Búsqueda virtual y cálculo computacional de la energía libre de unión de posibles inhibidores análogos a la glucosamina para la enzima hexoquinasa 2

dc.contributor.advisorBarragán Ramírez, Daniel Alberto
dc.contributor.advisorLans Vargas, Isaías
dc.contributor.authorMéndez Otálvaro, Edward Francisco
dc.contributor.researchgroupCalorimetría y Termodinámica de Procesos Irreversiblesspa
dc.date.accessioned2022-02-16T15:50:03Z
dc.date.available2022-02-16T15:50:03Z
dc.date.issued2021-11
dc.descriptionilustraciones, diagramas, tablasspa
dc.description.abstractLa hexoquinasa 2 (HK2) es una enzima con importancia terapéutica humana debido a su relación con des órdenes metabólicos como la diabetes y el desarrollo de células cancerosas (efecto Warburg), por tanto, debemos implementar estrategias para obtener inhibidores efectivos frente a ella. Se ha reportado en la literatura experimental, una serie de glucosaminas 2,6 disustituidas con capacidad de inhibir HK2. En esta tesis desarrollamos una estrategia computacional para identificar compuestos análogos a la glucosamina con potencial afinidad por HK2 utilizando como entrada la información estructural y actividad in vitro del reporte antes mencionado. Para ello realizamos un tamizaje virtual de una base de datos pública mediante relaciones cuantitativas estructura-actividad (QSAR), modelos farmacofóricos y acoplamiento (docking) molecular. Generamos cinco modelos QSAR con una correlación razonable entre las propiedades fisicoquímicas y la actividad biológica experimental (R2P ≥ 0,6. σ2 ≥ 0,6. RMSEP < 2,0 y 0,2 ≤ R2 LOO ≤ 0,6) e identificamos tres moléculas con potencial actividad inhibitoria contra la HK2 (3, 6 y 139 en la numeración de este trabajo). Calculamos la afinidad de estos ligandos mediante simulaciones de dinámica molecular acopladas al método MM-PB(GB)SA. La afinidad de la molécula 3 hacia HK2 es de 6,91 (5,98; 7,85) Kcal mol−1, la de la molécula 6 de -4,11 (-5,04; -3,17) Kcal mol−1 y la de la molécula 139 de 0,49 (-0,44; 1,43) Kcal mol−1. Estas afinidades se encuentran dentro de un rango de energías apropiado a un control negativo y positivo [-16,12 (-17,06; -15,18) Kcal mol−1 y 3,59 (2,66; 4,53) Kcal mol−1], con significancia estadística. La estrategia es confiable para identificar moléculas similares a la glucosamina con potencial capacidad inhibitoria para este sistema, dado que a través de tres estrategias distintas (QSAR, farmacóforo y docking molecular) conseguimos el mismo grupo de moléculas. Además, los resultados se complementan en su aproximación, ya que por un lado el farmacóforo generaliza las características fisicoquímicas idóneas de los ligandos presentadas por los QSAR; y por el otro, el docking molecular tiene en cuenta las interacciones con el receptor, permitiendo mejorar las limitaciones de cada método. Finalmente, describimos un modo de acción para el ligando 6 que se rige mayormente por interacción hidrofóbica, correspondiendo a un mecanismo alternativo presentado por el control positivo, el cual contrasta por presentar en su mayoría interacciones de tipo puente de hidrogeno con el receptor (en su contribución entálpica). (Texto tomado de la fuente)spa
dc.description.abstractHexokinase 2 (HK2) is an enzyme with human therapeutic importance due to its relationship with metabolic disorders such as diabetes and cancer cell growing (Warburg effect), therefore, we must implement strategies to obtain effective inhibitors against it. Recently, a series of 2,6-disubstituted glucosamines with the ability to inhibit HK2 have been reported in the experimental literature. In this thesis we developed a computational strategy to identify glucosamine analogues with potential affinity for HK2 using as input the structural information and in vitro activity from the aforementioned report. For this purpose, we performed a virtual screening of a public database using quantitative structure-activity relationships (QSAR), pharmacophoric models and molecular docking. We generated five QSAR models with reasonable correlation between physicochemical properties and experimental biological activity (R2 P ≥ 0,6. σ 2 ≥ 0,6. RMSEP < 2,0 y 0,2 ≤ R2 LOO ≤ 0,6) and identified three molecules with potential inhibitory activity against HK2 (3, 6 and 139 in the numbering of this work). We calculated the affinity of these ligands by molecular dynamics simulations coupled to the MM-PB(GB)SA method. The affinity of molecule 3 toward HK2 is 6,91 (5,98; 7,85) Kcal mol−1 , that of molecule 6 is -4,11 (-5,04; -3,17) Kcal mol−1 and that of molecule 139 is 0,49 (-0,44; 1,43) Kcal mol−1 . These affinities are within a range of energies appropriate to a negative and positive control [-16,12 (-17,06; -15,18) Kcal mol−1 and 3,59 (2,66; 4,53) Kcal mol−1 ], with statistical significance. The strategy is reliable for identifying glucosamine-like molecules with potential inhibitory capacity for this system, since through three different strategies (QSAR, pharmacophore and molecular docking) we obtained the same group of molecules. Moreover, the results complement each other in their approach, since on the one hand the pharmacophore generalizes the ideal physicochemical characteristics of the ligands presented by the QSARs; and on the other hand, molecular docking takes into account the interactions with the receptor, allowing us to improve the limitations of each method. Finally, we describe a mode of action for ligand 6 that is mostly governed by hydrophobic interaction, corresponding to an alternative mechanism presented by the positive control, which contrasts by presenting mostly hydrogen bridge type interactions with the receptor (in its enthalpic contribution).eng
dc.description.curricularareaÁrea Curricular en Ciencias Naturalesspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Químicaspa
dc.description.researchareaModelamiento computacional de sistemas fisicoquímicosspa
dc.format.extentxxi, 164 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80993
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentEscuela de químicaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.programMedellín - Ciencias - Maestría en Ciencias - Químicaspa
dc.relation.referencesAhn, K. J.; Kim, J.; Yun, M.; Park, J. H.; Lee, J. D. BMB reports 2009, 42, 350–5.spa
dc.relation.referencesNelson, D.; Cox, M. Lehninger Principles of Biochemistry; Macmillan Learning, 2017.spa
dc.relation.referencesTanner, L. B.; Goglia, A. G.; Wei, M. H.; Sehgal, T.; Parsons, L. R.; Park, J. O.; White, E.; Toettcher, J. E.; Rabinowitz, J. D. Cell Systems 2018, 1–14.spa
dc.relation.referencesLis, P.; Dylag, M.; Nied´zwiecka, K.; Ko, Y. H.; Pedersen, P. L.; Goffeau, A.; U laszewski, S. Molecules 2016, 21, 1–15.spa
dc.relation.referencesDe Rosa, V.; Iommelli, F.; Monti, M.; Fonti, R.; Votta, G.; Stoppelli, M. P.; Del Vecchio, S. Clinical Cancer Research 2015, 21, 5110–5120.spa
dc.relation.referencesBehar, V.; Pahima, H.; Kozminsky-Atias, A.; Arbel, N.; Loeb, E.; Herzberg, M.; Becker, O. M. Journal of Investigative Dermatology 2018, 1–9.spa
dc.relation.referencesFang, D.; Maldonado, E. N. VDAC Regulation: A Mitochondrial Target to Stop Cell Proliferation, 1st ed.; Elsevier Inc., 2018; Vol. 138.spa
dc.relation.referencesRabbani, N.; Thornalley, P. J. Trends in Endocrinology and Metabolism 2019, 30, 419–431.spa
dc.relation.referencesLin, H.; et al. ACS Medicinal Chemistry Letters 2016, 7, 217–222.spa
dc.relation.referencesCherkasov, A.; et al. Journal of Medicinal Chemistry 2014, 57, 4977–5010.spa
dc.relation.referencesVerma, J.; Khedkar, V.; Coutinho, E. Current Topics in Medicinal Chemistry 2010, 10, 95–115.spa
dc.relation.referencesArciniega, M.; Medina-franco, J. L. TIP Revista Especializada en Ciencias Químico-Biológicas 2019, 21, 65–87.spa
dc.relation.referencesGutiérrez, M.; Vallejos, G. A.; Cortés, M. P.; Bustos, C. Chemical Biology and Drug Design 2019, 1–12.spa
dc.relation.referencesArora, M.; Yennamalli, R. M.; Sen, T. Z. Bioenergy Research 2018, 11, 850–867.spa
dc.relation.referencesLemkul, J. A. Living Journal of Computational Molecular Science 2018, In Press, 1–52.spa
dc.relation.referencesLo, Y. C.; Rensi, S. E.; Torng, W.; Altman, R. B. Drug Discovery Today 2018, 23, 1538–1546.spa
dc.relation.referencesHollingsworth, S. A.; Dror, R. O. Neuron 2018, 99, 1129–1143.spa
dc.relation.referencesSliwoski, G.; Kothiwale, S.; Meiler, J.; Lowe Jr., E. W. Pharmacological Reviews 2014, 66, 334–395.spa
dc.relation.referencesSaini, R. D. Journal of Proteins and Proteomics 2017, 8, 205–217.spa
dc.relation.referencesWilson, J. E. Journal of Experimental Biology 2003, 206, 2049–2057.spa
dc.relation.referencesNawaz, M. H.; Ferreira, J. C.; Nedyalkova, L.; Zhu, H.; Carrasco-López, C.; Kirmizialtin, S.; Rabeh, W. M. Bioscience Reports 2018, 38, BSR20171666.spa
dc.relation.referencesBerman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T. N.; Weissig, H.; Shindyalov, I. N.; Bourne, P. E. Nucleic acids research 2000, 28, 235–242.spa
dc.relation.referencesStierand, K.; Maaß, P. C.; Rarey, M. Bioinformatics 2006, 22, 1710–1716.spa
dc.relation.referencesGardiner, N. J.; Wang, Z.; Luke, C.; Gott, A.; Price, S. A.; Fernyhough, P. Brain research 2007, 1175, 143–154.spa
dc.relation.referencesMathupala, S.; Ko, Y.; Pedersen, P. Oncogene 2006, 25, 4777–4786.spa
dc.relation.referencesPatra, K. C.; Wang, Q.; Bhaskar, P. T.; Miller, L.; Wang, Z.; Wheaton, W.; Chandel, N.; Laakso, M.; Muller, W. J.; Allen, E. L.; et al. Cancer cell 2013, 24, 213–228.spa
dc.relation.referencesWoldetsadik, A. D.; Vogel, M. C.; Rabeh, W. M.; Magzoub, M. FASEB Journal 2017, 31, 2168–21874.spa
dc.relation.referencesPastorino, J. G.; Shulga, N.; Hoek, J. B. Journal of Biological Chemistry 2002, 277, 7610–7618.spa
dc.relation.referencesMajewski, N.; Nogueira, V.; Bhaskar, P.; Coy, P. E.; Skeen, J. E.; Gottlob, K.; Chandel, N. S.; Thompson, C. B.; Robey, R. B.; Hay, N. Molecular cell 2004, 16, 819–830.spa
dc.relation.referencesJohn, S.; Weiss, J. N.; Ribalet, B. PloS one 2011, 6, e17674.spa
dc.relation.referencesPascale, R. M.; Calvisi, D. F.; Simile, M. M.; Feo, C. F.; Feo, F. Cancers 2020, 12, 2819.spa
dc.relation.referencesTao, L.; Wei, L.; Liu, Y.; Ding, Y.; Liu, X.; Zhang, X.; Wang, X.; Yao, Y.; Lu, J.; Wang, Q.; et al. Biochemical pharmacology 2017, 125, 12–25.spa
dc.relation.referencesLi, W.; Zheng, M.; Wu, S.; Gao, S.; Yang, M.; Li, Z.; Min, Q.; Sun, W.; Chen, L.; Xiang, G.; Li, H. Journal of Experimental and Clinical Cancer Research 2017, 36, 1–12.spa
dc.relation.referencesBao, F.; Yang, K.; Wu, C.; Gao, S.; Wang, P.; Chen, L.; Li, H. Fitoterapia 2018, 125, 123–129.spa
dc.relation.referencesMiao, G.; Han, J.; Zhang, J.; Wu, Y.; Tong, G. Biological and Pharmaceutical Bulletin 2019, 42, 123–129.spa
dc.relation.referencesWang, W.; Wu, Y.; Yang, K.; Wu, C.; Tang, R.; Li, H.; Chen, L. European Journal of Medicinal Chemistry 2019, 173, 282–293.spa
dc.relation.referencesLiu, Y.; Li, M.; Zhang, Y.; Wu, C.; Yang, K.; Gao, S.; Zheng, M.; Li, X.; Li, H.; Chen, L. Bioorganic chemistry 2020, 96, 103609.spa
dc.relation.referencesZhang, X.-M.; Peng, A.-H.; Xie, W.-D.; Wang, M.; Zheng, D.; Feng, M.-K. Chemistry & Biodiversity 2020, 17, e2000140.spa
dc.relation.referencesJiang, S.-H.; Dong, F.-Y.; Da, L.-T.; Yang, X.-M.; Wang, X.-X.; Weng, J.-Y.; Feng, L.; Zhu, L.-L.; Zhang, Y.-L.; Zhang, Z.-G.; et al. The FASEB Journal 2020, 34, 3943–3955.spa
dc.relation.referencesZheng, M.; Wu, C.; Yang, K.; Yang, Y.; Liu, Y.; Gao, S.; Wang, Q.; Li, C.; Chen, L.; Li, H. Pharmacological Research 2021, 164, 105367.spa
dc.relation.referencesDiMasi, J. A.; Grabowski, H. G.; Hansen, R. W. Journal of Health Economics 2016, 47, 20–33.spa
dc.relation.referencesSchaduangrat, N.; Lampa, S.; Simeon, S.; Gleeson, M. P.; Spjuth, O.; Nantasenamat, C. Journal of Cheminformatics 2020, 12, 9.spa
dc.relation.referencesIglesias, J.; Saen-oon, S.; Soliva, R.; Guallar, V. Wiley Interdisciplinary Reviews: Computational Molecular Science 2018, 8, e1367.spa
dc.relation.referencesGanesan, A.; Coote, M. L.; Barakat, K. Drug discovery today 2017, 22, 249–269.spa
dc.relation.referencesHuang, S.-Y.; Grinter, S. Z.; Zou, X. Physical Chemistry Chemical Physics 2010, 12, 12899–12908.spa
dc.relation.referencesWang, Z.; Sun, H.; Shen, C.; Hu, X.; Gao, J.; Li, D.; Cao, D.; Hou, T. Physical Chemistry Chemical Physics 2020, 22, 3149–3159.spa
dc.relation.referencesDurán, A.; Zamora, I.; Pastor, M. Journal of chemical information and modeling 2009, 49, 2129–2138.spa
dc.relation.referencesNeves, B. J.; Braga, R. C.; Melo-Filho, C. C.; Moreira-Filho, J. T.; Muratov, E. N.; Andrade, C. H. Frontiers in pharmacology 2018, 9, 1275.spa
dc.relation.referencesBrown, N. Bioisosterism in Medicinal Chemistry; John Wiley & Sons, Ltd, 2012; Chapter 1, pp 1–14.spa
dc.relation.referencesLeach, A. R.; Gillet, V. J. An introduction to chemoinformatics; Springer, 2007.spa
dc.relation.referencesNantasenamat, C.; Conceptual Map of Computational Drug Discovery; https://figshare.com/articles/figure/Conceptual_Map_of_Computational_Drug_Discovery/5979400/1; 2018.spa
dc.relation.referencesKhan, P. M.; Roy, K. Expert Opinion on Drug Discovery 2018, 13, 1075–1089.spa
dc.relation.referencesOECD Guidance Document on the Validation of (Quantitative) Structure-Activity Relationship [(Q)SAR] Models, 2014.spa
dc.relation.referencesMartin, T. M.; Harten, P.; Young, D. M.; Muratov, E. N.; Golbraikh, A.; Zhu, H.; Tropsha, A. Journal of chemical information and modeling 2012, 52, 2570–2578.spa
dc.relation.referencesGramatica, P. QSAR & combinatorial science 2007, 26, 694–701.spa
dc.relation.referencesLeach, A. R.; Leach, A. R. Molecular modelling: principles and applications; Pearson education, 2001.spa
dc.relation.referencesFan, J.; Fu, A.; Zhang, L. Quantitative Biology 2019, 1–7.spa
dc.relation.referencesTorres, P. H.; Sodero, A. C.; Jofily, P.; Silva-Jr, F. P. International journal of molecular sciences 2019, 20, 4574.spa
dc.relation.referencesSalmaso, V.; Moro, S. Frontiers in Pharmacology 2018, 9, 1–16.spa
dc.relation.referencesPagadala, N. S.; Syed, K.; Tuszynski, J. Biophysical Reviews 2017, 9, 91–102.spa
dc.relation.referencesKessel, A.; Ben-Tal, N. Introduction to proteins: structure, function, and motion; CRC Press, 2018.spa
dc.relation.referencesThe Amber Project; History of the Amber Project; http://ambermd.org/History.php.spa
dc.relation.referencesWang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A. Journal of computational chemistry 2004, 25, 1157–1174.spa
dc.relation.referencesOostenbrink, C.; Villa, A.; Mark, A. E.; Van Gunsteren, W. F. Journal of computational chemistry 2004, 25, 1656–1676.spa
dc.relation.referencesVanommeslaeghe, K.; Hatcher, E.; Acharya, C.; Kundu, S.; Zhong, S.; Shim, J.; Darian, E.; Guvench, O.; Lopes, P.; Vorobyov, I.; Others Journal of computational chemistry 2010, 31, 671–690.spa
dc.relation.referencesJorgensen, W. L.; Tirado-Rives, J. Journal of the American Chemical Society 1988, 110, 1657–1666.spa
dc.relation.referencesJorgensen, W. L.; Maxwell, D. S.; Tirado-Rives, J. Journal of the American Chemical Society 1996, 118, 11225–11236.spa
dc.relation.referencesLindahl; Abraham; Hess; van der Spoel; GROMACS 2021.2 Manual; 2021. https://doi.org/10.5281/zenodo.4723561.spa
dc.relation.referencesFrenkel, D.; Smit, B. Understanding molecular simulation: from algorithms to applications; Elsevier, 2001; Vol. 1.spa
dc.relation.referencesTuckerman, M. E.; Martyna, G. J. The Journal of Physical Chemistry B 2000, 104, 159–178.spa
dc.relation.referencesWang, E.; Sun, H.; Wang, J.; Wang, Z.; Liu, H.; Zhang, J. Z.; Hou, T. Chemical reviews 2019, 119, 9478–9508.spa
dc.relation.referencesKumari, R.; Kumar, R.; Lynn, A. Journal of Chemical Information and Modeling 2014, 54, 1951–1962.spa
dc.relation.referencesMiller, B. R.; McGee, T. D.; Swails, J. M.; Homeyer, N.; Gohlke, H.; Roitberg, A. E. Journal of Chemical Theory and Computation 2012, 8, 3314–3321.spa
dc.relation.referencesGenheden, S.; Ryde, U. Expert Opinion on Drug Discovery 2015, 10, 449–461.spa
dc.relation.referencesHonig, B.; Nicholls, A. Science (New York, N.Y.) 1995, 268, 1144–1149.spa
dc.relation.referencesWeiser, J.; Shenkin, P. S.; Still, W. C. Journal of Computational Chemistry 1999, 20, 217–230.spa
dc.relation.referencesCase, D. A.; Darden, T.; Cheatham, T.; Simmerling, C.; Wang, J.; Duke, R. E.; Luo, R.; Crowley, M.; Walker, R.; Zhang, W.; et al. University of California, San Francisco 2021, 30.spa
dc.relation.referencesKassem, S.; Ahmed, M.; El-Sheikh, S.; Barakat, K. H. Journal of Molecular Graphics and Modelling 2015, 62, 105–117.spa
dc.relation.referencesDuan, L.; Liu, X.; Zhang, J. Z. Journal of the American Chemical Society 2016, 138, 5722–5728.spa
dc.relation.referencesHuang, K.; Luo, S.; Cong, Y.; Zhong, S.; Zhang, J. Z.; Duan, L. Nanoscale 2020, 12, 10737–10750.spa
dc.relation.referencesSun, H.; Duan, L.; Chen, F.; Liu, H.; Wang, Z.; Pan, P.; Zhu, F.; Zhang, J. Z.; Hou, T. Physical Chemistry Chemical Physics 2018, 20, 14450–14460.spa
dc.relation.referencesFourches, D.; Muratov, E.; Tropsha, A. Journal of Chemical Information and Modeling 2010, 50, 1189–1204.spa
dc.relation.referencesCavasotto, C. N.; Abagyan, R. A. Journal of molecular biology 2004, 337, 209–225.spa
dc.relation.referencesPalacio-Rodríguez, K.; Lans, I.; Cavasotto, C. N.; Cossio, P. Scientific reports 2019, 9, 1–14.spa
dc.relation.referencesHumphrey, W.; Dalke, A.; Schulten, K. Journal of Molecular Graphics 1996, 14, 33–38.spa
dc.relation.referencesDeLano, W. L. CCP4 Newsletter On Protein Crystallography 2002, 40, 82–92.spa
dc.relation.referencesPettersen, E. F.; Goddard, T. D.; Huang, C. C.; Couch, G. S.; Greenblatt, D. M.; Meng, E. C.; Ferrin, T. E. J. Comput. Chem 2004, 25, 1605–1612.spa
dc.relation.referencesChemAxon; MarvinSketch, Version 20.16 ; 2020.spa
dc.relation.referencesHanwell, M. D.; Curtis, D. E.; Lonie, D. C.; Vandermeersch, T.; Zurek, E.; Hutchison, G. R. Journal of Cheminformatics 2012, 4, 17.spa
dc.relation.referencesHehre, W. J.; Ohlinger, S.; Spartan’14 ; 2014.spa
dc.relation.referencesSantos-Martins, D.; Solis-Vasquez, L.; Tillack, A. F.; Sanner, M. F.; Koch, A.; Forli, S. Journal of Chemical Theory and Computation 2021, 17, 1060–1073; PMID: 33403848.spa
dc.relation.referencesMorris, G. M.; Huey, R.; Lindstrom, W.; Sanner, M. F.; Belew, R. K.; Goodsell, D. S.; Olson, A. J. Journal of computational chemistry 2009, 30, 2785–2791.spa
dc.relation.referencesTrott, O.; Olson, A. Journal of computational chemistry 2010, 31, 455–461.spa
dc.relation.referencesKoes, D. R.; Baumgartner, M. P.; Camacho, C. J. Journal of Chemical Information and Modeling 2013, 53, 1893–1904.spa
dc.relation.referencesRuiz-Carmona, S.; Alvarez-Garcia, D.; Foloppe, N.; Garmendia-Doval, A. B.; Juhos, S.; Schmidtke, P.; Barril, X.; Hubbard, R. E.; Morley, S. D. PLoS Computational Biology 2014, 10, 1–7.spa
dc.relation.referencesKorb, O.; Stützle, T.; Exner, T. E. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 2006, 4150 LNCS, 247–258.spa
dc.relation.referencesAbraham, M. J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J. C.; Hess, B.; Lindahl, E. SoftwareX 2015, 1-2, 19–25.spa
dc.relation.referencesValdés-Tresanco, M. S.; Valdés-Tresanco, M. E.; Valiente, P. A.; Moreno, E. Journal of Chemical Theory and Computation 2021.spa
dc.relation.referencesR Core Team; R: A Language and Environment for Statistical Computing; 2014.spa
dc.relation.referencesVan Rossum, G.; Drake Jr, F. L. Python tutorial ; Centrum voor Wiskunde en Informatica Amsterdam, The Netherlands, 1995.spa
dc.relation.referencesO’Boyle, N. M.; Banck, M.; James, C. A.; Morley, C.; Vandermeersch, T.; Hutchison, G. R. Journal of Cheminformatics 2011, 3, 1–14.spa
dc.relation.referencesSushko, I.; et al. Journal of Cheminformatics 2011, 3, 85764.spa
dc.relation.referencesSchneidman-Duhovny, D.; Dror, O.; Inbar, Y.; Nussinov, R.; Wolfson, H. J. Nucleic acids research 2008, 36, 223–228.spa
dc.relation.referencesBolton, E. E.; Wang, Y.; Thiessen, P. A.; Bryant, S. H. PubChem: Integrated Platform of Small Molecules and Biological Activities; Elsevier B.V., 2008; Vol. 4.spa
dc.relation.referencesIrwin, J. J.; Sterling, T.; Mysinger, M. M.; Bolstad, E. S.; Coleman, R. G. Journal of Chemical Information and Modeling 2012, 52, 1757–1768.spa
dc.relation.referencesRopp, P. J.; Spiegel, J. O.; Walker, J. L.; Green, H.; Morales, G. A.; Milliken, K. A.; Ringe, J. J.; Durrant, J. D. Journal of Cheminformatics 2019, 11, 1–13.spa
dc.relation.referencesBas, D. C.; Rogers, D. M.; Jensen, J. H. Proteins: Structure, Function and Genetics 2008, 73, 765–783.spa
dc.relation.referencesChen, V. B.; Arendall, W. B.; Headd, J. J.; Keedy, D. A.; Immormino, R. M.; Kapral, G. J.; Murray, L. W.; Richardson, J. S.; Richardson, D. C. Acta Crystallographica Section D: Biological Crystallography 2010, 66, 12–21.spa
dc.relation.referencesEastman, P.; et al. Journal of Chemical Theory and Computation 2013, 9, 461–469; PMID: 23316124.spa
dc.relation.referencesWang, J.; Wang, W.; Kollman, P. A.; Case, D. A. Journal of Molecular Graphics and Modelling 2006, 25, 247–260.spa
dc.relation.referencesSousa Da Silva, A. W.; Vranken, W. F. BMC Research Notes 2012, 5, 1–8.spa
dc.relation.referencesMeanwell, N. A. Journal of medicinal chemistry 2011, 54, 2529–2591.spa
dc.relation.referencesHammett, L. P. Journal of the American Chemical Society 1937, 59, 96–103.spa
dc.relation.referencesHansch, C.; Fujita, T. Journal of the American Chemical Society 1964, 86, 1616–1626.spa
dc.relation.referencesKier, L. B. Molecular pharmacology 1967, 3, 487–494.spa
dc.relation.referencesRoy, K.; Kar, S.; Das, R. N. A primer on QSAR/QSPR modeling: fundamental concepts; Springer, 2015.spa
dc.relation.referencesTishbirani, R. Journal of the Royal Statistical Society. Series B (Methodological) 1996, 58, 267–288.spa
dc.relation.referencesAlgamal, Z. Y.; Lee, M. H.; Al-Fakih, A. M.; Aziz, M. Journal of Chemometrics 2015, 29, 547–556.spa
dc.relation.referencesRasmussen, M. A.; Bro, R. Chemometrics and Intelligent Laboratory Systems 2012, 119, 21–31.spa
dc.relation.referencesKuhn, M. Journal of Statistical Software, Articles 2008, 28, 1–26.spa
dc.relation.referencesLee, L. C.; Liong, C. Y.; Jemain, A. A. Analyst 2018, 143, 3526–3539.spa
dc.relation.referencesTeisseyre, P.; K lopotek, R. A.; Mielniczuk, J. Computational Statistics 2016, 31, 943–972.spa
dc.relation.referencesSchneidman-Duhovny, D.; Dror, O.; Inbar, Y.; Nussinov, R.; Wolfson, H. J. Nucleic acids research 2008, 36, W223–W228.spa
dc.relation.referencesDror, O.; Schneidman-Duhovny, D.; Inbar, Y.; Nussinov, R.; Wolfson, H. J. Journal of chemical information and modeling 2009, 49, 2333–2343.spa
dc.relation.referencesSmith, D. H.; Carhart, R. E.; Venkataraghavan, R. Journal of Chemical Information and Computer Sciences 1985, 25, 64–73.spa
dc.relation.referencesBissantz, C.; Kuhn, B.; Stahl, M. Journal of Medicinal Chemistry 2010, 53, 5061–5084.spa
dc.relation.referencesRenner, S.; Fechner, U.; Schneider, G. Alignment-Free Pharmacophore Patterns – A Correlation-Vector Approach; John Wiley & Sons, 2006.spa
dc.relation.referencesTodeschini, R.; Consonni, V. Molecular descriptors for chemoinformatics: volume I: alphabetical listing/volume II: appendices, references; John Wiley & Sons, 2009; Vol. 41.spa
dc.relation.referencesBondi, A. The Journal of Physical Chemistry 1964, 68, 441–451.spa
dc.relation.referencesMecozzi, S.; Rebek, J., Jr. Chemistry – A European Journal 1998, 4, 1016–1022.spa
dc.relation.referencesMann, A. In The Practice of Medicinal Chemistry (Third Edition), third edition ed.; Wermuth, C. G., Ed.; Academic Press: New York, 2008; pp 363–379.spa
dc.relation.referencesLabute, P. Journal of Molecular Graphics and Modelling 2000, 18, 464–477.spa
dc.relation.referencesHaynes, W. M. CRC handbook of chemistry and physics; CRC press, 2014.spa
dc.relation.referencesBrinck, T.; Murray, J. S.; Politzer, P. The Journal of Chemical Physics 1993, 98, 4305–4306.spa
dc.relation.referencesKoopmans, T. Physica 1934, 1, 104–113.spa
dc.relation.referencesPrajapati, P.; Pandey, J.; Tandon, P.; Sinha, K. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2019, 206, 246–253.spa
dc.relation.referencesChen, G.; Zheng, S.; Luo, X.; Shen, J.; Zhu, W.; Liu, H.; Gui, C.; Zhang, J.; Zheng, M.; Chum, M. P.; Chen, K.; Jiang, H. Journal of Combinatorial Chemistry 2005, 7, 398–406.spa
dc.relation.referencesLipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J. Advanced drug delivery reviews 1997, 23, 3–25.spa
dc.relation.referencesGalloway, W. R.; Isidro-Llobet, A.; Spring, D. R. Nature communications 2010, 1, 1–13.spa
dc.relation.referencesLeeson, P. D.; Springthorpe, B. Nature reviews Drug discovery 2007, 6, 881–890.spa
dc.relation.referencesTropsha, A.; Gramatica, P.; Gombar, V. K. QSAR and Combinatorial Science 2003, 22, 69–77.spa
dc.relation.referencesAlexander, D. L.; Tropsha, A.; Winkler, D. A. Journal of Chemical Information and Modeling 2015, 55, 1316–1322.spa
dc.relation.referencesTodeschini, R.; Ballabio, D.; Grisoni, F. Journal of Chemical Information and Modeling 2016, 56, 1905–1913.spa
dc.relation.referencesTropsha, A. Molecular Informatics 2010, 29, 476–488.spa
dc.relation.referencesKuntz, I. D.; Blaney, J. M.; Oatley, S. J.; Langridge, R.; Ferrin, T. E. Journal of molecular biology 1982, 161, 269–288.spa
dc.relation.referencesKontoyianni, M. In Proteomics for drug discovery; Springer, 2017; pp 255–266.spa
dc.relation.referencesKontoyianni, M.; Sokol, G. S.; MCclellan, L. M. Journal of computational chemistry 2005, 26, 11–22.spa
dc.relation.referencesMetropolis, N.; Rosenbluth, A. W.; Rosenbluth, M. N.; Teller, A. H.; Teller, E. The journal of chemical physics 1953, 21, 1087–1092.spa
dc.relation.referencesAlder, B. J.; Wainwright, T. E. The Journal of Chemical Physics 1959, 31, 459–466.spa
dc.relation.referencesGibson, J.; Goland, A. N.; Milgram, M.; Vineyard, G. Physical Review 1960, 120, 1229.spa
dc.relation.referencesRahman, A. Physical review 1964, 136, A405.spa
dc.relation.referencesKarplus, M. Angewandte Chemie International Edition 2014, 53, 9992–10005.spa
dc.relation.referencesMysinger, M. M.; Carchia, M.; Irwin, J. J.; Shoichet, B. K. Journal of medicinal chemistry 2012, 55, 6582–6594.spa
dc.relation.referencesLindorff-Larsen, K.; Piana, S.; Palmo, K.; Maragakis, P.; Klepeis, J. L.; Dror, R. O.; Shaw, D. E. Proteins: Structure, Function, and Bioinformatics 2010, 78, 1950–1958.spa
dc.relation.referencesWang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A. Journal of computational chemistry 2004, 25, 1157–1174.spa
dc.relation.referencesJakalian, A.; Bush, B. L.; Jack, D. B.; Bayly, C. I. Journal of computational chemistry 2000, 21, 132–146.spa
dc.relation.referencesMakeneni, S.; Thieker, D. F.; Woods, R. J. Journal of chemical information and modeling 2018, 58, 605–614.spa
dc.relation.referencesStjernschantz, E.; Oostenbrink, C. Biophysical journal 2010, 98, 2682–2691.spa
dc.relation.referencesJorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. The Journal of chemical physics 1983, 79, 926–935.spa
dc.relation.referencesPáll, S.; Hess, B. Computer Physics Communications 2013, 184, 2641–2650.spa
dc.relation.referencesDarden, T.; York, D.; Pedersen, L. The Journal of chemical physics 1993, 98, 10089–10092.spa
dc.relation.referencesHess, B.; Bekker, H.; Berendsen, H. J.; Fraaije, J. G. Journal of computational chemistry 1997, 18, 1463–1472.spa
dc.relation.referencesBussi, G.; Donadio, D.; Parrinello, M. The Journal of chemical physics 2007, 126, 014101.spa
dc.relation.referencesHoover, W. G. Physical review A 1985, 31, 1695.spa
dc.relation.referencesParrinello, M.; Rahman, A. Journal of Applied physics 1981, 52, 7182–7190.spa
dc.relation.referencesYung-Chi, C.; Prusoff, W. H. Biochemical pharmacology 1973, 22, 3099–3108.spa
dc.relation.referencesKruskal, W. H.; Wallis, W. A. Journal of the American statistical Association 1952, 47, 583–621.spa
dc.relation.referencesGames, P. A.; Howell, J. F. Journal of Educational Statistics 1976, 1, 113–125.spa
dc.relation.referencesEfron, B.; Tibshirani, R. J. An introduction to the bootstrap; CRC press, 1994.spa
dc.relation.referencesGowers, R. J.; Linke, M.; Barnoud, J.; Reddy, T. J. E.; Melo, M. N.; Seyler, S. L.; Domanski, J.; Dotson, D. L.; Buchoux, S.; Kenney, I. M.; et al.; MDAnalysis: a Python package for the rapid analysis of molecular dynamics simulations; Tech. Rep.; Los Alamos National Lab.(LANL), Los Alamos, NM (United States); 2019.spa
dc.relation.referencesCengel, Y. A.; Boles, M. A.; Kanoglu, M. Thermodynamics: an engineering approach; McGraw-hill New York, 2011; Vol. 5.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc570 - Biología::572 - Bioquímicaspa
dc.subject.ddc540 - Química y ciencias afines::541 - Química físicaspa
dc.subject.ddc540 - Química y ciencias afines::547 - Química orgánicaspa
dc.subject.lembChemical inhibitors
dc.subject.lembInhibidores químicos
dc.subject.lembEnzyme Inhibitors
dc.subject.lembInhibidores enzimaticos
dc.subject.proposalDescriptor molecularspa
dc.subject.proposalQSAReng
dc.subject.proposalHK2spa
dc.subject.proposalTamizaje virtualspa
dc.subject.proposalSimulación molecularspa
dc.subject.proposalVirtual screeningeng
dc.subject.proposalMolecular descriptoreng
dc.subject.proposalMolecular simulationeng
dc.titleBúsqueda virtual y cálculo computacional de la energía libre de unión de posibles inhibidores análogos a la glucosamina para la enzima hexoquinasa 2spa
dc.title.translatedVirtual screening and computational binding free energy calculation of possible glucosamine-like inhibitors for the enzyme hexokinase 2eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1152698890.2022.pdf
Tamaño:
30.27 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Química

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: