservative kinetic models. Journal of Statistical Physics, 124:747, 2006. | spa |
| dc.relation.references | D. Matthes and G. Toscani. On steady distributions of kinetic models of conservative economies. Journal of Statistical Physics, 130:1087, 2008. | spa |
| dc.relation.references | D. Sornette. Multiplicative processes and power laws. Physical Review E, 57:4811, 1998. | spa |
| dc.relation.references | A. Chatterjee, Chakrabarti, B. K., and Manna S.S. Pareto law in a kinetic model of market with random saving propensity. Physica A: Statistical Mechanics and its Applications, 335:155, 2004. | spa |
| dc.relation.references | U. Basu and P. K. Mohanty. Modeling wealth distribution in growing markets. European Physical Journal B: Condensed Matter and Complex Systems, 65:585, 2008. | spa |
| dc.relation.references | P. Aghion, E. Caroli, and C. Garcia-Penalosa. Inequality and economic growth: the perspective of the new growth theories. Journal of Economic literature, 37:1615, 1999. | spa |
| dc.relation.references | R. Benabou. Inequality and growth. NBER macroeconomics annual, 11:11, 1996. | spa |
| dc.relation.references | T. Piketty. Capital in the twenty-first century. Harvard University Press, London, 2014. | spa |
| dc.relation.references | N. K. Liu, W. K. Lubbers, J. Tobochnik, B. M. Boghosian, and H. Gould. The effect of growth on equality in models of the economy. arXiv:1305.0794, 2013. | spa |
| dc.relation.references | Y. Berman and Y. Shapira. Revisiting r¿g—the asymptotic dynamics of wealth inequa- lity. Physica A: Statistical Mechanics and its Applications, 467:562, 2017. | spa |
| dc.relation.references | Y. Berman, Y. Shapira, and M. Schwartz. A fokker-planck model for wealth inequality dynamics. EPL (Europhysics Letters), 118:38004, 2017. | spa |
| dc.relation.references | Z. Burda, P. Wojcieszak, and K. Zuchniak. Dynamics of wealth inequality. Comptes Rendus Physique, 317:349, 2019. | spa |
| dc.relation.references | D. Romer. Advanced macroeconomics. McGraw Hill, 3rd ed edition, 2006. | spa |
| dc.relation.references | R. M. Solow. A contribution to the theory of economic growth. The Quarterly Journal of Economics, 70:65, 1956. | spa |
| dc.relation.references | D. S. Quevedo and C. J. Quimbay. Piketty’s second fundamental law of capitalism as an emergent property in a kinetic wealth-exchange model of economic growth. arXiv preprint arXiv:1903.00952, 2019. | spa |
| dc.relation.references | D. S. Quevedo and C. J. Quimbay. Non-conservative kinetic model of wealth exchange with saving of production. Submitted to European Physical Journal B: Condensed Matter and Complex Systems, 2020. | spa |
| dc.relation.references | Daron Acemoglu. Introduction to modern economic growth. Privredna kretanja i eko- nomska politika, 123:89, 2010. | spa |
| dc.relation.references | A. Mas-Colell, M.D. Whinston, and J.R. Green. Microeconomic Theory. Oxford Uni- versity Press, 1st ed edition, 1995. | spa |
| dc.relation.references | W. Nicholson and C. M. Snyder. Microeconomic theory: Basic principles and extensions. Thomson Higher Education, 10th ed edition, 2012. | spa |
| dc.relation.references | T. W. Swan. Economic growth and capital accumulation. Economic record, 32:334, 1956. | spa |
| dc.relation.references | M. Matsumoto and T. Nishimura. Mersenne twister: a 623-dimensionally equidistribu- ted uniform pseudo-random number generator. ACM Transactions on Modeling and Computer Simulation (TOMACS), 8:3, 1998. | spa |
| dc.relation.references | E. M. Lifschitz and L. P. Pitajewski. Chapter i - physical kinetics. In Textbook of theoretical physics. 10. Butterworth-Heinemann, Oxford, 1981. | spa |
| dc.relation.references | M. H. Ernst. Nonlinear model-boltzmann equations and exact solutions. Physics Re- ports, 78:1, 1981. | spa |
| dc.relation.references | D. Ben-Avraham, E. Ben-Naim, K. Lindenberg, and A. Rosas. Self-similarity in random collision processes. Physical Review E, 68:050103, 2003. | spa |
| dc.relation.references | M. Lallouache, A. Jedidi, and A. Chakraborti. Wealth distribution: to be or not to be a gamma? Science and Culture (Kolkata, India), 76:478, 2010. | spa |
| dc.relation.references | P. Repetowicz, S. Hutzler, and P. Richmond. Dynamics of money and income distribu- tions. Physica A: Statistical Mechanics and its Applications, 356:641, 2005. | spa |
| dc.relation.references | J. B. McDonald and B. C. Jensen. An analysis of some properties of alternative measures of income inequality based on the gamma distribution function. Journal of the American Statistical Association, 74:856, 1979. | spa |
| dc.relation.references | World bank Group. Gini dataset: Retreived january, 2020 http://api.worldbank.org/v2/en/indicator/si.pov.gini?downloadformat=excel. | spa |
| dc.relation.references | Asim Ghosh, Arnab Chatterjee, Jun-ichi Inoue, and Bikas K Chakrabarti. Inequality measures in kinetic exchange models of wealth distributions. Physica A: Statistical Mechanics and its Applications, 451:465, 2016. | spa |
| dc.relation.references | C. E. Shannon. A mathematical theory of communication. Bell System Technical Journal, 27:379, 1948. | spa |
| dc.relation.references | T. Piketty and G. Zucman. Capital is back: wealth-income ratios in rich countries 1700–2010. The Quarterly Journal of Economics, 129:1255, 2014. | spa |
| dc.relation.references | T. Piketty and E. Saez. Inequality in the long run. Science, 344:838, 2014. | spa |
| dc.rights | Derechos reservados - Universidad Nacional de Colombia | spa |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
| dc.rights.license | Atribución-SinDerivadas 4.0 Internacional | spa |
| dc.rights.spa | Acceso abierto | spa |
| dc.rights.uri | http://creativecommons.org/licenses/by-nd/4.0/ | spa |
| dc.subject.ddc | 332 - Economía financiera | spa |
| dc.subject.ddc | 530 - Física | spa |
| dc.subject.ddc | 330 - Economía | spa |
| dc.subject.ddc | 338 - Producción | spa |
| dc.subject.ddc | 532 - Mecánica de fluidos | spa |
| dc.subject.proposal | Piketty | spa |
| dc.subject.proposal | Piketty | eng |
| dc.subject.proposal | Solow model | eng |
| dc.subject.proposal | modelos cinéticos de intercambio | spa |
| dc.subject.proposal | crecimiento económico | spa |
| dc.subject.proposal | kinetic exchange models of markets | eng |
| dc.subject.proposal | economic growth | eng |
| dc.subject.proposal | ecuación de Bol- tzmann | spa |
| dc.subject.proposal | aproximación de campo medio | spa |
| dc.subject.proposal | boltzmann equation | eng |
| dc.subject.proposal | mean field approximation | eng |
| dc.subject.proposal | modelo de Solow | spa |
| dc.title | Kinetic wealth-exchange model of economic growth | spa |
| dc.type | Trabajo de grado - Maestría | spa |
| dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
| dc.type.content | Text | spa |
| dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |

