Efectos de los incendios forestales sobre la resiliencia de bosques tropicales de tierras bajas

dc.contributor.advisorArmenteras Pascual, Dolors
dc.contributor.authorMeza Elizalde, María Constanza
dc.contributor.orcidMeza Elizalde, María Contanza [0000000298332980]spa
dc.contributor.researchgateMeza Elizalde, Maria Constanza [Maria-Constanza-Meza-Elizalde]spa
dc.contributor.researchgroupEcología del Paisaje y Modelación de Ecosistemas - ECOLMODspa
dc.coverage.regionOrinoquía
dc.date.accessioned2024-01-26T17:50:12Z
dc.date.available2024-01-26T17:50:12Z
dc.date.issued2023
dc.descriptionilustraciones, diagramas, figurasspa
dc.description.abstractEn las últimas décadas, se ha observado un aumento en la frecuencia e intensidad de los incendios forestales en los bosques inundables neotropicales, que se encuentran inmersos en la matriz de sabana. Esto plantea preocupaciones sobre los efectos en la diversidad y resiliencia de estos ecosistemas. Con el objetivo de comprender el impacto de los incendios forestales en la resiliencia de los bosques inundables de la cuenca del Orinoco, se llevó a cabo un estudio para analizar los cambios en la composición, estructura y diversidad taxonómica y funcional después de incendios de moderada y alta severidad e intensidad. También se investigaron los rasgos funcionales de evitación, resistencia y regeneración en especies forestales que podrían conferirles una ventaja de respuesta al fuego: haciendo análisis interespecíficos para las especies más dominantes e intraespecíficos para el saladillo rojo (Caraipa llanorum). Por último, se realizó un análisis multitemporal para evaluar la evolución de los combustibles vivos y leñosos muertos a tres, cinco y siete años posteriores a los incendios. El fuego provocó una homogeneización tanto taxonómica como funcional en la comunidad de árboles y palmas de los bosques, lo que redujo la diversidad y favoreció a especies con características similares. Se observó que el fuego filtró especies con rasgos de resistencia, como cortezas más gruesas, características caducifolias y mayor espesor foliar, que les brindan capacidad de supervivencia. A nivel intraespecífico, se identificó que el saladillo, tiene estrategias adquisitivas en bosques no quemados y estrategias conservativas en bosques quemados y sábanas propensas al fuego. Finalmente, se encontró que el fuego también provocó una disminución significativa en la cobertura del dosel y la biomasa aérea, así como una simplificación estructural del bosque. Estos cambios se asociaron con un aumento en la invasión de pastos y una mayor carga de combustible leñoso en bosques quemados, lo que aumenta su vulnerabilidad a futuros incendios. Los hallazgos de este estudio resaltan la importancia de comprender los efectos de los incendios forestales en los ecosistemas sensibles al fuego, como los bosques inundables. Adicionalmente, Asimismo, muestran que los bosques son altamente dinámicos después de la perturbación por incendios, lo que subraya la necesidad de un monitoreo continuo para la toma de decisiones oportunas de gestión tendientes a reducir el riesgo a incendios forestales y garantizar la conservación efectiva de la diversidad y funcionalidad de estos ecosistemas. (Texto tomado de la fuente)spa
dc.description.abstractIn recent decades, an increase in the frequency and intensity of forest fires has been observed in the neotropical floodplain forests, which are immersed in the savanna matrix. This raises concerns about the effects on the diversity and resilience of these ecosystems. With the aim of understanding the impact of forest fires on the resilience of the Orinoco floodplain forests, a study was conducted to analyze the changes in composition, structure, and taxonomic and functional diversity following fires of moderate and high severity and intensity. Functional traits related to avoidance, resistance, and regeneration were also investigated in forest species that could confer them a fire response advantage, conducting interspecific analysis for the dominant species and intraspecific analysis for the red saladillo (Caraipa llanorum). Finally, a multi-temporal analysis was performed to assess the evolution of live and dead fuel components three, five, and seven years after the fires. The fires resulted in both taxonomic and functional homogenization in the tree and palm community of the forests, reducing diversity and favoring species with similar traits. It was observed that the fires filtered species with resistance traits such as thicker bark, deciduous characteristics, and greater leaf thickness, which provide them with survival capacity. At the intraspecific level, it was identified that the saladillo species adopts acquisitive strategies in unburned forests and conservative strategies in burned forests and fire-prone savannas. Moreover, the fires also led to a significant reduction in canopy coverage and aboveground biomass, as well as structural simplification of the forest. These changes were associated with increased grass invasion and a higher load of woody fuel in burned forests, which increases their vulnerability to future fires. The findings of this study highlight the importance of understanding the effects of forest fires on fire-prone ecosystems like floodplain forests. Additionally, they demonstrate that forests are highly dynamic following fire disturbances, emphasizing the need for continuous monitoring to make timely management decisions to reduce the risk of forest fires and ensure effective conservation of the diversity and functionality of these ecosystems.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ciencias - Biologíaspa
dc.description.researchareaEcologíaspa
dc.format.extentxxviii, 308 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85466
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Biologíaspa
dc.relation.referencesAger, A. A., A. Day, M., Finney, M. A., Vance-Borland, K., & Vaillant, N. M. (2014). Analyzing the transmission of wildfire exposure on a fire-prone landscape in Oregon, USA. Forest Ecology and Management, 334, 377–390. https://doi.org/10.1016/j.foreco.2014.09.017spa
dc.relation.referencesAlbert, C. H., Thuiller, W., Yoccoz, N. G., Douzet, R., Aubert, S., & Lavorel, S. (2010). A multi-trait approach reveals the structure and the relative importance of intra- vs. interspecific variability in plant traits. Functional Ecology, 24(6), 1192–1201. https://doi.org/10.1111/j.1365-2435.2010.01727.xspa
dc.relation.referencesAlbert, C., Thuiller, W., Gilles, N., Soundant, A., Boucher, F., PATRICK, S., & Lavorel, S. (2010). Intraspecific functional variability : extent , structure and sources of variation. Journal of Ecology, 98, 604–613. https://doi.org/10.1111/j.1365-2745.2010.01651.xspa
dc.relation.referencesAltomare M, Vasconcelos HL, Raymundo D, et al (2021) Assessing the fire resilience of the savanna tree component through a functional approach. Acta Oecologica 111:103728. https://doi.org/10.1016/j.actao.2021.103728spa
dc.relation.referencesÁlvarez, F. S., Finegan, B., Delgado, D., Ramos, Z., Utrera, L. P., & Granda, V. (2021). Dispersal limitation, soil, and fire affect functional properties of tropical secondary forests on abandoned cattle ranching landscapes. Perspectives in Plant Ecology, Evolution and Systematics, 52(July). https://doi.org/10.1016/j.ppees.2021.125632spa
dc.relation.referencesAndela, N., Morton, D. C., Giglio, L., Chen, Y., Van Der Werf, G. R., Kasibhatla, P. S., DeFries, R. S., Collatz, G. J., Hantson, S., Kloster, S., Bachelet, D., Forrest, M., Lasslop, G., Li, F., Mangeon, S., Melton, J. R., Yue, C., & Randerson, J. T. (2017). A human-driven decline in global burned area. Science, 356(6345), 1356–1362. https://doi.org/10.1126/science.aal4108spa
dc.relation.referencesAraque, O., JAIMEZ, R., Azócar, C., Espinoza, W., & Tezara, W. (2009). RELACIONES ENTRE ANATOMÍA FOLIAR, INTERCAMBIO DE GASES Y CRECIMIENTO EN JUVENILES DE CUATRO ESPECIES FORESTALES. Interciencia, 34(10), 725–729.spa
dc.relation.referencesAraújo, I., Marimon, B. S., Scalon, M. C., Cruz, W. J. A., Fauset, S., Vieira, T. C. S., Galbraith, D. R., & Gloor, M. U. (2021). Intraspecific variation in leaf traits facilitates the occurrence of trees at the Amazonia–Cerrado transition. Flora: Morphology, Distribution, Functional Ecology of Plants, 279(October 2020), 151829. https://doi.org/10.1016/j.flora.2021.151829spa
dc.relation.referencesArmenteras-Pascual, D., Retana-Alumbreros, J., Molowny-Horas, R., Roman-Cuesta, R. M., Gonzalez-Alonso, F., & Morales-Rivas, M. (2011). Characterising fire spatial pattern interactions with climate and vegetation in Colombia. Agricultural and Forest Meteorology, 151(3), 279–289. https://doi.org/10.1016/j.agrformet.2010.11.002spa
dc.relation.referencesArmenteras D, Dávalos LM, Barreto JS, et al (2021a) Fire-induced loss of the world’s most biodiverse forests in Latin America. Sci Adv 7:. https://doi.org/10.1126/sciadv.abd3357spa
dc.relation.referencesArmenteras, D., González-Alonso, F., & Aguilera, C. F. (2009). Geographic and temporal distribution of fi re in Colombia using thermal anomalies data. Caldasia, 31(February), 303–318. http://www.scielo.org.co/scielo.php?script=sci_abstract&pid=S0366-52322009000200007&lng=en&nrm=iso&tlng=enspa
dc.relation.referencesArmenteras, D., Meza, M. C., González, T. M., Oliveras, I., Balch, J. K., & Retana, J. (2021). Fire threatens the diversity and structure of tropical gallery forests. Ecosphere, 12(1). https://doi.org/10.1002/ecs2.3347spa
dc.relation.referencesArmenteras, D, Gónzález, T., Meza, M., Ramiréz - Delgado, J. P., Cabrera, E., Galindo, G., & Yepes, A. (2017). Causas de Degradación Forestal en Colombia: Una primera aproximación. Universidad Nacional de Colombia Sede Bogotá, Instituto de Hidrología, Meteorología y Estudios Ambientales de Colombia-IDEAM, Programa ONU-REDD.spa
dc.relation.referencesArmenteras, Dolors, Meza, M. C., González, T. M., Oliveras, I., Balch, J. K., & Retana, J. (2021). Fire threatens the diversity and structure of tropical gallery forests. Ecosphere, 12(1). https://doi.org/10.1002/ecs2.3347spa
dc.relation.referencesArmenteras, Dolors, & Vargas, O. (2016). Landscape Patterns and Restoration Scenarios : Bridging Scales. Acta Biológica Colombiana, 21(1), 229–240.spa
dc.relation.referencesBalch, J. R. K., Nepstad, D. C., Brando, P. M., Curran, L. M., Portela, O., de Carvalho, O., & Lefebvre, P. (2008). Negative fire feedback in a transitional forest of southeastern Amazonia. Global Change Biology, 14(10), 2276–2287. https://doi.org/10.1111/j.1365-2486.2008.01655.xspa
dc.relation.referencesBalch, J. K., Brando, P. M., Nepstad, D. C., Coe, M. T., Silvério, D., Massad, T. J., Davidson, E. A., Lefebvre, P., Oliveira-santos, C., Rocha, W., Cury, R. T. S., Parsons, A., & Carvalho, K. S. (2015). The Susceptibility of Southeastern Amazon Forests to Fire : Insights from a Large-Scale Burn Experiment. 65(9), 893–905. https://doi.org/10.1093/biosci/biv106spa
dc.relation.referencesBarker, J. W., Price, O. F., & Jenkins, M. E. (2022). High severity fire promotes a more flammable eucalypt forest structure. Austral Ecology, 47(3), 519–529. https://doi.org/10.1111/aec.13134spa
dc.relation.referencesBarlow, J., & Peres, C. A. (2008). Fire-mediated dieback and compositional cascade in an Amazonian forest. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(June 2008), 1787–1794. https://doi.org/10.1098/rstb.2007.0013spa
dc.relation.referencesBarrere, J., Reineking, B., Cordonnier, T., Kulha, N., Honkaniemi, J., Peltoniemi, M., Korhonen, K. T., Ruiz‐Benito, P., Zavala, M. A., & Kunstler, G. (2023). Functional traits and climate drive interspecific differences in disturbance‐induced tree mortality. Global Change Biology, December 2022, 2836–2851. https://doi.org/10.1111/gcb.16630spa
dc.relation.referencesBaselga, A. (2010). Partitioning the turnover and nestedness components of beta diversity. Global Ecology and Biogeography, 19(1), 134–143. https://doi.org/10.1111/j.1466-8238.2009.00490.xspa
dc.relation.referencesBell, D. T. (2001). Ecological response syndromes in the flora of Southwestern Western Australia: Fire Resprouters versus Reseeders. The Botanical Review, 67(DECEMBER 2001), 417–440.spa
dc.relation.referencesBellingham, P. J. (2000). Resprouting as a life history strategy in woody plant communities. Oikos, 89(2), 409–416. https://doi.org/10.1080/00131857.2017.1516140spa
dc.relation.referencesBerenguer E, Gardner TA, Ferreira J, et al (2018) Seeing the woods through the saplings: Using wood density to assess the recovery of human-modified Amazonian forests. J Ecol 106:2190–2203. https://doi.org/10.1111/1365-2745.12991spa
dc.relation.referencesBhaskar, R., Arreola, F., Mora, F., Martinez-yrizar, A., Martinez-ramos, M., & Balvanera, P. (2017). Forest Ecology and Management Response diversity and resilience to extreme events in tropical dry secondary forests ☆. Forest Ecology and Management, 426(September 2017), 61–71. https://doi.org/10.1016/j.foreco.2017.09.028spa
dc.relation.referencesBernhardt-Römermann M, Baeten L, Craven D, et al (2015) Drivers of temporal changes in temperate forest plant diversity vary across spatial scales. Glob Chang Biol 21:3726–3737. https://doi.org/10.1111/gcb.12993spa
dc.relation.referencesBhaskar R, Arreola F, Mora F, et al (2018) Forest Ecology and Management Response diversity and resilience to extreme events in tropical dry secondary forests ☆. For Ecol Manage 426:61–71. https://doi.org/10.1016/j.foreco.2017.09.028spa
dc.relation.referencesBivand, R. S., & Wong, D. W. S. (2018). Comparing implementations of global and local indicators of spatial association. TEST. doi:10.1007/s11749-018-0599-xspa
dc.relation.referencesBond, W. J., Midgley, G. F., & Woodward, F. I. (2003). What controls South African vegetation - Climate or fire? South African Journal of Botany, 69(1), 79–91. https://doi.org/10.1016/S0254-6299(15)30362-8spa
dc.relation.referencesBorchert R, Rivera G, Hagnauer W (2002) Modification of vegetative phenology in a tropical semi-deciduous forest by abnormal drought and rain. Biotropica 34:27–39. https://doi.org/10.1111/j.1744-7429.2002.tb00239.xspa
dc.relation.referencesBradstock, R. A. (2010). A biogeographic model of fire regimes in Australia: Current and future implications. Global Ecology and Biogeography, 19(2), 145–158. https://doi.org/10.1111/j.1466-8238.2009.00512.xspa
dc.relation.referencesBrando, P. M., Balch, J. K., Nepstad, D. C., Morton, D. C., Putz, F. E., Coe, M. T., Silvério, D., Macedo, M. N., Davidson, E. A., Nóbrega, C. C., Alencar, A., & Soares-Filho, B. S. (2014). Abrupt increases in Amazonian tree mortality due to drought-fire interactions. Proceedings of the National Academy of Sciences of the United States of America, 111(17), 6347–6352. https://doi.org/10.1073/pnas.1305499111spa
dc.relation.referencesBrando, P. M., Oliveria-Santos, C., Rocha, W., Cury, R., & Coe, M. T. (2016). Effects of experimental fuel additions on fire intensity and severity: unexpected carbon resilience of a neotropical forest. Global Change Biology, 22(7), 2516–2525. https://doi.org/10.1111/gcb.13172spa
dc.relation.referencesBrooks, M. L., Antonio, C. M. D., Richardson, D. M., Grace, B., Keeley, J. O. N. E., Ditomaso, J. M., Hobbs, R. J., Pellant, M., Pyke, D., Brooks, M. L., Antonio, C. M. D., Richardson, D. M., Grace, J. B., & Keeley, J. O. N. E. (2004). Effects of Invasive Alien Plants on Fire Regimes. 54(7), 677–688.spa
dc.relation.referencesBrown, J. (1974). Handbook for inventorying downed woody material.spa
dc.relation.referencesBrown, J. K., Oberheu, R. D., & Johnston, C. M. (1981). Handbook for inventorying surface fuels and biomass in the interior West.spa
dc.relation.referencesBrown, James K., & Bevins, C. D. (1986). Surface Fuel Loadings and Predicted Fire Behavior for Vegetation Types in the Northern Rocky Mountains. In United States Forest Service.spa
dc.relation.referencesCadotte. (2006). Dispersal and Species Diversity: A Meta-Analysis. The American Naturalist, 167(6), 913. https://doi.org/10.2307/3844747spa
dc.relation.referencesCardoso, A. W., Oliveras, I., Abernethy, K. A., Jeffery, K. J., Lehmann, D., Ndong, J. E., Mcgregor, I., Belcher, C. M., Bond, W. J., & Malhi, Y. S. (2017). Grass Species Flammability , Not Biomass , Drives Changes in Fire Behavior at Tropical Forest-Savanna Transitions. 1(November), 1–14. https://doi.org/10.3389/ffgc.2017.00006spa
dc.relation.referencesCardoso, M., Nobre, C. A., Sampaio, G., & Valeriano, D. M. (2009). Modelling of the decrease of tropical-forest resilience in Amazonia as affected by deforestation and fires. April.spa
dc.relation.referencesCarrijo, J. N., Maracahipes, L., Scalon, M. C., Silvério, D. V., Abadia, A. C., Fagundes, M. V., Veríssimo, A. A., Gonçalves, L. A., Carrijo, D., Martins, J., & Lenza, E. (2021). Functional traits as indicators of ecological strategies of savanna woody species under contrasting substrate conditions. Flora: Morphology, Distribution, Functional Ecology of Plants, 284(March). https://doi.org/10.1016/j.flora.2021.151925spa
dc.relation.referencesCasanoves, F., Pla, L., & Di Rienzo, J. A. (2011). Valoración y análisis de la diversidad funcional y su relación con los servicios ecosistémicos (Issue January).spa
dc.relation.referencesChao, A., Gotelli, N. J., Hsieh, T. C., Sander, E. L., Ma, K. H., Colwell, R. K., & Ellison, A. M. (2014). Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. Ecological Monographs, 84(1), 45–67. https://doi.org/10.1890/13-0133.1spa
dc.relation.referencesChase, J. M., Kraft, N. J. B., Smith, K. G., Vellend, M., & Inouye, B. D. (2011). Using null models to disentangle variation in community dissimilarity from variation in α-diversity. Ecosphere, 2(2), art24. doi:10.1890/es10-00117.1spa
dc.relation.referencesChapin, F. S. (1993). EVOLUTION OF SUITES OF TRAITS IN RESPONSE TO ENVIRONMENTAL STRESS of low-resource environments share a common suite Most plants characteristic and nutrient low rates of growth , of traits , absorption , including and high concentrations low rates of tissu. The American Naturalist, 142(July), S78–S92.spa
dc.relation.referencesChapin, F. S., Schulze, E. D., & Mooney, H. A. (1990). The ecology and economics of storage in plants. Annual Review of Ecology and Systematics, 21(1), 423–447. https://doi.org/10.1146/annurev.es.21.110190.002231spa
dc.relation.referencesChapin, S. (1991). Integrated Responses of Plants to Stress. BioScience, 41(January 1991), 29–36. https://doi.org/10.2307/1311538spa
dc.relation.referencesChapin, S., Zavaleta, E. S., Eviner, V. T., Naylor, R., Vitousek, P. M., Reynolds, H., Hooper, D., Lavorel, S., Sala, O., Hobbie, S. E., Mack, M., & Díaz, S. (2000). Consequences of changing biodiversity. Nature, 405(6), 234–242. https://doi.org/10.1093/asj/sjx227spa
dc.relation.referencesChazdon, R. L., Finegan, B., Capers, R. S., Salgado-Negret, B., Casanoves, F., Boukili, V., & Norden, N. (2010). Composition and dynamics of functional groups of trees during tropical forest succession in northeastern Costa Rica. Biotropica, 42(1), 31–40. https://doi.org/10.1111/j.1744-7429.2009.00566.xspa
dc.relation.referencesClarke, P. J., Lawes, M. J., Midgley, J. J., Lamont, B. B., Ojeda, F., Burrows, G. E., Enright, N. J., & Knox, K. J. E. (2012). Resprouting as a key functional trait: How buds, protection and resources drive persistence after fire. New Phytologist, 197(1), 19–35. https://doi.org/10.1111/nph.12001spa
dc.relation.referencesCochrane, M. (2003). Fire science for rainforests. 421(February), 913–919.spa
dc.relation.referencesCochrane, M. A. (2009). Tropical Fire Ecology. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-77381-8spa
dc.relation.referencesCochrane, M. A., Alencar, A., Schulze, M. D., Jr, C. M. S., Nepstad, C., Lefebvre, P., Davidson, E. A., Cochranel, M. A., Alencar, A., & Schulze, M. D. (1999). Positive Feedbacks in the Fire Dynamic of Closed Canopy Tropical Forests Published by : American Association for the Advancement of Science Stable URL : https://www.jstor.org/stable/2898051 Linked references are available on JSTOR for this article : You m. 284(5421), 1832–1835.spa
dc.relation.referencesCochrane, M. A., & Schulze, M. D. (1999a). Fire as a Recurrent Event in Tropical Forests of the Eastern Amazon : Effects on Forest Structure , Biomass , and Species Composition ’. Biotropica, 31(March 1999), 2–16.spa
dc.relation.referencesCochrane, M. A., & Schulze, M. D. (1999b). Fire as a recurrent event in tropical forests of the eastern Amazon: Effects on forest structure, biomass, and species composition. Biotropica, 31(1), 2–16. https://doi.org/10.1111/j.1744-7429.1999.tb00112.xspa
dc.relation.referencesCornelissen, J. H. C., Amsterdam, V. U., Lavorel, S., & Diaz, S. (2003). Handbook of protocols for standardised and easy measurement of plant functional traits worldwide A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. January. https://doi.org/10.1071/BT02124spa
dc.relation.referencesCorrea-gómez, D. F., & Stevenson, P. R. (2010). ESTRUCTURA Y DIVERSIDAD DE BOSQUES DE LOS LLANOS ORIENTALES COLOMBIANOS ( RESERVA TOMO GRANDE , VICHADA ) Structure and diversity of riparian forests in a seasonal savanna of the Llanos Orientales. 1, 31–48.spa
dc.relation.referencesCorrêa Scalon, M., Maia Chaves Bicalho Domingos, F., Jonatar Alves da Cruz, W., Marimon Júnior, B. H., Schwantes Marimon, B., & Oliveras, I. (2020). Diversity of functional trade-offs enhances survival after fire in Neotropical savanna species. Journal of Vegetation Science, 31(1), 139–150. https://doi.org/10.1111/jvs.12823spa
dc.relation.referencesCousins, A. B., Mullendore, D. L., & Sonawane, B. V. (2020). Recent developments in mesophyll conductance in C3 , C4 , and crassulacean acid metabolism plants. 816–830. https://doi.org/10.1111/tpj.14664spa
dc.relation.referencesDa Silva, A. P. G., Mews, H. A., Marimon-Junior, B. H., De Oliveira, E. A., Morandi, P. S., Oliveras, I., & Marimon, B. S. (2017). Recurrent wildfires drive rapid taxonomic homogenization of seasonally flooded Neotropical forests. Environmental Conservation, 45(4), 378–386. https://doi.org/10.1017/S0376892918000127spa
dc.relation.referencesde Almeida Souza, A. H., Batalha, M. A., Casagrande, J. C., Rivaben, R., Assunção, V. A., Pott, A., & Alves Damasceno-Júnior, G. (2019). Fire can weaken or trigger functional responses of trees to flooding in wetland forest patches. Journal of Vegetation Science, 30(3), 521–532. https://doi.org/10.1111/jvs.12719spa
dc.relation.referencesDe Cáceres, M., Legendre, P., & Moretti, M. (2010). Improving indicator species analysis by combining groups of sites. Oikos, 119(10), 1674–1684. https://doi.org/10.1111/j.1600-0706.2010.18334.xspa
dc.relation.referencesDe Pauw K, Meeussen C, Govaert S, et al (2021) Taxonomic, phylogenetic and functional diversity of understorey plants respond differently to environmental conditions in European forest edges. J Ecol 109:2629–2648. https://doi.org/10.1111/1365-2745.13671spa
dc.relation.referencesDel Tredici, P. (2001). Sprouting in temperate trees: A morphological and ecological review. Botanical Review, 67(2), 121–140. https://doi.org/10.1007/BF02858075spa
dc.relation.referencesDíaz, S., Hodgson, J. G., Thompson, K., Cabido, M., Cornelissen, J. H. C., Jalili, A., Montserrat-Martí, G., Grime, J. P., Zarrinkamar, F., Asri, Y., Band, S. R., Basconcelo, S., Castro-Díez, P., Funes, G., Hamzehee, B., Khoshnevi, M., Pérez-Harguindeguy, N., Pérez-Rontomé, M. C., Shirvany, F. A., … Zak, M. R. (2004). The plant traits that drive ecosystems: Evidence from three continents. Journal of Vegetation Science, 15(3), 295–304. https://doi.org/10.1111/j.1654-1103.2004.tb02266.xspa
dc.relation.referencesDíaz, Sandra, Kattge, J., Cornelissen, J. H. C., Wright, I. J., Lavorel, S., Dray, S., Reu, B., Kleyer, M., Wirth, C., Colin Prentice, I., Garnier, E., Bönisch, G., Westoby, M., Poorter, H., Reich, P. B., Moles, A. T., Dickie, J., Gillison, A. N., Zanne, A. E., … Gorné, L. D. (2016). The global spectrum of plant form and function. Nature, 529(7585), 167–171. https://doi.org/10.1038/nature16489spa
dc.relation.referencesDíaz, Sandra, Lavorel, S., De Bello, F., Quétier, F., Grigulis, K., & Robson, M. (2007). Incorporating plant functional diversity effects in ecosystem service assessments. PNAS, 104(52), 20684–20689.spa
dc.relation.referencesDuane, A., Castellnou, M., & Brotons, L. (2021). Towards a comprehensive look at global drivers of novel extreme wildfire events. Climatic Change, 165(3–4), 1–21. https://doi.org/10.1007/s10584-021-03066-4spa
dc.relation.referencesDufrêne, M., & Legendre, P. (1997). Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecological Monographs, 67(3), 345–366. https://doi.org/10.2307/2963459spa
dc.relation.referencesEllis, T. M., Bowman, D. M. J. S., Jain, P., Flannigan, M. D., & Williamson, G. J. (2022). Global increase in wildfire risk due to climate-driven declines in fuel moisture. Global Change Biology, 28(4), 1544–1559. https://doi.org/10.1111/gcb.16006spa
dc.relation.referencesEspelta JM, Cruz-Alonso V, Alfaro-Sánchez R, et al (2020) Functional diversity enhances tree growth and reduces herbivory damage in secondary broadleaf forests, but does not influence resilience to drought. J Appl Ecol 57:2362–2372. https://doi.org/10.1111/1365-2664.13728spa
dc.relation.referencesFAO. (2005). Actualización de la evaluación de los recursos forestales mundiales a 2005. Términos y definiciones.spa
dc.relation.referencesFernández-garcía, V., Marcos, E., Fulé, P. Z., Santana, V. M., & Calvo, L. (2020). Fire regimes shape diversity and traits of vegetation under different climatic conditions. Science of the Total Environment, 137137. https://doi.org/10.1016/j.scitotenv.2020.137137spa
dc.relation.referencesFinegan, B., Peña-CLaros, M., de Oliveira, A., Ascarrunz, N., Bret-Harte, M. S., Carreño-Rocabado, G., Casanoves, F., Díaz, S., Velepucha, P., Fernandez, F., Licona, J.-C., Lorenzo, L., Salgado-Negret, B., Vaz, M., & Poorter, L. (2015). Does functional trait diversity predict above-ground biomass and productivity of tropical forests ? Testing three alternative hypotheses. Journal of Eco, 103, 191–201. https://doi.org/10.1111/1365-2745.12346spa
dc.relation.referencesFichtler E, Licona J, Poorter L, et al (2010) The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest tree species. New Phytol 481–492. https://doi.org/10.1111/j.1469-8137.2009.03092.xspa
dc.relation.referencesFlexas, J., Carriquí, M., Coopman, R. E., Gago, J., Galmés, J., Martorell, S., Morales, F., & Diaz-Espejo, A. (2014). Stomatal and mesophyll conductances to CO2 in different plant groups: Underrated factors for predicting leaf photosynthesis responses to climate change? Plant Science, 226, 41–48. https://doi.org/10.1016/j.plantsci.2014.06.011spa
dc.relation.referencesFlores BM, Fagoaga R, Nelson BW, Holmgren M (2016) Repeated fires trap Amazonian blackwater floodplains in an open vegetation state. J Appl Ecol 53:1597–1603. https://doi.org/10.1111/1365-2664.12687spa
dc.relation.referencesFlores BM, Holmgren M, Xu C, et al (2017) Floodplains as an Achilles’ heel of Amazonian forest resilience. Proc Natl Acad Sci U S A 114:4442–4446. https://doi.org/10.1073/pnas.1617988114spa
dc.relation.referencesFlores BM, Piedade MTF, Nelson BW (2014) Fire disturbance in Amazonian blackwater floodplain forests. Plant Ecol Divers 7:319–327. https://doi.org/10.1080/17550874.2012.716086spa
dc.relation.referencesFlory, S. L., Bauer, J., Phillips, R. P., & Clay, K. (2017). Effects of a non-native grass invasion decline over time. Journal of Ecology, 105(6), 1475–1484. https://doi.org/10.1111/1365-2745.12850spa
dc.relation.referencesFlory, S. L., Clay, K., Emery, S. M., Robb, J. R., & Winters, B. (2015). Fire and non-native grass invasion interact to suppress tree regeneration in temperate deciduous forests. Journal of Applied Ecology, 52(4), 992–1000. https://doi.org/10.1111/1365-2664.12437spa
dc.relation.referencesFrançois-Nicolas Robinne, Janice Burns, Promode Kant, Mike D. Flannigan, Michael Kleine, Bill de Groot, D. M. W. (2017). Global Fire Challenges in a Warming World (Issue 32).spa
dc.relation.referencesFreeman JE, Kobziar LN (2011) Tracking postfire successional trajectories in a plant community adapted to high-severity fire. Ecol Appl 21:61–74. https://doi.org/10.1890/09-0948.1spa
dc.relation.referencesFreeman JE, Kobziar LN, Leone EH, Williges K (2019) Drivers of plant functional group richness and beta diversity in fire‐dependent pine savannas. Divers Distrib 25:1024–1044. https://doi.org/10.1111/ddi.12926spa
dc.relation.referencesFréjaville, T., Vilà-Cabrera, A., Curt, T., & Carcaillet, C. (2017). Aridity and competition drive fire resistance trait covariation in mountain trees. Ecosphere, 9(12). https://doi.org/10.1002/ecs2.2493spa
dc.relation.referencesGassón, R. A. (2002). Orinoquia: The archaeology of the Orinoco River basin. Journal of World Prehistory, 16(3), 237–311. https://doi.org/10.1023/A:1020978518142spa
dc.relation.referencesGill, A. M., & Zylstra, P. (2005). Flammability of Australian forests. Australian Forestry, 68(2), 87–93. https://doi.org/10.1080/00049158.2005.10674951spa
dc.relation.referencesGonzález, T. M., González-Trujillo, J. D., Muñoz, A., & Armenteras, D. (2021). Differential effects of fire on the occupancy of small mammals in neotropical savanna-gallery forests. Perspectives in Ecology and Conservation, 19(2), 179–188. https://doi.org/10.1016/j.pecon.2021.03.005spa
dc.relation.referencesGrime, J. P. (1998). Benefits of plant diversity to ecosystems: immediate, filter and founder effects. Journal of Ecology, 86, 891–899.spa
dc.relation.referencesHacke UG, Sperry JS, Pockman WT, et al (2001) Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia 126:457–461. https://doi.org/10.1007/s004420100628spa
dc.relation.referencesHammond DH, Varner JM, Kush JS, Fan Z (2015) Contrasting sapling bark allocation of five southeastern USA hardwood tree species in a fire prone ecosystem. Ecosphere 6:. https://doi.org/10.1890/ES15-00065.1spa
dc.relation.referencesHaltenhoff, H. (2005). Manual de Efectos del Fuego y Evaluación de Daños (Vol. 2903).spa
dc.relation.referencesHarmon, M. E., & Hua, C. (1991). Coarse Woody Debris Dynamics i n Two Old-Growth Ecosystems Comparing a deciduous forest in China and a conifer forest in Oregon. BioScience, 41, 604–610.spa
dc.relation.referencesHenn, J. J., Buzzard, V., Enquist, B. J., Halbritter, A. H., Klanderud, K., Maitner, B. S., Michaletz, S. T., Pötsch, C., Seltzer, L., Telford, R. J., Yang, Y., Zhang, L., & Vandvik, V. (2017). Intraspecific trait variation and phenotypic plasticity mediate alpine plant species response to climate change. Frontiers in Plant Science, 871(November), 1–11. https://doi.org/10.3389/fpls.2017.01548spa
dc.relation.referencesHicke, J. A., Johnson, M. C., Hayes, J. L., & Preisler, H. K. (2012). Effects of bark beetle-caused tree mortality on wildfire. In Forest Ecology and Management (Vol. 271, pp. 81–90). https://doi.org/10.1016/j.foreco.2012.02.005spa
dc.relation.referencesHoffmann, W. A., Orthen, B., Kielse, P., & Vargas Do Nascimento, P. K. (2003). Comparative Fire Ecology of Tropical Savanna and Forest Trees Author. Functional Ecology, 17(6), 720–726.spa
dc.relation.referencesHolling, C. S. (1973). Resilience and Stability of Ecological Systems. Annual Review of Ecology and Systematics, 4(1973), 1–23.spa
dc.relation.referencesHolling, C. S. (1978). Adaptive environmental assessment and management.spa
dc.relation.referencesHolling, C. S. (1986). The Resilience of Terrestrial Ecosystems. Sustainable Development of the Biosphere, 292–320.spa
dc.relation.referencesHolling, C. S. (2001). Understanding the Complexity of Economic , Ecological , and Social Systems. Ecosystems, 4, 390–405. https://doi.org/10.1007/s10021-001-0101-5spa
dc.relation.referencesHsieh, T.C., Ma., K. and Chao, A. 2016. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods in Ecology and Evolution , 7, 1451–1456. https://doi.org/10.1111/2041-210X.12613spa
dc.relation.referencesIDEAM. (2019). Boletín de predicción climática y recomendación sectorial para planear y decidir.spa
dc.relation.referencesIwasa, Y., & Kubo, T. (1997). Optimal size of storage for recovery after unpredictable disturbances. Evolutionary Ecology, 11, 41–65.spa
dc.relation.referencesJanssen TAJ, Hölttä T, Fleischer K, et al (2020) Wood allocation trade-offs between fiber wall, fiber lumen, and axial parenchyma drive drought resistance in neotropical trees. Plant Cell Environ 43:965–980. https://doi.org/10.1111/pce.13687spa
dc.relation.referencesJohnstone, J. F., Allen, C. D., Franklin, J. F., Frelich, L. E., Harvey, B. J., Higuera, P. E., Mack, M. C., Meentemeyer, R. K., Metz, M. R., Perry, G. L. W., Schoennagel, T., & Turner, M. G. (2015). Changing disturbance regimes , ecological memory , and forest resilience. https://doi.org/10.1002/fee.1311spa
dc.relation.referencesKeeley, J. E. (2009). Fire intensity, fire severity and burn severity: A brief review and suggested usage. International Journal of Wildland Fire, 18(1), 116–126. https://doi.org/10.1071/WF07049spa
dc.relation.referencesKeeley, J. E., Pausas, J. G., Rundel, P. W., Bond, W. J., & Bradstock, R. A. (2011). Fire as an evolutionary pressure shaping plant traits. Trends in Plant Science, 16(8), 406–411. https://doi.org/10.1016/j.tplants.2011.04.002spa
dc.relation.referencesKembel, S. W., & Cahill, J. J. (2011). Independent Evolution of Leaf and Root Traits within and among Temperate Grassland Plant Communities. PLoS ONE, 6(6), 12–15. https://doi.org/10.1371/journal.pone.0019992spa
dc.relation.referencesKerns, B. K., Tortorelli, C., Day, M. A., Nietupski, T., Barros, A. M. G., Kim, J. B., & Krawchuk, M. A. (2020). Invasive grasses: A new perfect storm for forested ecosystems? Forest Ecology and Management, 463(November 2019), 117985. https://doi.org/10.1016/j.foreco.2020.117985spa
dc.relation.referencesKrix, D., & Murray, B. (2017). Landscape variation in plant leaf fl ammability is driven by leaf traits responding to environmental gradients. Ecosphere, 9(February), 1–13. https://doi.org/10.1002/ecs2.2093spa
dc.relation.referencesKuusk V, Niinemets Ü, Valladares F (2018) Structural controls on photosynthetic capacity through juvenile-to-adult transition and needle ageing in Mediterranean pines. Funct Ecol 32:1479–1491. https://doi.org/10.1111/1365-2435.13087spa
dc.relation.referencesLaliberté, A. E., Legendre, P., Shipley, B., & Laliberté, M. E. (2022). Package ‘ FD .’spa
dc.relation.referencesLaliberte, E., Declerck, F., Metcalfe, J., Catterall, C. P., & Sa, D. (2010). Land-use intensification reduces functional redundancy and response diversity in plant communities. 76–86. https://doi.org/10.1111/j.1461-0248.2009.01403.xspa
dc.relation.referencesLasso, C. A., S, U. J., F, T., & A, R. (2010). Biodiversidad de la cuenca del Orinoco. In Biodiversidad en la cuenca del Orinoco: bases científicas para la identificación de áreas prioritarias para la conservación y uso sostenible de la biodiversidad.spa
dc.relation.referencesLasso, C., Trujillo, F., & Morales - Betancourt, M. A. (2020). Biodiversidad de la Reserva Natural Bojonawi, Vichada, Colombia: río Orinoco y planicie de inundación (Serie Edit, Issue June).spa
dc.relation.referencesLavorel, S, & Garnier, E. (2002). Predicting changes in community composition and ecosystem functioning from plant traits : Functional Ecology, 16, 545–556.spa
dc.relation.referencesLavorel, Sandra, McIntyre, S., Landsberg, J., & Forbes, T. D. A. (1997). Plant functional classifications: from general groups to specific groups based on response to disturbance. TREE, 12(11), 474–478.spa
dc.relation.referencesLavorel S, Grigulis K, McIntyre S, et al (2008) Assessing functional diversity in the field - Methodology matters! Funct Ecol 22:134–147. https://doi.org/10.1111/j.1365-2435.2007.01339.xspa
dc.relation.referencesLawes MJ, Midgley J, Lamont BB, Clarke PJ (2012) Tansley review Resprouting as a key functional trait : how buds , protection and resources drive persistence after fire Author for correspondence : https://doi.org/10.1111/nph.12001spa
dc.relation.referencesLebrija-Trejos, E., Pérez-GarcíA, E. A., Meave, J. A., Bongers, F., & Poorter, L. (2010). Functional traits and environmental filtering drive community assembly in a species-rich tropical system. Ecology, 91(2), 386–398. https://doi.org/10.1890/08-1449.1spa
dc.relation.referencesLevin, S. A., & Paine, R. T. (1974). Disturbance , Patch Formation , and Community Structure A =. Proceedings of the National Academy of Sciences, 71(7), 2744–2747.spa
dc.relation.referencesLiu Z, Jiang F, Li F, Jin G (2019) Coordination of intra and inter-species leaf traits according to leaf phenology and plant age for three temperate broadleaf species with different shade tolerances. For Ecol Manage 434:63–75spa
dc.relation.referencesLourenço‐de‐Moraes, R., Campos, F. S., Ferreira, R. B., Beard, K. H., Solé, M., Llorente, G. A., & Bastos, R. P. (2019). Functional traits explain amphibian distribution in the Brazilian Atlantic Forest. Journal of Biogeography. doi:10.1111/jbi.13727spa
dc.relation.referencesLohbeck, M., Poorter, L., Lebrija-Trejos, E., Nez-Ramos, M. M., Meave, J. A., Paz, H., Perez-Garcia, E. A., Romero-Perez, I. E., Tauro, A., & Bongers, F. (2013). Successional changes in functional composition contrast for dry and wet tropical forest. Ecology, 94(6), 1211–1216. https://doi.org/10.1890/12-1850.1spa
dc.relation.referencesLutes, D. C., & Keane, R. E. (2006). Fuel Load (FL) sampling method. In USDA Forest Service - General Technical Report RMRS-GTR (Issues 164 RMRS-GTR).spa
dc.relation.referencesLydersen, J. M., Collins, B. M., Knapp, E. E., Roller, G. B., & Stephens, S. (2015). Relating fuel loads to overstorey structure and composition in a fire-excluded Sierra Nevada mixed conifer forest. International Journal of Wildland Fire, 24(4), 484–494. https://doi.org/10.1071/WF13066spa
dc.relation.referencesMaracahipes, L., Marimon, B. S., Lenza, E., Marimon-Junior, B. H., De Oliveira, E. A., Mews, H. A., Gomes, L., & Feldpausch, T. R. (2014). Post-fire dynamics of woody vegetation in seasonally flooded forests (impucas) in the Cerrado-Amazonian Forest transition zone. Flora: Morphology, Distribution, Functional Ecology of Plants, 209(5–6), 260–270. https://doi.org/10.1016/j.flora.2014.02.008spa
dc.relation.referencesMartins, F. Q., & Batalha, M. A. (2006). Pollination systems and floral traits in cerrado woody species of the upper taquari region (central Brazil). Brazilian Journal of Biology, 66(2 A), 543–552. https://doi.org/10.1590/S1519-69842006000300021spa
dc.relation.referencesMason, N. W. H., & De Bello, F. (2013). Functional diversity: A tool for answering challenging ecological questions. Journal of Vegetation Science, 24(5), 777–780. https://doi.org/10.1111/jvs.12097spa
dc.relation.referencesMeza-Elizalde MC, Armenteras-Pascual D (2021) Edge influence on the microclimate and vegetation of fragments of a north Amazonian forest. For Ecol Manage 498:119546. https://doi.org/10.1016/j.foreco.2021.119546spa
dc.relation.referencesMcColl-Gausden, S. C., Bennett, L. T., Clarke, H. G., Ababei, D. A., & Penman, T. D. (2022). The fuel–climate–fire conundrum: How will fire regimes change in temperate eucalypt forests under climate change? Global Change Biology, 28(17), 5211–5226. https://doi.org/10.1111/gcb.16283spa
dc.relation.referencesMcLauchlan, K. K., Higuera, P. E., Miesel, J., Rogers, B. M., Schweitzer, J., Shuman, J. K., Tepley, A. J., Varner, J. M., Veblen, T. T., Adalsteinsson, S. A., Balch, J. K., Baker, P., Batllori, E., Bigio, E., Brando, P., Cattau, M., Chipman, M. L., Coen, J., Crandall, R., … Watts, A. C. (2020). Fire as a fundamental ecological process: Research advances and frontiers. Journal of Ecology, 108(5), 2047–2069. https://doi.org/10.1111/1365-2745.13403spa
dc.relation.referencesMeza-Elizalde, M. C., & Armenteras-Pascual, D. (2021). Edge influence on the microclimate and vegetation of fragments of a north Amazonian forest. Forest Ecology and Management, 498(June), 119546. https://doi.org/10.1016/j.foreco.2021.119546spa
dc.relation.referencesMeza, M. C., Espelta, J. M., González, T. M., & Armenteras, D. (2023). Fire reduces taxonomic and functional diversity in Neotropical moist seasonally flooded forests. Perspectives in Ecology and Conservation, 21, 101–111. https://doi.org/10.1016/j.pecon.2023.04.003spa
dc.relation.referencesMeza, M. C., Espelta, J. M., González, T. M., & Armenteras, D. (2023). Fire reduces taxonomic and functional diversity in Neotropical moist seasonally flooded forests. Perspectives in Ecology and Conservation, 21, 101–111. https://doi.org/10.1016/j.pecon.2023.04.003spa
dc.relation.referencesMichelaki, C., Fyllas, N. M., Galanidis, A., Aloupi, M., Evangelou, E., Arianoutsou, M., & Dimitrakopoulos, P. G. (2020). Adaptive flammability syndromes in thermo-Mediterranean vegetation, captured by alternative resource-use strategies. Science of the Total Environment, 718, 137437. https://doi.org/10.1016/j.scitotenv.2020.137437spa
dc.relation.referencesMiller, C., & Urban, D. L. (2000). Connectivity of forest fuels and surface fire regimes. Landscape Ecology, 15(2), 145–154. https://doi.org/10.1023/A:1008181313360spa
dc.relation.referencesMolina, E., Espelta, J. M., Pino, J., Bagaria, G., & Armenteras, D. (2017). Influence of clay licks on the diversity and structure of an Amazonian forest. Biotropica, 50(5), 740–749. https://doi.org/10.1111/btp.12568spa
dc.relation.referencesMontenegro, A. L., & Vargas, O. (2008). Atributos vitales de especies de borde en fragmentos de bosque altoandino (Reserva forestal municipal de Cogua, Colombia). Revista Biología Tropical, 56(June), 705–720. http://www.infoandina.org/sites/default/files/recursos/la_restauracion_ecologica_en_practica.pdfspa
dc.relation.referencesMori, A. S., Lertzman, K. P., & Gustafsson, L. (2017). Biodiversity and ecosystem services in forest ecosystems: a research agenda for applied forest ecology. Journal of Applied Ecology, 54(1), 12–27. https://doi.org/10.1111/1365-2664.12669spa
dc.relation.referencesMouillot, D., Graham, N. A. J., Villéger, S., Mason, N. W. H., & Bellwood, D. R. (2013). A functional approach reveals community responses to disturbances. Trends in Ecology and Evolution, 28(3), 167–177. https://doi.org/10.1016/j.tree.2012.10.004spa
dc.relation.referencesMouillot, D., Mason, N. W. H., Dumay, O., & Wilson, J. (2004). Functional regularity : A neglected aspect of functional diversity Functional regularity : a neglected aspect of functional diversity. Oecologia, 142(February), 353–359. https://doi.org/10.1007/s00442-004-1744-7spa
dc.relation.referencesMyers, R. L. (2006). Convivir con el fuego: Manteniendo los ecosistemas y los medios de subsistencia mediante el Manejo Integral del Fuego.spa
dc.relation.referencesNadal, M., Flexas, J., & Gulías, J. (2017). Possible link between photosynthesis and leaf modulus of elasticity among vascular plants: a new player in leaf traits relationships? Ecology Letters, 21(9), 1372–1379. https://doi.org/10.1111/ele.13103spa
dc.relation.referencesNelson, K. N., Turner, M. G., Romme, W. H., & Tinker, D. B. (2016). Landscape variation in tree regeneration and snag fall drive fuel loads in 24-year old post-fire lodgepole pine forests. Ecological Applications, 26(8), 2422–2436. https://doi.org/10.1002/eap.1412spa
dc.relation.referencesNepstad, D., Carvalho, G., Cristina, A., Alencar, A., Paulo, Ä., Bishop, J., Moutinho, P., Lefebvre, P., Lopes, U., Jr, S., & Prins, E. (2001). Road paving , ® re regime feedbacks , and the future of Amazon forests. 154.spa
dc.relation.referencesNepstad, D. C., Tohver, I. M., Ray, D., Moutinho, P., & Cardinot, G. (2007). MORTALITY OF LARGE TREES AND LIANAS FOLLOWING EXPERIMENTAL DROUGHT IN AN AMAZON FOREST. In Ecology (Vol. 88, Issue 9).spa
dc.relation.referencesNeSmith, J. E., Twine, W., & Holdo, R. M. (2021). Interspecific variation in post-disturbance growth responses of a savanna tree community and its implications for escaping the fire trap. Biotropica, 53(3), 896–905. https://doi.org/10.1111/btp.12936spa
dc.relation.referencesNóbrega, C. C., Brando, P. M., Silvério, D. V., Maracahipes, L., & de Marco, P. (2019). Effects of experimental fires on the phylogenetic and functional diversity of woody species in a neotropical forest. Forest Ecology and Management, 450(January). https://doi.org/10.1016/j.foreco.2019.117497spa
dc.relation.referencesOjeda, F., Brun, F. G., Vergara, J. J., & Ojeda, F. (2005). Fire , rain and the selection of seeder and resprouter life-histories in fire-recruiting , woody plants. New Phytologist, 168, 155–165.spa
dc.relation.referencesOksanen, J; FG Blanchet; R Kindt; P Legendre; PR Minchin; RB O'Hara; GL Simpson; P Solymos; MH; Stevens & HH Wagner. 2013. Vegan: Community Ecology Package. R PackageVersion. 2.0-10. https://github.com/vegandevs/ vegan. 10/05/19.spa
dc.relation.referencesPachepsky, L. B., & Acock, B. (1998). EFFECT OF LEAF ANATOMY ON HYPOSTOMATOUS LEAF GAS EXCHANGE : A THEORETICAL STUDY WITH THE 2DLEAF MODEL EFFECT OF LEAF ANATOMY ON HYPOSTOMATOUS LEAF GAS EXCHANGE : A THEORETICAL STUDY. Biotronics, 27, 1–14.spa
dc.relation.referencesParks, S. A., Miller, C., Holsinger, L. M., Baggett, L. S., & Bird, B. J. (2016). Wildland fire limits subsequent fire occurrence. International Journal of Wildland Fire, 25(2), 182–190. https://doi.org/10.1071/WF15107spa
dc.relation.referencesPausas, J. G. (2015). Bark thickness and fire regime. Functional Ecology, 29(3), 315–327. https://doi.org/10.1111/1365-2435.12372spa
dc.relation.referencesPausas, J. G. (2017). Bark thickness and fire regime: another twist. New Phytologist, 213(1), 13–15. https://doi.org/10.1111/nph.14277spa
dc.relation.referencesPausas, J. G. (2019). Generalized fire response strategies in plants and animals. Oikos, 128(2), 147–153. https://doi.org/10.1111/oik.05907spa
dc.relation.referencesPausas, J. G., & Bradstock, R. A. (2007). Fire persistence traits of plants along a productivity and disturbance gradient in mediterranean shrublands of south-east Australia. Global Ecology and Biogeography, 16(3), 330–340. https://doi.org/10.1111/j.1466-8238.2006.00283.xspa
dc.relation.referencesPausas, J. G., Bradstock, R. A., Keith, D. A., Keeley, J. E., Hoffman, W., Kenny, B., Lloret, F., & Trabaud, L. (2004). Plant functional traits in relation to fire in crown-fire ecosystems. Ecology, 85(4), 1085–1100. https://doi.org/10.1890/02-4094spa
dc.relation.referencesPausas, J. G., & Keeley, J. E. (2017). Epicormic Resprouting in Fire-Prone Ecosystems. Trends in Plant Science, 22(12), 1008–1015. https://doi.org/10.1016/j.tplants.2017.08.010spa
dc.relation.referencesPeeler, J. L., & Smithwick, E. A. H. (2018). Exploring invasibility with species distribution modeling: How does fire promote cheatgrass (Bromus tectorum) invasion within lower montane forests? Diversity and Distributions, 24(9), 1308–1320. https://doi.org/10.1111/ddi.12765spa
dc.relation.referencesPeláez, B. C., López, B. L., González, J. M., Camey, J. M. R., & Merino, E. G. (2020). Sample size for estimating fuel loads in oak forest in the Mountain Region of Guerrero State. Revista Mexicana de Ciencias Forestales, 11(57). https://doi.org/10.29298/rmcf.v11i57.617spa
dc.relation.referencesPérez-Harguindeguy, N., Díaz, S., Garnier, E., Lavorel, S., Poorter, H., Jaureguiberry, P., Bret-Harte, M. S., Cornwell, W. K., Craine, J. M., Gurvich, D. E., Urcelay, C., Veneklaas, E. J., Reich, P. B., Poorter, L., Wright, I. J., Ray, P., Enrico, L., Pausas, J. G., De Vos, A. C., … Cornelissen, J. H. C. (2013). New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 61(3), 167–234. https://doi.org/10.1071/BT12225spa
dc.relation.referencesPickett, S. T. ., Kolasa, J., Armesto, J., & Collins, S. L. (1989). The ecological concept of disturbance and its expression at various hierarchical levels. Oikos, 54, 129–136.spa
dc.relation.referencesPickett, S. T. ., & White, P. S. (1985). The Ecology of Natural Disturbance and Patch Dynamics. https://doi.org/10.1016/B978-0-12-554520-4.50002-2spa
dc.relation.referencesPinard, M. A., Putz, F. E., & Licona, J. C. (2016). Tree mortality and vine proliferation following a wildfire in a subhumid tropical forest in eastern Bolivia. Forest Ecology and Management, 116, 247–252.spa
dc.relation.referencesPinzón, J., & Spence, J. R. (2010). Bark-dwelling spider assemblages (Araneae) in the boreal forest: Dominance, diversity, composition and life-histories. Journal of Insect Conservation, 14(5), 439–458. https://doi.org/10.1007/s10841-010-9273-7spa
dc.relation.referencesPoorter, L., Mcneil, A., Hurtado, V. H., Prins, H. H. T., & Putz, F. E. (2014). Bark traits and life-history strategies of tropical dry- and moist forest trees. Functional Ecology, 28(1), 232–242. https://doi.org/10.1111/1365-2435.12158spa
dc.relation.referencesPrieto, I., Querejeta, J. I., Segrestin, J., Volaire, F., & Roumet, C. (2017). Leaf carbon and oxygen isotopes are coordinated with the leaf economics spectrum in Mediterranean rangeland species. Functional Ecology, 32(3), 612–625. https://doi.org/10.1111/1365-2435.13025spa
dc.relation.referencesQuintero-Gradilla, S. D., Jardel-Peláez, E. J., Cuevas-Guzmán, R., García-Oliva, F., & Martínez-Yrizar, A. (2019). Cambio postincendio en la estructura y composición del estrato arbóreo y carga de combustibles en un bosque de Pinus douglasiana de México. Madera y Bosques, 25(3). https://doi.org/10.21829/myb.2019.2531888spa
dc.relation.referencesRangel-Ch., J. O. y A. Garzón. 1994. Aspectos de la estructura, de la diversidad y de la dinámica de la vegetación del parque regional Ucumari. Pp. 59-84. En: Rangel-Ch. (Ed.), Ucumarí: un caso típico de la diversidad biótica andina.Universidad Nacional de Colombia. Instituto de Ciencias Naturales, Corporación Autónoma Regional de Risaralda. Pereira, Colombia.spa
dc.relation.referencesRangel-Ch., J. O y A. Velázquez. 1997. Métodos de estudio de la vegetación. Pp. 59-87. En: Rangel- Ch. J.O (Ed.), Colombia Diversidad Biótica II. Instituto de Ciencias Naturales. Universidad Nacional de Colombia, Ideam. Bogotá, D. C., Colombiaspa
dc.relation.referencesReed, C. C., Hood, S. M., Cluck, D. R., & Smith, S. L. (2023). Fuels change quickly after California drought and bark beetle outbreaks with implications for potential fire behavior and emissions. Fire Ecology, 19(1). https://doi.org/10.1186/s42408-023-00175-6spa
dc.relation.referencesResco de Dios, V., Fellows, A. W., Nolan, R. H., Boer, M. M., Bradstock, R. A., Domingo, F., & Goulden, M. L. (2015). A semi-mechanistic model for predicting the moisture content of fine litter. Agricultural and Forest Meteorology, 203, 64–73. https://doi.org/10.1016/j.agrformet.2015.01.002spa
dc.relation.referencesRiaño, D., Chuvieco, E., Salas, J., Palacios-Orueta, A., & Bastarrika, A. (2002). Generation of fuel type maps from Landsat TM images and ancillary data in Mediterranean ecosystems. Canadian Journal of Forest Research, 32(8), 1301–1315. https://doi.org/10.1139/x02-052spa
dc.relation.referencesRicotta, C. (2005). A note on functional diversity measures. Basic and Applied Ecology, 6, 479–486. https://doi.org/10.1016/j.baae.2005.02.008spa
dc.relation.referencesRistok, C., Weinhold, A., Ciobanu, M., Poeschl, Y., Roscher, C., Vergara, F., & Eisenhauer, N. (2020). Plant diversity effects on herbivory are mediated by soil biodiversity and plant chemistry. iDiv, 1–18.spa
dc.relation.referencesRiutta, T., Slade, E. M., Morecroft, M. D., Bebber, D. P., & Malhi, Y. (2014). Living on the edge: Quantifying the structure of a fragmented forest landscape in England. Landscape Ecology, 29(6), 949–961. https://doi.org/10.1007/s10980-014-0025-zspa
dc.relation.referencesRobinne, F. N., Bladon, K. D., Miller, C., Parisien, M. A., Mathieu, J., & Flannigan, M. D. (2017). A spatial evaluation of global wildfire-water risks to human and natural systems. Science of the Total Environment, 610–611, 1193–1206. https://doi.org/10.1016/j.scitotenv.2017.08.112spa
dc.relation.referencesRomero-Ruiz, M., Etter, A., Sarmiento, A., & Tansey, K. (2010). Spatial and temporal variability of fires in relation to ecosystems, land tenure and rainfall in savannas of northern South America. Global Change Biology, 16(7), 2013–2023. https://doi.org/10.1111/j.1365-2486.2009.02081.xspa
dc.relation.referencesRomero-ruiz, M. H., Flantua, S. G. A., Tansey, K., & Berrio, J. C. (2011). Landscape transformations in savannas of northern South America : Land use / cover changes since 1987 in the Llanos Orientales of Colombia. Applied Geography, 32(2), 766–776. https://doi.org/10.1016/j.apgeog.2011.08.010spa
dc.relation.referencesRomero, C. (2014). Bark structure and functional ecology. Bark: Use, Management, and Commerce in Africa, 17(1967), 5–25.spa
dc.relation.referencesRykiel, E. (1985). Towards a definition of ecological disturbance. Australian Journal of Ecology, 10, 361–365.spa
dc.relation.referencesSalazar, N., Meza, M. C., Espelta, J. M., & Armenteras, D. (2020). Post-fire responses of Quercus humboldtii mediated by some functional traits in the forests of the tropical Andes. Global Ecology and Conservation, 22. https://doi.org/10.1016/j.gecco.2020.e01021spa
dc.relation.referencesSalgado-Negret, B. (2007). Definición de tipos funcionales de especies arbóreas y caracterización de su respuesta a diferentes intensidades de perturbación en un bosque muy húmedo tropical Mesoamericano. Centro Agronómico Tropical de Investigación y Enseñanza - CATIE.spa
dc.relation.referencesSalgado, B. (2015). La Ecología Funcional de la biodiversidad: estudio, manejo y conservación como aproximación al protocolos y aplicaciones (B. S. Negret (ed.); Editorial).spa
dc.relation.referencesSilva CVJ, Aragão LEOC, Barlow J, et al (2018) Drought-induced Amazonian wildfires instigate a decadal-scale disruption of forest carbon dynamics. Philos Trans R Soc B Biol Sci 373:20180043. https://doi.org/10.1098/rstb.2018.0043spa
dc.relation.referencesScott, J. H., & Reinhardt, E. D. (2001). Assessing crown fire potential by linking models of surface and crown fire behavior. In USDA Forest Service - Research Paper RMRS-RP (Issues 29 RMRS-RP). https://doi.org/10.2737/RMRS-RP-29spa
dc.relation.referencesScott, J. H., & Burgan, R. E. (2005). Standard fire behavior fuel models: A comprehensive set for use with Rothermel’s surface fire spread model. USDA Forest Service - General Technical Report RMRS-GTR, 153 RMRS-GTR, 1–76. https://doi.org/10.2737/RMRS-GTR-153spa
dc.relation.referencesShlisky, A., Waugh, J., Gonzalez, P., Gonzalez, M., Manta, M., Santoso, H., Alvarado, E., Ainuddin, A., Rodríguez-trejo, D. A., & Swaty, R. (2005). Fire , ecosystems and people : Threats and strategies for global biodiversity Introduction : Fire is a Global Conservation Issue. The George Wright Forum, 22 (4), 78–87.spa
dc.relation.referencesSilva, C. V. J., Aragão, L. E. O. C., Barlow, J., Espirito-Santo, F., Young, P. J., Anderson, L. O., Berenguer, E., Brasil, I., Brown, I. F., Castro, B., Farias, R., Ferreira, J., França, F., Graça, P. M. L. A., Kirsten, L., Lopes, A. P., Salimon, C., Scaranello, M. A., Seixas, M., … Xaud, H. A. M. (2017). Drought-induced Amazonian wildfires instigate a decadal-scale disruption of forest carbon dynamics. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1760). https://doi.org/10.1098/rstb.2017.0043spa
dc.relation.referencesSikkink, P. G., & Keane, R. E. (2012). Predicting Fire Severity Using Surface Fuels and Moisture. http://www.fs.fed.us/rm/publicationsspa
dc.relation.referencesSilvério, D. V., Brando, P. M., Balch, J. K., Putz, F. E., Nepstad, D. C., Oliveira-Santos, C., & Bustamante, M. M. C. (2013). Testing the Amazon savannization hypothesis: Fire effects on invasion of a neotropical forest by native cerrado and exotic pasture grasses. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1619). https://doi.org/10.1098/rstb.2012.0427spa
dc.relation.referencesSlijepcevic, A., Anderson, W. R., Matthews, S., & Anderson, D. H. (2015). Evaluating models to predict daily fine fuel moisture content in eucalypt forest. Forest Ecology and Management, 335, 261–269. https://doi.org/10.1016/j.foreco.2014.09.040spa
dc.relation.referencesSocolar JB, Gilroy JJ, Kunin WE, Edwards DP (2016) How Should Beta-Diversity Inform Biodiversity Conservation? Trends Ecol Evol 31:67–80. https://doi.org/10.1016/j.tree.2015.11.005spa
dc.relation.referencesStevens-Rumann, C. S., Kemp, K. B., Higuera, P. E., Harvey, B. J., Rother, M. T., Donato, D. C., Morgan, P., & Veblen, T. T. (2017). Evidence for declining forest resilience to wildfires under climate change. Ecology Letters, 21(2), 243–252. https://doi.org/10.1111/ele.12889spa
dc.relation.referencesStreit, H., Menezes, L. S., Pillar, V. D., & Overbeck, G. E. (2022). Intraspecific trait variation of grassland species in response to grazing depends on resource acquisition strategy. Journal of Vegetation Science, 33(3), 1–12. https://doi.org/10.1111/jvs.13129spa
dc.relation.referencesSuding, K., Lavorel, S., Chapin, F. S., Cornelissen, J. H. C., Díaz, S., Garnier, E., Goldberg, D. E., Hooper, D., Jackson, S., & Navas, M. (2008). Scaling environmental change through the community-level: a trait-based response-and-effect framework for plants. Global Change Biology, 14(May), 1125–1140. https://doi.org/10.1111/j.1365-2486.2008.01557.xspa
dc.relation.referencesSullivan, A. L., Surawski, N. C., Crawford, D., Hurley, R. J., Volkova, L., Weston, C. J., & Meyer, C. P. (2017). Effect of woody debris on the rate of spread of surface fires in forest fuels in a combustion wind tunnel. Forest Ecology and Management, 424(February), 236–245. https://doi.org/10.1016/j.foreco.2017.04.039spa
dc.relation.referencesSullivan, A. L., Surawski, N. C., Crawford, D., Hurley, R. J., Volkova, L., Weston, C. J., & Meyer, C. P. (2018). Effect of woody debris on the rate of spread of surface fires in forest fuels in a combustion wind tunnel. Forest Ecology and Management, 424, 236–245. https://doi.org/10.1016/j.foreco.2018.04.039spa
dc.relation.referencesTortorelli, C. M., Krawchuk, M. A., & Kerns, B. K. (2020). Expanding the invasion footprint: Ventenata dubia and relationships to wildfire, environment, and plant communities in the Blue Mountains of the Inland Northwest, USA. Applied Vegetation Science, 23(4), 562–574. https://doi.org/10.1111/avsc.12511spa
dc.relation.referencesTortorelli, C. M., Kim, J. B., Vaillant, N. M., Riley, K., Dye, A., Nietupski, T. C., Vogler, K. C., Lemons, R., Day, M., Krawchuk, M. A., & Kerns, B. K. (2023). Feeding the fire: Annual grass invasion facilitates modeled fire spread across Inland Northwest forest-mosaic landscapes. Ecosphere, 14(2), 1–19. https://doi.org/10.1002/ecs2.4413spa
dc.relation.referencesTuo, B., Yan, E. R., Guo, C., Ci, H., Berg, M. P., & Cornelissen, J. H. C. (2021). Influences of the bark economics spectrum and positive termite feedback on bark and xylem decomposition. Ecology, 102(10), 1–11. https://doi.org/10.1002/ecy.3480spa
dc.relation.referencesTurner, M. G. (2010). Disturbance and landscape dynamics in a changing world. Ecology, 91 (10), 2833–2849. https://doi.org/10.1358/dot.2011.47.2.1576694spa
dc.relation.referencesVan Leeuwen, T. T., Van Der Werf, G. R., Hoffmann, A. A., Detmers, R. G., Rücker, G., French, N. H. F., Archibald, S., Carvalho, J. A., Cook, G. D., De Groot, W. J., Hély, C., Kasischke, E. S., Kloster, S., McCarty, J. L., Pettinari, M. L., Savadogo, P., Alvarado, E. C., Boschetti, L., Manuri, S., … Trollope, W. S. W. (2014). Biomass burning fuel consumption rates: A field measurement database. Biogeosciences, 11(24), 7305–7329. https://doi.org/10.5194/bg-11-7305-2014spa
dc.relation.referencesVan Der Werf G (2018) Fire greenhouse gas emissions (in CO2 equivalents) for various fire categories based on the Global Fire Emissions Database (GFED4s). In: Glob. Fire Data. https://www.globalfiredata.org/spa
dc.relation.referencesVan Gelder HA, Poorter L, Sterck FJ (2006) Wood mechanics, allometry, and life-history variation in a tropical rain forest tree community. New Phytol 171:367–378. https://doi.org/10.1111/j.1469-8137.2006.01757.xspa
dc.relation.referencesVeldman, J. W., & Putz, F. E. (2011). Grass-dominated vegetation, not species-diverse natural savanna, replaces degraded tropical forests on the southern edge of the Amazon Basin. Biological Conservation, 144(5), 1419–1429. https://doi.org/10.1016/j.biocon.2011.01.011spa
dc.relation.referencesVetaas OR, Shrestha KB, Sharma LN (2021) Changes in plant species richness after cessation of forest disturbance. Appl Veg Sci 24:1–11. https://doi.org/10.1111/avsc.12545spa
dc.relation.referencesVerdú, M., & Pausas, J. G. (2007). Fire drives phylogenetic clustering in Mediterranean Basin woody plant communities. Journal of Ecology, 95(6), 1316–1323. https://doi.org/10.1111/j.1365-2745.2007.01300.xspa
dc.relation.referencesVillar, R., Ruiz-Robleto, J., Quero, J. L., Poorter, H., Valladares, F., & Marañón, T. (2004). Tasas de crecimiento en especies leñosas: aspectos funcionales e implicaciones ecológicas. In Ecología del bosque mediterráneo en un mundo cambiante .spa
dc.relation.referencesViolle, C., Navas, M., Vile, D., Kazakou, E., & Fortunel, C. (2007). Let the concept of trait be functional ! Oikos, 116(January), 882–892. https://doi.org/10.1111/j.2007.0030-1299.15559.xspa
dc.relation.referencesWalker, B., Holling, C. S., Carpenter, S. R., & Kinzig, A. (2004). Resilience , Adaptability and Transformability in Social – ecological Systems. Ecology and Society, 9(2), 5.spa
dc.relation.referencesWelles, S. R., & Funk, J. L. (2021). Patterns of intraspecific trait variation along an aridity gradient suggest both drought escape and drought tolerance strategies in an invasive herb. Annals of Botany, 127(4), 461–471. https://doi.org/10.1093/aob/mcaa173spa
dc.relation.referencesWhite, P. S., & Jentsch, A. (2001). The Search for Generality in Studies of Disturbance andspa
dc.relation.referencesWoodward, F., & Cramer, W. (1996). Plant functional types and climatic changes : Introduction. Journal of V, 7, 306–308.spa
dc.relation.referencesWotton, B. M. (2009). Interpreting and using outputs from the Canadian Forest Fire Danger Rating System in research applications. Environmental and Ecological Statistics, 16(2), 107–131. https://doi.org/10.1007/s10651-007-0084-2spa
dc.relation.referencesWright, I. J., Reich, P. B., Cornelissen, J. H. C., Falster, D. S., Garnier, E., Hikosaka, K., Lamont, B. B., Lee, W., Oleksyn, J., Osada, N., Poorter, H., Villar, R., Warton, D. I., & Westoby, M. (2005). Assessing the generality of global leaf trait relationships. New Phytologist, 166(2), 485–496. https://doi.org/10.1111/j.1469-8137.2005.01349.xspa
dc.relation.referencesWright, I. J., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z., Bongers, F., Cavender-bares, J., Chapin, T., Cornelissen, J. H. C., Diemer, M., Flexas, J., Garnier, E., Groom, P. K., & Gulias, J. (2004). The worldwide leaf economics spectrum. Nature, 12, 821–827.spa
dc.relation.referencesZanne, A. E., Lopez-Gonzalez, G., Coomes, D. A., Ilic, J., Jansen, S., Lewis, S. L., Miller, R. B., Swenson, N. G., Wiemann, M. C., & Chave, J. (2009). Global wood density database. http://hdl.handle.net/10255/dryad.235.spa
dc.relation.referencesZhang S, Zang R (2021) Tropical forests are vulnerable in terms of functional redundancy. Biol Conserv 262:109326. https://doi.org/10.1016/j.biocon.2021.109326spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc570 - Biología::577 - Ecologíaspa
dc.subject.ddc570 - Biología::578 - Historia natural de los organismos y temas relacionadosspa
dc.subject.lccResiliencia (Ecología)spa
dc.subject.lccResilience (Ecology)eng
dc.subject.lccEcología del fuegospa
dc.subject.lccFire ecologyeng
dc.subject.lembIncendios forestalesspa
dc.subject.lembForest fireseng
dc.subject.lembAdaptación (Biología)spa
dc.subject.lembAdaptation (biology)eng
dc.subject.lembEstrés (Fisiología)spa
dc.subject.lembStress (Physiology)eng
dc.subject.proposalEcología del fuegospa
dc.subject.proposalFire Ecologyeng
dc.subject.proposalCombustibles forestalesspa
dc.subject.proposalForest fuelseng
dc.subject.proposalRasgos de plantasspa
dc.subject.proposalPlant traitseng
dc.subject.proposalOrinoquíaspa
dc.subject.proposalOrinoco Basineng
dc.subject.proposalIncendios forestalesspa
dc.subject.proposalForest fireseng
dc.subject.proposalForest fuels loadeng
dc.subject.wikidataEcología de sistemasspa
dc.subject.wikidataSystems ecologyeng
dc.subject.wikidataWildfireeng
dc.titleEfectos de los incendios forestales sobre la resiliencia de bosques tropicales de tierras bajasspa
dc.title.translatedForest fire effects on the resilience of lowland tropical foresteng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleDegradation of Tropical Forest in Colombia: Impacts of Firespa
oaire.awardtitleAdaptación de la vegetación al cambio climático y al fuego en tierras bajas de la Orinoquiaspa
oaire.awardtitleDiseño participativo de estrategias para la reducción de incendios forestales, la conservación de la biodiversidad y el desarrollo regional en paisajes multifuncionales del Vichadaspa
oaire.fundernameUSAID - Asociación para una mayor participación en la investigación (PEER)spa
oaire.fundernameDepartamento Administrativo de Ciencia, Tecnología e Innovación de Colombia (COLCIENCIAS)spa
oaire.fundernameSistema General de Regalías - Departamento del Vichadaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1022358943.2023.pdf
Tamaño:
9.41 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ciencias - Biología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: