En 6 día(s), 3 hora(s) y 11 minuto(s): El Repositorio Institucional UNAL informa a la comunidad universitaria que, con motivo del periodo de vacaciones colectivas, el servicio de publicación estará suspendido: Periodo de cierre: Del 20 de diciembre al 18 de enero de 2026. Sobre los depósitos: Durante este tiempo, los usuarios podrán continuar realizando el depósito respectivo de sus trabajos en la plataforma. Reanudación: Una vez reiniciadas las actividades administrativas, los documentos serán revisados y publicados en orden de llegada.

Diseño de un sistema de control para un compensador de calidad de potencia

dc.contributor.advisorRamos Fuentes, Germán Andrésspa
dc.contributor.authorBueno Contreras, Holman Heinerspa
dc.date.accessioned2021-01-25T15:12:19Zspa
dc.date.available2021-01-25T15:12:19Zspa
dc.date.issued2020-10-22spa
dc.description.abstractMany high inductive loads and nonlinear ones cause high reactive power flux in the grid, because the grid Power Factor is not unitary. Accordingly, the power system losses robustness and power quality in other distribution nodes. Then, some PQ problems as waveform distortion and short duration root-mean-square variations as sags and swells (defined in the colombian standard NTC 5000-2013) take place as the most common issues. Therefore, this document describes an observer based control system design for a multivariable model of an Unified Power Quality Conditioner (UPQC). The implemented controller shows three main results: (1) Voltage sags and swells compensation, (2) grid Power Factor compensation achieving an unitary value and (3) Total Harmonic Distortion index less than 5% for the load voltage and the grid current. Those results was evaluated in an experimental setup for a single phase distribution system.spa
dc.description.abstractMuchas cargas altamente inductivas y cargas no lineales ocasionan altos flujos de potencia reactiva en la red, ya que el factor de potencia en el suministro de energía no es unitario. En consecuencia, el sistema de distribución eléctrica comienza a perder robustez y calidad de potencia en otros nodos. Esto se ve representado en fenómenos, definidos en la norma técnica colombiana NTC 5000-2013, como distorsión de la forma de onda y variaciones de tensión de corta duración como sags e swells. Con el objetivo de solucionar los inconvenientes mencionados, este documento describe el diseño de un sistema de control basado en un modelo multivariable de un Acondicionador Unificado de Calidad de potencia (UPQC por sus siglas en inglés), haciendo uso de una estructura basada en observador. El controlador diseñado y evaluado muestra tres resultados fundamentales: (1) Compensación de sags, e swells de tensión, (2) Compensación del factor de potencia percibido por la red eléctrica a un valor unitario, y (3) Reducción del índice de Distorsión Armónica Total de la tensión en las cargas conectadas y en la señal de corriente suministrada por la fuente a valores menores al 5 %. Estos resultados fueron corroborados en un entorno experimental de un sistema monofásico.spa
dc.description.additionalLínea de Investigación: control de convertidores electrónicos de potencia.spa
dc.description.degreelevelMaestríaspa
dc.description.projectQUIPU: 201010028222spa
dc.description.sponsorshipVicerrectoría de Investigación y Extensión - Facultad de Ingeniería - Universidad Nacional de Colombiaspa
dc.format.extent120spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationBueno, H. (2020). Diseño de un sistema de control para un compensador de calidad de potencia [Tesis de maestría, Universidad Nacional de Colombia]. Repositorio Institucional.spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78899
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Automatización Industrialspa
dc.relation.references“Calidad de potencia eléctrica - Definiciones y aspectos fundamentales,” Norma Técnica Colombiana ICONTEC NTC 5000, 2013.spa
dc.relation.references“IEEE Recommended Practice for Monitoring Electric Power Quality,” IEEE Std. 1159, 2019.spa
dc.relation.references“Calidad de la potencia eléctrica. Límites y metodología en punto de conexión común,” Norma Técnica Colombiana ICONTEC NTC 5001, 2008.spa
dc.relation.references“Electromagnetic compatibility (EMC) - Part 4-30: Testing and measurement techniques - Power quality measurement methods,” IEC International Standard IEC61000-4-30, 2015.spa
dc.relation.references“IEEE Recommended Practice and Requirements for Harmonic Control in Electric Power Systems”, IEEE Std. 519, 2014.spa
dc.relation.references“Electromagnetic compatibility (EMC) - Part 4-7: Testing and measurement techniques - General guide on harmonics and interharmonics measurements and instrumentation, for power supply systems and equipment connected thereto”, IEC International Standard IEC61000-4-7, 2008.spa
dc.relation.referencesS. Bhattacharyya, “Power quality requirements and responsibilities at the point of connection”, Ph.D. dissertation, Technische Universiteit Eindhoven, 2011spa
dc.relation.referencesT. Dao, B. T. Phung, and T. Blackburn, “Effects of voltage harmonics on distribution transformer losses,” in 2015 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Nov 2015, pp. 1–5.spa
dc.relation.referencesM. Kolcun, A. Gawlak, M. Kornatka, and Z. Conka, “Active and reactive power losses in distribution transformers,” Acta Polytechnica Hungarica, vol. 17, no. 1, pp. 161–174, 2020.spa
dc.relation.referencesS. Dwivedi, S. Jain, K. K. Gupta, and P. Chaturvedi, Modeling and Control of Power Electronics Converter System for Power Quality Improvements. Elsevier Science, 2018. [Online]. Available: https://books.google.com.co/books?id=chdqDwAAQBAJspa
dc.relation.referencesJ. Hamachi, Kristina; Eto, “Understanding the Cost of Power Interruptions to U.S. Electricity Consumers,” University of California Berkeley, Tech. Rep., 2004. [Online]. Available: https://emp.lbl.gov/sites/all/files/lbnl-55718.pdfspa
dc.relation.referencesSuxia Jiang, Guangzhao Cui, Lingzhi Cao, and Chunwen Li, “Design of H∞ robust control for single-phase shunt Active Power Filters,” in 2008 7th World Congress on Intelligent Control and Automation. IEEE, 2008, pp. 4639–4642. [Online]. Available: http: //ieeexplore.ieee.org/document/4593672/spa
dc.relation.referencesZhiqiang Wu and Guorong Zhang, “Research on sliding mode control based on exact feedback linearization for single-phase shunt APF,” in 2016 IEEE 8th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia). IEEE, may 2016, pp. 1350–1356. [Online]. Available: http://ieeexplore.ieee.org/document/7512486/spa
dc.relation.referencesF. R. Jimenez, J. M. Salamanca, and P. F. Cardenas, “Modeling and circuital analysis of a Single Phase Shunt Active Power Filter,” in 2014 IEEE 5th Colombian Workshop on Circuits and Systems (CWCAS). IEEE, oct 2014, pp. 1–10. [Online]. Available: http: //ieeexplore.ieee.org/document/6994611/spa
dc.relation.referencesM. Ramasamy and S. Thangavel, “Experimental verification of PV based Dynamic Voltage Restorer (PV-DVR) with significant energy conservation,” International Journal of Electrical Power and Energy Systems, vol. 49, pp. 296–307, jul 2013. [Online]. Available: http://linkinghub.elsevier.com/retrieve/pii/S014206151300046Xspa
dc.relation.referencesK. Chandrasekaran and V. Ramachandaramurthy, “An improved Dynamic Voltage Restorer for power quality improvement,” International Journal of Electrical Power and Energy Systems, vol. 82, pp. 354–362, nov 2016. [Online]. Available: http://linkinghub.elsevier.com/retrieve/pii/S0142061516303015spa
dc.relation.referencesS. Kim, H.-G. Kim, and H. Cha, “Dynamic Voltage Restorer Using Switching Cell Structured Multilevel AC/AC Converter,” IEEE Transactions on Power Electronics, vol. 32, no. 11, pp. 8406–8418, nov 2017. [Online]. Available: http://ieeexplore.ieee.org/document/7801050/spa
dc.relation.referencesM. Farhadi-Kangarlu, E. Babaei, and F. Blaabjerg, “A comprehensive review of dynamic voltage restorers,” International Journal of Electrical Power and Energy Systems, vol. 92, pp. 136–155, nov 2017. [Online]. Available: http://linkinghub.elsevier.com/retrieve/pii/S0142061516328149spa
dc.relation.referencesE. Fuchs, “Unified Power Quality Conditioner (UPQC),” in Power Quality in Power Systems and Electrical Machines. Elsevier, 2008, pp. 443–468. [Online]. Available: http: //linkinghub.elsevier.com/retrieve/pii/B9780123695369500127spa
dc.relation.referencesG. A. Ramos, R. Isaza, and R. Costa-Castello, “Robust Repetitive Control of Power Inverters for Standalone Operation in DG Systems,” IEEE Transactions on Energy Conversion, vol. 35, no. 1, pp. 237–247, mar 2020. [Online]. Available: https://ieeexplore.ieee.org/document/8879486/spa
dc.relation.referencesW. Chankhamrian and K. Bhumkittipich, “The Effect of Series-Connected Transformer in DVR Applications,” Energy Procedia, vol. 9, pp. 306–315, 2011. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S1876610211017863spa
dc.relation.referencesS. Sasitharan, M. K. Mishra, B. K. Kumar, and V. Jayashankar, “Rating and design issues of DVR injection transformer,” International Journal of Power Electronics, vol. 2, no. 2, p. 143, 2010. [Online]. Available: http://www.inderscience.com/link.php?id=31191spa
dc.relation.referencesB. Li, S. Choi, and D. Vilathgamuwa, “On the injection transformer used in the dynamic voltage restorer,” in PowerCon 2000. 2000 International Conference on Power System Technology. Proceedings (Cat. No.00EX409), vol. 2. IEEE, pp. 941–946. [Online]. Available: http://ieeexplore.ieee.org/document/897147/spa
dc.relation.referencesE. Babaei and M. Farhadi Kangarlu, “Operation and control of dynamic voltage restorer using single-phase direct converter,” Energy Conversion and Management, vol. 52, no. 8-9, pp. 2965–2972, aug 2011. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0196890411001440spa
dc.relation.referencesM. Fatiha, M. Mohamed, and A.-A. Nadia, “New hysteresis control band of an unified power quality conditioner,” Electric Power Systems Research, vol. 81, no. 9, pp. 1743–1753, sep 2011. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0378779611001064spa
dc.relation.referencesKian Hoong Kwan, Yun Chung Chu, and Ping Lam So, “Model-Based H∞ Control of a Unified Power Quality Conditioner,” IEEE Transactions on Industrial Electronics, vol. 56, no. 7, pp. 2493–2504, jul 2009.spa
dc.relation.referencesR. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, 2nd ed. Boston, MA: Springer US, 2001. [Online]. Available: https://www.cambridge.org/core/product/identifier/CBO9781107415324A009/type/book_parthttp://link.springer.com/10.1007/b100747spa
dc.relation.referencesR. K. Patjoshi and K. Mahapatra, “High-performance unified power quality conditioner using non-linear sliding mode and new switching dynamics control strategy,” IET Power Electronics, vol. 10, no. 8, pp. 863–874, jun 2017. [Online]. Available: http://digital-library.theiet.org/content/journals/10.1049/iet-pel.2014.0881spa
dc.relation.referencesM. H. Rashid, K. Afridi, J. M. Alonso, I. Batarseh, A. Bryant, J. Carrasco, L. Chaar, A. K. Chattopadhyay, M. Chow, H. S. H. Chung, and Others, Power Electronics Handbook: Devices, Circuits and Applications, ser. Engineering. Elsevier Science, 2010. [Online]. Available: https://books.google.com.co/books?id=41-7BMFjnnsCspa
dc.relation.referencesP. Li, Y. Li, and Z. Yin, “Realization of UPQC H∞ coordinated control in Microgrid,” International Journal of Electrical Power and Energy Systems, vol. 65, no. 9, pp. 443–452, feb 2015. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S037877961100109Xhttps://linkinghub.elsevier.com/retrieve/pii/S0142061514006358spa
dc.relation.referencesC. T. Chen, Analog and Digital Control System Design: Transfer-function, State-space, and Algebraic Methods, ser. Oxford series in electrical and computer engineering. Saunders College Pub., 1993. [Online]. Available: https://books.google.com.co/books?id=U1-EQgAACAAJspa
dc.relation.referencesS. Buso and P. Mattavelli, Digital Control in Power Electronics, jan 2006, vol. 1, no. 1. [Online]. Available: http://www.morganclaypool.com/doi/abs/10.2200/S00047ED1V01Y200609PEL002spa
dc.relation.referencesL. Corradini, D. Maksimovic, P. Mattavelli, and R. Zane, Digital Control of High-Frequency Switched-Mode Power Converters, ser. IEEE Press Series on Power Engineering. Wiley, 2015. [Online]. Available: https://books.google.com.co/books?id=FMfCCQAAQBAJspa
dc.relation.referencesI. Melo, “Diseño, implementación y evaluación de diferentes estrategias de control orientadas al rechazo activo de perturbaciones para un rectificador PFC que permitan obtener una alta calidad de energía eléctrica medida desde los parámetros de PF y THD de corrient,” M.Sc. Thesis, Universidad Nacional de Colombia, 2015.spa
dc.relation.referencesR. D. Patidar and S. P. Singh, “Harmonics estimation and modeling of residential and commercial loads,” in 2009 International Conference on Power Systems. IEEE, 2009, pp. 1–6. [Online]. Available: http://ieeexplore.ieee.org/document/5442731/spa
dc.relation.referencesJ. Ruiz and F. Ortiz, “Metodologías para Identificar Fuentes Armónicas en Sistemas Eléctricos,” Bsc Thesis, Universidad Tecnológica de Pereira, 2007. [Online]. Available: https://core.ac.uk/download/pdf/71394321.pdfspa
dc.relation.referencesB. P. McGrath and D. G. Holmes, “Accurate state space realisations of resonant filters for high performance inverter control applications,” in 2016 IEEE 2nd Annual Southern Power Electronics Conference (SPEC). IEEE, dec 2016, pp. 1–6. [Online]. Available: http://ieeexplore.ieee.org/document/7846186/spa
dc.relation.referencesB. Francis and W. Wonham, “The internal model principle of control theory,” Automatica, vol. 12, no. 5, pp. 457–465, sep 1976. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/0005109876900066spa
dc.relation.referencesH. Bueno-Contreras and G. A. Ramos, “Optimal control of an upqc to assure power quality in electric distribution grids,” in 2019 IEEE Workshop on Power Electronics and Power Quality Applications (PEPQA), 2019, pp. 1–6.spa
dc.relation.referencesH. Bueno-Contreras and G. A. Ramos, “Extended state observer based control of an upqc to assure power quality in electric distribution grids,” in 2019 IEEE 4th Colombian Conference on Automatic Control (CCAC), 2019, pp. 1–6.spa
dc.relation.referencesK. Zhou, J. C. Doyle, and . Glover K. (Keith), Robust and optimal control. Upper Saddle River, N.J. : Prentice Hall, 1996.spa
dc.relation.referencesG. F. Franklin, J. D. Powell, and A. Emami-Naeini, Feedback Control of Dynamic Systems, 7th ed. USA: Prentice Hall Press, 2014.spa
dc.relation.referencesTexas Instruments, “TMS320x2833x, TMS320x2823x Technical Reference Manual”, TMS320x2833x Datasheet, 2020.spa
dc.relation.referencesL. Lizarazo, “Plataforma experimental para el rechazo de perturbaciones periódicas,” B.Sc. Thesis, Universidad Nacional de Colombia, 2017.spa
dc.relation.referencesKemet Charged, “Box Capacitors Switching Applications,” C4ATFBW5400A3NJ Datasheetspa
dc.relation.referencesON Semiconductor, “STK581U3C2D-E Evaluation Board User’s Manual,” STK581U3C2DGEVB Datasheet, 2014.spa
dc.relation.referencesON Semiconductor, “STK581U3C2D-E Application Note,” Appl. Note, 2014spa
dc.relation.referencesTexas Instruments, “TMS320x2833x, 2823x Enhanced Pulse Width Modulator (ePWM) Module”, Reference Guide, 2008spa
dc.relation.referencesV. Espinoza, “Inveror Trifasico con IGBT’s aplicando técnica PWM,” B. Sc. Thesis, Escuela Politécnica Nacional, 2000. [Online]. Available: https://bibdigital.epn.edu.ec/bitstream/15000/9242/3/T1571.pdfspa
dc.relation.referencesLEM, “Voltage Transducer LV 25-P,” LV 25-P Datasheet, 2014.spa
dc.relation.referencesLEM, “Current Transducer LA 55-P,” LA 55-P Datasheet, 2018.spa
dc.relation.referencesLEM, “Current Transducer HX 03 ... 50-P,” HX 10-P Datasheet, 2019.spa
dc.relation.referencesH. Bueno-Contreras, G. A. Ramos, and R. Costa-Castelló, “Robust H∞ Design for Resonant Control in a CVCF Inverter Application over Load Uncertainties,” Electronics, vol. 9, no. 1, 2020. [Online]. Available: https://www.mdpi.com/2079-9292/9/1/66spa
dc.relation.referencesM. F. Byl, S. J. Ludwick, and D. L. Trumper, “A loop shaping perspective for tuning controllers with adaptive feedforward cancellation,” Precision Engineering, vol. 29, no. 1, pp. 27–40, 2005. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0141635904000546spa
dc.relation.referencesV. S. R. V. Oruganti, V. S. S. S. Sarma Dhanikonda, and M. Godoy Simões, “Scalable Single-Phase Multi-Functional Inverter for Integration of Rooftop Solar-PV to Low-Voltage Ideal and Weak Utility Grid,” Electronics, vol. 8, no. 3, p. 302, mar 2019. [Online]. Available: https://www.mdpi.com/2079-9292/8/3/302spa
dc.relation.referencesMathworks Inc., “Simscape PLL,” 2020.spa
dc.relation.referencesFluke Corporation, “Fluke 43B Power Quality Analyzer,” Fluke 43B datasheet, 2005.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc537 - Electricidad y electrónicaspa
dc.subject.ddc530 - Físicaspa
dc.subject.ddc629 - Otras ramas de la ingenieríaspa
dc.subject.ddc620 - Ingeniería y operaciones afinesspa
dc.subject.proposalExtended state observereng
dc.subject.proposalPFCspa
dc.subject.proposalUPQCeng
dc.subject.proposalUPQCspa
dc.subject.proposalPower qualityeng
dc.subject.proposalCalidad de potenciaspa
dc.subject.proposalResonant controleng
dc.subject.proposalControl resonantespa
dc.subject.proposalPower electronicseng
dc.subject.proposalObservador de estados extendidosspa
dc.subject.proposalElectrónica de potenciaspa
dc.subject.proposalPower factor correctioneng
dc.titleDiseño de un sistema de control para un compensador de calidad de potenciaspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
1.070.970.818.2020.pdf
Tamaño:
7.06 MB
Formato:
Adobe Portable Document Format
Cargando...
Miniatura
Nombre:
caratulacompleta.jpg
Tamaño:
811.37 KB
Formato:
Joint Photographic Experts Group/JPEG File Interchange Format (JFIF)

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: