Estudio teórico y computacional de la formación de películas delgadas de nitruros y carburos metálicos

dc.contributor.advisorRestrepo-Parra, Elisabeth
dc.contributor.advisorAmaya-Roncancio, Sebastian
dc.contributor.authorOrtiz González, Angel Santiago
dc.contributor.cvlacOrtiz González, Angel Santiago [https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001824074]spa
dc.contributor.orcidOrtiz González, Angel Santiago [0000-0003-4304-9894]spa
dc.contributor.researchgroupPcm Computational Applicationsspa
dc.contributor.scopusOrtiz González, Angel Santiago [58632146200]spa
dc.date.accessioned2024-06-28T17:50:41Z
dc.date.available2024-06-28T17:50:41Z
dc.date.issued2023
dc.descriptiongraficasspa
dc.description.abstractA través de simulaciones implementadas bajo el método de Montecarlo Cinético (KMC), se genera un modelo multiescala para describir el crecimiento de películas delgadas de CrN, ZrN, Cr y W. Para determinar el papel de los procesos de adsorción, difusión, energías de enlace, en bulk, clúster y superficie de los mencionados elementos, sobre la evolución de la textura de películas delgadas bajo parámetros experimentales. La simulación de crecimiento se basa en estructuras rígidas tipo FCC monocristalinas. Se implementan variaciones en la temperatura y disponibilidad de los elementos dentro del proceso de adsorción presentados gráficamente. A su vez, se emplearán cálculos numéricos basados en Teoría del Funcional de la Densidad Electrónica (DFT), para obtener los parámetros energéticos y estructurales requeridos por el modelo KMC. El crecimiento de la morfología dependiente del tiempo, es analizado con los parámetros de rugosidad (RMS) y la densidad de partículas por capa. De esta forma, se busca una comprensión detallada de los procesos atomísticos que controlan la evolución de la textura de los materiales mencionados.spa
dc.description.abstractThrough simulations implemented under the Kinetic Monte Carlo (KMC) method, it was generated a multiscale model to describe the growth of CrN, ZrN, Cr and W thin films. To determine the role of the processes of adsorption, diffusion, binding energies, in bulk, cluster and surface of the mentioned elements, on the evolution of the texture of thin films under experimental parameters. The growth simulation is based in rigid monocrystalline FCC type structures. Variations are implemented in the temperature and availability of the elements within the adsorption process presented graphically. In turn, numerical calculations based on Functional Theory will be used. of the Electron Density (DFT), to obtain the energetic and structural parameters required by the KMC model. The time-dependent growth ofmorphology is analyzed with the roughness parameters (RMS) and the density of particles per layer. Of In this way, a detailed understanding of the atomistic processes that control the evolution of the texture of the mentioned materials.eng
dc.description.curricularareaCiencias Naturales.Sede Manizalesspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Físicaspa
dc.description.researchareaCiencia de materiales computacionalspa
dc.description.sponsorshipMinisterio de Ciencias - MinCiencias del programa Joven investigador 2020spa
dc.format.extentxxi, 106 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86332
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeManizales, Colombiaspa
dc.publisher.programManizales - Ciencias Exactas y Naturales - Maestría en Ciencias - Físicaspa
dc.relation.referencesWolfram Quester. Sketch pseudopotentials, 2006.spa
dc.relation.referencesRichard LeSar. Kinetic monte carlo. Introduction to Computational Materials Science, pages 183–195, 3 2013.spa
dc.relation.referencesNikolaos Cheimarios, Deifilia To, George Kokkoris, George Memos, and Andreas G. Boudouvis. Monte carlo and kinetic monte carlo models for deposition processes: A review of recent works. Frontiers in Physics, 9:165, 4 2021.spa
dc.relation.referencesPeifeng Zhang, Xiaoping Zheng, Suoping Wu, Jun Liu, and Deyan He. Kinetic monte carlo simulation of cu thin film growth. Vacuum, 72:405–410, 1 2004.spa
dc.relation.referencesF. Nita, C. Mastail, and G. Abadias. Three-dimensional kinetic monte carlo simulations of cubic transition metal nitride thin film growth. Physical Review B, 93, 2 2016.spa
dc.relation.referencesK. Sbiaai, H. Ataalite, M. Dardouri, A. Hasnaoui, and A. Fathi. Investigation of growth mode and surface roughness during homoepitaxial growth of silver metal using kinetic monte carlo simulation. Materials Today: Proceedings, 66:459–465, 1 2022.spa
dc.relation.referencesW. Lengauer. Transition metal carbides, nitrides, and carbonitrides. Handbook of Ceramic Hard Materials, pages 202–252, 3 2008.spa
dc.relation.referencesN. Kazama, Neil Heiman, R. L. White, N. Kazama, Neil Heiman, and R. L. White. Magnetic properties of amorphous fec thin films. Journal of Applied Physics, 49:1706–1708, 1978.spa
dc.relation.referencesS. M. Kang, S. G. Yoon, S. J. Suh, and D. H. Yoon. Control of electrical resistivity of tan thin films by reactive sputtering for embedded passive resistors. Thin Solid Films, 516:3568–3571, 4 2008.spa
dc.relation.referencesMarcus Turowski, Marco Jup´e, Henrik Ehlers, Thomas Melzig, Andreas Pflug, and Detlev Ristau. Simulation in thin film technology. Optical Systems Design 2015: Advances in Optical Thin Films V, 9627:962707, 9 2015.spa
dc.relation.referencesV. A. Vasil’ev and P. S. Chernov. Modeling the growth of thin-film surfaces. Mathematical Models and Computer Simulations, 4:622–628, 11 2012.spa
dc.relation.referencesSebastián Roncancio-Amaya. Modelación y simulación de propiedades mecánicas de multicapas de Cr/CrN, 2011.spa
dc.relation.referencesJinwoo Park, Byung Deok Yu, and Suklyun Hong. Van der waals density functional theory study for bulk solids with bcc, fcc, and diamond structures. Current Applied Physics, 15:885–891, 8 2015.spa
dc.relation.referencesCorbett C. Battaile. The kinetic monte carlo method: Foundation, implementation, and application. Computer Methods in Applied Mechanics and Engineering, 197:3386–3398, 7 2008.spa
dc.relation.referencesY. G. Zhu and T. L. Wang. Kinetic monte carlo simulation of the initial growth of ag thin films. Applied Surface Science, 324:831–836, 1 2015.spa
dc.relation.referencesM. F. García, E. Restrepo-Parra, and J. C. Riaño-Rojas. Modeling and simulation of the deposition/relaxation processes of polycrystalline diatomic structures of metallic nitride films. Journal of Crystal Growth, 418:70–78, 5 2015.spa
dc.relation.referencesR. Tonneau, P. Moskovkin, J. Muller, T. Melzig, E. Haye, S. Konstantinidis, A. Pflug, and S. Lucas. Understanding the role of energetic particles during the growth of tio2 thin films by reactive magnetron sputtering through multi-scale monte carlo simulations and experimental deposition. Journal of Physics D: Applied Physics, 54:155203, 2 2021spa
dc.relation.referencesRubenson Mareus, Cédric Mastail, Florin Nita, Anny Michel, and Gr´egory Abadias. Effect of temperature on the growth of tin thin films by oblique angle sputter-deposition: A three-dimensional atomistic computational study. Computational Materials Science, 197, 9 2021.spa
dc.relation.referencesJohn A. Purton, Alin M. Elena, and Gilberto Teobaldi. Kinetic monte carlo modeling of oxide thin film growth. Journal of Chemical Physics, 156, 6 2022.spa
dc.relation.referencesSangtae Kim, Hyungmin An, Sangmin Oh, Jisu Jung, Byungjo Kim, Sang Ki Nam, and Seungwu Han. Atomistic kinetic monte carlo simulation on atomic layer deposition of tin thin film. Computational Materials Science, 213, 10 2022.spa
dc.relation.referencesW. J. Rodgers, P. W. May, N. L. Allan, and J. N. Harvey. Three-dimensional kinetic monte carlo simulations of diamond chemical vapor deposition. Journal of Chemical Physics, 142:214707, 6 2015.spa
dc.relation.referencesJoseph M. Monti, James A. Stewart, Joyce O. Custer, David P. Adams, Diederik Depla, and Rémi Dingreville. Linking simulated polycrystalline thin film microstructures to physical vapor deposition conditions. Acta Materialia, 245, 2 2023.spa
dc.relation.referencesHassan Ataalite, Moloudi Dardouri, Abdellatif Hasnaoui, and Khalid Sbiaai. Morphological surface study of silver electrodeposition by kinetic monte carlo-embedded atom method. Physica Status Solidi (B) Basic Research, 259, 7 2022.spa
dc.relation.referencesZhaoxia Rao, Tong Su, Thomas Koenig, Gregory B. Thompson, Diederik Depla, and Eric Chason. Effect of processing conditions on residual stress in sputtered transition metal nitrides (tin, zrn and tan): Experiments and modeling. Surface and Coatings Technology, 447:128880, 10 2022.spa
dc.relation.referencesAudrey Valentin, Ovidiu Brinza, Samir Farhat, Jocelyn Achard, and Fabien Bénédic. 3d kinetic monte-carlo simulations of diamond growth on (1 0 0) surfaces. Diamond and Related Materials, 123, 3 2022.spa
dc.relation.referencesAdam L. Lloyd, Ying Zhou, Miao Yu, Chris Scott, Roger Smith, and Steven D. Kenny. Reaction pathways in atomistic models of thin film growth. Journal of Chemical Physics, 147, 10 2017.spa
dc.relation.referencesShree Ram Acharya and Talat S. Rahman. Toward multiscale modeling of thin-film growth processes using slkmc. Journal of Materials Research, 33:709–719, 3 2018.spa
dc.relation.referencesS. A. Dokukin, S. V. Kolesnikov, A. M. Saletsky, and A. L. Klavsyuk. Growth of the pt/cu(111) surface alloy: Self-learning kinetic monte carlo simulations. Journal of Alloys and Compounds, 763:719–727, 9 2018.spa
dc.relation.referencesShabnam Rasoulian and Luis A. Ricardez-Sandoval. A robust nonlinear model pre dictive controller for a multiscale thin film deposition process. Chemical Engineering Science, 136:38–49, 11 2015.spa
dc.relation.referencesRubenson Mareus, Cédric Mastail, Fırat Anğay, Noël Brunetière, and Gregory Abadias. Study of columnar growth, texture development and wettability of reactively sputter-deposited tin, zrn and hfn thin films at glancing angle incidence. Surface and Coatings Technology, 399, 10 2020.spa
dc.relation.referencesBoudjemaa Bouaouina, Cédric Mastail, Aurélien Besnard, Rubenson Mareus, Florin Nita, Anny Michel, and Grégory Abadias. Nanocolumnar tin thin film growth by oblique angle sputter-deposition: Experiments vs. simulations. Materials Design, 160:338–349, 12 2018.spa
dc.relation.referencesWalter Tewes, Oleg Buller, Andreas Heuer, Uwe Thiele, and Svetlana V. Gurevich. Comparing kinetic monte carlo and thin-film modeling of transversal instabilities of ridges on patterned substrates. Journal of Chemical Physics, 146, 11 2016.spa
dc.relation.referencesTung B.T. To, Renan Almeida, Sukarno O. Ferreira, and Fábio D.A. Aarão Reis. Roughness and correlations in the transition from island to film growth: Simulations and application to cdte deposition. Applied Surface Science, 560:149946, 9 2021.spa
dc.relation.referencesR. Tonneau, P. Moskovkin, A. Pflug, and S. Lucas. Tiox deposited by magnetron sputtering: A joint modelling and experimental study. Journal of Physics D: Applied Physics, 51, 4 2018.spa
dc.relation.referencesEric Chason and Allan F. Bower. Kinetic monte carlo simulations of stress and morphology evolution in polycrystalline thin films. Journal of Applied Physics, 125:115304, 3 2019.spa
dc.relation.referencesDanyun Cai, Yunjie Mo, Xiaofang Feng, Yingyou He, and Shaoji Jiang. Simulation study of temperature-dependent diffusion behaviors of ag/ag(001) at low substrate temperature. Applied Surface Science, 406:277–284, 6 2017.spa
dc.relation.referencesDatai Hui, Shun Zhou, Changlong Cai, Shigeng Song, Zhentao Wu, Jian Song, Da Zhang, Xiao Meng, Bo Lu, Yingbu Duan, Hayrigul Tursun, and Des Gibson. Modeling and experimental investigations of nanostructured ag thin films produced by oblique-angle deposition and its sers performance. Coatings 2021, Vol. 11, Page 458, 11:458, 4 2021.spa
dc.relation.referencesSung Hoon Lee, Hyun Hang Park, Hoon Kim, and Ming Huang Huang. A study of mgf2 thin film growth in the atomic layer deposition process by multi-scale simulations. Computational Materials Science, 191:110327, 4 2021.spa
dc.relation.referencesFeng Du and Hanchen Huang. A theory of growing crystalline nanorods – mode i. Surface Science, 674:18–24, 8 2018.spa
dc.relation.referencesZhengyang Li and Hanchen Huang. Synergy to discovery and innovation — growth of nanorods. Theoretical and Applied Mechanics Letters, 6:249–252, 11 2016.spa
dc.relation.referencesChandrabhan Verma, H. Lgaz, D. K. Verma, Eno E. Ebenso, I. Bahadur, and M. A. Quraishi. Molecular dynamics and monte carlo simulations as powerful tools for study of interfacial adsorption behavior of corrosion inhibitors in aqueous phase: A review. Journal of Molecular Liquids, 260:99–120, 6 2018.spa
dc.relation.referencesXiang He and Zhao Xu Chen. A study on the morphology and catalytic activity of gold nanoparticles by the kinetic monte carlo simulation. Applied Surface Science, 370:433–436, 5 2016.spa
dc.relation.referencesHassan Ahmoum, Guojian Li, Yongjun Piao, Shiying Liu, Ralph Gebauer, Mourad Boughrara, Mohd Sukor Su’ait, Mohamed Kerouad, and Qiang Wang. Ab-initio, monte carlo and experimental investigation on structural, electronic and magnetic properties of zn1-xnixo nanoparticles prepared via sol-gel method. Journal of Alloys and Compounds, 854, 2 2021.spa
dc.relation.referencesAdil Bouhadiche, Soulef Benghorieb, Tahar Touam, Djelloul Mendil, and Azeddine Chelouche. Kinetic monte carlo simulation of self-organized growth of silver nanoparticles in a tio2 matrix. Journal of Crystal Growth, 556:125992, 2 2021.spa
dc.relation.referencesB. Navinšek, P. Panjan, and I. Milošev. Industrial applications of crn (pvd) coatings, deposited at high and low temperatures. Surface and Coatings Technology, 97:182–191, 12 1997.spa
dc.relation.referencesA. Baptista, F. J.G. Silva, J. Porteiro, J. L. Míguez, G. Pinto, and L. Fernandes. On the physical vapour deposition (pvd): Evolution of magnetron sputtering processes for industrial applications. Procedia Manufacturing, 17:746–757, 1 2018.spa
dc.relation.referencesAndresa Baptista, Francisco Silva, Jacobo Porteiro, José Míguez, and Gustavo Pinto. Sputtering physical vapour deposition (pvd) coatings: A critical review on process improvement and market trend demands. Coatings 2018, Vol. 8, Page 402, 8:402, 11 2018.spa
dc.relation.referencesRobert G. Parr. Density functional theory of atoms and molecules. Horizons of Quantum Chemistry, pages 5–15, 1980.spa
dc.relation.referencesKyle A. Baseden and Jesse W. Tye. Introduction to density functional theory: Calculations by hand on the helium atom. Journal of Chemical Education, 91:2116–2123, 12 2014.spa
dc.relation.referencesArefa Hossain. Introduction to density functional theory, 11 2009.spa
dc.relation.referencesM. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Reviews of Modern Physics, 64:1045, 10 1992.spa
dc.relation.referencesP. Hohenberg and W. Kohn. Inhomogeneous electron gas. Physical Review, 136:B864, 11 1964.spa
dc.relation.referencesW. Kohn and L. J. Sham. Self-consistent equations including exchange and correlation effects. Physical Review, 140:A1133, 11 1965.spa
dc.relation.referencesR. Martin. Electronic Structure: Basic Theory and Practical Methods. Cambridge University Press, 6 2004.spa
dc.relation.referencesI N Levine. Quantum Chemistry. Pearson, 2014.spa
dc.relation.referencesA. P. J. Jansen. An introduction to monte carlo simulations of surface reactions. 3 2003.spa
dc.relation.referencesDavid S. Sholl and Janice A. Steckel. Density functional theory: A practical introduction. Density Functional Theory: A Practical Introduction, pages 1–238, 8 2009.spa
dc.relation.referencesJohn P. Perdew and Wang Yue. Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation. Physical Review B, 33:8800, 6 1986.spa
dc.relation.referencesJohn P. Perdew, Kieron Burke, and Matthias Ernzerhof. Generalized gradient approximation made simple. Physical Review Letters, 77:3865, 10 1996.spa
dc.relation.referencesCharles Kittel and Zainab Raheem. Introduction To Solid State Physics 8Th Ed. 7 2019.spa
dc.relation.referencesP. E. Blöchl, Blchöl, and P. E. Projector augmented-wave method. PhRvB, 50:17953– 17979, 1994.spa
dc.relation.referencesN W Ashcroft and N D Mermin. Solid State Physics. Holt, Rinehart and Winston, 1976.spa
dc.relation.referencesHendrik J. Monkhorst and James D. Pack. Special points for brillouin-zone integrations. Physical Review B, 13:5188, 6 1976.spa
dc.relation.referencesA. Baldereschi, Baldereschi, and A. Mean-value point in the brillouin zone. PhRvB, 7:5212–5215, 1973.spa
dc.relation.referencesDavid Vanderbilt, Vanderbilt, and David. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. PhRvB, 41:7892–7895, 1990.spa
dc.relation.referencesP. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, R. M. Wentzcovitch, O. Andreussi, T. Brumme, O. Bunau, M. Buongiorno Nardelli, N. Colonna, I. Carnimeo, P. Delugas, R. A. DiStasio Jr, A. Ferretti, A. Floris, G. Fugallo, F. Giustino, T. Gorni, J Jia, M. Kawamura, H.-Y. Ko, E. K¨u¸c¨ukbenli, M. Marsili, F. Mauri, N. L. Nguyen, H.- V. Nguyen, A. Otero de-la Roza, S. Ponc´e, D. Rocca, R. Sabatini, B. Santra, M. Schlipf, I. Timrov, T. Thonhauser, N. Vast, and X. Wu. Quantum espresso free software, 2009.spa
dc.relation.referencesDaniel Sheppard, Rye Terrell, and Graeme Henkelman. Optimization methods for finding minimum energy paths. The Journal of chemical physics, 128, 2008.spa
dc.relation.referencesGraeme Henkelman, Gísli Jóhannesson, and Hannes Jónsson. Methods for finding saddle points and minimum energy paths. Theoretical Methods in Condensed Phase Chemistry, pages 269–302, 12 2002.spa
dc.relation.referencesGraeme Henkelman and Hannes Jónsson. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. The Journal of Chemical Physics, 113:9978–9985, 12 2000.spa
dc.relation.referencesGraeme Henkelman, Blas P. Uberuaga, and Hannes Jónsson. A climbing image nudged elastic band method for finding saddle points and minimum energy paths, volume 113. AIP Publishing, 12 2000.spa
dc.relation.referencesHANNES JÓNSSON, GREG MILLS, and KARSTEN W. JACOBSEN. Nudged elastic band method for finding minimum energy paths of transitions. pages 385–404, 6 1998.spa
dc.relation.referencesSamik Raychaudhuri. Introduction to monte carlo simulation. Oracle Crystal Ball Global Business Unit, 2008.spa
dc.relation.referencesThokozani Justin Kunene, Lagouge Kwanda Tartibu, Kingsley Ukoba, and Tien Chien Jen. Review of atomic layer deposition process, application and modeling tools. Materials Today: Proceedings, 62:S95–S109, 1 2022.spa
dc.relation.referencesPascal Brault, Anne Lise Thomann, Marjorie Cavarroc, and Anne-Lise Thomann. Theory and molecular simulations of plasma sputtering, transport and deposition processes.spa
dc.relation.referencesJosé Darío Agudelo Giraldo. Simulación monte carlo del efecto de la rugosidad y las vacancias en el monte carlo simulation of roughness and vacancies effect in magnetic and magnetotransport behavior of la 2/3 ca 1/3 mno 3 /la 1/3 ca 2/3 mno 3 bilayer, 2012.spa
dc.relation.referencesArthur F. Voter. Introduction to the kinetic monte carlo method. Radiation Effects in Solids, pages 1–23, 5 2007.spa
dc.relation.referencesEugene Ustinov. Kinetic monte carlo approach for molecular modeling of adsorption. Current Opinion in Chemical Engineering, 24:1–11, 6 2019.spa
dc.relation.referencesQuantum Espresso Team. Pseudo search results - QUANTUM-ESPRESSO. Used to download the Pseudopotentials 2022.spa
dc.relation.referencesKokalj A. J. mol. graphics modelling, 1999.spa
dc.relation.referencesAlexander Stukowski. Visualization and analysis of atomistic simulation data with ovito-the open visualization tool, 1 2010.spa
dc.relation.referencesMax Bloomfield. Roughness concepts rms, correlation lengths, and the height-height correlation function, 2006.spa
dc.relation.referencesThomas Gredig, Evan A. Silverstein, and Matthew P. Byrne. Height-height correlation function to determine grain size in iron phthalocyanine thin films. volume 417. Institute of Physics Publishing, 2013spa
dc.relation.referencesMatthew Abramson, Hunter J. Coleman, Paul J. Simmonds, Tim P. Schulze, and Christian Ratsch. Kinetic monte carlo simulations of quantum dot self-assembly. Journal of Crystal Growth, 597, 11 2022.spa
dc.relation.referencesJ. G. Keizer, P. M. Koenraad, P. Smereka, J. M. Ulloa, A. Guzman, and A. Hierro. Kinetic monte carlo simulations and cross-sectional scanning tunneling microscopy as tools to investigate the heteroepitaxial capping of self-assembled quantum dots. Physical Review B - Condensed Matter and Materials Physics, 85, 4 2012.spa
dc.relation.referencesT. P. Schulze and P. Smereka. Kinetic monte carlo simulation of heteroepitaxial growth: Wetting layers, quantum dots, capping, and nanorings. Physical Review B - Condensed Matter and Materials Physics, 86, 12 2012.spa
dc.relation.referencesXin Song, Hao Feng, Yu Min Liu, Zhong Yuan Yu, and Hao Zhi Yin. Kinetic monte carlo simulations of three-dimensional self-assembled quantum dot islands. Chinese Physics B, 23, 1 2014.spa
dc.relation.referencesR. Zhu, E. Pan, and P. W. Chung. Fast multiscale kinetic monte carlo simulations of three-dimensional self-assembled quantum dot islands. Physical Review B - Condensed Matter and Materials Physics, 75, 5 2007.spa
dc.relation.referencesJ. Hoshen and R. Kopelman. Percolation and cluster distribution. i. cluster multiple labeling technique and critical concentration algorithm. Physical Review B, 14:3438, 10 1976.spa
dc.relation.referencesFricke Tobin. The hoshen-kopelman algorithm, 2004.spa
dc.relation.referencesNCN Publications, Bivas Saha, Jagaran Acharya, Timothy D Sands, Umesh Waghmare, and Umesh V Waghmare. Purdue e-pubs electronic structure, phonons, and thermal properties of scn, zrn, and hfn: A first-principles study electronic structure, phonons, and thermal properties of scn, zrn, and hfn: A first-principles study. 2010.spa
dc.relation.referencesD. Gall, S. Kodambaka, M. A. Wall, I. Petrov, and J. E. Greene. Pathways of atomistic processes on tin(001) and (111) surfaces during film growth: An ab initio study. Journal of Applied Physics, 93:9086–9094, 6 2003.spa
dc.relation.referencesQ.Y Zhang, J.Y Tang, and G.Q Zhao. Investigation of the energetic deposition of au (001) thin films by molecular-dynamics simulation. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 135(1):289– 294, 1998.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc500 - Ciencias naturales y matemáticas::507 - Educación, investigación, temas relacionadosspa
dc.subject.proposalMontecarlo Cinéticospa
dc.subject.proposalTeoría del Funcional de la densidadspa
dc.subject.proposalPelículas delgadasspa
dc.subject.proposalMultiescalaspa
dc.subject.proposalCálculos ab initiospa
dc.subject.proposalCrecimientospa
dc.subject.proposalKinetic Montecarloeng
dc.subject.proposalDensity Funcional Theoryeng
dc.subject.proposalThin Filmseng
dc.subject.proposalAb intio Calculationseng
dc.subject.proposalMultiscaleeng
dc.subject.proposalGrowtheng
dc.titleEstudio teórico y computacional de la formación de películas delgadas de nitruros y carburos metálicosspa
dc.title.translatedTheoretical and computational study on growth of metal nitrides and carbides thin filmseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameMinisterio de Ciencias - MinCienciasspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1053860482.2024.pdf
Tamaño:
8 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Física

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: