Implementación de un protocolo automatizado para el control de calidad en sistemas de imágenes de aceleradores lineales de uso clínico
dc.contributor.advisor | Orejuela Mosquera, Diego Mauricio | spa |
dc.contributor.advisor | Agulles Pedrós, Luis | spa |
dc.contributor.author | Díaz Ramos, Tatiana | spa |
dc.contributor.researchgroup | Grupo Fisica Medica Unalb | spa |
dc.coverage.country | Colombia | spa |
dc.date.accessioned | 2025-07-10T12:41:18Z | |
dc.date.available | 2025-07-10T12:41:18Z | |
dc.date.issued | 2025 | |
dc.description | ilustraciones a color, diagramas, fotografías | spa |
dc.description.abstract | Este estudio tuvo como objetivo implementar un protocolo automatizado para el control de calidad en sistemas de imágenes de aceleradores lineales en un hospital público del suroccidente colombiano. Se estructuraron los procedimientos siguiendo las recomendaciones consignadas en las publicaciones del TG-42 y TG-198 de la AAPM, y TECDOC-1958 del OIEA, adaptándolos a los simuladores físicos disponibles. Se desarrolló el software LimageQC, que automatiza el análisis de pruebas mensuales sobre imágenes planares (MV y kV) y volumétricas (CBCT), utilizando Python, Django, OpenCV y Pylinac. Durante la validación, se realizaron más de 12.000 mediciones automatizadas, automatizadas, cuyos coeficientes de variación y errores de magnificación resultaron demostrar estabilidad y reproducibilidad. En la prueba Winston-Lutz, se observaron desviaciones mínimas, dentro de lo esperado para una alineación precisa. En cuanto a la magnificación, los valores se mantuvieron estables y dentro de los rangos aceptables. La resolución espacial fue adecuada tanto para imágenes kV como MV, y se registraron niveles de contraste, uniformidad y ruido acordes con los estándares de calidad establecidos para cada modalidad de imagen. El software también integró pruebas no cubiertas por Pylinac, como aquellas para el análisis de los simuladores físicos: ISOCube, MarkerBlock, PMMA y lámina de cobre, proponiendo un aporte al desarrollo de herramientas libres en Física Médica. LimageQC demostró ser una herramienta efectiva para estandarizar, agilizar y trazar el control de calidad en sistemas de imagen, con potencial de replicabilidad en otros entornos clínicos similares (Texto tomado de la fuente). | spa |
dc.description.abstract | This study aimed to implement an automated protocol for quality control in imaging systems of linear accelerators at a public hospital in southwestern Colombia. The procedures were structured based on the recommendations from AAPM reports TG-42 and TG-198, and IAEA TECDOC-1958, adapting them to the available physical phantoms. The LimageQC software was developed to automate the analysis of monthly tests on planar images (MV and kV) and volumetric images (CBCT), using Python, Django, OpenCV, and Pylinac. During validation, more than 12,000 automated measurements were performed, whose coefficients of variation and magnification errors demonstrated stability and reproducibility. In the Winston-Lutz test, minimal deviations were observed, within the expected range for accurate alignment. Magnification values remained stable and within acceptable limits. Spatial resolution was adequate for both kV and MV images, and contrast, uniformity, and noise levels were consistent with established quality standards for each imaging modality. The software also integrated tests not covered by Pylinac, such as those for the analysis of physical phantoms: ISOCube, MarkerBlock, PMMA, and copper plate, contributing to the development of open-source tools in Medical Physics. LimageQC proved to be an effective tool for standardizing, streamlining, and tracking quality control in imaging systems, with potential for replication in other similar clinical settings. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Física Médica | spa |
dc.description.methods | El presente trabajo final de maestría es un estudio de tipo descriptivo de temporalidad prospectiva basado en imágenes de control de calidad para el sistema de adquisición de imágenes que se adquirieron en el periodo entre octubre del 2024 y febrero del 2025, tanto planares (kV y MV) como volumétricas (CBCT) en los aceleradores lineales de uso clínico del HUV. | spa |
dc.description.researcharea | Radioterapia | spa |
dc.format.extent | 237 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88319 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Maestría en Física Médica | spa |
dc.relation.references | DA. J. Image-guided radiotherapy: from current concept to future perspectives. Nat Rev Clin Oncol.; 9(12):688–699. 2012. | spa |
dc.relation.references | Bujold A CT, Jaffray D, Dawson LA. Image-guided radiotherapy: has it influenced patient outcomes? Semin Radiat Oncol; 22(1):50–61. 2012. | spa |
dc.relation.references | AAPM. Quality assurance of medical accelerators, (TG-142). 2009. | spa |
dc.relation.references | El Naqa I IJ, Ritter TA, DeMarco J, Al-Hallaq H, Booth J, Kim G, Alkhatib A, Popple R, Perez M, Farrey K, Moran JM. . Machine learning for automated quality assurance in radiotherapy: A proof of principle using EPID data description. Med Phys. ;46(4):1914-1921. 2019. | spa |
dc.relation.references | Jiménez J. La correlación clinicopatológica como indicador de calidad en la atención al paciente con cáncer. Revista Finlay. 2017;7(4):229-31. | spa |
dc.relation.references | International Agency for Research on Cancer G. Global cancer burden growing, amidst mounting need for services: IARC; 2024 [Available from: https://gco.iarc.fr/today/home. | spa |
dc.relation.references | Cancer IAfRo. Crece la carga mundial de cáncer en medio de una creciente necesidad de servicios Comunicado de prensa Lyon (Francia); Ginebra (Suiza)1 de febrero de 2024 [Available from: https://www.iarc.who.int/. | spa |
dc.relation.references | World Health Organization (WHO)’s cancer agency tIAfRoCI. Cancer Tomorrow 2024 [Available from: https://gco.iarc.fr/en. | spa |
dc.relation.references | Colombia MdSyPSd. Prevención enfermedades NO transmisibles - Cáncer Colombia potencia de la vida2024 [Available from: https://www.minsalud.gov.co/salud/publica/PENT/Paginas/Prevenciondel-cancer.aspx#:~:text=El%20c%C3%A1ncer%20es%20considerado%20un,Colombia%20por%20causa%20del%20c%C3%A1ncer. | spa |
dc.relation.references | Atun R, Jaffray DA, Barton MB, Bray F, Baumann M, Vikram B, et al. Expanding global access to radiotherapy. The lancet oncology. 2015;16(10):1153-86. | spa |
dc.relation.references | Huguet F, Haberer-Guillerm S, Monnier L. Radioterapia. EMC-Tratado de Medicina. 2014;18(3):1-6. | spa |
dc.relation.references | IAEA. Aspectos físicos de la garantía de calidad en Radioterapia: Protocolo de control de calidad. . 2000. | spa |
dc.relation.references | Lizuain M, Capuz B, Delgado J, Crispin V, Garcia S, Juan X. Recomendaciones para el control de calidad de equipos y técnicas de Radioterapia guiada por la imagen (IGRT) - SEFM. ADI. 2013;345. | spa |
dc.relation.references | Martínez Albaladejo M, Vilches Pacheco M, Almendral Manzano P, Ambroa Rey EM, Ferrer Gracia CL, Perez-Alija J. Diseño y resultados de la encuesta sobre control de calidad de aceleradores lineales. 2023. | spa |
dc.relation.references | Winkler P, Hofer C, Stollberger R, editors. A quality assurance tool based on kV-and MV-image analysis for a linear accelerator including an integrated IGRT system. World Congress on Medical Physics and Biomedical Engineering, September 7-12, 2009, Munich, Germany: Vol 25/1 Radiation Oncology; 2009: Springer. | spa |
dc.relation.references | Report NRIG. Image Guided Radiotherapy (IGRT): Guidance for implementation and use. 2012. | spa |
dc.relation.references | Verellen D, De Ridder M, Storme G. A (short) history of image-guided radiotherapy. Radiotherapy and Oncology. 2008;86(1):4-13. | spa |
dc.relation.references | Antonuk LE. Electronic portal imaging devices: a review and historical perspective of contemporary technologies and research. Physics in Medicine & Biology. 2002;47(6):R31. | spa |
dc.relation.references | Simpson DR, Lawson JD, Nath SK, Rose BS, Mundt AJ, Mell LK. A survey of image‐guided radiation therapy use in the United States. Cancer. 2010;116(16):3953-60. | spa |
dc.relation.references | Leksell L. Stereotactic radiosurgery. Journal of Neurology, Neurosurgery & Psychiatry. 1983;46(9):797-803. | spa |
dc.relation.references | Bortfeld T. IMRT: a review and preview. Physics in Medicine & Biology. 2006;51(13):R363. | spa |
dc.relation.references | Otto K. Volumetric modulated arc therapy: IMRT in a single gantry arc. Medical physics. 2008;35(1):310-7. | spa |
dc.relation.references | Chang BK, Timmerman RD. Stereotactic body radiation therapy: a comprehensive review. American journal of clinical oncology. 2007;30(6):637-44. | spa |
dc.relation.references | Thilmann C, Nill S, Tücking T, Höss A, Hesse B, Dietrich L, et al. Correction of patient positioning errors based on in-line cone beam CTs: clinical implementation and first experiences. Radiation Oncology. 2006;1:1-9. | spa |
dc.relation.references | Murphy MJ, Balter J, Balter S, BenComo Jr JA, Das IJ, Jiang SB, et al. The management of imaging dose during image‐guided radiotherapy: report of the AAPM Task Group 75. Medical physics. 2007;34(10):4041-63. | spa |
dc.relation.references | Zaila A, Adili M, Bamajboor S. Pylinac: A toolkit for performing TG-142 QA related tasks on linear accelerator. Physica Medica. 2016;32:292-3. | spa |
dc.relation.references | Aguirre J, Alfonso-Laguardia R, Andreo P, Brunetto M, Marenco-Zuniga H, Gutt F, et al. Physical aspects of quality assurance in radiotherapy: A protocol for quality control. International Atomic Energy Agency; 2000. | spa |
dc.relation.references | Varian ASHC. Varian Medical Systems Introduces Clinac iX™ Line of High-Performance Linear Accelerators for Treating Cancer 2004 [Available from: https://www.varian.com/es-xl/node/6906. | spa |
dc.relation.references | Varian ASHC. TrueBeam [Available from: https://www.varian.com/products/radiotherapy/treatment-delivery/truebeam. | spa |
dc.relation.references | Varian Medical Systems I. TrueBeam 1999-2024 [Available from: https://www.varian.com/es/products/radiotherapy/treatment-delivery/truebeam. | spa |
dc.relation.references | Djordjevic M. Evaluation of geometric accuracy and image quality of an on-board imager (OBI). 2007. | spa |
dc.relation.references | Varian Medical Systems I. On-Board Imager (OBI) Advanced Imaging Reference GuideMARCH 2013. | spa |
dc.relation.references | Varian Medical Systems I. TrueBeam Platform for Physicists. 2018. | spa |
dc.relation.references | Moores BM. Quality control in diagnostic radiology–its historical development, present and future status in Europe. | spa |
dc.relation.references | Alam MJ, Bläsius T, Rutter I, Ueckerdt T, Wolff A, editors. Pixel and voxel representations of graphs. International Symposium on Graph Drawing; 2015: Springer. | spa |
dc.relation.references | Arno J. Mundt MaJR, PhD. Image-Guided Radiation Therapy: A Clinical Perspective. PEOPLE’S MEDICAL PUBLISHING HOUSE—USA SHELTON C, editor2011. | spa |
dc.relation.references | Castro IT. “Plan operativo anual institucional- vigencia 2022” Hospital Universitario del Valle. 2022. | spa |
dc.relation.references | TIC M. Historia del Hospital Universitario del Valle Evaristo García E.S.E. 2023 [Available from: https://huv.gov.co/index.php/quienessomos/. . 39. (SOGCS) SOdGdCeS. [Available from: https://www.minsalud.gov.co/salud/PServicios/Paginas/sistema-obligatorio-garantia-calidad-SOGC.aspx. | spa |
dc.relation.references | SOCIAL MDSYP. RESOLUCIÓN 482. 2018. | spa |
dc.relation.references | SOCIAL MDSYP. RESOLUCIÓN 3100. 2019. | spa |
dc.relation.references | SOCIAL MDLP. DECRETO NÚMERO 4725 DE 2005, por el cual se reglamenta el régimen de registros sanitarios, permiso de comercialización y vigilancia sanitaria de los dispositivos médicos para uso humano. | spa |
dc.relation.references | COLOMBIA ECDLRD. LEY 100 de 1993. "Por la cual se crea el sistema de seguridad social integral y se dictan otras disposiciones". | spa |
dc.relation.references | “Pautas de Auditoría para el Mejoramiento de la Calidad de la Atención en Salud Sistema Obligatorio de Garantía de Calidad,” 2007 [Available from: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/DE/CA/pautas-auditoria-mejoramiento-calidad-atencion-en-salud.pdf. | spa |
dc.relation.references | Medicine AAoPi. Report No. 198 - AAPM Task Group 198 Report: An Implementation Guide for TG 142 Quality Assurance of Medical Accelerators. 2021. | spa |
dc.relation.references | OIEA. Aspectos físicos de la garantía de calidad en Radioterapia: Protocolo de control de calidad,(TECDOC-1151). Viena; 2000. | spa |
dc.relation.references | 1958 CdDTdO-. Protocolos de Control de Calidad para Radiodiagnóstico en América Latina y el Caribe. 2021. | spa |
dc.relation.references | Khan FM. The physics of radiation therapy: Lippincott Williams & Wilkins; 2010. | spa |
dc.relation.references | Eisberg R, Resnick R. Física cuántica: Limusa; 1978. | spa |
dc.relation.references | Knoll GF. Radiation detection and measurement: John Wiley & Sons; 2010. | spa |
dc.relation.references | Valdivieso Mosquero AF. Análisis dosimétrico de un detector micro-diamante PTW 60019 (SCDD) para dosimetría clínica de un acelerador lineal (clinac ix), en haces de fotones de 6 MeV 2019. | spa |
dc.relation.references | Ahmed SN. Physics and Engineering of Radiation Detection. . ELSEVIER, editor2007. | spa |
dc.relation.references | JERROLD T. BUSHBERG P, J. ANTHONY SEIBERT, PhD, EDWIN M. LEIDHOLDT JR, PhD & JOHN M. BOONE, PhD. The Essential Physics of Medical Imaging. 3rd ed2012. | spa |
dc.relation.references | Granfors PR, Aufrichtig R. Performance of a 41× 41‐cm amorphous silicon flat panel x‐ray detector for radiographic imaging applications. Medical physics. 2000;27(6):1324-31. | spa |
dc.relation.references | Choquette M, Demers Y, Shukri Z, Tousignant O, Aoki K, Honda M, et al., editors. Performance of a real-time selenium-based x-ray detector for fluoroscopy. Medical Imaging 2001: Physics of Medical Imaging; 2001: SPIE. | spa |
dc.relation.references | Que W, Rowlands J. X‐ray imaging using amorphous selenium: Inherent spatial resolution. Medical physics. 1995;22(4):365-74. | spa |
dc.relation.references | (SEFM) SEdFM. Introducción al Control de Calidad en Radiología Digital2013. | spa |
dc.relation.references | (SEFM) SEdFM. Fundamentos de Física Médica. Volumen 2 Radiodiagnóstico: bases físicas, equipos y control de calidad. | spa |
dc.relation.references | pylinac 3.31.0 documentation 2023 [Available from: https://pylinac.readthedocs.io/en/latest/topics/contrast.html#visibility. | spa |
dc.relation.references | Ulrik V. Elstrøm LPM, Jørgen B. B. Petersen & Cai Grau. Evaluation of image quality for different kV cone-beam CT acquisition and reconstruction methods in the head and neck region, Acta Oncologica, 50:6, 908-917. 2011. | spa |
dc.relation.references | Objects LT. TOR 18FG - User manual (X - ray Phantoms) [Available from: www.leedstestobjects.com. | spa |
dc.relation.references | Herman MG, Balter JM, Jaffray DA, McGee KP, Munro P, Shalev S, et al. Clinical use of electronic portal imaging: report of AAPM Radiation Therapy Committee Task Group 58. Medical physics. 2001;28(5):712-37. | spa |
dc.relation.references | Inc. CIRS. ISO Cube daily QA package [versión digital], 2428 Almeda Avenue Suite 316. Norfolk, Virginia 23513. USA. | spa |
dc.relation.references | INCORPORATED TPL. C a t p h a n ® 604 M a n u a l 2020 [Available from: https://static1.squarespace.com/static/5367b059e4b05a1adcd295c2/t/5efe3c9cb415005eed8ae334/1593719971234/CTP604Manual20200701.pdf. | spa |
dc.relation.references | SALUD EMD. RESOLUCION NUMERO 8430. 1993 | spa |
dc.relation.references | B.V. VMSN. OBI v1.6 and CBCT v2.1 Installation Product Acceptance. FEBRUARY 2022. | spa |
dc.relation.references | Won J LH, Kim J, et al. Analysis of HU linearity in CBCT using Catphan 504 and Varian TrueBeam system. . J Appl Clin Med Phys 2012. | spa |
dc.relation.references | Garayoa J CP, Garcia M, et al. A study on image quality provided by a kilovoltage cone-beam computed tomography. JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 14, NUMBER 1. 2013. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
dc.subject.ddc | 610 - Medicina y salud | spa |
dc.subject.ddc | 000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación | spa |
dc.subject.ddc | 610 - Medicina y salud::616 - Enfermedades | spa |
dc.subject.lemb | DIAGNOSTICO POR IMAGENES | spa |
dc.subject.lemb | Diagnostic imaging | eng |
dc.subject.lemb | SISTEMAS DE IMAGENES EN MEDICINA | spa |
dc.subject.lemb | Imaging systems in medicine | eng |
dc.subject.lemb | INNOVACIONES TECNOLOGICAS | spa |
dc.subject.lemb | Technological innovations | eng |
dc.subject.lemb | INNOVACIONES EN MEDICINA | spa |
dc.subject.lemb | Medical innovation | eng |
dc.subject.lemb | FISICA MEDICA | spa |
dc.subject.lemb | Medical physics | eng |
dc.subject.lemb | RADIOLOGIA MEDICA | spa |
dc.subject.lemb | Radiology, medical | eng |
dc.subject.proposal | Aceleradores lineales | spa |
dc.subject.proposal | Linear accelerators | eng |
dc.subject.proposal | Automatización | spa |
dc.subject.proposal | Automation | eng |
dc.subject.proposal | Control de calidad | spa |
dc.subject.proposal | Quality control | eng |
dc.subject.proposal | Física Médica | spa |
dc.subject.proposal | Medical Physics | eng |
dc.subject.proposal | Radioterapia Guiada por Imágenes | spa |
dc.subject.proposal | Image-Guided Radiotherapy | eng |
dc.subject.proposal | Sistema de imágenes | spa |
dc.subject.proposal | Imaging system | eng |
dc.title | Implementación de un protocolo automatizado para el control de calidad en sistemas de imágenes de aceleradores lineales de uso clínico | spa |
dc.title.translated | Implementation of an automated protocol for quality control in imaging systems of clinical linear accelerators | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1007379631.2025.pdf
- Tamaño:
- 22.85 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Física Médica
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: