Estudio de la erodabilidad superficial de un suelo residual antes y despues de una quema controlada a través del ensayo de Inderbitzen

dc.contributor.advisorValencia Gonzalez, Yamile
dc.contributor.advisorBrasil Cavalcante, André Luís
dc.contributor.authorAlegria Mejia, Laura Natalia
dc.contributor.googlescholarLaura Natalia Alegria Mejia
dc.contributor.orcidAlegria Mejia, Laura Natalia [0009000588033986]
dc.contributor.orcidValencia González. Yamile [0000000253892212]
dc.contributor.researchgroupGrupo de Geotecnia
dc.coverage.cityMedellín, Colombia
dc.date.accessioned2025-12-22T17:40:17Z
dc.date.available2025-12-22T17:40:17Z
dc.date.issued2025-10-30
dc.descriptionIlustraciones, mapas
dc.description.abstractLa presente investigación evalúa los efectos de una quema controlada de baja severidad sobre las propiedades de un suelo residual y su influencia en la erodabilidad hídrica superficial. El estudio se desarrolló en el centro-occidente de la ciudad de Medellín (Colombia), sobre la formación geológica denominada “Neis Micáceo de la Iguana”. Se recolecto una muestra alterada a una profundidad de cuatro metros en un perfil de suelo expuesto y se reconstituyó en el laboratorio bajo condiciones controladas de un contenido de agua del 12 % y un índice de vacío de 0,75. Este grupo de muestras se utilizó como condición sin quemar. El segundo grupo de muestras fue sometido a una quema controlada en laboratorio mediante calentamiento en horno, con un valor máximo de temperatura al interior del suelo de 100 ºC. Sobre ambos grupos se efectuó una serie de ensayos físicos, químicos, mineralógicos e hidromecánicos antes y después de la quema. Por otro lado, se evaluó la erodabilidad mediante el ensayo Inderbitzen, simulando escorrentía a través de una rampa hidráulica con variaciones de caudal (30, 35 y 40 cm3/s) y pendiente (15º, 30º y 40º). Los resultados revelan que la quema no solo incrementa la erosión, sino que también favorece la agregación de partículas y la aparición de microfisuras, cambios microestructurales, variaciones en la succión y disminución de la resistencia al corte, aumentando la susceptibilidad a la disgregación y pérdida suelo por efecto hídrico. El coeficiente de erodabilidad K aumentó tras la quema en ambas simulaciones, demostrando que incluso incendios controlados y de baja severidad alteran las propiedades geotécnicas del suelo, y en consecuencia su respuesta a la erosión hídrica, resaltando la importancia de una caracterización integral para comprender el comportamiento erosivo desde una perspectiva geotécnica, siendo el primer estudio en aplicar el ensayo Inderbitzen a suelos residuales colombianos sometidos a quema. (Texto tomado de la fuente)spa
dc.description.abstractThis research evaluates the effects of low severity controlled burning on the properties of tropical residual soil and its influence on surface water erosion. The study was developed in the central-western area of Medellín (Colombia), on the geological formation known as “Neis Micáceo de la Iguana”. An altered sample was collected at a depth of four meters in an exposed soil profile and reconstituted in the laboratory under controlled conditions of 12% water content and void ratio of 0,75. This group of samples as the reference (unburned) condition. The second group of samples was subjected to controlled burning in the laboratory through oven heating, reaching a maximum internal soil temperature of 100°C. A series of physical, chemical, mineralogical, and hydromechanical tests was performed on both groups before and after burning. On the other hand, erodibility was evaluated using the Inderbitzen test, simulating runoff through on a hydraulic ramp with variations in flow (30, 35, and 40 cm³/s) and slope (15°, 30°, and 40°). The results revealed that burning not only increased erosion but also promoted particle aggregation and the development of microfissures, microstructural changes, variations in suction, and decreased shear strength, increasing susceptibility to disintegration and soil loss due to water effects. The erodibility coefficient K increased after burning in both simulations, demonstrating that even controlled, low severity fires alter the geotechnical properties of the soil, and consequently its response to surface water erosion, highlighting the importance of comprehensive characterization to understand erosive behavior from a geotechnical perspective. It is the first study to apply the Inderbitzen test to Colombian residual soils subjected to a burning.eng
dc.description.curricularareaIngeniería Civil.Sede Medellín
dc.description.degreelevelMaestría
dc.description.degreenameMagister en Ingeniería - Geotecnia
dc.description.researchareaMecanica de Suelos
dc.format.extent1 recurso en línea (145 páginas)
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/89242
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia Sede Medellín
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.publisher.facultyFacultad de Minas
dc.publisher.placeMedellín, Colombia
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Geotecnia
dc.relation.referencesAgbeshie, A.A., Abugre, S., Atta-Darkwa, T., Awuah, R. (2022). A review of the effects of forest fire on soil properties. 33 (5). https://doi.org/10.1007/s11676-022-01475-4.
dc.relation.referencesAlbalasmeh, A. A., Berli, M., Shafer, D. S., & Ghezzehei, T. A. (2012). Degradation of moist soil aggregates by rapid temperature rise under low intensity fire. Plant And Soil, 362(1-2), 335-344. https://doi.org/10.1007/s11104-012-1408-z.
dc.relation.referencesAlcañiz, M., Outeiro, L., Francos, M., Úbeda, X., (2018). Effects of prescribed fires on soil properties: A review. Sci. Total Environ. 613–614, 944–957. https://doi.org/10.1016/j.scitotenv.2017.09.144.
dc.relation.referencesAli, N., Metwally, M., El Sawwaf, M., & Nazir, A. (2024). Study the correlation between microstructural features and geotechnical properties of collapsing soil at elevated temperatures. Geoenergy Science and Engineering, 238, 212923. https://doi.org/10.1016/j.geoen.2024.212923.
dc.relation.referencesAlves, L. K. (2023). Erosão do solo em áreas de matos de montanha: efeito do fogo controlado (Doctoral dissertation).
dc.relation.referencesAraya, S.N., Meding, M., and Berhe, A.A. 2016. Thermal alteration of soil physico-chemical properties: a systematic study to infer response of Sierra Nevada climo sequence soils to forest fires. Soil 2:351-366. https://doi.org/10.5194/soil-2-351-2016.
dc.relation.referencesAraujo. (2000). Estudo da erodibilidade de solos da Formação Barreiras - RJ. Pontifícia Universidade Católica do Rio de Janeiro.
dc.relation.referencesASTM D5298-92. (1992). Standard test method for measurement of soil potential (suction) using filter paper.
dc.relation.referencesASTM D422 y D422-63. (2002). Standard test method for particle size analysis of soils.
dc.relation.referencesASTM D7263-09. (2009). Standard test methods for laboratory determination of density (unit weight) of soil specimens. Standard.
dc.relation.referencesASTM D3080-11. (2011). Standard test method for direct shear test of soils under consolidated drained conditions.
dc.relation.referencesASTM D2216-10. (2010). Standard test methods for laboratory determination of water (moisture) content of soil and rock by mass.
dc.relation.referencesASTM D4318-10. (2010). Standard test methods for liquid limit, plastic limit, and plasticity index of soils.
dc.relation.referencesASTM D6572-20. (2020). Standard test method for determining dispersive characteristics of clayey soils by the crumb test.
dc.relation.referencesAristizábal, E. (2004). Geomorphological evolution of the Aburrá Valley, northern Colombian Andes, and implications for landslide occurrence, Unpubl. M. Sc. Thesis, Shimane University, 156 p.
dc.relation.referencesAyoubi, S., Rabiee, S., Mosaddeghi, M. R., Abdi, M. R., & Abbaszadeh Afshar, F. (2021). Soil erosion and properties as affected by fire and time after fire events in steep rangelands using 137Cs technique. Arabian Journal of Geosciences, 14(2), 113. https://doi.org/10.1007/s12517-020-06351-1.
dc.relation.referencesBadía, D.; López-García, S.; Martí, C.; Ortíz-Perpiñá, O.; Girona-García, A.; Casanova-Gascón, J. (2017). Burn effects on soil properties associated to heat transfer under contrasting moisture content. Sci. Total Environ, 601–602, 1119–1128.
dc.relation.referencesBadía, D. & Marti C., (2003). Plant ash and heat intensity effects on chemical and physical properties of two contrasting soils. Arid Land Res. Manage. 17(1): 23-41.
dc.relation.referencesBandeira, D. H., Bertol, I., Vázquez, E. V., Ramos, J. C., & Bertol, C. (2019). Impact of pig slurry application on soil and water losses: Comparison with a historical series. Revista Brasileira de Engenharia Agrícola e Ambiental, 23, 425-431.
dc.relation.referencesBandeira, A. P. N., Macedo, C. C. A., Clarindo, G. S., Lima, M. G. D. S., & Souza Neto, J. B. D. (2021). Assessment of potential surface degradation resulting from erosion processes in environmentally protected area. Soils and Rocks, 44, e2021052420. https://doi.org/10.28927/SR.2021.052420.
dc.relation.referencesBastos, C. (1999). Estudo geotécnico sobre a erodibilidade de solos residuais não saturados. Tese de Doutorado. Universidade Federal do Rio Grande do Sul.
dc.relation.referencesBarreiro, A., & Díaz-Raviña, M. (2021). Impactos de los incendios forestales en las propiedades microbianas del suelo. Revista Española de Ciencia del Suelo.
dc.relation.referencesBento-Gonçalves, A., Vieira, A., Úbeda, X., & Martin, D. (2012). Fire and soils: Key concepts and recent advances. Geoderma, 191, 3-13. https://doi.org/10.1016/j.geoderma.2012.01.004.
dc.relation.referencesBeyers, J., Brown, J., Busse, M., DeBano, L., Elliot, W., Folliott, P. et al. (2005). Wildland fire in ecosystems: Effects of fire on soils and water. Lincoln: University of Nebraska, United States Department of Agriculture, Rocky Mountain Research Station.
dc.relation.referencesBilbao, B., Steil, L., Urbieta, I. R., Anderson, L., Pinto, C., González, M. E., ... & Moreno, J. M. (2020). Wildfires. Adaptation to Climate Change Risks in Ibero-American Countries, 435-496.
dc.relation.referencesBlank, R. R., Zamudio, D. C. (1998): The influence of wildfire on aqueous-extractable soil solutes in forested and wet meadow ecosystems along the eastern front of the Sierra Nevada Range, California. Int. J. Wildland Fire, 8 (2), 79-85.
dc.relation.referencesBodi, M., Martin, D., Balfour, V., Santin, C., Doerr, S., Pereira, P., Cerda, A., & Mataix-Solera, J. (2014). Wildland fire ash: production composition, and eco-hydro-geomorphic effects. Earth-Science Reviews, 130, 103–127. http://dx.doi.org/10.1016/j.earscirev.2013.12.007.
dc.relation.referencesBrady, N. C., & Weil, R. R. (2009). Elementos da natureza e propriedades dos solos. Bookman Editora. 3 ed. Porto Alegre. ISBN:978-85-65837-74-3.
dc.relation.referencesBuján, A. I. B. (2016). Impacto de diferentes agentes de extinción y prácticas de restauración post-incendio sobre la microbiota edáfica (Doctoral dissertation, Universidade de Santiago de Compostela).
dc.relation.referencesCamapum de Carvalho, José, Bueno da Fonseca, F., dos Santos, F., Barbosa, M. C., Godim, R. M., & Moreira, W. (2015). Propriedades químicas, mineralógicas e estruturais de solos naturais e compactados. In Solos não saturados no contexto geotécnico (pp. 39–74). São Paulo. https://doi.org/10.1017/CBO9781107415324.004.
dc.relation.referencesCamapum de Carvalho, J., Gitirana, G., Machado, S., Mascarenha, M., Filho, F. (2023). Solos Não Saturados No Contexto Geotécnico, segunda ed., Associação Brasileira de Mecanica dos Solos e Engenharia Geotécnica, São Paulo. https://doi.org/10.4322/978-65-992098-3-3.
dc.relation.referencesCapador Aguilar, Y. E. ., González Angarita , G. P., & Suarez Daza, P. A. (2021). Análisis de la cobertura vegetal en incendios forestales mediante índices espectrales: caso de estudio Cerros Orientales (Bogotá, Colombia): Español. Avances: Investigación En Ingeniería, 18(1). https://doi.org/10.18041/1794-4953/avances.1.6931.
dc.relation.referencesCawson, J.G., Nyman, P., Smith, H.G., Lane, P.N.J., Sheridan, G.J., 2016. How soil temperatures during prescribed burning affect soil water repellency, infiltration and erosion. Geoderma 278, 12–22. https://doi.org/10.1016/j.geoderma.2016.05.002.
dc.relation.referencesCavalcante, A. L. B., & Mascarenhas, P. V. S. (2021). Efficient approach in modeling the shear strength of unsaturated soil using soil water retention curve. Acta Geotechnica, 16(10), 3177-3186. https://doi.org/10.1007/s11440-021-01144-6.
dc.relation.referencesCertini, G. (2005). Effects of fire on properties of forest soils: a review, Oecología, 143(1), 1-10. doi: 10.1007/s00442-004-1788-8.
dc.relation.referencesCosta, Y. T.; Rodriguez, S.C., (2015). Efeito do fogo sobre vegetação e solo a partir de estudo experimental em ambiente de Cerrado. Revista do Departamento de Geografía - USP, V. 30, P. 149-165.
dc.relation.referencesde Oliveira, V. N., Gitirana, G. de F. N., Dos Anjos Mascarenha, M. M., Sales, M. M., Varrone, L. F. R., & da Luz, M. P. (2021). An enhanced flume testing procedure for the study of rill erosion. Water (Switzerland), 13 (21). https://doi.org/10.3390/w13212956.
dc.relation.referencesDrooger, S. (2009). Soil Temperatures Under a Catchment Scale Experimental Fire. Master’s Thesis, Wageningen University, Wageningen, The Netherlands.
dc.relation.referencesDíaz-Fierros, F. G. Soltres, A. Cabaneiro, T. Carballas y M. C. L. P. &. M. V. Celoiro, (1982). Efectos erosivos de los incendios forestales en los suelos de Galicia, An. Edafol. Agrobiol, 41: 627-639.
dc.relation.referencesFernández, C., Fernández-Alonso, J. M., Vega, J. A., Fontúrbel, T., Llorens, R., & Sobrino, J. A. (2021). Exploring the use of spectral indices to assess alterations in soil properties in pine stands affected by crown fire in Spain. SpringerLink. Recuperado 19 de abril de 2024, de https://doi.org/10.1186/s42408-020-00089-7.
dc.relation.referencesFigueroa Jáuregui, María de Lourdes, Martínez Menez, Mario Roberto, Ortiz Solorio, Carlos Alberto, & Fernández Reynoso, Demetrio. (2018). Influencia de los factores formadores en las propiedades de los suelos en la Mixteca, Oaxaca, México. Terra Latinoamericana, 36(3), 287-299.
dc.relation.referencesFonseca, A. M. M. C. C.; Ferreira, C. S. M (1981). Metodologia para determinação de um índice de erodibilidade de solos. In: Simposio Brasileiro de Solos Tropicais, Rio de Janeiro
dc.relation.referencesFredlund, D. G., Morgenstern, N. R., & Widger, R. A. (1978). The shear strength of unsaturated soils. Canadian geotechnical journal, 15(3), 313-321.
dc.relation.referencesGarcía-Orenes, F., Arcenegui, V., Chrenkova, K., Mataix-Solera, J., Moltó, J., Jara-Navarro, A.B., Torres,M.P., (2017). Effects of salvage logging on soil properties and vegetation recovery in a fire-affected Mediterranean forest: a two year monitoring research. Sci. Total Environ. 586, 1057–1065.
dc.relation.referencesGimeno-García, E. (1999). Efectos de la intensidad del fuego sobre las propiedades químicas del suelo y sus consecuencias en los procesos de erosión hídrica: Incendios experimentales en zonas forestales mediterráneas (Doctoral dissertation, Universitat de València).
dc.relation.referencesGiovannini, G & Lucchesi, S. (1993). Effects of fire on soil physico-chemical characteristics and erosión dynamics. En: L. Trabaud and R. Prodon (Editores), Fire in Mediterranean Ecosystems. Commission of the European Communities, Brussels, pp. 403-412.
dc.relation.referencesGonzález-Pérez, J. A., González-Vila, F. J., Almendros, G., Knicker, H. (2004). The effect of fire on soil organic matter—a review. Environment international 30 (6): 855-870.
dc.relation.referencesGranged, A. J., Jordán, A., Zavala, L. M., Muñoz-Rojas, M., & Mataix-Solera, J. (2011). Short-term effects of experimental fire for a soil under eucalyptus forest (SE Australia). Geoderma, 167-168, 125-134. https://doi.org/10.1016/j.geoderma.2011.09.011.
dc.relation.referencesGranged, A.J.P., Zavala, L.M., Jordán, A., Bárcenas-Moreno, G., (2011b). Post-fire evolution of soil properties and vegetation cover in a Mediterranean heathland after experimental burning: a 3-year study. Geoderma 164, 85–94.
dc.relation.referencesHepper, E., Urioste, A., Belmonte, V., & Buschiazzo, D. (2008). Temperaturas de quema y propiedades físicas y químicas de suelos de la región semiárida pampeana central. Ciencia del suelo, 26(1), 29-34.
dc.relation.referencesHernández Vallecillo, G. A., Gutiérrez Castorena, M., Barragán Maravilla, S. M., Ángeles Cervantes, E. R., Gutiérrez Castorena, E. V., & Ortiz Solorio, C. A. (2020). La mineralogía en la estimación de las temperaturas de los incendios forestales y sus efectos inmediatos en Andosoles, Estado de México. Madera y bosques, 26(1).
dc.relation.referencesHeydari, M., Rostamy, A., & Dey, D. (2017). Effect of fire severity on physical and biochemical soil properties in Zagrus oak (Quercus brantii Lindl) forest in Iran. Journal of Forestry Research, 28(1), 95- 104. doi: 10.1007/s11676-016-0299-x.
dc.relation.referencesHrelja, I., Šestak, I., & Bogunović, I. (2020, 10 noviembre). Wildfire Impacts on Soil Physical and Chemical Properties - A Short Review of Recent Studies. https://hrcak.srce.hr/245967.
dc.relation.referencesIDEAM, U.D.C.A. (2015). Síntesis del estudio nacional de la degradación de suelos por erosión en Colombia - 2015. IDEAM - MADS. Bogotá D.C., Colombia.
dc.relation.referencesInderbitzen, A.L. (1961). An erosion test for soils. Materials Research & Standards. Philadelphia, v.1, n.7, p.553–554.
dc.relation.referencesJian, M., Berli, M., & Ghezzehei, T. A. (2018). Soil structural degradation during Low‐Severity burns. Geophysical Research Letters, 45(11), 5553-5561. https://doi.org/10.1029/2018gl078053.
dc.relation.referencesJusto, A. & Morillo González, E. Técnicas de difracción de rayos X para la identificación cualitativa y cuantitativa de minerales de la arcilla, Ciencia y Tecnología de Materiales II, (1999), pp 77-86.
dc.relation.referencesKeeley, J.E., 2009. Fire intensity, fire severity and burn severity: a brief review and suggested usage. International Journal of Wildland Fire 18, 116–126.
dc.relation.referencesLal, R. (2001). Soil degradation by erosion. Land Degradation and Development, 12(6), 519–539. https://doi.org/10.1002/ldr.472.
dc.relation.referencesLima Soares, D., Polivanov, H., Velloso Barroso, E., Goretti da Motta, L. M., & Camacho de Souza, C. (2018). Erodibilidade de Solos em Taludes de Corte de Estrada Não Pavimentada. Anuário do Instituto de Geociências, 41(1). http://dx.doi.org/10.11137/2018_1_179_193.
dc.relation.referencesMa, X., Zhao, C., & Zhu, J. (2021). Aggravated risk of soil erosion with global warming – A global meta-analysis. Catena, 200. doi.org/10.1016/j.catena.2020.105129.
dc.relation.referencesMartins, M. M. (2022). Modelagem físico-matemática da interação solo-atmosfera e erosão hídrica em bordas de reservatórios (Dissertação de Mestrado). Universidade de Brasilia, Brasilia, DF.
dc.relation.referencesMassman, W. J., & Frank, J. M. (2004). Effect of a controlled burn on the thermophysical properties of a dry soil using a new model of soil heat flow and a new high temperature heat flux sensor. International Journal Of Wildland Fire. Recuperado 2 de marzo de 2024, de https://www.publish.csiro.au/WF/WF04018.
dc.relation.referencesMataix-Solera, J. (1999). Alteraciones físicas, químicas y biológicas en suelos afectados por incendios forestales: contribución a su conservación y regeneración. Tesis Doctoral. Facultad de Ciencias. Universidad de Alicante, Alicante.
dc.relation.referencesMataix-Solera, J., Cerdà, A., Arcenegui, V., Jordan, A., Zavala, L.M. (2011). Fire effects on soil aggregation: A review. Earth-Science Reviews. Volume 109. Pages 44-60, ISSN 0012-8252. Doi: https://doi.org/10.1016/j.earscirev.2011.08.002.
dc.relation.referencesMattos, B. S. D. (2018). relação dos incêndios com as propriedades físicas, químicas e mineralógicas do solo em São Pedro da Serra Nova Friburgo/RJ.
dc.relation.referencesMerino, A., Fonturbel, M. T., Fernández, C., Chávez-Vergara, B., García-Oliva, F., & Vega, J. A. (2018). Inferring changes in soil organic matter in post-wildfire soil burn severity levels in a temperate climate. Science of the Total Environment, 627, 622-632. https://doi.org/10.1016/j.scitotenv.2018.01.189.
dc.relation.referencesMinervini, M. G., Morrás, H. J., & Taboada, M. A. (2018). Efectos del fuego en la matriz del suelo: Consecuencias sobre las propiedades físicas y mineralógicas. Ecología austral, 28(1), 12-27. https://doi.org/10.25260/EA.18.28.1.0.127.
dc.relation.referencesMontoya Ruiz, M. (2022). Determinación de la erodabilidad de un suelo superficial del oriente antioqueño mediante ensayo Inderbitzen (Tesis de Maestria). Universidad Nacional de Colombia, Sede Medellín, Colombia.
dc.relation.referencesMoody, J. A., Ebel, B. A., Nyman, P., Martin, D. A., Stoof, C., & McKinley, R. (2016). Relations between soil hydraulic properties and burn severity. International Journal Of Wildland Fire, 25(3), 279. https://doi.org/10.1071/wf14062.
dc.relation.referencesMoreira, R. F., & Polivanov, H. (2018). Potencial erosivo de perfil de solo de talude de corte através de ensaios de Inderbitzen. Geo UERJ, (32). doi: 10.12957/geouerj.2018.32158.
dc.relation.referencesNeris, J., Robichaud, P.R., Wagenbrenner, J.W., Brown, R.E., Doerr, S.H. (2023). Soil erosion after fire in volcanic terrain: Assessment and implications for post-fire soil losses, Journal of Hydrology, Volume 625, ISSN 0022-1694, https://doi.org/10.1016/j.jhydrol.2023.129923.
dc.relation.referencesNi, S., Zhang, D., Wen, H., Cai, C., Wilson, G. V., & Wang, J. (2020). Erosion processes and features for a coarse-textured soil with different horizons: a laboratory simulation. Journal of Soils and Sediments, 20, 2997-3012. https://doi.org/10.1007/s11368-020-02665-5.
dc.relation.referencesNoske, P. J., Nyman, P., Lane, P. N., Rengers, F. K., & Sheridan, G. J. (2024). Changes in soil erosion caused by wildfire: A conceptual biogeographic model. Geomorphology, 459, 109272. https://doi.org/10.1016/j.geomorph.2024.109272.
dc.relation.referencesNgole-jeme, v. m. (2019). fire-induced changes in soil and implications on soil sorption capacity and remediation methods. Recuperado de: https://www.mdpi.com/2076-3417/9/17/3447.
dc.relation.referencesOlarieta, J. R., Bermejo, J. L., Rodríguez-Ochoa, R., & Contreras, Z. A. (2008). Efectos de un incendio sobre diversas propiedades físico-químicas del suelo y procesos de erosión hídrica en medio semiárido (La Granja d'Escarp, Lleida). Cuadernos de la Sociedad Española de Ciencias Forestales, (25), 345-350. ISSN: 1575-2410.
dc.relation.referencesOrtega Ramírez, Daniel (2018) Efectos de las altas temperaturas producto de los incendios en los procesos erosivos superficiales de un suelo residual. Maestría thesis, Universidad Nacional de Colombia - Sede Medellín. Https://repositorio.unal.edu.co/handle/unal/63438.
dc.relation.referencesParsons, A., Robichaud, P. R., Lewis, S. A., Napper, C., & Clark, J. T. (2010). Field guide for mapping post-fire soil burn severity. Gen. Tech. Rep. RMRS-GTR-243. Fort Collins, CO: US Department of Agriculture, Forest Service, Rocky Mountain Research Station.
dc.relation.referencesPatiño, J., Álvarez, M. C., Valencia, Y., & Echeverri, O. (2014). Efecto de la temperatura en algunas propiedades geotécnicas de un suelo tropical. XIV Congreso Colombiano de Geotecnia. Bogotá.
dc.relation.referencesPeduto, D., Iervolino, L., Esposito, G., Foresta, V., Matano, F., & Masi, R. (2022). Clues of wildfire-induced geotechnical changes in volcanic soils affected by post-fire slope instabilities. Bulletin of Engineering Geology and the Environment, 81(10), 454. https://doi.org/10.1007/s10064-022-02947-x.
dc.relation.referencesPenman, T. D., & Towerton, A. L. (2008). Soil temperatures during autumn prescribed burning: implications for the germination of fire responsive species? International Journal Of Wildland Fire, 17(5), 572. https://doi.org/10.1071/wf07092.
dc.relation.referencesPinheiro, J.B.P., Nummer, A.V., Fernandes, L.P. and Bastos, C.A.B. (2022) Erodibilidade obtida por métodos indiretos e diretos de uma voçoroca localizada na região oeste do estado do Rio Grande do Sul-Brasil. GEOTECNIA, No. 154, 25-46. https://doi.org/10.14195/2184-8394_154_2.
dc.relation.referencesPrats, S.A., Malvar, M.C., Coelho, C.O.A., Wagenbrenner, J.W. (2019). Hydrologic and erosion responses to compaction and added surface cover in post-fire logged areas: Isolating splash, interrill and rill erosion. J. Hydrol. 575, 408–419. https://doi.org/10.1016/j.jhydrol.2019.05.038.
dc.relation.referencesReddy, B.V.V. and Jagadish, K.S. (1993) The Static Compaction of Soils. Géotechnique, 43, 337-341. https://doi.org/10.1680/geot.1993.43.2.337.
dc.relation.referencesRedin, M., de Franceschi dos Santos, G., Miguel, P., Luís Denega, G., Lupatini, M., Doneda, A., & Lorensi de Souza, E. (2011). Impactos da queima sobre atributos químicos, físicos e biológicos do solo. Ciência Florestal, 21(2), 381–392.
dc.relation.referencesRego, J. J. V. do. (1978). Erosão superficial em taludes de corte em solo residual de Gnaisse.
dc.relation.referencesRibeiro, F. (2016). Análise de processos erosivos superficiais, transporte e sedimentação de partículas de solo e rocha intemperizada na área das minas Alegria Norte e Alegria Sul. Dissertação Mestrado em Engenharia Civil. Universidade Federal de Viçosa, Viçosa.
dc.relation.referencesRibeiro, A. I., Gonzalez, L. F., Longo, R. M., de Medeiros, G. A., Rosa, A. H., Lourenço, R. W., & Fengler, F. H. (2013). Soil erodibility assessment in a pasture and forest remnant using the Inderbitzen device. WIT Transactions on Ecology and the Environment, 170, 49-55. doi:10.2495/FENV130051.
dc.relation.referencesSacchi, G., Campitelli, P., Soria, P., & Ceppi, S. (2015). Influencia de temperaturas de calentamiento sobre propiedades físicas y químicas de suelos con distinto material parental y uso antrópico. Spanish Journal of Soil Science: SJSS, 5(3), 214-226.
dc.relation.referencesSales, M.M.; De Carvalho, J. C.; Mascarenha, M.M.A.; Da Luz, M.P.; DE Souza, N. M. & Angelim, R.R. (2017). Erosão em Borda de Reservatório. Goiânia: Universidade Federal de Goiás, Série GECON.
dc.relation.referencesSales, M., Pereira da Luz, M., Mascarenha, M., Camapum de Carvalho, J., da Silva, V. (2024). Erosão Hídrica e Dinâmica dos Sedimentos em Reservatórios, primera ed., Goiânia: Escola de Engenharia Civil e Ambiental, 594pp. ISBN: 978-65-5447-245-6.
dc.relation.referencesSantos, C. A., & Merschmann, M. A. C. (2001). Ensaio de erodibilidade como parâmetro no estudo de ravinas e voçorocas, na região de Santo Antônio do leite, distrito de Ouro Preto – MG. Simpósio Nacional de Controle de Erosão. p.1-8.
dc.relation.referencesSantos, C. A., & Merschmann, M. A. C. (2001). Ensaio de erodibilidade como parâmetro no estudo de ravinas e voçorocas, na região de Santo Antônio do leite, distrito de Ouro Preto – MG. Simpósio Nacional de Controle de Erosão. p.1-8.
dc.relation.referencesShakesby, R. A. (2011). Post-wildfire soil erosion in the Mediterranean: Review and future research directions. In Earth-Science Reviews (Vol. 105, Issues 3–4, pp. 71–100). https://doi.org/10.1016/j.earscirev.2011.01.001.
dc.relation.referencesShepherd, T., Saggar, S., Newman, R., Ross, C.W. and Dando, J.L. (2001). Tillage–induced changes to soil structure and organic carbon fraction in New Zealand soils. Journal Plant and Soil. Vol. 39, pp. 465- 489.
dc.relation.referencesStresser, C.; Passini, L.B., 2023. Soil Erodibility Rates through a Hydraulic Flume Erosometer: Test Assembly and Results in Sandy and Clayey Soils. Open Journal of Civil Engineering, v. 13, (1), 155-170. https://doi.org/10.4236/ojce.2023.131011.
dc.relation.referencesTomasi, L. F. (2015). Ensaio de Inderbitzen para avaliação da erodibilidade dos solos e rochas: aplicação nas regiões de Santa Maria, São Francisco de Assis e Porto Alegre/RS. Universidade Federal de Santa Maria, 83p.
dc.relation.referencesThoma, A. C., Tassinari, D., Prat, B. V., Fernandes, J. S. C., & Silva, A. C. (2022). Erodibilidade de Neossolo Litólico pelo ensaio de Inderbitzen modificado e eficiência de blocos de solo-cimento para controle da erosão hídrica. Engenharia Sanitaria e Ambiental, 27, 511-522. https://doi.org/10.1590/S1413-415220210099.
dc.relation.referencesÚbeda, X. (1999). Structural changes on soils after forest fires. 6th International Meeting on Soils with Mediterranean Type of Climate. Barcelona. Extended Abstracts: 793-796.
dc.relation.referencesUnited States Department of Agriculture (USDA), (2005). Wildland fire in ecosystems Effects of Fire on Soil and Water. Volumen 4. USA.USGS
dc.relation.referencesValencia González, Y., Patiño-Restrepo, J., Álvarez-Guerra, M. C., Ortega-Ramírez, D., & Echeverri-Ramírez, Ó. (2018). Cambio en las propiedades geotécnicas de un suelo sometido a ignición en laboratorio. Revista Ingenierías Universidad de Medellín, 17(32), 85-107. https://doi.org/10.22395/rium.v17n32a5.
dc.relation.referencesValencia González, Y. (2005). Influencia de la meteorización en las propiedades y comportamiento de dos perfiles de alteración originados de rocas metamórficas [Tesis de Maestría, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/21401.
dc.relation.referencesValencia González, Y., Patiño-Restrepo, J., Álvarez-Guerra, M. C., Ortega-Ramírez, D., & Echeverri-Ramírez, Ó. (2018). Cambio en las propiedades geotécnicas de un suelo sometido a ignición en laboratorio. Revista Ingenierías Universidad de Medellín, 17(32), 85-107. https://doi.org/10.22395/rium.v17n32a5.
dc.relation.referencesValencia-González, Y., Alegría-Mejía, L. N., Barreto-Maya, Á. P., Bravo-Sierra, S., & Arango-Aguilar, J. P. (2024). Effect of void ratio on soil erodibility. Case Studies in Chemical and Environmental Engineering, 10, 100904. https://doi.org/10.1016/j.cscee.2024.100904.
dc.relation.referencesVega, J.A., Fontúrbel, T., Merino, A., Fernández, C., Ferreiro, A., Jiménez, E., (2013). Testing the ability of visual indicators of soil burn severity to reflect changes in soil chemical and microbial properties in pine forests and shrubland. Plant Soil 369, 73–91. https://link.springer.com/article/10.1007/s11104-012-1532-9.
dc.relation.referencesWieting, C., Ebel, B. A., & Singha, K. (2017). Quantifying the effects of wildfire on changes in soil properties by surface burning of soils from the Boulder Creek Critical Zone Observatory. Journal of Hydrology: Regional Studies, 13, 43-57. https://doi.org/10.1016/j.ejrh.2017.07.006.
dc.relation.referencesWirth, X., V. Antunez, V., Fregoso-Sanchez, D., Enriquez, D., & Arevalo, Z. (2023). Engineering properties of wildfire ashes. International Society For Soil Mechanics And Geotechnical Engineering. https://doi.org/10.53243/ICEG2023-286.
dc.relation.referencesXue, Y., Zhang, Z., Zhu, L., & Liang, J. (2014). Effects of forest fire on soil pH and nutrient dynamics in northeastern China. Forest Ecology and Management, 329, 49–56.
dc.relation.referencesYasin, F. L. S. A. R., Yasin, M., Cavalcante, A. L. B., & Martins, M. M. (2023). Aplicação de modelo físico-matemático para previsão de resultados de ensaios com simuladores de chuva.
dc.relation.referencesZárate López, L.G., 2004. Estudio de las características físicas y geométricas de la llama en los incendios forestales. Universitat Politècnica de Catalunya, Barcelona.
dc.relation.referencesZema, D. A. (2021). Postfire management impacts on soil hydrology. Current Opinion In Environmental Science & Health, 21, 100252. https://doi.org/10.1016/j.coesh.2021.100252.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.armarcErosión de suelos
dc.subject.ddc550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología
dc.subject.ddc620 - Ingeniería y operaciones afines::624 - Ingeniería civil
dc.subject.lembQuema recomendada
dc.subject.proposalQuema de baja severidad,spa
dc.subject.proposalErosión hídricaspa
dc.subject.proposalComportamiento geotécnicospa
dc.subject.proposalEfectos post-quemaspa
dc.subject.proposalControlled burningeng
dc.subject.proposalWater erosioneng
dc.subject.proposalGeotechnical behavioreng
dc.subject.proposalPost-burn effectseng
dc.subject.wikidataErodabilidad del suelo
dc.subject.wikidataErosión hídrica
dc.titleEstudio de la erodabilidad superficial de un suelo residual antes y despues de una quema controlada a través del ensayo de Inderbitzenspa
dc.title.translatedStudy of the surface erodibility of residual soil before and after controlled burning using the Inderbitzen testeng
dc.title.translatedEstudo da erodibilidade superficial de um solo residual antes e depois de uma queima controlada através do ensaio de Inderbitzenpor
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.contentDataPaper
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentPúblico general
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis de Maestría en Ingeniería - Geotecnia.pdf
Tamaño:
11.78 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: