Síntesis, caracterización de c-aquil y c-fenil-pirogalol[4]arenos funcionalizados con grupos carboxilo en el borde superior y evaluación de su interacción con cationes orgánicos de interés biológico

dc.contributor.advisorMaldonado Villamil, Mauriciospa
dc.contributor.authorCasas Hinestroza, José Luisspa
dc.contributor.corporatenameUniversidad Nacional de Colombiaspa
dc.contributor.researchgroupAplicaciones Analíticas de Compuesto Orgánicosspa
dc.date.accessioned2020-08-12T17:51:37Zspa
dc.date.available2020-08-12T17:51:37Zspa
dc.date.issued2020-07-14spa
dc.description.abstractIn this research work, our attention was focused on synthesis, characterization, and study of the molecular interaction of C-alkyl and C-phenyl-pyrogallol[4]arenes with three important biological important organic cations known as neurotransmitters. In this sense, the polyphenolic macrocycles tetra(propyl)-pyrogallol[4]arene, tetra(phenyl)-pyrogallol[4]arene and tetra(4-hidroxyphenyl)-pyrogallol[4]arene were synthesized using butanal, benzaldehyde, and 4-hidroxybenzaldehyde respectively in reaction with pyrogallol in ethanol as solvent in all cases, afterward, the isomers mixture was characterized employing spectroscopic methods (1H-NMR, 13C-RMN, 2D-NMR, and FT-IR) and mass spectrometry(ESI-MS) and, a methodology was developed that allows an efficient separation of each isomer. The three macrocycles were derivatized on the upper rim with acetyl and benzoyl groups employing acetic anhydride and benzoyl chloride achieved a total functionalization of each isomer. Finally, the molecular interaction between the neurotransmitters choline, betaine and carnitine with the macrocycles functionalized and without functionalization in cone and boat conformation was carried out in gas phase and solution. The interaction studies indicated that the macrocycles functionalized form 1:1 complexes host-guest with the three neurotransmitters in the gas phase, while the macrocycles without functionalized, only the tetra(propyl)-pyrogallol[4]arene formed complexes with the neurotransmitters. The noncovalent interactions studies in solution indicated that the cone and boat conformers are affective hosts for the three neurotransmitters and some hosts with potential applications in host-guest systems and supramolecular assemblies.spa
dc.description.abstractEn este trabajo de investigación, nuestro interés estuvo centrado en la síntesis, caracterización y estudio de la interacción molecular de C-alquil y C-fenil-pirogalol[4]arenos frente a tres cationes orgánicos de interés biológico conocidos por su acción como neurotransmisores. En este sentido se establecieron las mejores condiciones de reacción para la síntesis de tres polifenoles macrocíclicos tetra(propil)-pirogalol[4]areno, tetra(fenil)-pirogalol[4]areno y tetra(4-hidroxifenil)pirogalol[4]areno a partir de butanal, benzaldehído y p-hidroxi-benzaldehído respectivamente en reacción con pirogalol usando etanol como disolvente. Posteriormente, se determinó y caracterizó completamente por métodos espectroscópicos (RMN-1H, RMN-13C, RMN-2D y FT-IR) y espectrometría de masas(ESI-MS) la identidad de la mezcla de isómeros obtenida en la síntesis de los derivados aromáticos, y además se desarrolló una metodología que permitió la separación eficiente de cada isómero. Los tres macrociclos fueron derivatizados con grupos carboxilo usando anhídrido acético y cloruro de benzoilo logrando su funcionalización total. Finalmente, se evaluó la interacción molecular entre los cationes de interés biológico colina, carnitina y betaína frente a los macrociclos sin funcionalizar y funcionalizados en fase gaseosa y en disolución logrando demostrar que todos los macrociclos derivatizados en el borde superior con los grupos acetil y benzoilo forman complejos en estequiometria 1:1 en fase gaseosa con los tres cationes planteados, mientras que, de los macrociclos sin funcionalizar, solamente el tetra(propil)-pirogalol[4]areno forma complejos estables con los tres cationes usados. De igual manera los estudios en disolución mediante titulaciones por RMN-1H permitió establecer que los confórmeros bote(rccc) y cono(rccc) de los macrociclos sin derivatizar y derivatizados son los mejores hospederos de los neurotransmisores planteados con potencial aplicación en el diseño de sistemas huésped-hospedero y ensambles supramoleculares.spa
dc.description.additionalLínea de Investigación: Química Analítica y Síntesis Orgánicaspa
dc.description.degreelevelDoctoradospa
dc.description.projectSÍNTESIS, CARACTERIZACIÓN DE C-ALQUIL Y C-FENIL-PIROGALOL[4]ARENOS FUNCIONALIZADOS CON GRUPOS CARBOXILO EN EL BORDE SUPERIOR Y EVALUACIÓN DE SU INTERACCIÓN CON CATIONES ORGÁNICOS DE INTERÉS BIOLÓGICOspa
dc.format.extent200spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationJosé Luis Casas-Hinestrozaspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77999
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Químicaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Químicaspa
dc.relation.referencesSteed, J. W.; Atwood, J. L.; Gale, P. A. Definition and Emergence of Supramolecular ChemistryAdapted in Part from Supramolecular Chemistry , J. W. Steed and J. L. Atwood, Wiley: Chichester, 2nd Ed., 2009. In Supramolecular Chemistry; John Wiley & Sons, Ltd: Chichester, UK, 2012spa
dc.relation.referencesLehn, J.-M. Towards Complex Matter: Supramolecular Chemistry and Self-Organization. Eur. Rev. 2009, 17 (2), 263–280.spa
dc.relation.referencesStrekowski, L.; Wilson, B. Noncovalent Interactions with DNA: An Overview. Mutat. Res. Mol. Mech. Mutagen. 2007, 623 (1–2), 3–13.spa
dc.relation.referencesHarada, A.; Takashima, Y.; Yamaguchi, H. Cyclodextrin-Based Supramolecular Polymers. Chemical Society Reviews. 2009, pp 875–882.spa
dc.relation.referencesLiu, Z.; Nalluri, S. K. M.; Fraser Stoddart, J. Surveying Macrocyclic Chemistry: From Flexible Crown Ethers to Rigid Cyclophanes. Chem. Soc. Rev. 2017, 46 (9), 2459–2478.spa
dc.relation.referencesKumari, H.; Deakyne, C. A.; Atwood, J. L. Solution Structures of Nanoassemblies Based on Pyrogallol[4]Arenes. Acc. Chem. Res. 2014, 47 (10), 3080–3088.spa
dc.relation.referencesJordan, J. H.; Gibb, B. C. Molecular Containers Assembled through the Hydrophobic Effect. Chem. Soc. Rev. 2015, 44 (2), 547–585spa
dc.relation.referencesBeyeh, N. K.; Rissanen, K. Dimeric Resorcin[4]Arene Capsules in the Solid State. Isr. J. Chem. 2011, 51 (7), 769–780.spa
dc.relation.referencesZhang, Q.; Tiefenbacher, K. Hexameric Resorcinarene Capsule Is a Brønsted Acid: Investigation and Application to Synthesis and Catalysis. J. Am. Chem. Soc. 2013, 135 (43), 16213–16219.spa
dc.relation.referencesZhang, C.; Wang, F.; Patil, R. S.; Barnes, C. L.; Li, T.; Atwood, J. L. Hierarchical Self-Assembly of Supramolecular Coordination Polymers Using Giant Metal-Organic Nanocapsules as Building Blocks. Chem. - A Eur. J. 2018, 24 (54), 14335–14340.spa
dc.relation.referencesCohen, Y.; Slovak, S.; Avram, L. Hydrogen Bond Hexameric Capsules: Structures, Host-Guest Interactions, Guest Affinities, and Catalysis. In Calixarenes and Beyond; Neri, P., Sessler, J. L., Wang, M.-X., Eds.; Springer International Publishing: Cham, 2016; pp 811–842.spa
dc.relation.referencesSherman, J. C.; Knobler, C. B.; Cram, J. Syntheses and Properties of Soluble Carceplexes. J. Am. Chem. Soc. 1991, 2204 (4), 2194–2204.spa
dc.relation.referencesTanaka, Y.; Miyachi, M.; Kobuke, Y. Selective Vesicle Formation from Calixarenes by Self-Assembly. Angew. Chemie - Int. Ed. 1999, 38 (4), 504–506.spa
dc.relation.referencesYan, C.; Chen, W.; Chen, J.; Jiang, T.; Yao, Y. Microwave Irradiation Assisted Synthesis , Alkylation Reaction , and Configuration Analysis of Aryl Pyrogallol [ 4 ] Arenes. 2007, 63, 9614–9620spa
dc.relation.referencesFunck, M.; Guest, D. P.; Cave, G. W. V. Microwave-Assisted Synthesis of Resorcin[4]Arene and Pyrogallol[4]Arene Macrocycles. Tetrahedron Lett. 2010, 51, 6399–6402.spa
dc.relation.referencesYasmin, L.; Coyle, T.; Stubbs, K. A.; Raston, C. L. Stereospecific Synthesis of Resorcin[4]Arenes and Pyrogallol[4]Arenes in Dynamic Thin Films. Chem. Commun. 2013, 49 (93), 10932–10934.spa
dc.relation.referencesJain, V. K.; Kanaiya, P. H. Chemistry of Calix[4]Resorcinarenes. Russ. Chem. Rev. 2011, 80 (1), 75–102.spa
dc.relation.referencesSzumna, A.; Wierzbicki, M.; Iwanek, W.; Stefa, K. Solvent-Free Synthesis and Structure of 2-Naphthol Derivatives of Resorcinarenes. 2015, 71, 2222–2225.spa
dc.relation.referencesThomas, H. M.; Kumari, H.; Maddalena, J.; Mayhan, C. M.; Ellis, L. T.; Adams, J. E.; Deakyne, C. A. Conformational Preference and Dynamics of Pyrogallol[4]Arene: Stability, Interconversion, and Solvent Influence. Supramol. Chem. 2018, 30 (5–6), 520–532.spa
dc.relation.referencesManzano, S.; Zambrano, C. H.; Mendez, M. A.; Dueno, E. E.; Cazar, R. A.; Torres, F. J. A Theoretical Study of the Conformational Preference of Alkyl- and Aryl-Substituted Pyrogallol[4]Arenes and Evidence of the Accumulation of Negative Electrostatic Potential within the Cavity of Their Rccc Conformers. Mol. Simul. 2014, 40 (4), 327–334.spa
dc.relation.referencesGutsche, C. D.; Dhawan, B.; Levine, J. A.; Hyun No, K.; Bauer, L. J. Calixarenes 9. Tetrahedron 1983, 39 (3), 409–426.spa
dc.relation.referencesWeinelt, F.; Schneider, H. J. Host-Guest Chemistry. 27. Mechanisms of Macrocycle Genesis. The Condensation of Resorcinol with Aldehydes. J. Org. Chem. 1991, 56 (19), 5527–5535.spa
dc.relation.referencesMann, G.; Weinelt, F.; Hauptmann, S. Influence of Aromatic Substituents on the Configuration and Conformation of Calix[4]Areneoctols. J. Phys. Org. Chem. 1989, 2 (7), 531–539.spa
dc.relation.referencesGerkensmeier, T.; Agena, C.; Iwanek, W.; Fröhlich, R.; Kotila, S.; Näther, C.; Mattay, J. Synthesis and Structural Studies of 5, 11, 17, 23-Tetrahydroxyresorc[4]Arenes. Zeitschrift für Naturforsch. B 2001, 56 (10), 1063–1073.spa
dc.relation.referencesSchiel, C.; Hembury, G. A.; Borovkov, V. V.; Klaes, M.; Agena, C.; Wada, T.; Grimme, S.; Inoue, Y.; Mattay, J. New Insights into the Geometry of Resorc[4]Arenes: Solvent-Mediated Supramolecular Conformational and Chiroptical Control. J. Org. Chem. 2006, 71 (3), 976–982.spa
dc.relation.referencesPatil, R. S.; Drachnik, A. M.; Kumari, H.; Barnes, C. L.; Deakyne, C. A.; Atwood, J. L. Solvent-Induced Manipulation of Supramolecular Organic Frameworks. Cryst. Growth Des. 2015, 15 (6), 2781–2786.spa
dc.relation.referencesAlshahateet, S. F.; Kooli, F.; Messali, M.; Judeh, Z. M. A.; ElDouhaibi, A. S. Synthesis and Supramolecularity of C -Phenylcalix[4] Pyrogallolarenes: Temperature Effect on the Formation of Different Isomers. Mol. Cryst. Liq. Cryst. 2007, 474 (1), 89–110.spa
dc.relation.referencesCasas-Hinestroza, J.; Maldonado, M. Conformational Aspects of the O-Acetylation of C-Tetra(Phenyl)Calixpyrogallol[4]Arene. Molecules 2018, 23 (5), 1225.spa
dc.relation.referencesVelásquez-Silva, A.; Cortés, B.; Rivera-Monroy, Z. J.; Pérez-Redondo, A.; Maldonado, M. Crystal Structure and Dynamic NMR Studies of Octaacetyl-Tetra(Propyl)Calix[4]Resorcinarene. J. Mol. Struct. 2017, 1137, 380–386.spa
dc.relation.referencesKulikov, O. V; Negin, S.; Rath, N. P.; Gokel, G. W. Morphologies of Branched-Chain Pyrogallol[4]Arenes in the Solid State. Supramol. Chem. 2014, 26 (7–8), 506–516.spa
dc.relation.referencesDalgarno, S. J.; Power, N. P.; Antesberger, J.; Mckinlay, R. M.; Atwood, J. L. Synthesis and Structural Characterisation of Lower Rim Halogenated Pyrogallol [ 4 ] Arenes : Bi-Layers and Hexameric Nano-Capsules. Chem. Commun. 2006, 3803–3805.spa
dc.relation.referencesGibb, B. C.; Chapman, R. G.; Sherman, J. C. Synthesis of Hydroxyl-Footed Cavitands. J. Org. Chem. 1996, 61 (4), 1505–1509.spa
dc.relation.referencesKobayashi, K.; Asakawa, Y.; Kato, Y.; Aoyama, Y. Complexation of Hydrophobic Sugars and Nucleosides in Water with Tetrasulfonate Derivatives of Resorcinol Cyclic Tetramer Having a Polyhydroxy Aromatic Cavity: Importance of Guest-Host CH-.Pi. Interaction. J. Am. Chem. Soc. 1992, 114 (26), 10307–10313.spa
dc.relation.referencesBarrett, E. S.; Dale, T. J.; Rebek, J. Synthesis and Assembly of Monofunctionalized Pyrogallolarene Capsules Monitored by Fluorescence Resonance Energy Transfer. Chem. Commun. 2007, 0 (41), 4224.spa
dc.relation.referencesFujimoto, T.; Yanagihara, R.; Kobayashi, K.; Aoyama, Y. C–H··· π Hydrogen Bonding between Electron-Rich Benzene Rings and Polarized C–H Bonds: Selectivity in the Complexation of Highly Hydrophilic Guest Molecules with Calix[4]Resorcarene Hosts in Water. Bull. Chem. Soc. Jpn. 1995, 68, 2113–2124.spa
dc.relation.referencesBarrett, E. S.; Dale, T. J.; Rebek, J. Assembly and Exchange of Resorcinarene Capsules Monitored by Fluorescence Resonance Energy Transfer. J. Am. Chem. Soc. 2007, 129 (13), 3818–3819.spa
dc.relation.referencesFairfull-Smith (née Elson), K.; Redon, P. M. J.; Haycock, J. W.; Williams, N. H. Monofunctionalised Resorcinarenes. Tetrahedron Lett. 2007, 48 (8), 1317–1319.spa
dc.relation.referencesBowley, N. D.; Funck, M.; Laventine, D. M.; Dalgarno, S. J.; Cave, G. W. V; Bowley, N. D.; Funck, M.; Laventine, D. M.; Dalgarno, S. J. Pyridinium Encapsulation within a Novel Cyano- Footed Pyrogallol [ 4 ] Arene Nanocapsule. Supramol. Chem. 2014, 0278 (March 2017), 1–5.spa
dc.relation.referencesSchröder, T.; Geisler, T.; Walhorn, V.; Schnatwinkel, B.; Anselmetti, D.; Mattay, J. Single-Molecule Force Spectroscopy of Supramolecular Heterodimeric Capsules. Phys. Chem. Chem. Phys. 2010, 12 (36), 10981.spa
dc.relation.referencesRafai Far, A.; Lag Cho, Y.; Rang, A.; Rudkevich, D. M.; Rebek, J. Polymer-Bound Self-Folding Cavitands. Tetrahedron 2002, 58 (4), 741–755.spa
dc.relation.referencesSaitoh, M.; Fukaminato, T.; Irie, M. Photochromism of a Diarylethene Derivative in Aqueous Solution Capping with a Water-Soluble Nano-Cavitand. J. Photochem. Photobiol. A Chem. 2009, 207 (1), 28–31.spa
dc.relation.referencesSaito, S.; Rudkevich, D. M.; Rebek, J. Lower Rim Functionalized Resorcinarenes: Useful Modules for Supramolecular Chemistry. Org. Lett. 1999, 1 (8), 1241–1244.spa
dc.relation.referencesNaumann, C.; Román, E.; Peinador, C.; Ren, T.; Patrick, B. O.; Kaifer, A. E.; Sherman, J. C. Expanding Cavitand Chemistry: The Preparation and Characterization of [n]Cavitands Withn≥4. Chemistry (Easton). 2001, 7 (8), 1637–1645.spa
dc.relation.referencesÅhman, A.; Luostarinen, M.; Schalley, C. A.; Nissinen, M.; Rissanen, K. Derivatisation of Pyrogallarenes. European J. Org. Chem. 2005, 2005 (13), 2793–2801.spa
dc.relation.referencesPodyachev, S. N.; Syakaev, V. V.; Sudakova, S. N.; Shagidullin, R. R.; Osyanina, D. V.; Avvakumova, L. V.; Buzykin, B. I.; Latypov, S. K.; Bauer, I.; Habicher, W. D.; et al. Synthesis of New Calix[4]Arenes Functionalizated by Acetylhydrazide Groups. J. Incl. Phenom. Macrocycl. Chem. 2007, 58 (1–2), 55–61.spa
dc.relation.referencesPashirova, T. N.; Leonova, M. V.; Podyachev, S. N.; Sudakova, S. N.; Zakharova, L. Y.; Kudryavtseva, L. A.; Konovalov, A. I. Effect of Structural Preorganization on the Reactivity of Carbazoylmethyl Derivatives of Pyrogallol and Calix[4]Pyrogallol. Russ. Chem. Bull. 2007, 56 (12), 2394–2399.spa
dc.relation.referencesLuostarinen, M.; Åhman, A.; Nissinen, M.; Rissanen, K. Ethyl Pyrogall[6]Arene and Pyrogall[4]Arene: Synthesis, Structural Analysis and Derivatization. Supramol. Chem. 2004, 16 (7), 505–512.spa
dc.relation.referencesHan, J.; Song, X.; Liu, L.; Yan, C. Synthesis, Crystal Structure and Configuration of Acetylated Aryl Pyrogallol[4]Arenes. J. Incl. Phenom. Macrocycl. Chem. 2007, 59 (3–4), 257–263.spa
dc.relation.referencesKrause, T.; Gruner, M.; Kuckling, D.; Habicher, W. D. Novel Starshaped Initiators for the Controlled Radical Polymerization Based on Resorcin[4]- and Pyrogallol[4]Arenes. Tetrahedron Lett. 2004, 45 (52), 9635–9639.spa
dc.relation.referencesJordan, J. H.; Gibb, B. C. Water-Soluble Cavitands ☆. In Comprehensive Supramolecular Chemistry II; Elsevier, 2017; Vol. 1, pp 387–404.spa
dc.relation.referencesTero, T.-R.; Nissinen, M. Resorcinarene Crowns ☆. In Comprehensive Supramolecular Chemistry II; Elsevier, 2017; pp 375–386.spa
dc.relation.referencesSalorinne, K.; Nissinen, M. Calixcrowns: Synthesis and Properties. J. Incl. Phenom. Macrocycl. Chem. 2008, 61 (1–2), 11–27.spa
dc.relation.referencesBiedermann, F.; Schneider, H. J. Experimental Binding Energies in Supramolecular Complexes. Chem. Rev. 2016, 116 (9), 5216–5300.spa
dc.relation.referencesMahadevi, A. S.; Sastry, G. N. Cooperativity in Noncovalent Interactions. Chem. Rev. 2016, 116 (5), 2775–2825.spa
dc.relation.referencesSalonen, L. M.; Ellermann, M.; Diederich, F. Aromatic Rings in Chemical and Biological Recognition: Energetics and Structures. Angew. Chemie - Int. Ed. 2011, 50 (21), 4808–4842.spa
dc.relation.referencesCasas-Hinestroza, J. L.; Bueno, M.; Ibáñez, E.; Cifuentes, A. Recent Advances in Mass Spectrometry Studies of Non-Covalent Complexes of Macrocycles - A Review. Anal. Chim. Acta 2019.spa
dc.relation.referencesWaters, M. L. Aromatic Interactions in Model Systems. Curr. Opin. Chem. Biol. 2002, 6 (6), 736–741.spa
dc.relation.referencesWaters, M. L. Aromatic Interactions in Peptides: Impact on Structure and Function. Biopolymers 2004, 76 (5), 435–445.spa
dc.relation.referencesPrzybylski, M.; Glocker, M. O. Electrospray Mass Spectrometry of Biomacromolecular Complexes with Noncovalent Interactions—New Analytical Perspectives for Supramolecular Chemistry and Molecular Recognition Processes. Angew. Chemie Int. Ed. English 1996, 35 (8), 806–826.spa
dc.relation.referencesBanerjee, S.; Mazumdar, S. Electrospray Ionization Mass Spectrometry: A Technique to Access the Information beyond the Molecular Weight of the Analyte. Int. J. Anal. Chem. 2012, 2012, 1–40.spa
dc.relation.referencesVenter, A.; Nefliu, M.; Graham Cooks, R. Ambient Desorption Ionization Mass Spectrometry. TrAC Trends Anal. Chem. 2008, 27 (4), 284–290.spa
dc.relation.referencesChen, F.; Mädler, S.; Weidmann, S.; Zenobi, R. MALDI-MS Detection of Noncovalent Interactions of Single Stranded DNA with Escherichia Coli Single-Stranded DNA-Binding Protein. J. Mass Spectrom. 2012, 47 (5), 560–566.spa
dc.relation.referencesDownard, K. M. Indirect Study of Non-Covalent Protein Complexes by MALDI Mass Spectrometry: Origins, Advantages, and Applications of the “Intensity-Fading” Approach. Mass Spectrom. Rev. 2016, 35 (5), 559–573.spa
dc.relation.referencesTong, W.; Wang, G. How Can Native Mass Spectrometry Contribute to Characterization of Biomacromolecular Higher-Order Structure and Interactions? Methods 2018, 144 (April), 3–13.spa
dc.relation.referencesDaniel, J. M.; Friess, S. D.; Rajagopalan, S.; Wendt, S.; Zenobi, R. Quantitative Determination of Noncovalent Binding Interactions Using Soft Ionization Mass Spectrometry. Int. J. Mass Spectrom. 2002, 216 (1), 1–27.spa
dc.relation.referencesWyttenbach, T.; Bowers, M. T. Intermolecular Interactions in Biomolecular Systems Examined by Mass Spectrometry. Annu. Rev. Phys. Chem. 2007, 58 (1), 511–533.spa
dc.relation.referencesChen, F.; Gülbakan, B.; Weidmann, S.; Fagerer, S. R.; Ibáñez, A. J.; Zenobi, R. Applying Mass Spectrometry to Study Non-Covalent Biomolecule Complexes. Mass Spectrom. Rev. 2016, 35 (1), 48–70.spa
dc.relation.referencesErba, E. B.; Zenobi, R. Mass Spectrometric Studies of Dissociation Constants of Noncovalent Complexes. Annu. Reports Sect. “C” (Physical Chem. 2011, 107, 199.spa
dc.relation.referencesFinn, M. G. Emerging Methods for the Rapid Determination of Enantiomeric Excess. Chirality 2002, 14 (7), 534–540.spa
dc.relation.referencesSharafutdinova, D. R.; Bazanova, O. B.; Murav´ev, A. A.; Solov´eva, S. E.; Antipin, I. S.; Konovalov, A. I. Composition of Thiacalix[4]Arene Complexes with Monovalent Metal Ions in the Gas Phase: MALDI Mass Spectrometry. Russ. Chem. Bull. 2015, 64 (8), 1823–1828.spa
dc.relation.referencesCameron, K. S.; Fielding, L. NMR Diffusion Spectroscopy as a Measure of Host - Guest Complex Association Constants and as a Probe of Complex Size. J. Org. Chem. 2001, 66 (4), 6891–6895.spa
dc.relation.referencesKovrigin, E. L. NMR Line Shapes and Multi-State Binding Equilibria. J. Biomol. NMR 2012, 53, 257–270.spa
dc.relation.referencesFunasaki, N.; Nomura, M.; Ishikawa, S.; Neya, S. NMR Chemical Shift References for Binding Constant Determination in Aqueous Solutions. J. Phys. Chem. B 2001, 105 (30), 7361–7365.spa
dc.relation.referencesKemmer, G.; Keller, S. Nonlinear Least-Squares Data Fitting in Excel Spreadsheets. Nat. Protoc. 2010, 5 (2), 267–281.spa
dc.relation.referencesLowe, A. J.; Pfeffer, F. M.; Thordarson, P. Determining Binding Constants from 1 H NMR Titration Data Using Global and Local Methods: A Case Study Using [ n ]Polynorbornane-Based Anion Hosts. Supramol. Chem. 2012, 24 (8), 585–594.spa
dc.relation.referencesHynes, M. J. EQNMR: A Computer Program for the Calculation of Stability Constants from Nuclear Magnetic Resonance Chemical Shift Data. J. Chem. Soc. Dalt. Trans. 1993, No. 2, 311.spa
dc.relation.referencesBeyeh, N. K.; Pan, F.; Ras, R. H. A. N -Alkyl Ammonium Resorcinarene Chloride Receptors for Guest Binding in Aqueous Environment. Asian J. Org. Chem. 2016, 1–7.spa
dc.relation.referencesKharlamov, S. V; Latypov, S. K. Modern Diffusion-Ordered NMR Spectroscopy in Chemistry of Supramolecular Systems: The Scope and Limitations. Russ. Chem. Rev. 2010, 79 (8), 635–653.spa
dc.relation.referencesSlovak, S.; Evan-Salem, T.; Cohen, Y. Self-Assembly of a Hexameric Aggregate of a Lipophilic Calix[4]Pyrrole−Resorcinarene Hybrid in Solution: A Diffusion NMR Study. Org. Lett. 2010, 12 (21), 4864–4867.spa
dc.relation.referencesMacchioni, A.; Ciancaleoni, G.; Zuccaccia, C.; Zuccaccia, D. Determining Accurate Molecular Sizes in Solution through NMR Diffusion Spectroscopy. Chem. Soc. Rev. 2008, 37 (3), 479–489.spa
dc.relation.referencesHorin, I.; Adiri, T.; Zafrani, Y.; Cohen, Y. Bis-Resorcin[4]Arene Selectively Forms Hexameric Capsules in Apolar Solvents: Evidence from Diffusion NMR. Org. Lett. 2018, 20 (13), 3958–3961.spa
dc.relation.referencesSpäth, A.; König, B. Molecular Recognition of Organic Ammonium-Ions in Solution Using Synthetic Receptors. Beilstein J. Org. Chem. 2010, 6, 32–133.spa
dc.relation.referencesÅhman, A.; Luostarinen, M.; Rissanen, K.; Nissinen, M. Complexation of C-Methyl Pyrogallarene with Small Quaternary and Tertiary Alkyl Ammonium Cations. New J. Chem. 2007, 31 (1), 169–177.spa
dc.relation.referencesSchnatwinkel, B.; Rekharsky, M. V.; Brodbeck, R.; Borovkov, V. V.; Inoue, Y.; Mattay, J. Thermodynamic Aspects of the Host–Guest Chemistry of Pyrogallol[4]Arenes and Peralkylated Ammonium Cations. Tetrahedron 2009, 65 (13), 2711–2715.spa
dc.relation.referencesFujisawa, I.; Aoki, K. Glycine Betaine Recognition through Cation−π Interactions in Crystal Structures of Glycine Betaine Complexes with C-Ethyl-Pyrogallol[4]Arene and C-Ethyl-Resorcin[4]Arene as Receptors. Crystals 2013, 3 (2), 306–314.spa
dc.relation.referencesSchnatwinkel, B.; Rekharsky, M. V.; Borovkov, V. V.; Inoue, Y.; Mattay, J. Pyrogallol[4]Arenes as Artificial Receptors for l-Carnitine. Tetrahedron Lett. 2009, 50 (13), 1374–1376.spa
dc.relation.referencesBallester, P.; Shivanyuk, A.; Far, A. R.; Rebek, J. A Synthetic Receptor for Choline and Carnitine. J. Am. Chem. Soc. 2002, 124 (47), 14014–14016.spa
dc.relation.referencesFujisawa, I.; Kitamura, Y.; Okamoto, R.; Murayama, K.; Kato, R.; Aoki, K. Crystal Structure of Pyrogallol[4]Arene Complex with Phosphocholine: A Molecular Recognition Model for Phosphocholine through Cation–π Interaction. J. Mol. Struct. 2013, 1038, 188–193.spa
dc.relation.referencesFujisawa, I.; Takeuchi, D.; Kitamura, Y.; Okamoto, R.; Aoki, K. Crystal Structure of an L-Carnitine Complex with Pyrogallol[4]Arene. J. Phys. Conf. Ser. 2012, 352 (1), 012043.spa
dc.relation.referencesFowler, D. A.; Pfeiffer, C. R.; Teat, S. J.; Beavers, C. M.; Baker, G. A.; Atwood, J. L. Illuminating Host–Guest Cocrystallization between Pyrogallol[4]Arenes and the Ionic Liquid 1-Ethyl-3-Methylimidazolium Ethylsulfate. CrystEngComm 2014, 16 (27), 6010–6022.spa
dc.relation.referencesDemura, M.; Yoshida, T.; Hirokawa, T.; Kumaki, Y.; Aizawa, T.; Nitta, K.; Bitter, I.; Tóth, K. Interaction of Dopamine and Acetylcholine with an Amphiphilic Resorcinarene Receptor in Aqueous Micelle System. Bioorg. Med. Chem. Lett. 2005, 15 (5), 1367–1370.spa
dc.relation.referencesFowler, D. A.; Tian, J.; Barnes, C.; Teat, S. J.; Atwood, J. L. Cocrystallization of C-Butyl Pyrogallol[4]Arene and C-Propan-3-Ol Pyrogallol[4]Arene with Gabapentin. CrystEngComm 2011, 13 (5), 1446–1449.spa
dc.relation.referencesFujisawa, I.; Kitamura, Y.; Kato, R.; Murayama, K.; Aoki, K. Crystal Structures of Resorcin[4]Arene and Pyrogallol[4]Arene Complexes with DL-Pipecolinic Acid. Model Compounds for the Recognition of the Pipecolinyl Ring, a Key Fragment of FK506, through C–H⋯π Interaction. J. Mol. Struct. 2014, 1056–1057, 292–298.spa
dc.relation.referencesPfeiffer, C. R.; Fowler, D. a.; Teat, S.; Atwood, J. L. Cocrystallization of Pyrogallol[4]Arenes with 1-(2-Pyridylazo)-2-Naphthol. CrystEngComm 2014, 16 (47), 10760–10773.spa
dc.relation.referencesPfeiffer, C. R.; Fowler, D. A.; Atwood, J. L. Endo vs Exo Bowl: Complexation of Xanthone by Pyrogallol[4]Arenes. Cryst. Growth Des. 2014, 14 (8), 4205–4213.spa
dc.relation.referencesPodyachev, S. N.; Sudakova, S. N.; Syakaev, V. V.; Burmakina, N. E.; Shagidullin, R. R.; Morozov, V. I.; Avvakumova, L. V.; Konovalov, A. I. Synthesis and Properties of Potassium Salts of Per-O-Carboxymethyl-Calix[4]Pyrogallols and Their Complexes with Cu2+, Fe3+, and La3+. Russ. Chem. Bull. 2009, 58 (1), 80–88.spa
dc.relation.referencesNikolelis, D. P.; Raftopoulou, G.; Psaroudakis, N.; Nikoleli, G.-P. Development of an Electrochemical Chemosensor for the Rapid Detection of Zinc Based on Air Stable Lipid Films with Incorporated Calix4arene Phosphoryl Receptor. Int. J. Environ. Anal. Chem. 2009, 89 (3), 211–222.spa
dc.relation.referencesHof, F.; Trembleau, L.; Ullrich, E. C.; Rebek, Jr., J. Acetylcholine Recognition by a Deep, Biomimetic Pocket. Angew. Chemie Int. Ed. 2003, 42 (27), 3150–3153.spa
dc.relation.referencesKim, S. K.; Kang, B.; Koh, H. S.; Yoon, Y. J.; Jung, S. J.; Jeong, B.; Lee, K.; Yoon, J. A New Imidazolium Cavitand for the Recognition of Dicarboxylates. Org. Lett. 2004, 6 (25), 4655–4658.spa
dc.relation.referencesDalgarno, S. J. Supramolecular Chemistry. Annu. Reports Sect. “B” (Organic Chem. 2009, 105 (0), 190.spa
dc.relation.referencesPradeep, C. P.; Cronin, L. Supramolecular Coordination Chemistry. Annu. Reports Sect. “A” (Inorganic Chem. 2007, 103, 287.spa
dc.relation.referencesdos Santos, C.; Buera, P.; Mazzobre, F. Novel Trends in Cyclodextrins Encapsulation. Applications in Food Science. Curr. Opin. Food Sci. 2017, 16, 106–113.spa
dc.relation.referencesKim, K.; Selvapalam, N.; Ko, Y. H.; Park, K. M.; Kim, D.; Kim, J. Functionalized Cucurbiturils and Their Applications. Chem. Soc. Rev. 2007, 36 (2), 267–279.spa
dc.relation.referencesNegin, S.; Gokel, G. W. The Varied Supramolecular Chemistry of Pyrogallol [ 4 ] Arenes. In Organic Nanoreactors: From Molecular to Supramolecular Organic Compounds; Elsevier Inc.: Missouri, 2016; pp 235–256.spa
dc.relation.referencesRebek, J.; Shivanyuk, A. Hydrogen-Bonded Capsules in Polar, Protic Solvents. Chem. Commun. 2001, 2374–2375.spa
dc.relation.referencesZhang, Q.; Adams, R. D.; Fenske, D. Stable Hydrogen-Bonded Spherical Capsules Formed from Self-Assembly of Pyrogallol[4]Arenes. J. Incl. Phenom. Macrocycl. Chem. 2005, 53 (3–4), 275–279.spa
dc.relation.referencesDalgarno, S. J.; Power, N. P.; Warren, J. E.; Atwood, J. L. Rapid Formation of Metal–Organic Nano-Capsules Gives New Insight into the Self-Assembly Process. Chem. Commun. 2008, 0 (13), 1539.spa
dc.relation.referencesAvram, L.; Cohen, Y.; Rebek Jr., J. Recent Advances in Hydrogen-Bonded Hexameric Encapsulation Complexes. Chem. Commun. 2011, 47 (19), 5368.spa
dc.relation.referencesCave, G. W. V.; Dalgarno, S. J.; Antesberger, J.; Ferrarelli, M. C.; McKinlay, R. M.; Atwood, J. L. Investigations into Chain Length Control over Solid-State Pyrogallol[4]Arene Nanocapsule Packing. Supramol. Chem. 2008, 20 (1–2), 157–159.spa
dc.relation.referencesM. A. Gangemi, C.; Pappalardo, A.; Trusso Sfrazzetto, G. Assembling of Supramolecular Capsules with Resorcin[4]Arene and Calix[n]Arene Building Blocks. Curr. Org. Chem. 2015, 19 (23), 2281–2308.spa
dc.relation.referencesKumari, H.; Dennis, C. L.; Mossine, A. V; Deakyne, C. A.; Atwood, J. L. Magnetic Differentiation of Pyrogallol[4]Arene Tubular and Capsular Frameworks. J. Am. Chem. Soc. 2013, 135, 7110–7113.spa
dc.relation.referencesDalgarno, S. J.; Cave, G. W. V.; Atwood, J. L. Toward the Isolation of Functional Organic Nanotubes. Angew. Chemie Int. Ed. 2006, 45 (4), 570–574.spa
dc.relation.referencesKumari, H.; Kline, S. R.; Wycoff, W. G.; Paul, R. L.; Mossine, A. V; Deakyne, C. A.; Atwood, J. L. Solution-Phase Structures of Gallium-Containing Pyrogallol[4]Arene Scaffolds. Angew. Chemie Int. Ed. 2012, 51 (21), 5086–5091.spa
dc.relation.referencesPower, N. P.; Dalgarno, S. J.; Atwood, J. L. Guest and Ligand Behavior in Zinc-Seamed Pyrogallol[4]Arene Molecular Capsules. Angew. Chemie Int. Ed. 2007, 46 (45), 8601–8604.spa
dc.relation.referencesJin, P.; Dalgarno, S. J.; Barnes, C.; Teat, S. J.; Atwood, J. L. Ion Transport to the Interior of Metal−Organic Pyrogallol[4]Arene Nanocapsules. J. Am. Chem. Soc. 2008, 130 (51), 17262–17263.spa
dc.relation.referencesKumari, H.; Jin, P.; Teat, S. J.; Barnes, C. L.; Dalgarno, S. J.; Atwood, J. L. Entrapment of Elusive Guests within Metal-Seamed Nanocapsules. Angew. Chemie - Int. Ed. 2014, 53 (48), 13088–13092.spa
dc.relation.referencesDalgarno, S. J.; Power, N. P.; Atwood, J. L. Metallo-Supramolecular Capsules. Coord. Chem. Rev. 2008, 252 (8–9), 825–841.spa
dc.relation.referencesKumari, H.; Mossine, A. V.; Kline, S. R.; Dennis, C. L.; Fowler, D. A.; Teat, S. J.; Barnes, C. L.; Deakyne, C. A.; Atwood, J. L. Controlling the Self-Assembly of Metal-Seamed Organic Nanocapsules. Angew. Chemie Int. Ed. 2012, 51 (6), 1452–1454.spa
dc.relation.referencesKumari, H.; Dennis, C. L.; Mossine, A. V; Deakyne, C. A.; Atwood, J. L. Exploring the Magnetic Behavior of Nickel-Coordinated Pyrogallol[4]Arene Nanocapsules. ACS Nano 2012, 6 (1), 272–275.spa
dc.relation.referencesAdriaenssens, L.; Ballester, P. Hydrogen Bonded Supramolecular Capsules with Functionalized Interiors: The Controlled Orientation of Included Guests. Chem. Soc. Rev. 2013, 42 (8), 3261.spa
dc.relation.referencesFowler, D. A.; Mossine, A. V.; Beavers, C. M.; Teat, S. J.; Dalgarno, S. J.; Atwood, J. L. Coordination Polymer Chains of Dimeric Pyrogallol[4]Arene Capsules. J. Am. Chem. Soc. 2011, 133 (29), 11069–11071.spa
dc.relation.referencesGangemi, C. M. A.; Pappalardo, A.; Trusso Sfrazzetto, G. Applications of Supramolecular Capsules Derived from Resorcin[4]Arenes, Calix[n]Arenes and Metallo-Ligands: From Biology to Catalysis. RSC Adv. 2015, 5 (64), 51919–51933.spa
dc.relation.referencesScott, M. P.; Sherburn, M. S. Resorcinarenes and Pyrogallolarenes. In Comprehensive Supramolecular Chemistry II; Elsevier, 2017; Vol. 1, pp 337–374.spa
dc.relation.referencesChakraborty, S.; Saha, A.; Basu, K.; Saha, C. Solid-Phase Benzoylation of Phenols and Alcohols in Microwave Reactor: An Ecofriendly Protocol. Synth. Commun. 2015, 45 (20), 2331–2343.spa
dc.relation.referencesAbrash, H. I.; Shih, D.; Elias, W.; Malekmehr, F. A Kinetic Study of the Air Oxidation of Pyrogallol and Purpurogallin. Int. J. Chem. Kinet. 1989, 21 (6), 465–476.spa
dc.relation.referencesCohen, Y.; Evan-Salem, T.; Avram, L. Hydrogen-Bonded Hexameric Capsules of Resorcin[4]Arene, Pyrogallol[4]Arene and Octahydroxypyridine[4]Arene Are Abundant Structures in Organic Solvents: A View from Diffusion NMR. Supramol. Chem. 2008, 20 (1–2), 71–79.spa
dc.relation.referencesKass, J. P.; Zambrano, C. H.; Zeller, M.; Hunter, A. D.; Dueno, E. E. 2,8,14,20-Tetraphenylpyrogallol[4]Arene Dimethylformamide Octasolvate. Acta Crystallogr. Sect. E Struct. Reports Online 2006, 62 (8), o3179–o3180.spa
dc.relation.referencesPatil, R. S.; Zhang, C.; Atwood, J. L. Process Development for Separation of Conformers from Derivatives of Resorcin[4]Arenes and Pyrogallol[4]Arenes. Chem. - A Eur. J. 2016, 22 (43), 15202–15207.spa
dc.relation.referencesDueno, E. E.; Ray, T.; Salvatore, R. N.; Hunter, A. D. 2,8,14,20-Tetrakis(4-Hydroxyphenyl)- Pyrogallol[4]Arene Dimethylformamide Hexasolvate. Acta Crystallogr. Sect. E 2007, E63, o3533–o3534.spa
dc.relation.referencesSheikh, M. C.; Takagi, S.; Yoshimura, T.; Morita, H. Mechanistic Studies of DCC/HOBt-Mediated Reaction of 3-Phenylpropionic Acid with Benzyl Alcohol and Studies on the Reactivities of ‘Active Ester’ and the Related Derivatives with Nucleophiles. Tetrahedron 2010, 66 (36), 7272–7278.spa
dc.relation.referencesFarshori, N. N.; Banday, M. R.; Zahoor, Z.; Rauf, A. DCC/DMAP Mediated Esterification of Hydroxy and Non-Hydroxy Olefinic Fatty Acids with β-Sitosterol: In Vitro Antimicrobial Activity. Chinese Chem. Lett. 2010, 21 (6), 646–650.spa
dc.relation.referencesWaghmare, A. A.; Hindupur, R. M.; Pati, H. N. Propylphosphonic Anhydride (T3P®): An Expedient Reagent for Organic Synthesis. Rev. J. Chem. 2014, 4 (2), 53–131.spa
dc.relation.referencesLin, Z.; Emge, T. J.; Warmuth, R. Multicomponent Assembly of Cavitand-Based Polyacylhydrazone Nanocapsules. Chem. - A Eur. J. 2011, 17 (34), 9395–9405.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc540 - Química y ciencias afinesspa
dc.subject.ddc543 - Química analíticaspa
dc.subject.ddc547 - Química orgánicaspa
dc.subject.proposalpirogalol[4]arenosspa
dc.subject.proposalpyrogallol[4]areneseng
dc.subject.proposalhost-guest systemseng
dc.subject.proposalsistemas huésped-hospederospa
dc.subject.proposalfunctionalizationeng
dc.subject.proposalfuncionalizaciónspa
dc.subject.proposalnoncovalent interactionseng
dc.subject.proposalinteracciones moleculares no covalentesspa
dc.subject.proposalensambles supramolecularesspa
dc.subject.proposalsupramolecular assemblieseng
dc.titleSíntesis, caracterización de c-aquil y c-fenil-pirogalol[4]arenos funcionalizados con grupos carboxilo en el borde superior y evaluación de su interacción con cationes orgánicos de interés biológicospa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
4061194.2020.pdf
Tamaño:
14.11 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.8 KB
Formato:
Item-specific license agreed upon to submission
Descripción: