Desarrollo de un hidrolizado de lactosa a partir de lactosuero dulce y su aplicación como endulzante en yogur
dc.contributor.advisor | Ciro Velásquez, Héctor José | |
dc.contributor.advisor | Sepúlveda Valencia, José Uriel | |
dc.contributor.author | Mosquera Martínez, Ana Juleza | |
dc.contributor.cvlac | https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001379878 | |
dc.contributor.orcid | Mosquera Martínez, Ana J. [0000-0002-2078-8080] | |
dc.contributor.orcid | Ciro Velásquez, Héctor José [0000-0002-4398-0470] | |
dc.contributor.orcid | Sepúlveda Valencia, José Uriel [0000-0001-5660-4514] | |
dc.contributor.researchgroup | Grupo de Investigación en Ciencias y Tecnología de Alimentos -Gicta- | |
dc.date.accessioned | 2025-09-24T21:22:25Z | |
dc.date.available | 2025-09-24T21:22:25Z | |
dc.date.issued | 2024 | |
dc.description | Ilustraciones, gráficos, fotografías | spa |
dc.description.abstract | El lactosuero dulce constituye uno de los coproductos más abundantes de la industria láctea y su valorización mediante tecnologías de membrana e hidrólisis enzimática representa una estrategia clave dentro de los modelos de economía circular y sostenibilidad ambiental. En este trabajo se desarrolló y evaluó la producción de un jarabe de glucosa-galactosa enriquecido con galactooligosacáridos (GOS), a partir de un concentrado de lactosa obtenido por nanofiltración, con el fin de utilizarlo como sustituto de la sacarosa en yogur y generar un alimento funcional de mayor valor comercial. La investigación se estructuró en tres etapas. En la primera, se establecieron las condiciones de reacción para maximizar la conversión de lactosa en glucosa, galactosa y GOS; empleando como sustrato un retenido de nanofiltración (180.5–425 g·L⁻¹ de lactosa) y un preparado comercial de β-galactosidasa de Kluyveromyces lactis y, mediante un diseño de superficie de respuesta Box-Behnken con cuatro variables independientes: concentración inicial de lactosa (180.5–425 g L⁻¹), concentración de enzima (0.1–4 g 100g1 ), temperatura (30ºC – 60ºC) y tiempo de reacción (30 – 420 minutos), y cuatro variables respuesta: conversión de lactosa (g 100g-1), rendimiento de GOS totales (%) rendimiento de glucosa (%) y rendimiento de galactosa (%). Se determinó que una concentración inicial de lactosa (180 g L-1) en el retenido de la nanofiltración permite alcanzar hasta un 97% de conversión de la lactosa y producciones de glucosa y galactosa del 43% y 53% respectivamente. En la segunda etapa, se maximizó la retención de lactosa durante el proceso de nanofiltración utilizando un diseño experimental de superficie de respuesta de cara central que incluyó dos variables independientes: presión transmembrana (17 – 31 bares) y temperatura de flujo de alimentación (23 - 37 ºC) ; lo cual permitió retener la lactosa presente en el PUF hasta un máximo de 90% alcanzándose una concentración de 207.1 g L-1 de lactosa en el retenido de nanofiltración, bajo las siguientes condiciones de proceso: presión transmembrana (PTM) = 28.4 bar, temperatura de flujo de alimentación de 25 ºC y un factor de concentración volumétrico (FCV) de cinco junto a minerales como: calcio, magnesio y potasio con concentraciones de 0.097; 0.026 y 0.29 g 100g-1 ; respectivamente. A continuación, se optimizó la reacción de hidrólisis enzimática en el concentrado de 207.14 g L-1 de lactosa obtenido por nanofiltración. El modelo de superficie de respuesta Box-Behnken indicó que era posible lograr un 84.5% de hidrólisis en condiciones óptimas (pH 6.11, 37.2 ºC, 1.36 g·L⁻¹ de enzima y 176 min), obteniéndose un hidrolizado con glucosa (89 g·L⁻¹), galactosa (66 g·L⁻¹), GOS-3 (38.2 g·L⁻¹) y minerales esenciales (K, Mg, Ca, P). Posteriormente, el hidrolizado fue concentrado hasta obtener un jarabe con composición de glucosa (393 ± 11 g·L⁻¹), galactosa (297 ± 12 g·L⁻¹), lactosa (193 ± 5 g·L⁻¹), GOS-3 (77.4 ± 1.3 g·L⁻¹) y GOS-4 (8.8 ± 0.3 g·L⁻¹), además de minerales (K, Mg, Ca) y cenizas (3.4 ± 0.3 g·100g⁻¹), con parámetros de color estables y un poder edulcorante equivalente al 50% de la sacarosa. En la tercera etapa, el jarabe fue incorporado como sustituto de sacarosa en yogur (0– 100% de reemplazo), elaborado con leche entera y cultivo YO-B (Streptococcus thermophilus y Lactobacillus delbrueckii subsp. bulgaricus). Se evaluaron el contenido de GOS, propiedades fisicoquímicas y aceptación sensorial durante 28 días. Los resultados mostraron un incremento en GOS totales desde 0.54 ± 0.02 g·L⁻¹ en el control con sacarosa hasta 5.52 ± 0.04 g·L⁻¹ en el yogur con 50% de inclusión del jarabe, junto con mayores contenidos de minerales y cenizas. El análisis sensorial reveló mayor percepción de dulzura en formulaciones con 25–50% de reemplazo de la sacarosa por el jarabe de glucosa-galactosa y una aceptabilidad equivalente al yogur tradicional hasta niveles de reemplazo del 25%. En conclusión, la valorización del lactosuero dulce mediante nanofiltración e hidrólisis enzimática permite obtener un jarabe funcional rico en GOS y minerales, con potencial como sustituto parcial de sacarosa en yogur. Este enfoque no solo contribuye a diversificar la oferta de alimentos saludables, sino que también refuerza la sostenibilidad de la industria láctea al transformar un coproducto en un ingrediente de alto valor, alineándose con los principios de la economía circular. (Tomado de la fuente) | spa |
dc.description.abstract | Sweet whey is one of the most abundant by-products of the dairy industry, and its valorization through membrane technologies and enzymatic hydrolysis represents a key strategy within circular economy and environmental sustainability models. In this study, the production of a glucose–galactose syrup enriched with galactooligosaccharides (GOS) was developed and evaluated, starting from a lactose concentrate obtained by nanofiltration, with the aim of using it as a sucrose substitute in yogurt and generating a functional food with higher commercial value. The research was structured in three stages. In the first stage, the reaction conditions were established to maximize the conversion of lactose into glucose, galactose, and GOS, using a nanofiltration retentate (180.5–425 g·L⁻¹ of lactose) and a commercial preparation of βgalactosidase from Kluyveromyces lactis. A Box-Behnken response surface design with four independent variables (initial lactose concentration, enzyme concentration, temperature, and reaction time) and four response variables (lactose conversion, total GOS yield, glucose yield, and galactose yield) was applied. It was determined that an initial lactose concentration of 180 g·L⁻¹ in the nanofiltration retentate enabled up to 97% lactose conversion, with glucose and galactose yields of 43% and 53%, respectively. In the second stage, lactose retention during nanofiltration was maximized using a central composite response surface design with transmembrane pressure (17–31 bar) and feed temperature (23–37 ºC) as variables. Under optimal conditions (28.4 bar, 25 ºC, and a volumetric concentration factor [VCF] of 5), lactose retention reached 90%, yielding a concentrate with 207.1 g·L⁻¹ of lactose and minerals such as calcium (0.097 g·100g⁻¹), magnesium (0.026 g·100g⁻¹), and potassium (0.29 g·100g⁻¹). Subsequently, enzymatic hydrolysis of this concentrate was optimized. The Box-Behnken model indicated that 84.5% hydrolysis could be achieved under optimal conditions (pH 6.11, 37.2 ºC, 1.36 g·L⁻¹ of enzyme, and 176 min), producing a hydrolysate containing glucose (89 g·L⁻¹), galactose (66 g·L⁻¹), GOS-3 (38.2 g·L⁻¹), and essential minerals (K, Mg, Ca, P). In the third stage, the hydrolysate was concentrated to obtain a syrup with glucose (393 ± 11 g·L⁻¹), galactose (297 ± 12 g·L⁻¹), lactose (193 ± 5 g·L⁻¹), GOS-3 (77.4 ± 1.3 g·L⁻¹), and GOS-4 (8.8 ± 0.3 g·L⁻¹), as well as minerals (K, Mg, Ca) and ash (3.4 ± 0.3 g·100g⁻¹), with stable color parameters and a sweetening power equivalent to 50% of sucrose. This syrup was incorporated as a sucrose substitute in yogurt formulations (0–100%), prepared with whole milk and YO-B starter culture (Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus). GOS content, physicochemical properties, and consumer acceptance were evaluated over 28 days. Results showed an increase in total GOS from 0.54 ± 0.02 g·L⁻¹ in the sucrose control to 5.52 ± 0.04 g·L⁻¹ in yogurt with 50% syrup inclusion, along with higher mineral and ash contents. Sensory analysis revealed greater sweetness perception in formulations with 25–50% sucrose replacement and overall acceptability comparable to traditional yogurt up to 25% replacement. In conclusion, the valorization of sweet whey through nanofiltration and enzymatic hydrolysis allows the production of a functional syrup rich in GOS and minerals, with potential as a partial sucrose substitute in yogurt. This approach not only contributes to diversifying the supply of healthy foods but also strengthens the sustainability of the dairy industry by transforming a by-product into a high-value ingredient, aligned with the principles of the circular economy. | eng |
dc.description.curriculararea | Producción Agraria Sostenible.Sede Medellín | |
dc.description.degreelevel | Doctorado | |
dc.description.degreename | Doctor en Ciencias Agrarias | |
dc.description.researcharea | Desarrollo de productos alimenticios | |
dc.description.sponsorship | Este estudio fue financiado por la convocatoria 562 de 2012 de COLCIENCIAS (actualmente Minciencias) y por la Universidad Nacional de Colombia, sede Medellín. Los autores agradecen a Minciencias el apoyo económico recibido a través de la convocatoria 562 de 2012, así como la beca de doctorado otorgada a Ana Juleza Mosquera Martínez en el marco de la convocatoria nacional 617 de 2013 para becas de doctorado (Apoyo Financiero). | |
dc.format.extent | 156 páginas | |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88956 | |
dc.language.iso | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | |
dc.publisher.faculty | Facultad de Ciencias Agrarias | |
dc.publisher.place | Medellín, Colombia | |
dc.publisher.program | Medellín - Ciencias Agrarias - Doctorado en Ciencias Agrarias | |
dc.relation.indexed | LaReferencia | |
dc.relation.references | Argenta, A. B., y Scheer, A. D. P. (2019). Membrane Separation Processes Applied to Whey: A Review. Https://Doi.Org/10.1080/87559129.2019.1649694, 36(5), 499–528. https://doi.org/10.1080/87559129.2019.1649694 | |
dc.relation.references | Banaszewska, A., Cruijssen, F., Claassen, G. D. H., and van der Vorst, J. G. A. J. (2014). Effect and key factors of byproducts valorization: The case of dairy industry. Journal of Dairy Science, 97(4), 1893–1908. doi: 10.3168/jds. 2013-7283. | |
dc.relation.references | Behroozi, A. H., y Ataabadi, M. R. (2021). Improvement in microfiltration process of oily wastewater: A comprehensive review over two decades. In Journal of Environmental Chemical Engineering (Vol. 9, Issue 1). Elsevier Ltd. https://doi.org/10.1016/j.jece.2020.104981 | |
dc.relation.references | Beltran, L. F., y Acosta, A. C. (2012). Empleo de una β-galactosidasa comercial de Kluyveromyces lactis en la hidrólisis de lactosuero. In Hechos Microbiol (Vol. 3, Issue 2). http://www.udea.edu.co/hm | |
dc.relation.references | Catanzaro, R., Sciuto, M., y Marotta, F. (2021). Lactose intolerance: An update on its pathogenesis, diagnosis, and treatment. In Nutrition Research (Vol. 89, pp. 23–34). Elsevier Inc. https://doi.org/10.1016/j.nutres.2021.02.003 | |
dc.relation.references | Fox, P. F., Uniacke-Lowe, T., Mcsweeney, P. L. H., y O’mahony, J. A. (2015). Dairy Chemistry and Biochemistry (Second Edition). AG Switzerland. https://doi.org/10.1007/978-3-319-14892-2 | |
dc.relation.references | Guimarães, P. M. R., Teixeira, J. A., y Domingues, L. (2010). Fermentation of lactose to bio-ethanol by yeasts as part of integrated solutions for the valorisation of cheese whey. Biotechnology Advances, 28(3), 375–384. https://doi.org/10.1016/j.biotechadv.2010.02.002 | |
dc.relation.references | Hengfei, R., Junjie, F., Xinchi, S., Ting, Z., Hao, C., Nan, Z., Yong, C., y Hanjie, Y. (2015). Continuous ultrafiltration membrane reactor coupled with nanofiltration for the enzymatic synthesis and purification of galactosyl-oligosaccharides. Separation and Purification Technology, 144, 70–79. https://doi.org/10.1016/j.seppur.2015.02.020 | |
dc.relation.references | Karim, A., y Aider, M. (2022). Production of prebiotic lactulose through isomerisation of lactose as a part of integrated approach through whey and whey permeate complete valorisation: A review. In International Dairy Journal (Vol. 126). Elsevier Ltd. https://doi.org/10.1016/j.idairyj.2021.105249 | |
dc.relation.references | Kriisa, M., Stulova, I., Kallastu, A., y Vilu, R. (2019). Vadaku väärindamine — glükoosi-galaktoosi siirupi tootmistingimuste optimeerimine ning siirupi kasutamine erinevates toodetes (Kasutatud kirjandus). www.emu.ee | |
dc.relation.references | Lindsay, M. J., Walker, T. W., Dumesic, J. A., Rankin, S. A., y Huber, G. W. (2018). Production of monosaccharides and whey protein from acid whey waste streams | |
dc.relation.references | Majore, K.; Ciprovica, I. Bioconversion of Lactose into Glucose–Galactose Syrup by Two-Stage Enzymatic Hydrolysis. Foods 2022, 11, 400. https://doi.org/ 10.3390/foods11030400 | |
dc.relation.references | Mueller, I., Kiedorf, G., Runne, E., Seidel-Morgenstern, A., y Hamel, C. (2018). Synthesis, kinetic analysis and modelling of galacto-oligosaccharides formation. Chemical Engineering Research and Design, 130, 154–166. https://doi.org/10.1016/j.cherd.2017.11.038 | |
dc.relation.references | Nath, K., Dave, H. K., and Patel, T. M. (2018). Revisiting the recent applications of nanofiltration in food processing industries: Progress and prognosis. Trends in Food Science and Technology, 73, 12–24. doi: 10.1016/j.tifs.2018.01.001 | |
dc.relation.references | Ogunrinola, O. (1986). preparation of hydrolyzed lactose syrup from whey permeate and its functional properties in white pan master of science kansas state university. University of Illinois. Retrieved from https://krex.k-state.edu/dspace/bitstream/handle/2097/22128/LD2668T41986O38.pdf?sequence=1yisAllowed=y | |
dc.relation.references | Pérez-Escobar, L., Mosquera-Martínez, A. J., Ciro-Velásquez, H. J., Sepúlveda-Valencia, J. U., y Vargas-Díaz, S. (2020). Obtention of a lactose hydrolysate from nanofiltration of sweet whey: Characterization and process optimization. Revista Mexicana de Ingeniera Quimica, 19(1), 445–453. https://doi.org/10.24275/rmiq/Proc649 | |
dc.relation.references | Pirola, M. B. (2011). “Revisión crítica de procesos para el tratamiento del suero lácteo. características y aplicaciones de los productos obtenidos. escenario actual”. [Universidad Nacional del Litoral]. http://www-biblio.inti.gob.ar:80/gsdl/collect/inti/index/assoc/HASH530f/99814bf1.dir/doc.pdfReig, M., Vecino, X., y Cortina, J. L. (2021b). Use of membrane technologies in dairy industry: An overview. In Foods (Vol. 10, Issue 11). MDPI. https://doi.org/10.3390/foods10112768 | |
dc.relation.references | Rico, A. (2017). Bioengineering of β-galactosidases β for their use in the food industry. Universidade da Coruña. Retrieved from https://ruc.udc.es/dspace/handle/2183/19310 | |
dc.relation.references | Somov, V., Evdokimov, I., Knyazev, S., Perminov, S., y Kurash, Y. (2015). Application of whey-derived syrups in dairy products. Foods and Raw Materials, 3(2), 89–95. https://doi.org/10.12737/13113 | |
dc.relation.references | Vera, C., Córdova, A., Aburto, C., Guerrero, C., Suárez, S., y Illanes, A. (2016). Synthesis and purification of galacto-oligosaccharides: state of the art. In World Journal of Microbiology and Biotechnology (Vol. 32, Issue 12). Springer Netherlands. https://doi.org/10.1007/s11274-016-2159-4 | |
dc.relation.references | Vargas-Díaz, S., Sepúlveda-V, J. U., Ciro-V, H. J., Mosquera, A. J., y Bejarano, E. (2019). Physicochemical, sensory and stability properties of a milk caramel spread sweetened with a glucose-galactose syrup from sweet whey. Revista Facultad Nacional de Agronomia Medellin, 72(3), 8995–9005. https://doi.org/10.15446/rfnam.v72n3.76558 | |
dc.relation.references | Wong, S. Y., y Hartel, R. W. (2014). Crystallization in Lactose Refining-A Review. Journal of Food Science, 79(3). https://doi.org/10.1111/1750-3841.1234 | |
dc.relation.references | Wu, Q., Cheung, C., y Shah, N. P. (2015). Towards galactose accumulation in dairy foods fermented by conventional starter cultures : Challenges and strategies. Trends in Food Science y Technology, 41(1), 24–36. https://doi.org/10.1016/j.tifs.2014.08.010 | |
dc.relation.references | Wu, Q., Cheung, C., y Shah, N. P. (2015). Towards galactose accumulation in dairy foods fermented by conventional starter cultures : Challenges and strategies. Trends in Food Science y Technology, 41(1), 24–36. https://doi.org/10.1016/j.tifs.2014.08.010 | |
dc.relation.references | Varga, L. (2006). Effect of acacia ( Robinia pseudo-acacia L .) honey on the characteristicmicroflora of yogurt during refrigerated storage. International Journal of Food Microbiology, 108, 272–275. https://doi.org/10.1016/j.ijfoodmicro.2005.11.014 | |
dc.relation.references | Transparency Market Research. (2022, January). Edulcorantes naturales Perspectivas del mercado, tendencias y perspectivas de crecimiento. Retrieved February 25, 2022, from https://www.transparencymarketresearch.com/latest.html?page=2 | |
dc.relation.references | Toba, T., Arihara, K., y Adachi, S. (1986). Quantitative Changes in Oligosaccharides During Fermentation and Storage of Yogurt Inoculated Simultaneously with Starter Culture and β-Galactosidase Preparation. Journal of Dairy Science, 69(5), 1241–1245. https://doi.org/10.3168/jds.S0022-0302(86)80529-X | |
dc.relation.references | Tamime, A. Y., y Robinson, R. K. (2007). - Background to manufacturing practice. In A. Y. Tamime y R. K. Robinson (Eds.), Tamime and Robinson’s Yoghurt (Third edition) (pp. 13–161). Woodhead Publishing. Retrieved from http://www.sciencedirect.com/science/article/pii/B9781845692131500028 | |
dc.relation.references | Tamine, A. Y., y Robinson, R. K. (1990). Yogur ciencia y tecnología. (Acribia, Ed.). Zaragoza (España). | |
dc.relation.references | Souza, T. S. P., Luna, A. S., Barros, D. B., Pimentel, T. C., Pereira, E. P. R., Guimarães, J. T., … Cruz, A. G. (2018). Yogurt and whey beverages available in Brazilian market : Mineral and trace contents , daily intake and statistical di ff erentiation. Food Research International, Mayo(119), 709–714. https://doi.org/10.1016/j.foodres.2018.10.050 | |
dc.relation.references | Sinopoli, D. A., y Lawless, H. T. (2012). Taste Properties of Potassium Chloride Alone and in Mixtures with Sodium Chloride Using a Check-All-That-Apply Method. Journal of Food Science, 77(9), 319–322. https://doi.org/10.1111/j.1750-3841.2012.02862.x | |
dc.relation.references | Santiago-garcía, P. A., Mellado-mojica, E., León-Martínez, F. M., Dzul-cauich, J. G., López, M., y García-vieyra, M. I. (2021). Fructans ( agavins ) from Agave angustifolia and Agave potatorum as fat replacement in yogurt : Effects on physicochemical , rheological , and sensory properties. LWT - Food Science and Technology, 140(January). https://doi.org/10.1016/j.lwt.2020.110846 | |
dc.relation.references | Ruiz-matute, A. I., Corzo-martínez, M., Montilla, A., Olano, A., Copovi, P., y Corzo, N. (2012). Presence of mono- , di- and galactooligosaccharides in commercial lactose-free UHT dairy products. Journal of Food Composition and Analysis, 28, 164–169. https://doi.org/10.1016/j.jfca.2012.06.003 | |
dc.relation.references | Procaña. (2020). Informe de la Gestión y los Estados Financieros de la Asociación Colombiana de Productores y Proveedores de Caña “PROCAÑA” correspondientes al 2020. Retrieved December 27, 2021, from https://procana.org/site/wp-content/uploads/2021/04/2021_04_29_Informe_de_Gestion_y_Estados_Financieros_Procana_2020.pdf | |
dc.relation.references | Posada, K., Terán, D., y Ramírez-Navas, J. (2011). Review Empleo de lactosuero y sus componentes en la elaboración de postres y productos. La Alimentación Latinoamericana, 292, 66–76. | |
dc.relation.references | Pizzichini, M. (2006). Tecnologie di processo per il recupero e la valorizzazione delle componenti del siero di latte. (ENEA, Ed.). Retrieved from https://www.pubblicazioni.enea.it/le-pubblicazioni-enea/edizioni-enea/anno-2006/tecnologie-di-processo-per-il-recupero-e-la-valorizzazione-delle-componenti-del-siero-di-latte-2006.html | |
dc.relation.references | Pacheco, K. (2021). Facultad de Ciencia y tecnología. Universidad del Azuay. Retrieved from http://dspace.uazuay.edu.ec/bitstream/datos/9625/1/15258.pdfPanesar, P. S., Kaur, R., Singh, R. S., y Kennedy, J. F. (2018). Biocatalytic strategies in the production of galacto-oligosaccharides and its global status its global status. International Journal of Biological Macromolecules, 111(February), 667–679. https://doi.org/10.1016/j.ijbiomac.2018.01.062 | |
dc.relation.references | Muniandy, P., Shori, A. B., y Baba, A. S. (2016). Influence of green, white and black tea addition on the antioxidant activity of probiotic yogurt during refrigerated storage. Food Packaging and Shelf Life, 8(January), 1–8. https://doi.org/10.1016/j.fpsl.2016.02.002 | |
dc.relation.references | Martins, A., y Burkert, C. (2009). Revisão Galacto-oligossacarídeos ( GOS ) e seus efeitos prebióticos e bifidogênicos. Brazilian Journal of Food Technology, 12(3), 230–240. https://doi.org/10.4260/BJFT2009800900017 | |
dc.relation.references | Martínez-Villaluenga, C., Cardelle-Cobas, A., Corzo, N., Olano, A., y Villamiel, M. (2008). Optimization of conditions for galactooligosaccharide synthesis during lactose hydrolysis by β-galactosidase from Kluyveromyces lactis (Lactozym 3000 L HP G). Food Chemistry, 107(1), 258–264. https://doi.org/10.1016/j.foodchem.2007.08.011 | |
dc.relation.references | Martínez-Villaluenga, C., Cardelle-cobas, A., Corzo, N., y Olano, A. (2008). Study of galactooligosaccharide composition in commercial fermented milks. Journal of Food Composition and Analysis, 21, 540–544. https://doi.org/10.1016/j.jfca.2008.05.008 | |
dc.relation.references | Marcelo, P. A., y Rizvi, S. S. H. (2008). Physicochemical properties of liquid virgin whey protein isolate. International Dairy Journal, 18(3), 236–246. https://doi.org/10.1016/j.idairyj.2007.08.011 | |
dc.relation.references | Machado, T., Gomes de oliveira, M., Ferreira, M., Oliveira, P., Leite de souza, E., Madruga, M., … Ramos do Egypto, R. (2017). Impact of honey on quality characteristics of goat yogurt containing probiotic Lactobacillus acidophilus. LWT - Food Science and Technology, 80, 221–229. https://doi.org/10.1016/j.lwt.2017.02.013 | |
dc.relation.references | Liu, G., Hale, G. E., y Hughes, C. L. (2000). Galactose metabolism and ovarian toxicity. Reproductive Toxicology, 14(5), 377–384. https://doi.org/10.1016/S0890-6238(00)00096-4 | |
dc.relation.references | enab, E., Omidghane, M., Mussone, P., Armada, D. H., Cartmell, J., y Montemagno, C. (2018). Enzymatic conversion of lactose into galacto-oligosaccharides: The effect of process parameters, kinetics, foam architecture, and product characterization. Journal of Food Engineering, 222, 63–72. https://doi.org/10.1016/j.jfoodeng.2017.11.015 | |
dc.relation.references | Guggisberg, D., Piccinali, P., y Schreier, K. (2011). Effects of sugar substitution with Stevia , Actilight Ô and Stevia combinations or Palatinose Ô on rheological and sensory characteristics of low-fat and whole milk set yoghurt. International Dairy Journal, 21(9), 636–644. https://doi.org/10.1016/j.idairyj.2011.03.010 | |
dc.relation.references | Guerrero, C., Vera, C., Conejeros, R., y Illanes, A. (2015). Transgalactosylation and hydrolytic activities of commercial preparations of β-galactosidase for the synthesis of prebiotic carbohydrates. Enzyme and Microbial Technology, 70, 9–17. https://doi.org/10.1016/j.enzmictec.2014.12.006 | |
dc.relation.references | Fox, P. (2009). Lactose, chemistry and properties. In P. L. H. McSweeney y P. F. Fox (Eds.), Advanced Dairy Chemistry Volume 3: Lactose, Water, Salts and Minor Constituents (Vol. 3, pp. 1–13). Springer, Nueva York, NY. https://doi.org/10.1007/978-0-387-84865-5_1 | |
dc.relation.references | Delgado-Fernández, P., Corzo, N., Olano, A., Hernández-Hernández, O., y Moreno, F. J. (2019). Effect of selected prebiotics on the growth of lactic acid bacteria and physicochemical properties of yoghurts. International Dairy Journal, 89, 77–85. https://doi.org/10.1016/j.idairyj.2018.09.003BBBB | |
dc.relation.references | Costa, G. M., Paula, M. M., Barao, C., Klososki, S. J., Bonafé, E. G., Visentainer, J. V, … Colombo, T. (2019). Yoghurt added with Lactobacillus casei and sweetened with natural sweeteners and / or prebiotics : Implications on quality parameters and probiotic survival. International Dairy Journal 97, 97, 139–148. https://doi.org/10.1016/j.idairyj.2019.05.007 | |
dc.relation.references | Coelho, A. I., Berry, G. T., y Rubio-Gozalbo, M. E. (2015). Galactose metabolism and health. Current Opinion in Clinical Nutrition and Metabolic Care, 18(4), 422–427. https://doi.org/10.1097/MCO.0000000000000189 | |
dc.relation.references | Cheng, H. (2010). Volatile flavor compounds in yogurt: a review. Critical Reviews in Food Science and Nutrition, 50(10), 938–950. https://doi.org/10.1080/10408390903044081 | |
dc.relation.references | Carocho, M., Morales, P., y Ferreira, I. C. F. R. (2017). Sweeteners as food additives in the XXI century : A review of what is known , and what is to come. Food and Chemical Toxicology, 107, 302–317. https://doi.org/10.1016/j.fct.2017.06.046 | |
dc.relation.references | Budriene, S., Gorochovceva, N., Romaskevic, T., Yugova, L. V, Miezeliene, A., y Dienys, G. (2005). β -Galactosidase from Penicillium canescens . Properties and immobilization. Central European Science Journals, 3(1), 95–105. Retrieved from https://link.springer.com/article/10.2478/BF02476241 | |
dc.relation.references | Ben Abu, N., Harries, D., Voet, H., y Niv, M. Y. (2018). The taste of KCl – What a difference a sugar makes. Food Chemistry, 255(September 2017), 165–173. https://doi.org/10.1016/j.foodchem.2018.01.175 | |
dc.relation.references | Ban, Q., Liu, Z., Yu, C., Sun, X., Jiang, Y., Cheng, J., y Guo, M. (2020). Physiochemical, rheological, microstructural, and antioxidant properties of yogurt using monk fruit extract as a sweetener. Journal of Dairy Science, 103(11), 10006–10014. https://doi.org/10.3168/jds.2020-18703 | |
dc.relation.references | Aznar, L. A. M., Ral, P. C., Rosa, M., Anta, O., Díaz, J., Baladia, E., … Salas-Salvadó, J. (2013). Evidencia científica sobre el papel del yogur y otras leches fermentadas en la alimentación saludable de la población española. Nutrición Hospitalaria, 28(6) 2039–2089. https://doi.org/10.3305/nh.2013.28.6.6856. | |
dc.relation.references | Asoleche. (2018). El mercado de Yogurt. Retrieved December 27, 2021, from https://asoleche.org/2018/09/18/el-yogur-y-su-expason-en-el-mercado-a-nivel-mundial/ | |
dc.relation.references | Aryana, K. J., y Olson, D. W. (2017). A 100-Year Review: Yogurt and other cultured dairy products. Journal of Dairy Science, 100(12), 9987–10013. https://doi.org/10.3168/jds.2017-12981 | |
dc.relation.references | AOAC. (2012). Official Methods of Analysis of AOAC international. 19th edition. (G. Latimer, Ed.), AOAC International. Gaithersburg, Maryland, USA. | |
dc.relation.references | Amaya-Llano, S. L., Martínez-Alegría, A. L., Zazueta-Morales, J. J., y Martínez-Bustos, F. (2008). Acid thinned jicama and maize starches as fat substitute in stirred yogurt. LWT - Food Science and Technology, 41(7), 1274–1281. https://doi.org/10.1016/j.lwt.2007.08.012 | |
dc.relation.references | Alaei, B., Amiri Chayjan, R., y Ali Zolfigol, M. (2021). Tomato juice microfiltration process assisted with pressure-vacuum combination condition: A physicochemical investigation and optimization. Biosystems Engineering, 212, 62–76. https://doi.org/10.1016/j.biosystemseng.2021.10.005 | |
dc.relation.references | Agronet. (2018). Industria del yogur sigue creciendo en Colombia. Retrieved December 27, 2021, from https://www.agronet.gov.co/Noticias/Paginas/Industria-del-yogur-sigue-creciendo-en-Colombia.aspx# | |
dc.relation.references | Schmidt, Karen A.; Stupar, J.; Shirley, John E.; and Adapa, S. (1996) "Factors affecting titratable acidity in raw milk," Kansas Agricultural Experiment Station Research Reports: Vol. 0: Iss. 2. https://doi.org/10.4148/2378-5977.3265 | |
dc.relation.references | Producción + Limpia, 4(2), 65–74. Retrieved from: http://search.ebscohost.com/login.aspx?direct=trueydb=a9hyAN=79660760ylang=esysite=ehost-live. | |
dc.relation.references | Sánchez Sánchez, G. L., Gil Garzón, M. J., Gil Garzón, M. A., Giraldo Rojas, F. J., Millán Cardona, L. de J., y Villada Ramírez, M. E. (2009). Milk serum use in a company from the Antioquian Northern region by the use of efficient microorganisms. | |
dc.relation.references | Rice, G., Barber, A. R., O’Connor, A. J., Stevens, G. W., y Kentish, S. E. (2011). Rejection of dairy salts by a nanofiltration membrane. Separation and Purification Technology, 79(1), 92–102. http://doi.org/10.1016/j.seppur.2011.03.022 | |
dc.relation.references | Portalechero. Buscan impulsar la consolidación de la cultura del queso en Colombia. Disponible desde internet en: https://portalechero.com/buscan-impulsar-la-consolidacion-de-la-cultura-del-queso-en-colombia/. (con acceso el 29/08/2020). | |
dc.relation.references | Paterson, A. H. J. (2011). Lactose and oligosaccharides; Lactose production, aplications. En Fuquay, J. W. (eds). Encyclopedia of Dairy Sciences. Ed. elsevier Ltda. p.196–201 | |
dc.relation.references | Palai, T., y Bhattacharya, P. K. (2013). Kinetics of lactose conversion to galacto-oligosaccharides by β-galactosidase immobilized on PVDF membrane. Journal of Bioscience and Bioengineering, 115(6), 668–673. http://doi.org/10.1016/j.jbiosc.2012.12.014 | |
dc.relation.references | Obón, J. M., Castellar, M. R., Iborra, J. L., y Manjón, A. (2000). β-Galactosidase immobilization for milk lactose hydrolysis: A simple experimental and modelling study of batch and continuous reactors. Biochemical Education, 28(3), 164–168. http://doi.org/10.1016/S0307-4412(99)00097- | |
dc.relation.references | Oatley-Radcliffe, D. L., Walters, M., Ainscough, T. J., Williams, P. M., Mohammad, A. W., y Hilal, N. (2017). Nanofiltration membranes and processes: A review of research trends over the past decade. Journal of Water Process Engineering, 19(April), 164–171. http://doi.org/10.1016/j.jwpe.2017.07.026 | |
dc.relation.references | Nath, K., Dave, H. K., y Patel, T. M. (2018). Revisiting the recent applications of nanofiltration in food processing industries: Progress and prognosis. Trends in Food Science and Technology, 73(December 2016), 12–24. http://doi.org/10.1016/j.tifs.2018.01.001 | |
dc.relation.references | Mariotti, M. P., Yamanaka, H., Araujo, A. R., y Trevisan, H. C. (2008). BRAZILIAN ARCHIVES OF BIOLOGY AND TECHNOLOGY Hydrolysis of Whey Lactose by Immobilized β-Galactosidase. Braz. Arch. Biol. Technol. V, 516(6), 1233–1240 | |
dc.relation.references | Kleinhenz, M. D., y Bumgarner, N. R. (2015). Uso de los grados brix como indicador de calidad. Disponible desde internet en: http://www.agroindustria360.com/2015/04/uso-de-los-grados-brix-como-indicador.html (con acceso 07/02/2019). | |
dc.relation.references | Kaur, G., Panesar, P. S., Bera, M. B., y Kumar, H. (2009). Hydrolysis of whey lactose using CTAB-permeabilized yeast cells. Bioprocess and Biosystems Engineering, 32(1), 63–67. http://doi.org/10.1007/s00449-008-0221-9 | |
dc.relation.references | Inda, A. (2000). Optimizacion de rendimientos de queseria. 52(844). International Dairy. Whey Book 2020, Global market for whey and lactose ingredients 2020-2024. Disponible desde internet en: https://international-dairy.com/news/home/whey-book-2020/ (con acceso el 29/08/2020) | |
dc.relation.references | Hatzinikolaou, D. G., Katsifas, E., Mamma, D., Karagouni, A. D., Christakopoulos, P., y Kekos, D. (2005). Modeling of the simultaneous hydrolysis-ultrafiltration of whey permeate by a thermostable β-galactosidase from Aspergillus niger. Biochemical Engineering Journal, 24(2), 161–172. http://doi.org/10.1016/j.bej.2005.02.011 | |
dc.relation.references | Guerrero, C., Vera, C., Conejeros, R., y Illanes, A. (2015). Transgalactosylation and hydrolytic activities of commercial preparations of β-galactosidase for the synthesis of prebiotic carbohydrates. Enzyme and Microbial Technology, 70, 9–17. http://doi.org/10.1016/j.enzmictec.2014.12.006 | |
dc.relation.references | Ghosh, M., Pulicherla, K. K., Rekha, V. P. B., Vijayanand, A., y Sambasiva Rao, K. R. S. (2013). Optimisation of process conditions for lactose hydrolysis in paneer whey with cold-active β-galactosidase from psychrophilic Thalassospira frigidphilosprofundus. International Journal of Dairy Technology, 66(2), 256–263. Retrieved from 10.1111/1471-0307.12020 | |
dc.relation.references | García-Reyes, M., Beltrán-Hernández, R.I., Vázquez-Rodríguez, G. A., CoroneL-Olivares, C., Medina-Moreno, S.A., Juárez-Santillán, L.F., Lucho-Constantino, C. A. (2017). Formation, morphology and biotechnological applications of filamentous fungal pellets: a review. Revista Mexicana de Ingeniería Química 16, (2017) 703-720. | |
dc.relation.references | Durham, R. J. (2009). Modern approaches to lactose production. Dairy-Derived Ingredients: Food and Nutraceutical Uses. Woodhead Publishing Limited. http://doi.org/10.1533/9781845697198.1.103 | |
dc.relation.references | De Souza, R.R. et al., 2010. Recovery and purification of lactose from whey. Chemical Engineering and Processing: Process Intensification, 49, pp.1137–1143. Available at: http://linkinghub.elsevier.com/retrieve/pii/S0255270110002084 [Accessed November 18, 2013]. | |
dc.relation.references | Das, B., Roy, A. P., Bhattacharjee, S., Chakraborty, S., y Bhattacharjee, C. (2015). Lactose hydrolysis by β-galactosidase enzyme: Optimization using response surface methodology. Ecotoxicology and Environmental Safety, 121, 244–252. http://doi.org/10.1016/j.ecoenv.2015.03.024 | |
dc.relation.references | Dainese-Plichon, R., Schneider, S., Piche, T., y Hébuterne, X. (2014). Malabsorption et intolérance au lactose chez l’adulte. Journal de Nutrition Clinique et Métabolisme, 28, 46–51.http://doi.org/10.1016/j.nupar.2013.12.002 | |
dc.relation.references | Cuartas-Uribe, B., Alcaina-Miranda, M. I., Soriano-Costa, E., Mendoza-Roca, J. A., Iborra-Clar, M. I., y Lora-García, J. (2009). A study of the separation of lactose from whey ultrafiltration permeate using nanofiltration. Desalination, 241, 244–255. http://doi.org/10.1016/j.desal.2007.11.086 | |
dc.relation.references | Chacón Villalobos, A. (2006). Tecnologías de membranas en la agroindustria láctea. Agronomía Mesoamericana, 17(2), 243. http://doi.org/10.15517/am.v17i2.5164 | |
dc.relation.references | Callejas Hernández, J., Prieto García, F., Reyes Cruz, V. E., Marmo-Lejo Santillán, Y., y Marzo, M. A. M. (2012). Caracterización fisicoquímica de un lactosuero: potencialidad de recuperación de fósforo. Acta Universitaria (México), 22(1), 11–18. | |
dc.relation.references | Beltran, L. J., y Acosta-Cárdenas, A. (2012). Empleo de una β-galactosidasa comercial de Kluyveromyces lactis en la hidrólisis de lactosuero Usage of a commercial β-galactosidase from Kluyveromyces lactis in the hydrolysis of whey. Hechos Microbiológicos, 3(2), 25–35. | |
dc.relation.references | Banaszewska, A., Cruijssen, F., Claassen, G. D. H., y Van der Vorst, J. G. A. J. (2014). Effect and key factors of byproducts valorization: The case of dairy industry. Journal of Dairy Science, 97(4), 1893–1908. http://doi.org/10.3168/jds.2013-7283 | |
dc.relation.references | Atra R., Vatai G., Molnar E., Balint A., Investigation of ultra- And nanofiltration for utilization of whey protein and lactose, J. Food Eng. 67 (2005) 325–332. doi:10.1016/j.jfoodeng.2004.04.035. | |
dc.relation.references | ASOLECHE. 2018. Acopio mensual de leche por la industria formal al sector primario (2017 – 2018). Disponible desde internet en https://asoleche.org/leche-en-cifras/ (con acceso el 21/10/18 | |
dc.relation.references | Apccolombia. Implementación de estrategias de crecimiento verde y economía circular que contribuyan a la competitividad y la sostenibilidad de las empresas de derivados lácteos en los departamentos de Antioquia y Boyacá. Disponible desde internet en: https://www.apccolombia.gov.co/proyectos/implementacion-de-estrategias-de-crecimiento-verde-y-economia-circular-que-contribuyan-la | |
dc.relation.references | Ansari, S. A., y Husain, Q. (2010). Lactose hydrolysis by β galactosidase immobilized on concanavalin A-cellulose in batch and continuous mode. Journal of Molecular Catalysis B: Enzymatic, 63(1–2), 68–74. http://doi.org/10.1016/j.molcatb.2009.12.010 | |
dc.relation.references | Fox, P. F., Uniacke-Lowe, T., Mcsweeney, P. L. H., y O’mahony, J. A. (2015). Dairy Chemistry and Biochemistry (Second Edition). AG Switzerland. https://doi.org/10.1007/978-3-319-14892-2 | |
dc.relation.references | Fernández García L, Álvarez Blanco S, y Riera Rodríguez FA. (2013). Microfiltration applied to dairy streams: removal of bacteria. J Sci Food Agric. https://doi.org/10.1002/jsfa.5935 | |
dc.relation.references | Fox, P. F. (1997). Advanced dairy chemistry volume 3 Lactose, water, salts and vitamins: Vol. Volumen 3 (Second edition). Chapman y Hall in 1997. https://doi.org/DOI 10.1007/978-1-4757-4409-5 | |
dc.relation.references | Cuartas-Uribe, B., Alcaina-Miranda, M. I., Soriano-Costa, E., Mendoza-Roca, J. A., Iborra-Clar, M. I., y Lora-García, J. (2009). A study of the separation of lactose from whey ultrafiltration permeate using nanofiltration. Desalination, 241, 244–255. https://doi.org/10.1016/j.desal.2007.11.08 | |
dc.relation.references | Catanzaro, R., Sciuto, M., y Marotta, F. (2021). Lactose intolerance: An update on its pathogenesis, diagnosis, and treatment. In Nutrition Research (Vol. 89, pp. 23–34). Elsevier Inc. https://doi.org/10.1016/j.nutres.2021.02.003 | |
dc.relation.references | Beltran, L. F., y Acosta, A. C. (2012). Empleo de una β-galactosidasa comercial de Kluyveromyces lactis en la hidrólisis de lactosuero. In Hechos Microbiol (Vol. 3, Issue 2). http://www.udea.edu.co/hm | |
dc.relation.references | Behroozi, A. H., y Ataabadi, M. R. (2021). Improvement in microfiltration process of oily wastewater: A comprehensive review over two decades. In Journal of Environmental Chemical Engineering (Vol. 9, Issue 1). Elsevier Ltd. https://doi.org/10.1016/j.jece.2020.104981 | |
dc.relation.references | Bargeman, G. (2021). Recent developments in the preparation of improved nanofiltration membranes for extreme pH conditions. In Separation and Purification Technology (Vol. 279). Elsevier B.V. https://doi.org/10.1016/j.seppur.2021.119725 | |
dc.relation.references | Aryana, K. J., y Olson, D. W. (2017). A 100-Year Review: Yogurt and other cultured dairy products. Journal of Dairy Science, 100(12), 9987–10013. https://doi.org/10.3168/jds.2017-12981 | |
dc.relation.references | Argenta, A. B., y Scheer, A. D. P. (2019). Membrane Separation Processes Applied to Whey: A Review. Https://Doi.Org/10.1080/87559129.2019.1649694, 36(5), 499–528. https://doi.org/10.1080/87559129.2019.1649694 | |
dc.relation.references | Albuquerque, T. L., de Sousa, M., Gomes e Silva, N. C., Girão Neto, C. A. C., Gonçalves, L. R. B., Fernandez-Lafuente, R., y Rocha, M. V. P. (2021). β-Galactosidase from Kluyveromyces lactis: Characterization, production, immobilization and applications - A review. In International Journal of Biological Macromolecules (Vol. 191, pp. 881–898). Elsevier B.V. https://doi.org/10.1016/j.ijbiomac.2021.09.13 | |
dc.relation.references | Agudelo, J. (2018). Microencapsulación de Lactobacillus rhamnosus ATCC 7469 mediante secado por aspersión usando proteínas de lactosuero dulce. Universidad Nacional de Colombia- sede Medellín. | |
dc.relation.references | Aani, S. al, Mustafa, T. N., y Hilal, N. (2020). Ultrafiltration membranes for wastewater and water process engineering: A comprehensive statistical review over the past decade. In Journal of Water Process Engineering (Vol. 35). Elsevier Ltd. https://doi.org/10.1016/j.jwpe.2020.101241 | |
dc.relation.references | Agronet. (2018, June 19). Industria del yogur sigue creciendo en Colombia. Https://Www.Agronet.Gov.Co/Noticias/Paginas/Industria-Del-Yogur-Sigue-Creciendo-En-Colombia.Aspx#. | |
dc.relation.references | Alaei, B., Amiri Chayjan, R., y Ali Zolfigol, M. (2021). Tomato juice microfiltration process assisted with pressure-vacuum combination condition: A physicochemical investigation and optimization. Biosystems Engineering, 212, 62–76. https://doi.org/10.1016/j.biosystemseng.2021.10.005 | |
dc.relation.references | Gao, X., Wu, J., y Wu, D. (2019). Rational design of the beta-galactosidase from Aspergillus oryzae to improve galactooligosaccharide production. Food Chemistry, 286, 362–367. https://doi.org/10.1016/j.foodchem.2019.01.212 | |
dc.relation.references | Gómez, J., y Sánchez, J. (2019). Producción de galactooligosacáridos : alternativa para el aprovechamiento del lactosuero. Una revisión. Ingeniería y Desarrollo, 37(1), 130–158. https://doi.org/http://dx.doi.org/10.14482/inde.37.1.637 | |
dc.relation.references | Guerrero, C., Vera, C., Conejeros, R., y Illanes, A. (2015). Transgalactosylation and hydrolytic activities of commercial preparations of β-galactosidase for the synthesis of prebiotic carbohydrates. Enzyme and Microbial Technology, 70, 9–17. https://doi.org/10.1016/j.enzmictec.2014.12.006 | |
dc.relation.references | Haider, T., y Husain, Q. (2009). Hydrolysis of milk/whey lactose by β galactosidase: A comparative study of stirred batch process and packed bed reactor prepared with calcium alginate entrapped enzyme. Chemical Engineering and Processing: Process Intensification, 48(1), 576–580. https://doi.org/10.1016/j.cep.2008.02.007 | |
dc.relation.references | Harju, M., Kallioinen, H., y Tossavainen, O. (2012). Lactose hydrolysis and other conversions in dairy products: Technological aspects. In International Dairy Journal (Vol. 22, Issue 2, pp. 104–109). https://doi.org/10.1016/j.idairyj.2011.09.011 | |
dc.relation.references | Hedayatipour, M., Jaafarzadeh, N., y Ahmadmoazzam, M. (2017). Removal optimization of heavy metals from effluent of sludge dewatering process in oil and gas well drilling by nanofiltration. Journal of Environmental Management, 203, 151–156. https://doi.org/10.1016/j.jenvman.2017.07.070 | |
dc.relation.references | Heng, M. H., y Glatz, C. E. (1991). Chemical Pretreatments and Fouling in Acid Cheese Whey Ultrafiltration. Journal of Dairy Science, 74(1), 11–19. https://doi.org/10.3168/jds.S0022-0302(91)78138-1 | |
dc.relation.references | Hengfei, R., Junjie, F., Xinchi, S., Ting, Z., Hao, C., Nan, Z., Yong, C., y Hanjie, Y. (2015). Continuous ultrafiltration membrane reactor coupled with nanofiltration for the enzymatic synthesis and purification of galactosyl-oligosaccharides. Separation and Purification Technology, 144, 70–79. https://doi.org/10.1016/j.seppur.2015.02.020 | |
dc.relation.references | Husain, Q. (2010). β Galactosidases and their potential applications: A review. In Critical Reviews in Biotechnology (Vol. 30, Issue 1, pp. 41–62). https://doi.org/10.3109/07388550903330497 | |
dc.relation.references | International Dairy. Whey Book 2020, Global market for whey and lactose ingredients 2020-2024. Disponible desde internet en: https://international-dairy.com/news/home/whey-book-2020/ (con acceso el 29/08/2020). | |
dc.relation.references | Ito, Y., Sasaki, T., Kitamoto, K., Kumaga, C., Takahashi, K., Gomi, K., y Tamura, G. (2002). Cloning, nucleotide sequencing, and expression of the b-galactosidase-encoding gene (lacA) from Aspergillus oryzae. J. Gen. Appl. Microbiol, 48, 135–142. https://doi.org/10.2323/jgam.48.135 | |
dc.relation.references | Jurado, E., Camacho, F., Luzón, G., y Vicaria, J. M. (2002). A new kinetic model proposed for enzymatic hydrolysis of lactose by a β-galactosidase from Kluyveromyces fragilis. Enzyme and Microbial Technology, 31(3), 300–309. https://doi.org/10.1016/S0141-0229(02)00107-2 | |
dc.relation.references | Karim, A., y Aider, M. (2022). Production of prebiotic lactulose through isomerisation of lactose as a part of integrated approach through whey and whey permeate complete valorisation: A review. In International Dairy Journal (Vol. 126). Elsevier Ltd. https://doi.org/10.1016/j.idairyj.2021.105249 | |
dc.relation.references | Kaur, N., Sharma, P., Jaimni, S., Kehinde, B. A., y Kaur, S. (2019). Recent developments in purification techniques and industrial applications for whey valorization: A review. Https://Doi.Org/10.1080/00986445.2019.1573169, 207(1), 123–138. https://doi.org/10.1080/00986445.2019.1573169 | |
dc.relation.references | Khramcov, A. G., Lodygin, A. D., Anisimov, G. S., Shkola, S. S., Dykalo, N. Y. A., Eremina, A. I., y Dinyakov, V. A. (2021). Regularities of the transition of substances from permeate to molasses in the process of lactose recovery. IOP Conference Series: Earth and Environmental Science, 677(3). https://doi.org/10.1088/1755-1315/677/3/032082 | |
dc.relation.references | Kocabaş, H., Ergin, F., Aktar, T., y Küçükçetin, A. (2022). Effect of lactose hydrolysis and salt content on the physicochemical, microbiological, and sensory properties of ayran. International Dairy Journal, 129. https://doi.org/10.1016/j.idairyj.2022.105360 | |
dc.relation.references | Kreczmann, B., Alonso, A., Liloia, M., Zamboni, E., Cerutti, R., Baroni, D., y Poluján Dianela1. (2015). Procesamiento del lactosuero: elaboración de lactosa y aprovechamiento de proteínas. In Tecnología Láctea Latinoamericana No (Vol. 87). | |
dc.relation.references | Lindsay, M. J., Walker, T. W., Dumesic, J. A., Rankin, S. A., y Huber, G. W. (2018). Production of monosaccharides and whey protein from acid whey waste streams in the dairy industry. Green Chemistry, 20(8), 1824–1834. https://doi.org/10.1039/c8gc00517f | |
dc.relation.references | Macedo, A., Azedo, D., Duarte, E., y Pereira, C. (2021). Valorization of goat cheese whey through an integrated process of ultrafiltration and nanofiltration. Membranes, 11(7). https://doi.org/10.3390/membranes11070477 | |
dc.relation.references | Machado, T. A. D. G., de Oliveira, M. E. G., Campos, M. I. F., de Assis, P. O. A., de Souza, E. L., Madruga, M. S., Pacheco, M. T. B., Pintado, M. M. E., y Queiroga, R. de C. R. do E. (2017). Impact of honey on quality characteristics of goat yogurt containing probiotic Lactobacillus acidophilus. LWT - Food Science and Technology, 80, 221–229. https://doi.org/10.1016/j.lwt.2017.02.013 | |
dc.relation.references | Mahadevaiah, S., Basavaiah, R., Parida, M., y Batra, H. V. (2020). Optimal production of b-galactosidase from lactobacillus fermentum for the synthesis of prebiotic galactooligosaccharides (GOs). Journal of Pure and Applied Microbiology, 14(4), 2769–2780. https://doi.org/10.22207/JPAM.14.4.53 | |
dc.relation.references | Martínez-Villaluenga, C., Cardelle-Cobas, A., Corzo, N., Olano, A., y Villamiel, M. (2008). Optimization of conditions for galactooligosaccharide synthesis during lactose hydrolysis by β-galactosidase from Kluyveromyces lactis (Lactozym 3000 L HP G). Food Chemistry, 107(1), 258–264. https://doi.org/10.1016/j.foodchem.2007.08.011 | |
dc.relation.references | Martins, A. R., y Burkert, C. A. v. (2009). Galacto-oligossacarídeos (GOS) e seus efeitos prebióticos e bifidogênicos. BRAZILIAN JOURNAL OF FOOD TECHNOLOGY, 12(03), 230–240. https://doi.org/10.4260/bjft2009800900017 | |
dc.relation.references | Mcsweeney, P. L. H., y Fox, P. F. (2009). Advanced dairy chemistry volume 3 lactose, water, salts and minor constituents third edition: Vol. volume 3 (p.l.h. Mcsweeney y P.F. Fox, Eds.). https://doi.org/10.1007/978-0-387-84865-5 | |
dc.relation.references | Mengesha, A., y Sahu, O. (2022). Sustainability of membrane separation technology on groundwater reverse osmosis process. In Cleaner Engineering and Technology (Vol. 7). Elsevier Ltd. https://doi.org/10.1016/j.clet.2022.100457 | |
dc.relation.references | Ming, C., Xiaomin, X., Philippe, S., y Luc, F. (2021). Extensive review about industrial and laboratory dynamic filtration modules: Scientific production, configurations and performances. Separation and Purification Technology, 265, 118293. https://doi.org/10.1016/J.SEPPUR.2020.118293 | |
dc.relation.references | Moreno Aznar, L. A., Cervera Ral, P., Ortega Anta, R. M. A., Díaz Martín, J. J., Baladia, E., Basulto, J., Bel Serrat, S., Iglesia Altaba, I., López-Sobaler, A. M. A., Manera, M., Rodríguez, E. R., Santaliestra Pasías, A. M., Babio, N., y Salas-Salvadó, J. (2013). Evidencia científica sobre el papel del yogur y otras leches fermentadas en la alimentación saludable de la población española. Nutricion Hospitalaria, 28(6), 2039–2089. https://doi.org/10.3305/nh.2013.28.6.6856 | |
dc.relation.references | Shah N.P. Yogur: El producto y su fabricación. B. Caballero , LC Trugo , PM Finglas (Eds.) ( 2 ), Encyclopedia of Food Sciences and Nutrition , 10 , Academic Press , London, UK ( 2003 ) , pp. 6252 - 6260 | |
dc.relation.references | Rico-Díaz, A., Ramírez-Escudero, M., Vizoso-Vázquez, Á., Cerdán, M. E., Becerra, M., y Sanz-Aparicio, J. (2017). Structural features of Aspergillus niger β-galactosidase define its activity against glycoside linkages. FEBS Journal, 284(12), 1815–1829. https://doi.org/10.1111/febs.14083 | |
dc.relation.references | Smithers, G. W. (2008). Whey and whey proteins-From “gutter-to-gold.” In International Dairy Journal (Vol. 18, Issue 7, pp. 695–704). https://doi.org/10.1016/j.idairyj.2008.03.008 | |
dc.relation.references | Vargas-Díaz, S., Sepúlveda-V, J. U., Ciro-V, H. J., Mosquera, A. J., y Bejarano, E. (2019). Physicochemical, sensory and stability properties of a milk caramel spread sweetened with a glucose-galactose syrup from sweet whey. Revista Facultad Nacional de Agronomia Medellin, 72(3), 8995–9005. https://doi.org/10.15446/rfnam.v72n3.76558 | |
dc.relation.references | Suhalim, N. S., Kasim, N., Mahmoudi, E., Shamsudin, I. J., Mohammad, A. W., Zuki, F. M., y Jamari, N. L. A. (2022). Rejection Mechanism of Ionic Solute Removal by Nanofiltration Membranes: An Overview. In Nanomaterials (Vol. 12, Issue 3). MDPI. https://doi.org/10.3390/nano12030437 | |
dc.relation.references | Vera, C., Córdova, A., Aburto, C., Guerrero, C., Suárez, S., y Illanes, A. (2016). Synthesis and purification of galacto-oligosaccharides: state of the art. In World Journal of Microbiology and Biotechnology (Vol. 32, Issue 12). Springer Netherlands. https://doi.org/10.1007/s11274-016-2159-4 | |
dc.relation.references | Wang, G., Wang, H., Chen, Y., Pei, X., Sun, W., Liu, L., Wang, F., Umar Yaqoob, M., Tao, W., Xiao, Z., Jin, Y., Yang, S. T., Lin, D., y Wang, M. (2021). Optimization and comparison of the production of galactooligosaccharides using free or immobilized Aspergillus oryzae β-galactosidase, followed by purification using silica gel. Food Chemistry, 362. https://doi.org/10.1016/j.foodchem.2021.130195Wong, S. Y., y Hartel, R. W. (2014). Crystallization in Lactose Refining-A Review. Journal of Food Science, 79(3). https://doi.org/10.1111/1750-3841.12349 | |
dc.relation.references | Zadow, J. G. (1992). Whey and lactose processing. Elsevier Applied Science. Zolnere, K., y Ciprovica, I. (2017). The comparison of commercially available ß-Galactosidases for dairy industry: Review. Research for Rural Development, 1, 215–222. https://doi.org/10.22616/rrd.23.2017.032 | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.license | Reconocimiento 4.0 Internacional | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.subject.agrovoc | Lactosuero | |
dc.subject.agrovoc | Jarabe de glucosa | |
dc.subject.agrovoc | Hidrólisis enzimática | |
dc.subject.armarc | Jarabe de glucosa | |
dc.subject.ddc | 660 - Ingeniería química::664 - Tecnología de alimentos | |
dc.subject.ddc | 640 - Gestión del hogar y vida familiar::641 - Alimentos y bebidas | |
dc.subject.ddc | 660 - Ingeniería química | |
dc.subject.lemb | Industria del yogurt | |
dc.subject.lemb | Industria de productos lácteos | |
dc.subject.lemb | Productos lácteos | |
dc.subject.lemb | Tecnología de alimentos | |
dc.subject.proposal | Suero lácteo | spa |
dc.subject.proposal | Nanofiltración | spa |
dc.subject.proposal | Hidrólisis enzimática de lactosa | spa |
dc.subject.proposal | Jarabe de glucosa-galactosa | spa |
dc.subject.proposal | Galacto-oligosacáridos | spa |
dc.subject.proposal | Yogur | spa |
dc.subject.proposal | Whey | eng |
dc.subject.proposal | Nanofiltration | eng |
dc.subject.proposal | Enzymatic hydrolysis of lactose | eng |
dc.subject.proposal | Glucose-galactose syrup | eng |
dc.subject.proposal | Galacto-oligosaccharides | eng |
dc.subject.proposal | Yogurt | eng |
dc.title | Desarrollo de un hidrolizado de lactosa a partir de lactosuero dulce y su aplicación como endulzante en yogur | spa |
dc.title.translated | Development of a lactose hydrolysate from sweet whey and its application as a sweetener in yogurt | eng |
dc.type | Trabajo de grado - Doctorado | |
dc.type.coar | http://purl.org/coar/resource_type/c_db06 | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/doctoralThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TD | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dcterms.audience.professionaldevelopment | Estudiantes | |
dcterms.audience.professionaldevelopment | Investigadores | |
dcterms.audience.professionaldevelopment | Maestros | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Tesis de Doctorado en Ciencias Agrarias
- Tamaño:
- 2.49 MB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 3 de 3
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:
Cargando...
- Nombre:
- Yogur entero endulzado con jarabe de glucosa-galactosa obtenido por nanofiltración.pdf
- Tamaño:
- 251.58 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
Cargando...
- Nombre:
- Obtención de un hidrolizado de lactosa desde lactosuero dulce usando nanofiltración.pdf
- Tamaño:
- 261.4 KB
- Formato:
- Adobe Portable Document Format
- Descripción: