Estudio nutracéutico y toxicológico de extractos polifenólicos de frutos de Hyeronima macrocarpa soportados en aerogeles lignocelulósicos

dc.contributor.advisorRojano, Benjamín A.
dc.contributor.authorAlzate Arbeláez, Andrés Felipe
dc.contributor.cvlacAlzate Arbeláez, Andrés Felipe [https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000486523]spa
dc.contributor.googlescholarAlzate Arbelaéz, Andrés Felipe [https://scholar.google.es/citations?user=queVk2EAAAAJ&hl=es]spa
dc.contributor.orcidAlzate Arbeláez, Andrés Felipe [0000-0002-5288-4245]spa
dc.contributor.researchgateAlzate Arbelaéz, Andrés Felipe [https://www.researchgate.net/profile/Andres-Felipe-Alzate-Arbelaez]spa
dc.contributor.scopusAlzate Arbelaéz, Andrés Felipe [57192711225]spa
dc.contributor.subjectmatterexpertCortés Correa, Farid
dc.date.accessioned2025-03-27T16:13:23Z
dc.date.available2025-03-27T16:13:23Z
dc.date.issued2025-03-18
dc.descriptionIlustracionesspa
dc.description.abstractEn este trabajo se evaluaron las propiedades funcionales y toxicológicas de un producto nutracéutico, formado por la inmovilización de extractos ricos en antioxidantes naturales sobre aerogeles. Los extractos se obtuvieron de la pulpa y la cáscara de frutos maduros de Hyeronima macrocarpa, mientras que las semillas fueron la materia prima para la síntesis de aerogeles de nanocelulosa (AGNC) y derivados superficiales de acetato (AGNC-A) y sulfato (AGNC-S). Se determinó la capacidad antioxidante, el perfil de liberación bajo condiciones de digestión simulada, la capacidad de inhibir la oxidación de lípidos y proteínas, además se evaluó la citotoxicidad y genotoxicidad. AGNC mostró una mayor capacidad para atrapar radicales libres superóxido (106.8 mg catequina Eq./g), hidroxilo (86.5% de OH. atrapado) y peroxilo (361.7 µmol Trolox/g), mientras que AGNC-A presentó una mayor capacidad reductora (543.1 µmol Trolox/g). La digestión in vitro mostró que AGNC-S fue más eficaz en la entrega de antocianinas en condiciones gástricas (bioaccesibilidad de 59,3%), mientras que AGNC logró entregar más polifenoles en condiciones duodenales (bioaccesibilidad de 88,2%). Todas las muestras mostraron capacidad de retrasar la oxidación de un sistema proteico de manera dosis-dependiente, con valores de IC50 de 70 mg AGNC/L, 176,3 mg AGNC-A/L y 255,6 mg AGNC-S/L. En oxidación lipídica, todas las muestras presentaron disminución en el tiempo de aparición de marcadores de oxidación, que fue dependiente de la concentración usada, destacó la muestra AGNC-A, seguida de AGNC > AGNC-S. Finalmente, la evaluación toxicológica, no evidenció problemas de seguridad bajo las condiciones preclínicas evaluadas. Estos resultados indican que los aerogeles de nanocelulosa sintetizados de residuos lignocelulósicos de semillas de H. macrocarpa son matrices porosas capaces de portar sustancias bioactivas antioxidantes y presentaron un efecto protector in vitro frente a la oxidación de biomoléculas como lípidos y proteínas. (Tomado de la fuente)spa
dc.description.abstractIn this study, the functional and toxicological properties of a nutraceutical product formed by the immobilization of extracts rich in natural antioxidants on aerogels were evaluated. The extracts were obtained from the pulp and peel of ripe fruits of Hyeronima macrocarpa, while the seeds were the raw material for the synthesis of nanocellulose-based aerogels (NCAG) and surface derivatives of acetate (NCAG-A) and sulfate (NCAG-S). The antioxidant capacity, release profile under simulated digestion conditions, the ability to inhibit the oxidation of lipids and proteins, cytotoxicity and genotoxicity were evaluated. NCAG showed a higher capacity to scavenge superoxide (106.8 mg catechin Eq./g), hydroxyl (86.5% of OH. trapped) and peroxyl (361.7 µmol Trolox/g) free radicals, while NCAG-A presented a higher reducing capacity (543.1 µmol Trolox/g). In vitro digestion showed that NCAG-S was more effective in delivering anthocyanins under gastric conditions (bioaccessibility of 59.3%), while NCAG managed to deliver more polyphenols under duodenal conditions (bioaccessibility of 88.2%). All samples showed the ability to delay the oxidation of a protein system in a dose-dependent manner, with IC50 values of 70 mg NCAG/L, 176.3 mg NCAG-A/L and 255.6 mg NCAG-S/L. In lipid oxidation, all samples showed a decrease in time of appearance of oxidation markers, which was dependent on the concentration used, with the NCAG-A sample standing out, followed by NCAG > NCAG-S. Finally, the toxicological evaluation did not reveal safety problems under the preclinical conditions evaluated. These results indicate that nanocellulose-based aerogels synthesized from lignocellulosic residues of H. macrocarpa seeds are porous matrices capable of carrying antioxidant bioactive substances and presented an in vitro protective effect against the oxidation of biomolecules such as lipids and proteins.eng
dc.description.curricularareaAgro Ingeniería Y Alimentos.Sede Medellínspa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ciencia y Tecnología de Alimentosspa
dc.format.extent222 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87761
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias Agrarias - Doctorado en Ciencia y Tecnología de Alimentosspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAaltonen, O., & Jauhiainen, O. (2009). The preparation of lignocellulosic aerogels from ionic liquid solutions. Carbohydrate polymers, 75(1), 125-129.spa
dc.relation.referencesAbdul-Khalil, H. P. S., Adnan, A. S., Yahya, E. B., Olaiya, N. G., Safrida, S., Hossain, M., ... & Pasquini, D. (2020). A review on plant cellulose nanofibre-based aerogels for biomedical applications. Polymers, 12(8), 1759.spa
dc.relation.referencesAbreu, O. A., Barreto, G., & Prieto, S. (2014). Vaccinium (Ericaceae): Ethnobotany and pharmacological potentials. Emirates Journal of Food and Agriculture, 26(7), 577.spa
dc.relation.referencesAgodi, A., Maugeri, A., Kunzova, S., Sochor, O., Bauerova, H., Kiacova, N., ... & Vinciguerra, M. (2018). Association of dietary patterns with metabolic syndrome: results from the Kardiovize Brno 2030 study. Nutrients, 10(7), 898.spa
dc.relation.referencesAgronegocios. Editorial La República S.A.S. (2020). Las exportaciones colombianas de frutas ascendieron US$80,3 millones el año pasado. Recuperado de: https://www.agronegocios.co/agricultura/las-exportaciones-colombianas-de-frutas-ascendieron-us803-millones-el-ano-pasado-2963011spa
dc.relation.referencesAGRONET, Estadísticas, recuperado de: https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1. Consultado 12 enero de 2024spa
dc.relation.referencesAhmad, K., Afridi, M., Khan, N. A., & Sarwar, A. (2021). Quality Deterioration of Postharvest Fruits and Vegetables in Developing Country Pakistan: A Mini Overview. Asian Journal of Agriculture and Food Sciences, 9(2).spa
dc.relation.referencesAlappat, B. y Alappat J. (2020). Anthocyanin pigments: Beyond aesthetics. Molecules, 25(23), 5500.spa
dc.relation.referencesAli, H. M. Abo-Shady, A. Sharaf-Eldeen, H. A. Soror, H. A. Shousha, W. G. Abdel-Barry, O. A., y Saleh, A. M. (2013). Structural features, kinetics and SAR study of radical scavenging and antioxidant activities of phenolic and anilinic compounds. Chemistry Central Journal, 7, 53–61.spa
dc.relation.referencesÁlvarez, G. E. G., Arias, S. M., & Colorado, G. A. C. (2023). Vitamin C content, anthocyanins and antioxidant capacity of fruits of Rubus glaucus Benth. (mora de Castilla) with and without prickles grown in Risaralda, Colombia. Revista Brasileira de Fruticultura, 45, e-509.spa
dc.relation.referencesAoi, W., Iwasa, M., & Marunaka, Y. (2021). Metabolic functions of flavonoids: From human epidemiology to molecular mechanism. Neuropeptides, 88, 102163.spa
dc.relation.referencesAtta, E. M., Mohamed, N. H., & Silaev, A. A. A. (2017). Antioxidants: An overview on the natural and synthetic types. European Chemical Bulletin, 6(8), 365-375.spa
dc.relation.referencesAlzate-Arbeláez, A. F., Dorta, E., López-Alarcón, C., Cortés, F. B., & Rojano, B. A. (2019). Immobilization of Andean berry (Vaccinium meridionale) polyphenols on nanocellulose isolated from banana residues: A natural food additive with antioxidant properties. Food chemistry, 294, 503-517.spa
dc.relation.referencesAntonoglou, O. Lafazanis, K. Mourdikoudis, S. Vourlias, G. Lialiaris, T. Pantazaki, A. y Dendrinou-Samara, C. (2019). Biological relevance of CuFeO2 nanoparticles: Antibacterial and anti-inflammatory activity, genotoxicity, DNA and protein interactions. Materials Science and Engineering: C, 99, 264-274.spa
dc.relation.referencesArroyo-Maya, I. J. y McClements, D. J. (2015). Biopolymer nanoparticles as potential delivery systems for anthocyanins: Fabrication and properties. Food research international, 69, 1-8.spa
dc.relation.referencesBaby, B., Antony, P., & Vijayan, R. (2018). Antioxidant and anticancer properties of berries. Critical reviews in food science and nutrition, 58(15), 2491-2507.spa
dc.relation.referencesBakowska-Barczak, A. M., Marianchuk, M., & Kolodziejczyk, P. (2007). Survey of bioactive components in Western Canadian berries. Canadian journal of physiology and pharmacology, 85(11), 1139-1152.spa
dc.relation.referencesBallard, C. R., & Junior, M. R. M. (2019). Health benefits of flavonoids. In Bioactive compounds (pp. 185-201). Woodhead Publishing.spa
dc.relation.referencesBan, C. Park, S. J. Lim, S. Choi, S. J. y Choi, Y. J. (2015). Improving flavonoid bioaccessibility using an edible oil-based lipid nanoparticle for oral delivery. Journal of agricultural and food chemistry, 63(21), 5266-5272.spa
dc.relation.referencesBesson, E. Gastaldi, S. Bloch, E. Zielonka, J. Zielonka, M. Kalyanaraman, B. y Hardy, M. (2019). Embedding cyclic nitrone in mesoporous silica particles for EPR spin trapping of superoxide and other radicals. Analyst, 144(14), 4194-4203.spa
dc.relation.referencesBiswas, A., Shogren, R.L., Selling, G., Salch, J., Willett, J.L. y Buchanan, C.M. (2008). Carbohydrate Polymers, 74, 137–141.spa
dc.relation.referencesBlando, F., Berland, H., Maiorano, G., Durante, M., Mazzucato, A., Picarella, M. E. y Andersen, Ø. M. (2019). Nutraceutical characterization of anthocyanin-rich fruits produced by “Sun Black” tomato line. Frontiers in nutrition, 6, 133.spa
dc.relation.referencesBondonno, C. P., Yang, X., Croft, K. D., Considine, M. J., Ward, N. C., Rich, L., ... & Hodgson, J. M. (2012). Flavonoid-rich apples and nitrate-rich spinach augment nitric oxide status and improve endothelial function in healthy men and women: a randomized controlled trial. Free Radical Biology and Medicine, 52(1), 95-102.spa
dc.relation.referencesBraga, A. R. C. Murador, D. C. de Souza-Mesquita, L. M. y de Rosso, V. V. (2018). Bioavailability of anthocyanins: Gaps in knowledge, challenges and future research. Journal of Food Composition and Analysis, 68, 31-40.spa
dc.relation.referencesBueno, J. M., Sáez-Plaza, P., Ramos-Escudero, F., Jiménez, A. M., Fett, R., & Asuero, A. G. (2012). Analysis and antioxidant capacity of anthocyanin pigments. Part II: chemical structure, color, and intake of anthocyanins. Critical reviews in analytical chemistry, 42(2), 126-151.spa
dc.relation.referencesCadenas, E. (2004). Mitochondrial free radical production and cell signaling. Molecular aspects of medicine, 25(1-2), 17-26.spa
dc.relation.referencesCapanoglu, E. Kamiloglu, S. Ozkan, G. y Apak, R. (2018). Evaluation of antioxidant activity/capacity measurement methods for food products. Measurement of antioxidant activity and capacity: recent trends and applications, 273-286.spa
dc.relation.referencesChakravarty, S., Bhutia, K. D., Suresh, C. P., Shukla, G., & Pala, N. A. (2016). A review on diversity, conservation and nutrition of wild edible fruits. Journal of Applied and Natural Science, 8(4), 2346-2353.spa
dc.relation.referencesChen, B. H. y Stephen Inbaraj, B. (2019). Nanoemulsion and nanoliposome based strategies for improving anthocyanin stability and bioavailability. Nutrients, 11(5), 1052.spa
dc.relation.referencesChen, Y., Zhang, L., Yang, Y., Pang, B., Xu, W., Duan, G., ... & Zhang, K. (2021). Recent progress on nanocellulose aerogels: Preparation, modification, composite fabrication, applications. Advanced Materials, 33(11), 2005569.spa
dc.relation.referencesChouhan, S., Sharma, K., Zha, J., Guleria, S., & Koffas, M. A. (2017). Recent advances in the recombinant biosynthesis of polyphenols. Frontiers in microbiology, 8, 2259.spa
dc.relation.referencesCiappellano, S. G. Tedesco, E. Venturini, M. y Benetti, F. (2016). In vitro toxicity assessment of oral nanocarriers. Advanced drug delivery reviews, 106, 381-401.spa
dc.relation.referencesComan, M. M., Oancea, A. M., Verdenelli, M. C., Cecchini, C., Bahrim, G. E., Orpianesi, C., ... & Silvi, S. (2018). Polyphenol content and in vitro evaluation of antioxidant, antimicrobial and prebiotic properties of red fruit extracts. European food research and technology, 244(4), 735-745.spa
dc.relation.referencesCosme, F., Pinto, T., Aires, A., Morais, M. C., Bacelar, E., Anjos, R., ... & Gonçalves, B. (2022). Red Fruits Composition and Their Health Benefits—A Review. Foods, 11(5), 644.spa
dc.relation.referencesCruz, S., Chaparro-Hernández, S., Hernández-Ruiz, K. L., Cira-Chávez, L. A., Estrada-Alvarado, M. I., Ortega, L. E. G., & Mata, M. A. L. (2017). Flavonoids: Important biocompounds in food. Flavonoids: From Biosynthesis to Human Health; Justino, JG, Ed.; IntechOpen: London, UK, 353-369.spa
dc.relation.referencesCutler, B.-R.; Petersen, C.; Anandh Babu, P.-V. Mechanistic Insights into the Vascular Effects of Blueberries: Evidence from Recent Studies. Mol. Nutr. Food Res. 2017, 61, 1600271. DOI: 10.1002/mnfr.201600271.spa
dc.relation.referencesDeli J, Molnár P. (2002). Paprika carotenoids: analysis, isolation, structure elucidation Current Organic Chemistry, 6, 1197–1219.spa
dc.relation.referencesDe Rosso, V. V., Moran Vieyra, F. E., Mercadante, A. Z., & Borsarelli, C. D. (2008). Singlet oxygen quenching by anthocyanin's flavylium cations. Free radical research, 42(10), 885-891.spa
dc.relation.referencesDíaz, L. D., Fernández-Ruiz, V., & Cámara, M. (2020). An international regulatory review of food health-related claims in functional food products labeling. Journal of Functional Foods, 68, 103896.spa
dc.relation.referencesDimitrovska, M. Dervisevik, M. Cipanovska, N. Gerazova, K. Dinevska-Kjovkarovska, S. y Miova, B. (2018). Physiological and pharmacological inductors of HSP70 enhance the antioxidative defense mechanisms of the liver and pancreas in diabetic rats. Canadian journal of physiology and pharmacology, 96(2), 158-164.spa
dc.relation.referencesdo Nascimento, T. C., Jacob-Lopes, E., & Zepka, L. Q. (2021). Introductory Chapter: An Overview on Bioactive Compounds with Focus in the Biosynthesis, Characterization and Applications. Bioactive Compounds-Biosynthesis, Characterization and Applications.spa
dc.relation.referencesDungani, R., Hua, L. S., Chen, L. W., Nurani, W., Solihat, N. N., Maulani, R. R., & Fatriasari, W. (2024). Potential of lignin and cellulose as renewable materials for the synthesis of flame-retardant aerogel composites. Materials Today Communications, 110501.spa
dc.relation.referencesFerrari, D.; Cimino, F.; Fratantonio, D.; Molonia, M.-S.; Bashllari, R.; Busà, R.; Saija, A.; Speciale, A. Cyanidin- 3-O-Glucoside Modulates the in vitro Inflammatory Crosstalk between Intestinal Epithelial and Endothelial Cells. Mediators Inflamm. 2017, 2017, 1–8. DOI: 10.1155/2017/3454023.spa
dc.relation.referencesFernandes, I.; Faria, A.; Calhau, C.; de Freitas, V.; Mateus, N. Bioavailability of Anthocyanins and Derivatives. J. Funct. Foods. 2014, 7, 54–66. DOI: 10.1016/j.jff.2013.05.010.spa
dc.relation.referencesFernandes, R. D. P. P. Trindade, M. A, y de Melo, M. P. (2018). Natural antioxidants and food applications: healthy perspectives. In Alternative and replacement foods (pp. 31-64). Academic Press.spa
dc.relation.referencesFlieger, J., Flieger, W., Baj, J., & Maciejewski, R. (2021). Antioxidants: Classification, natural sources, activity/capacity measurements, and usefulness for the synthesis of nanoparticles. Materials, 14(15), 4135.spa
dc.relation.referencesFranco, C., Martínez, M., Benjumea, P., Patiño, E. and Cortés, F., Water remediation based on oil adsorption using nanosilicates functionalized with a petroleum vacuum residue, Adsorption Science & Technology, 32, pp. 197-208, 2014. DOI: 10.1260/0263-6174.32.2-3.197spa
dc.relation.referencesFranco, R. P. (1990). The genus Hyeronima (Euphorbiaceae) in South America. Bot. Jahrb. Syst. 111, 297−346.spa
dc.relation.referencesFrench, A. D. Bertoniere, N. R. Brown, R. M. Chanzy, H. Gray, D. Hattori, K. Glasser, W. (2004). In Kirk-Othmer Encyclopedia of Chemical Technology 5th ed.; Seidel, A., Ed.; John Wiley & Sons, Inc.: New York, Vol. 5.spa
dc.relation.referencesGarcía Bosquez, J. L. (2019). Determinación de la extracción de antocianinas de Hyeronima macrocarpa Müll. Arg (Motilón) mediante metodología de superficie de respuesta (Bachelor's thesis, Universidad Estatal Amazónica).spa
dc.relation.referencesGarzón, G. A. Narváez, C. E. Riedl, K. M. y Schwartz, S. J. (2010). Chemical composition, anthocyanins, non-anthocyanin phenolics and antioxidant activity of wild bilberry (Vaccinium meridionale Swartz) from Colombia. Food Chemistry, 122(4), 980-986.spa
dc.relation.referencesGaviria, C. A. Ochoa, C. I., Sánchez, N. Medina, C. Lobo, M. Galeano, P. L. Gaviria, C. A. (2009). Propiedades antioxidantes de los frutos de agraz o mortiño (Vaccinium meridionale Swartz). Perspectivas del cultivo de agraz o mortiño, 93-112.spa
dc.relation.referencesGhafoor, K. Choi, Y. H. Jeon, J. Y. y Jo, I. H. (2009). Optimization of ultrasound-assisted extraction of phenolic compounds, antioxidants, and anthocyanins from grape (Vitis vinifera) seeds. Journal of agricultural and food chemistry, 57(11), 4988-4994.spa
dc.relation.referencesGiraldo, J., Benjumea, P., Lopera, S., Cortés, F. B., & Ruiz, M. A. (2013). Wettability alteration of sandstone cores by alumina-based nanofluids. Energy & Fuels, 27(7), 3659-3665.spa
dc.relation.referencesGraves, D.B. The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. J. Phys. D Appl. Phys. 2012, 45, 263001spa
dc.relation.referencesGuaadaoui, A., Benaicha, S., Elmajdoub, N., Bellaoui, M., & Hamal, A. (2014). What is a bioactive compound? A combined definition for a preliminary consensus. International Journal of Nutrition and Food Sciences, 3(3), 174-179.spa
dc.relation.referencesGuevara-Terán, M., Tejera, E., Vásquez-Castillo, W., Santos-Buelga, C., González-Paramás, A. M., & Alvarez-Suarez, J. M. (2024). Influence of altitudes and development stages on the chemical composition and antioxidant capacity of Andean blackberries (Rubus glaucus Benth). Frontiers in Nutrition, 11, 1501889.spa
dc.relation.referencesGutteridge JMC, Halliwell B. Antioxidants in nutrition, health, and disease. Oxford, United Kingdom: Oxford University Press, 1994.spa
dc.relation.referencesGurung, R. B., Pandey, R. P., & Sohng, J. K. (2016). Role of apigenin in cancer prevention. APIGENIN AND NARINGENIN, 107. ISBN: 978-1-63463-987-3.spa
dc.relation.referencesGuven, H., Arici, A., & Simsek, O. (2019). Flavonoids in our foods: a short review. Journal of Basic and Clinical Health Sciences, 3(2), 96-106.spa
dc.relation.referencesHarasym, J., & Oledzki, R. (2014). Effect of fruit and vegetable antioxidants on total antioxidant capacity of blood plasma. Nutrition, 30(5), 511-517.spa
dc.relation.referencesHwa, K.S., Chung, D.M., Chung, Y. C. and Chun, H.K. (2011). Hypouricemic effects of anthocyanin extracts of purple sweet potato on potassium oxonate-induced hyperuricemia in mice. Phytother. Res. 25:1415–1417.spa
dc.relation.referencesHua, Z. Yuesheng, D., Ge, X., Menglu, L., Liya, D., LiJia, A. y Zhilong, X. (2013). Extraction and purification of anthocyanins from the fruit residues of Vaccinium uliginosum Linn. J Chromatogr Sep Technique, 4, 167-172.spa
dc.relation.referencesHuang, W. Ling, S. Li, C. Omenetto, F. G. y Kaplan, D. L. (2018). Silkworm silk-based materials and devices generated using bio-nanotechnology. Chemical Society Reviews, 47(17), 6486-6504.spa
dc.relation.referencesIglesias-Pérez, GM. (2016). Evaluación de la propagación de Hyeronima macrocarpa Schltr. (Motilón), en tres tipos de sustratos, en la parroquia Ulba cantón Baños, provincia de Tungurahua (tesis de pregrado) Escuela Superior Politécnica de Chimborazo, Riobamba, Ecuador. http://dspace.espoch.edu.ec/handle/123456789/4882spa
dc.relation.referencesJain, A. K. y Thareja, S. (2019). In vitro and in vivo characterization of pharmaceutical nanocarriers used for drug delivery. Artificial cells, nanomedicine, and biotechnology, 47(1), 524-539.spa
dc.relation.referencesJamar, G., Estadella, D., & Pisani, L. P. (2017). Contribution of anthocyanin‐rich foods in obesity control through gut microbiota interactions. BioFactors, 43(4), 507-516.spa
dc.relation.referencesJin, C., Han, S., Li, J., & Sun, Q. (2015). Fabrication of cellulose-based aerogels from waste newspaper without any pretreatment and their use for absorbents. Carbohydrate polymers, 123, 150-156.spa
dc.relation.referencesJoint WHO/FAO Expert Consultation on Diet, Nutrition and the Prevention of Chronic Diseases (2002: Geneva, Switzerland) Diet, nutrition and the prevention of chronic diseases: report of a joint WHO/FAO expert consultation, Geneva, 28 January - 1 February 2002.spa
dc.relation.referencesKalmár, J. (2021). Aerogels in drug delivery: From design to application. Journal of Controlled Release. 2021, 332, 40-63.spa
dc.relation.referencesKanokpanont, S. Yamdech, R. y Aramwit, P. (2018). Stability enhancement of mulberry-extracted anthocyanin using alginate/chitosan microencapsulation for food supplement application. Artificial Cells, Nanomedicine, and Biotechnology, 46(4), 773-782.spa
dc.relation.referencesKaur, S., & Das, M. (2011). Functional foods: An overview. Food Science and Biotechnology, 20(4), 861-875.spa
dc.relation.referencesKay, C. D. Pereira-Caro, G. Ludwig, I. A. Clifford, M. N. y Crozier, A. (2017). Anthocyanins and flavanones are more bioavailable than previously perceived: A review of recent evidence.spa
dc.relation.referencesKelebek, H., & Selli, S. (2011). Evaluation of chemical constituents and antioxidant activity of sweet cherry (Prunus avium L.) cultivars. International Journal of Food Science & Technology, 46(12), 2530-2537.spa
dc.relation.referencesKeller, I., & Tukuitonga, C. (2005). The WHO/FAO fruit and vegetable promotion initiative. In I International Symposium on Human Health Effects of Fruits and Vegetables 744 (pp. 27-37).spa
dc.relation.referencesKim, J., Gripenberg, S., Karonen, M., & Salminen, J. P. (2021). Seed tannin composition of tropical plants. Phytochemistry, 187, 112750.spa
dc.relation.referencesKistler, S. S. (1931). Coherent expanded aerogels and jellies. Nature, 127(3211), 741-741.spa
dc.relation.referencesKlaunig, J. E., Kamendulis, L. M., & Hocevar, B. A. (2010). Oxidative stress and oxidative damage in carcinogenesis. Toxicologic pathology, 38(1), 96-109.spa
dc.relation.referencesKleemann, C., Schuster, R., Rosenecker, E., Selmer, I., Smirnova, I., & Kulozik, U. (2020). In-vitro-digestion and swelling kinetics of whey protein, egg white protein and sodium caseinate aerogels. Food Hydrocolloids, 101, 105534.spa
dc.relation.referencesLarson, A. J., Symons, J. D., & Jalili, T. (2012). Therapeutic potential of quercetin to decrease blood pressure: review of efficacy and mechanisms. Advances in nutrition, 3(1), 39-46.spa
dc.relation.referencesLee, G. H., Hoang, T. H., Jung, E. S., Jung, S. J., Han, S. K., Chung, M. J., & Chae, H. J. (2020). Anthocyanins attenuate endothelial dysfunction through regulation of uncoupling of nitric oxide synthase in aged rats. Aging Cell, 19(12), e13279.spa
dc.relation.referencesLee, J. Durst, R. W. y Wrolstad, R. E. (2005). Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: collaborative study. Journal of AOAC international, 88(5), 1269-1278.spa
dc.relation.referencesLeonel, H., Ortiz, E., & Jarrín, V. F. (2001). Evaluación de la germinación de las semillas de motilon dulce Hieronyma macrocarpa mvell-arg, bajo tres métodos de escarificación y dos sustratos de suelo, en el corregimiento de Obonuco, municipio de Pasto (n.). Revista de Ciencias Agrícolas, 18(1).spa
dc.relation.referencesLeopoldini, M., Russo, N., & Toscano, M. (2011). The molecular basis of working mechanism of natural polyphenolic antioxidants. Food Chemistry, 125(2), 288-306.spa
dc.relation.referencesLi, D., Wang, P., Luo, Y., Zhao, M., & Chen, F. (2017). Health benefits of anthocyanins and molecular mechanisms: Update from recent decade. Critical reviews in food science and nutrition, 57(8), 1729-1741.spa
dc.relation.referencesLi, R., Zhang, Y., Rasool, S., Geetha, T., & Babu, J. R. (2019). Effects and underlying mechanisms of bioactive compounds on type 2 diabetes mellitus and Alzheimer’s disease. Oxidative Medicine and Cellular Longevity, 2019.spa
dc.relation.referencesLópez-Picado, A. Fernández, M. Martínez, M. Ruiz, I. (2009). Vitaminas liposolubles. Dispensación 23(6), 425-431.spa
dc.relation.referencesLuna-Cabrera, G. C., Delgado-Vargas, I. A., & Burgos Ordóñez, L. C. (2022). Árboles conocimiento local en el corregimiento de Morasurco, Pasto-Nariño.spa
dc.relation.referencesMa, Y., Ding, S., Fei, Y., Liu, G., Jang, H., & Fang, J. (2019). Antimicrobial activity of anthocyanins and catechins against foodborne pathogens Escherichia coli and Salmonella. Food Control, 106, 106712.spa
dc.relation.referencesManach, C. Scalbert, A. Morand, C. Rémésy, C. Jimenez, L. (2004). Polyphenols: food sources and bioavailability. Am J Clin Nutr. 79:727– 747.spa
dc.relation.referencesMartínez-Cadena, AM. (2019). Evaluación del efecto de los estados de madurez sobre las propiedades nutracéuticas del fruto de motilón Hyeronima macrocarpa (tesis de pregrado). Universidad Técnica del Norte, Imbabura, Ecuador. http://repositorio.utn.edu.ec/handle/123456789/8904spa
dc.relation.referencesMartínez-Díaz, LR, (2019). Factibilidad para la implementación de un cultivo de Arándano (Vaccinium corymbosum l.) En la vereda llano verde del Municipio de Úmbita, Boyacá (tesis de pregrado). Universidad Pedagógica y Tecnológica de Colombia, Duitama, Colombia. https://repositorio.uptc.edu.co/bitstream/001/3003/1/TGT_1536.pdfspa
dc.relation.referencesMartínez, J. H., Velázquez, F., Burrieza, H. P., Martínez, K. D., Rubio, A. P. D., dos Santos Ferreira, C., & Pérez, O. E. (2019). Betanin loaded nanocarriers based on quinoa seed 11S globulin. Impact on the protein structure and antioxidant activity. Food Hydrocolloids, 87, 880-890.spa
dc.relation.referencesMasserini, M. (2013). Nanoparticles for brain drug delivery. International Scholarly Research Notices, 2013, 1-18.spa
dc.relation.referencesMatera, R., Gabbanini, S., Berretti, S., Amorati, R., De Nicola, G. R., Iori, R., & Valgimigli, L. (2015). Acylated anthocyanins from sprouts of Raphanus sativus cv. Sango: Isolation, structure elucidation and antioxidant activity. Food chemistry, 166, 397-406.spa
dc.relation.referencesMattioli, R.; Francioso, A.; Mosca, L.; Silva, P. Anthocyanins: A Comprehensive Review of their Chemical Properties and Health Effects on Cardiovascular and Neurodegenerative Diseases. Molecules. 2020, 25, 3809. DOI: 10.3390/molecules25173809.spa
dc.relation.referencesMcClements, D. J. (2019). Nanoparticle-and microparticle-based delivery systems: Encapsulation, protection and release of active compounds. CRC press.spa
dc.relation.referencesMickymaray, S. (2019). Efficacy and mechanism of traditional medicinal plants and bioactive compounds against clinically important pathogens. Antibiotics, 8(4), 257.spa
dc.relation.referencesMitra, S., Tareq, A. M., Das, R., Emran, T. B., Nainu, F., Chakraborty, A. J., & Simal-Gandara, J. (2022). Polyphenols: A first evidence in the synergism and bioactivities. Food Reviews International, 1-23.spa
dc.relation.referencesMontero, G., Arriagada, F., Günther, G., Bollo, S., Mura, F., Berríos, E., & Morales, J. (2019). Phytoestrogen coumestrol: Antioxidant capacity and its loading in albumin nanoparticles. International journal of pharmaceutics, 562, 86-95.spa
dc.relation.referencesMosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of immunological methods, 65(1-2), 55-63.spa
dc.relation.referencesMpiana, P. T., Ngbolua, K. N., Bokota, M. T., Kasonga, T. K., Atibu, E. K., Tshibangu, D. S. and Mudogo, V. (2010). In vitro effects of anthocyanin extracts from Justicia secunda Vahl on the solubility of haemoglobin S and membrane stability of sickle erythrocytes. Blood Transfus. 8:248–254.spa
dc.relation.referencesMueller, J. (2003). El Motilón, Hyeronima macrocarpa: especie promisoria para la región Andina Ecuatoriana. Proyecto Apoyo al Desarrollo Forestal Comunal en los Andes del Ecuador.spa
dc.relation.referencesMullen, W., Marks, S. C., & Crozier, A. (2007). Evaluation of phenolic compounds in commercial fruit juices and fruit drinks. Journal of agricultural and food chemistry, 55(8), 3148-3157.spa
dc.relation.referencesMukhopadhyay, S. S. (2014). Nanotechnology in agriculture: prospects and constraints. Nanotechnology, science and applications, 7, 63.spa
dc.relation.referencesNCI, National Cancer Institute dictionary of Cancer Terms. (2011, febrero 2). National Cancer Institute. https://www.cancer.gov/publications/dictionaries/cancer-terms/def/bioactive-compoundspa
dc.relation.referencesNdlovu, N., Mayaya, T., Muitire, C., & Munyengwa, N. (2020). Nanotechnology applications in crop production and food systems. International Journal of Plant Breeding and Crop Science, 7(1), 624-634.spa
dc.relation.referencesNguyen, S. T., Do, N. D., Thai, N. N. T., Thai, Q. B., Huynh, H. K. P., & Phan, A. N. (2020). Green aerogels from rice straw for thermal, acoustic insulation and oil spill cleaning applications. Materials Chemistry and Physics, 253, 123363.spa
dc.relation.referencesNguyen, H. S., Huynh, H. K. P., Nguyen, S. T., Nguyen, V. T., Nguyen, T. A., & Phan, A. N. (2022). Insights into sustainable aerogels from lignocellulosic materials. Journal of Materials Chemistry A, 10(44), 23467-23482.spa
dc.relation.referencesNile, S. H., & Park, S. W. (2014). Edible berries: Bioactive components and their effect on human health. Nutrition, 30(2), 134-144.spa
dc.relation.referencesNorkaew, O., Thitisut, P., Mahatheeranont, S., Pawin, B., Sookwong, P., Yodpitak, S., & Lungkaphin, A. (2019). Effect of wall materials on some physicochemical properties and release characteristics of encapsulated black rice anthocyanin microcapsules. Food chemistry, 294, 493-502.spa
dc.relation.referencesOlson, K. R., Gao, Y., Briggs, A., Devireddy, M., Iovino, N. A., Licursi, M., ... & Straub, K. D. (2021). Antioxidant berries, anthocyanins, resveratrol and rosmarinic acid oxidize hydrogen sulfide to polysulfides and thiosulfate: A novel mechanism underlying their biological actions. Free Radical Biology and Medicine, 165, 67-78spa
dc.relation.referencesOrtega, J. I. M., & Mayanquer, F. G. T. (2015). Extracción de pigmentos naturales a partir de cerote (Hesperomeles heterophylla), motilón (Hyeronima macrocarpa), mortiño (Vaccinium loribundum) y su aplicación en la elaboración de yogurt de mora (Rubus glaucus benth). SATHIRI, (9), 87-103.spa
dc.relation.referencesOsorio, C., & Almanza, O. (2013). Antioxidant activity of anthocyanin-rich Colombian tropical fruits. In Tropical and Subtropical Fruits: Flavors, Color, and Health Benefits (pp. 95-102). American Chemical Society.spa
dc.relation.referencesPandey, K. B., & Rizvi, S. I. (2009). Plant polyphenols as dietary antioxidants in human health and disease. Oxidative medicine and cellular longevity, 2(5), 270-278.spa
dc.relation.referencesPark, S., Ham, J. O., & Lee, B. K. (2015). Effects of total vitamin A, vitamin C, and fruit intake on risk for metabolic syndrome in Korean women and men. Nutrition, 31(1), 111-118.spa
dc.relation.referencesPatel, S. (2014). Blueberry as functional food and dietary supplement: The natural way to ensure holistic health. Mediterranean Journal of Nutrition and Metabolism, 7(2), 133-143.spa
dc.relation.referencesPatel, D. K., Dutta, S. D., & Lim, K. T. (2019). Nanocellulose-based polymer hybrids and their emerging applications in biomedical engineering and water purification. RSC advances, 9(33), 19143-19162.spa
dc.relation.referencesPathakoti, K., Manubolu, M., & Hwang, H. M. (2018). Nanotechnology applications for environmental industry. In Handbook of nanomaterials for industrial applications (pp. 894-907). Elsevier.spa
dc.relation.referencesPekala, R. W. (1989). Organic aerogels from the polycondensation of resorcinol with formaldehyde. Journal of materials science, 24(9), 3221-3227.spa
dc.relation.referencesPerfetti, J. J., Botero, J., Oviedo, S., Forero, D., Higuera, S., Correa, M., & García, J. (2017). Política comercial agrícola: nivel, costos y efectos de la protección en Colombia.spa
dc.relation.referencesPhaniendra, A., Jestadi, D. B., & Periyasamy, L. (2015). Free radicals: properties, sources, targets, and their implication in various diseases. Indian journal of clinical biochemistry, 30(1), 11-26.spa
dc.relation.referencesPietta P, Simonetti P, Roggi C, et al. Dietary flavonoids and oxidative stress. In: Kumpulainen JT, Salonen JT, eds. Natural antioxidants and food quality in atherosclerosis and cancer prevention. London: Royal Society of Chemistry, 1996:249 –55spa
dc.relation.referencesPisoschi, A. M., & Pop, A. (2015). The role of antioxidants in the chemistry of oxidative stress: A review. European journal of medicinal chemistry, 97, 55-74.spa
dc.relation.referencesPoljsak, B.; Šuput, D.; Milisav, I. Achieving the Balance between ROS and Antioxidants: When to Use the Synthetic Antioxidants. Oxidative Med. Cell. Longev. 2013, 1–11.spa
dc.relation.referencesPrasad, R. (Ed.). (2017). Fungal nanotechnology: applications in agriculture, industry, and medicine. Springer.spa
dc.relation.referencesRampino, A., Borgogna, M., Bellich, B., Blasi, P., Virgilio, F., & Cesàro, A. (2016). Chitosan-pectin hybrid nanoparticles prepared by coating and blending techniques. European Journal of Pharmaceutical Sciences, 84, 37-45.spa
dc.relation.referencesRavanfar, R., Tamaddon, A. M., Niakousari, M., & Moein, M. R. (2016). Preservation of anthocyanins in solid lipid nanoparticles: Optimization of a microemulsion dilution method using the Placket–Burman and Box–Behnken designs. Food chemistry, 199, 573-580.spa
dc.relation.referencesRechner AR, Kuhnle G, Hu H, et al. The metabolism of dietary polyphenols and the relevance to circulating levels of conjugated metabolites. Free Radic Res 2002;36:1229 – 41.spa
dc.relation.referencesRuta de la Prehispanidad. (2021). Turismo Pasto, San Juan de Pasto Nariño Colombia. Recuperado 8 de agosto de 2021, de http://turismopasto.gov.co/index.php/que-hacer/ruta-de-la-prehispanidad/112-el-encanospa
dc.relation.referencesRuta, L. L., & Farcasanu, I. C. (2019). Anthocyanins and anthocyanin-derived products in yeast-fermented beverages. Antioxidants, 8(6), 182.spa
dc.relation.referencesSabziparvar, N., Saeedi, Y., Nouri, M., Najafi Bozorgi, A. S., Alizadeh, E., Attar, F., ... & Falahati, M. (2018). Investigating the interaction of silicon dioxide nanoparticles with human hemoglobin and lymphocyte cells by biophysical, computational, and cellular studies. The Journal of Physical Chemistry B, 122(15), 4278-4288.spa
dc.relation.referencesSalgado, M., Santos, F., Rodríguez-Rojo, S., Reis, R. L., Duarte, A. R. C., & Cocero, M. J. (2017). Development of barley and yeast β-glucan aerogels for drug delivery by supercritical fluids. Journal of CO2 Utilization, 22, 262-269.spa
dc.relation.referencesSang, J., Li, B., Huang, Y. Y., Ma, Q., Liu, K., & Li, C. Q. (2018). Deep eutectic solvent-based extraction coupled with green two-dimensional HPLC-DAD-ESI-MS/MS for the determination of anthocyanins from Lycium ruthenicum Murr. fruit. Analytical Methods, 10(10), 1247-1257.spa
dc.relation.referencesSantacruz, L., Carriazo, J. G., Almanza, O., & Osorio, C. (2012). Anthocyanin composition of wild Colombian fruits and antioxidant capacity measurement by electron paramagnetic resonance spectroscopy. Journal of agricultural and food chemistry, 60(6), 1397-1404.spa
dc.relation.referencesSchramm DD, Karim M, Schrader HR, et al. Food effects on the absorption and pharmacokinetics of cocoa flavanols. Life Sci 2003;73: 857– 69.spa
dc.relation.referencesSchrezenmeir J et al.; Foreword. British Journal of Nutrition, 2000, 84(S1): 1.spa
dc.relation.referencesSerrano, J. C., Jove, M., Gonzalo, H., Pamplona, R., & Portero-Otin, M. (2015). Nutridynamics: mechanism (s) of action of bioactive compounds and their effects. International Journal of Food Sciences and Nutrition, 66(sup1), S22-S30.spa
dc.relation.referencesShaddel, R., Hesari, J., Azadmard-Damirchi, S., Hamishehkar, H., Fathi-Achachlouei, B., & Huang, Q. (2018). Use of gelatin and gum Arabic for encapsulation of black raspberry anthocyanins by complex coacervation. International journal of biological macromolecules, 107, 1800-1810.spa
dc.relation.referencesShahidi, F. (Ed.). (2015). Handbook of antioxidants for food preservation. Woodhead Publishing.spa
dc.relation.referencesShakya, R., & Navarre, D. A. (2006). Rapid screening of ascorbic acid, glycoalkaloids, and phenolics in potato using high-performance liquid chromatography. Journal of Agricultural and food Chemistry, 54(15), 5253-5260.spa
dc.relation.referencesSharma, A., Shahzad, B., Rehman, A., Bhardwaj, R., Landi, M., & Zheng, B. (2019). Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules, 24(13), 2452.spa
dc.relation.referencesSharifi-Rad, M., Anil Kumar, N. V., Zucca, P., Varoni, E. M., Dini, L., Panzarini, E., ... & Sharifi-Rad, J. (2020). Lifestyle, oxidative stress, and antioxidants: back and forth in the pathophysiology of chronic diseases. Frontiers in physiology, 11, 694.spa
dc.relation.referencesShen, N., Wang, T., Gan, Q., Liu, S., Wang, L., & Jin, B. (2022). Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chemistry, 132531.spa
dc.relation.referencesSheorain, J., Mehra, M., Thakur, R., Grewal, S., & Kumari, S. (2019). In vitro anti-inflammatory and antioxidant potential of thymol loaded bipolymeric (tragacanth gum/chitosan) nanocarrier. International journal of biological macromolecules, 125, 1069-1074.spa
dc.relation.referencesSmith, T., Majid, F., Eckl, V., & Morton Reynolds, C. (2021). Herbal supplement sales in US increase by record-breaking 17.3% in 2020. Herbal Gram, 131, 52-65.spa
dc.relation.referencesSingh NP, McCoy MT, Tice RR, Schneider EL. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res. 1988;175:184–91. https://doi.org/10.1016/0014-4827(88)90265-0spa
dc.relation.referencesSingleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American journal of Enology and Viticulture, 16(3), 144-158.spa
dc.relation.referencesSingh, T., Shukla, S., Kumar, P., Wahla, V., Bajpai, V. K., & Rather, I. A. (2017). Application of nanotechnology in food science: perception and overview. Frontiers in microbiology, 8, 1501.spa
dc.relation.referencesSobekova, K., Thomsen, M. R., & Ahrendsen, B. L. (2013). Market trends and consumer demand for fresh berries. Applied Studies in Agribusiness and Commerce, 7(2-3), 11-14.spa
dc.relation.referencesSchramm DD, Karim M, Schrader HR, et al. Food effects on the absorption and pharmacokinetics of cocoa flavanols. Life Sci 2003;73: 857– 69.spa
dc.relation.referencesSchrezenmeir J et al.; Foreword. British Journal of Nutrition, 2000, 84(S1): 1.spa
dc.relation.referencesSerrano, J. C., Jove, M., Gonzalo, H., Pamplona, R., & Portero-Otin, M. (2015). Nutridynamics: mechanism (s) of action of bioactive compounds and their effects. International Journal of Food Sciences and Nutrition, 66(sup1), S22-S30.spa
dc.relation.referencesShaddel, R., Hesari, J., Azadmard-Damirchi, S., Hamishehkar, H., Fathi-Achachlouei, B., & Huang, Q. (2018). Use of gelatin and gum Arabic for encapsulation of black raspberry anthocyanins by complex coacervation. International journal of biological macromolecules, 107, 1800-1810.spa
dc.relation.referencesShahidi, F. (Ed.). (2015). Handbook of antioxidants for food preservation. Woodhead Publishing.spa
dc.relation.referencesShakya, R., & Navarre, D. A. (2006). Rapid screening of ascorbic acid, glycoalkaloids, and phenolics in potato using high-performance liquid chromatography. Journal of Agricultural and food Chemistry, 54(15), 5253-5260.spa
dc.relation.referencesSharma, A., Shahzad, B., Rehman, A., Bhardwaj, R., Landi, M., & Zheng, B. (2019). Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules, 24(13), 2452.spa
dc.relation.referencesSharifi-Rad, M., Anil Kumar, N. V., Zucca, P., Varoni, E. M., Dini, L., Panzarini, E., ... & Sharifi-Rad, J. (2020). Lifestyle, oxidative stress, and antioxidants: back and forth in the pathophysiology of chronic diseases. Frontiers in physiology, 11, 694.spa
dc.relation.referencesShen, N., Wang, T., Gan, Q., Liu, S., Wang, L., & Jin, B. (2022). Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chemistry, 132531.spa
dc.relation.referencesSheorain, J., Mehra, M., Thakur, R., Grewal, S., & Kumari, S. (2019). In vitro anti-inflammatory and antioxidant potential of thymol loaded bipolymeric (tragacanth gum/chitosan) nanocarrier. International journal of biological macromolecules, 125, 1069-1074.spa
dc.relation.referencesSmith, T., Majid, F., Eckl, V., & Morton Reynolds, C. (2021). Herbal supplement sales in US increase by record-breaking 17.3% in 2020. Herbal Gram, 131, 52-65.spa
dc.relation.referencesSingh NP, McCoy MT, Tice RR, Schneider EL. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res. 1988;175:184–91. https://doi.org/10.1016/0014-4827(88)90265-0spa
dc.relation.referencesSingleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American journal of Enology and Viticulture, 16(3), 144-158.spa
dc.relation.referencesSingh, T., Shukla, S., Kumar, P., Wahla, V., Bajpai, V. K., & Rather, I. A. (2017). Application of nanotechnology in food science: perception and overview. Frontiers in microbiology, 8, 1501.spa
dc.relation.referencesSobekova, K., Thomsen, M. R., & Ahrendsen, B. L. (2013). Market trends and consumer demand for fresh berries. Applied Studies in Agribusiness and Commerce, 7(2-3), 11-14.spa
dc.relation.referencesSpeisky, H., López-Alarcón, C., Gómez, M., Fuentes, J., & Sandoval-Acuña, C. (2012). First web-based database on total phenolics and oxygen radical absorbance capacity (ORAC) of fruits produced and consumed within the south Andes region of South America. Journal of Agricultural and Food Chemistry, 60(36), 8851-8859.spa
dc.relation.referencesStiller, A., Garrison, K., Gurdyumov, K., Kenner, J., Yasmin, F., Yates, P., & Song, B. H. (2021). From fighting critters to saving lives: polyphenols in plant defense and human health. International Journal of Molecular Sciences, 22(16), 8995.spa
dc.relation.referencesSui, X., Bary, S., & Zhou, W. (2016). Changes in the color, chemical stability and antioxidant capacity of thermally treated anthocyanin aqueous solution over storage. Food Chemistry, 192, 516–524.spa
dc.relation.referencesSwallah, M. S., Sun, H., Affoh, R., Fu, H., & Yu, H. (2020). Antioxidant potential overviews of secondary metabolites (polyphenols) in fruits. International journal of food science, 2020.spa
dc.relation.referencesTalavera, S; C. Felgines, O. Texier, C. Besson, A. Mazur, J.L. Lamaison, C. Remesy. Bioavailability of bilberry anthocyanin extract and its impact on plasma antioxidant capacity in rats. Journal of the Science of Food and Agriculture, 86 (2006), pp. 90-97.spa
dc.relation.referencesTan, C., Xue, J., Abbas, S., Feng, B., Zhang, X., & Xia, S. (2014). Liposome as a delivery system for carotenoids: Comparative antioxidant activity of carotenoids as measured by ferric reducing antioxidant power, DPPH assay and lipid peroxidation. Journal of agricultural and food chemistry, 62(28), 6726-6735.spa
dc.relation.referencesTena, N., Martín, J., & Asuero, A. G. (2020). State of the art of anthocyanins: Antioxidant activity, sources, bioavailability, and therapeutic effect in human health. Antioxidants, 9(5), 451.spa
dc.relation.referencesTena, N., & Asuero, A. G. (2022). Up-To-Date Analysis of the Extraction Methods for Anthocyanins: Principles of the Techniques, Optimization, Technical Progress, and Industrial Application. Antioxidants, 11(2), 286.spa
dc.relation.referencesTeng, H.; Fang, T.; Lin, Q.; Song, H.; Liu, B.; Chen, L. Red Raspberry and Its Anthocyanins: Bioactivity Beyond Antioxidant Capacity. Trends Food Sci. Technol. 2017, 66, 153–165. DOI: 10.1016/j.tifs.2017.05.015.spa
dc.relation.referencesTorres, O., Tena, N. M., Murray, B., & Sarkar, A. (2017). Novel starch based emulsion gels and emulsion microgel particles: Design, structure and rheology. Carbohydrate Polymers, 178, 86–94.spa
dc.relation.referencesTuremis, N. U. R. G. Ü. L., Kafkas, E., Kafkas, S. A. L. İ. H., Kurkcuoglu, M., & Baser, K. H. C. (2003). Determination of aroma compounds in blackberry by GC/MS analysis. Chemistry of natural compounds, 39(2), 174-176.spa
dc.relation.referencesTurner, G., Green, R., Alae-Carew, C., & Dangour, A. D. (2021). The association of dimensions of fruit and vegetable access in the retail food environment with consumption; a systematic review. Global food security, 29, 100528.spa
dc.relation.referencesValo, H.; Arola, S.; Laaksonen, P.; Torkkeli, M.; Peltonen, L.; Linder, M.B.; Serimaa, R.; Kuga, S.; Hirvonen, J.; Laaksonen, T. Drug release from nanoparticles embedded in four di erent nanofibrillar cellulose aerogels. Eur. J. Pharm. Sci. 2013, 50, 69–77.spa
dc.relation.referencesVareda, J. P., Lamy-Mendes, A., & Durães, L. (2018). A reconsideration on the definition of the term aerogel based on current drying trends. Microporous and Mesoporous Materials, 258, 211-216.spa
dc.relation.referencesWallace, T. C., & Giusti, M. M. (2015). Anthocyanins. Advances in Nutrition, 6(5), 620-622.spa
dc.relation.referencesWallace, T. C., Slavin, M., & Frankenfeld, C. L. (2016). Systematic review of anthocyanins and markers of cardiovascular disease. Nutrients, 8(1), 32.spa
dc.relation.referencesWang, N., Tan, H. Y., Li, S., Xu, Y., Guo, W., & Feng, Y. (2017). Supplementation of micronutrient selenium in metabolic diseases: its role as an antioxidant. Oxidative medicine and cellular longevity, 2017.spa
dc.relation.referencesWei, T.; Ji, X.; Xue, J.; Yan, G.; Zhu, X.; Xiao, G. Cyanidin-3-O-Glucoside Represses Tumor Growth and Invasion in vivo by Suppressing Autophagy via Inhibition of the JNK Signaling Pathways. Food Funct. 2021, 12, 387–396. DOI: 10.1039/D0FO02107E.spa
dc.relation.referencesWilliamson, G., Kay, C. D., & Crozier, A. (2018). The bioavailability, transport, and bioactivity of dietary flavonoids: A review from a historical perspective. Comprehensive Reviews in Food Science and Food Safety, 17(5), 1054-1112.spa
dc.relation.referencesWinter, A.-N.; Ross, E.-K.; Wilkins, H.-M.; Stankiewicz, T.-R.; Wallace, T.; Miller, K.; Linseman, D.-A. An Anthocyanin-Enriched Extract from Strawberries Delays Disease Onset and Extends Survival in the hSOD1G93A Mice Model of Amyotrophic Lateral Sclerosis. Nutr. Neurosci. 2018, 21, 414–426. DOI: 10.1080/1028415X.2017.1297023.spa
dc.relation.referencesWu, X., Gu, L., Holden, J., Haytowitz, D. B., Gebhardt, S. E., Beecher, G., & Prior, R. L. (2004). Development of a database for total antioxidant capacity in foods: a preliminary study. Journal of Food composition and analysis, 17(3-4), 407-422.spa
dc.relation.referencesXia, Y.; Tian, L.-M.; Liu, Y.; Guo, K.-S.; Lv, M.; Li, Q.-T.; Hao, S.-Y.; Ma, C.-H.; Chen, Y.-X.; Tanaka, M. Low Dose of Cyanidin-3-O-Glucoside Alleviated Dextran Sulfate Sodium–Induced Colitis, Mediated by CD169+ Macrophage Pathway. Inflammatory Bowel Dis. 2019, 25, 1510–1521. DOI: 10.1093/ibd/izz090.spa
dc.relation.referencesYan, L., Wang, R., Wang, H., Sheng, K., Liu, C., Qu, H., ... & Zheng, L. (2018). Formulation and characterization of chitosan hydrochloride and carboxymethyl chitosan encapsulated quercetin nanoparticles for controlled applications in foods system and simulated gastrointestinal condition. Food Hydrocolloids, 84, 450-457.spa
dc.relation.referencesYan, Z., Zhong, Y., Duan, Y., Chen, Q., & Li, F. (2020). Antioxidant mechanism of tea polyphenols and its impact on health benefits. Animal Nutrition, 6(2), 115-123.spa
dc.relation.referencesYang, L., Ling, W., Du, Z., Chen, Y., Li, D., Deng, S., ... & Yang, L. (2017). Effects of anthocyanins on cardiometabolic health: a systematic review and meta-analysis of randomized controlled trials. Advances in Nutrition, 8(5), 684-693.spa
dc.relation.referencesYang, P., Yuan, C., Wang, H., Han, F., Liu, Y., Wang, L., & Liu, Y. (2018). Stability of anthocyanins and their degradation products from cabernet sauvignon red wine under gastrointestinal pH and temperature conditions. Molecules, 23(2), 354.spa
dc.relation.referencesYang, X., Kang, S., Jeon, B., Kim, Y., Ha, J., Kim, Y. (2011). Isolation and identification of an antioxidant flavonoid compound from citrus-processing byproduct. Journal of the Science of Food and Agriculture, 91, 1925–1927.spa
dc.relation.referencesYi, J., Qiu, M., Liu, N., Tian, L., Zhu, X., Decker, E. A., & McClements, D. J. (2020). Inhibition of lipid and protein oxidation in whey-protein-stabilized emulsions using a natural antioxidant: black rice anthocyanins. Journal of Agricultural and Food Chemistry, 68(37), 10149-10156.spa
dc.relation.referencesYousuf, B., Gul, K., Wani, A. A., & Singh, P. (2016). Health benefits of anthocyanins and their encapsulation for potential use in food systems: a review. Critical reviews in food science and nutrition, 56(13), 2223-2230.spa
dc.relation.referencesZeb, A. (2020). Concept, mechanism, and applications of phenolic antioxidants in foods. Journal of Food Biochemistry, 44(9), e13394.spa
dc.relation.referencesZhao, S., Malfait, W. J., Guerrero‐Alburquerque, N., Koebel, M. M., & Nyström, G. (2018). Biopolymer aerogels and foams: Chemistry, properties, and applications. Angewandte Chemie International Edition, 57(26), 7580-7608.spa
dc.relation.referencesZiegler, C., Wolf, A., Liu, W., Herrmann, A. K., Gaponik, N., & Eychmüller, A. (2017). Modern inorganic aerogels. Angewandte Chemie International Edition, 56(43), 13200-13221.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subject.agrovocNanocelulosa
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::635 - Cultivos hortícolas (Horticultura)spa
dc.subject.ddc660 - Ingeniería química::664 - Tecnología de alimentosspa
dc.subject.lembTecnología de alimentos
dc.subject.lembEvaluación de riesgos contra la salud
dc.subject.lembToxicología de alimentos
dc.subject.lembPrueba de toxicidad
dc.subject.lembBiomoléculas
dc.subject.lembBayas - Consumo
dc.subject.lembFrutas - Consumo
dc.subject.lembFrutas - Compuestos bioactivos
dc.subject.lembSemillas de arboles frutales
dc.subject.proposalBayas andinasspa
dc.subject.proposalAerogeles de nanocelulosaspa
dc.subject.proposalMateriales lignocelulósicosspa
dc.subject.proposalSustancias bioactivas antioxidantesspa
dc.subject.proposalNutracéuticosspa
dc.subject.proposalAndean berrieseng
dc.subject.proposalNanocellulose-based aerogelseng
dc.subject.proposalLignocellulosic materialseng
dc.subject.proposalAntioxidant bioactive substanceseng
dc.subject.proposalNutraceuticalseng
dc.titleEstudio nutracéutico y toxicológico de extractos polifenólicos de frutos de Hyeronima macrocarpa soportados en aerogeles lignocelulósicosspa
dc.title.translatedNutraceutical and toxicological study of polyphenolic extracts from Hyeronima macrocarpa fruits supported on lignocellulosic aerogelseng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
18522606.2025.pdf
Tamaño:
30.46 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ciencia y Tecnología de Alimentos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: