Evaluación de la capacidad de detección del procedimiento de ultrasonido del código AWS D1.5 para examinar puentes vehiculares mediante reflectores artificiales

dc.contributor.advisorGiraldo Barrada, Jorge Enrique
dc.contributor.authorCortés Arias, Paula Andrea
dc.contributor.researchgroupGrupo de Soldaduraspa
dc.date.accessioned2022-06-01T18:48:37Z
dc.date.available2022-06-01T18:48:37Z
dc.date.issued2021-12
dc.descriptionilustraciones, gráficas, tablasspa
dc.description.abstractEl presente estudio se enfocó en determinar de forma cuantitativa la capacidad de detección y evaluación del método de ultrasonido (con un enfoque en amplitud del eco) de la Sociedad Americana de Soldadura para el examen de puentes y edificaciones soldadas. Antes de abordar la parte experimental se llevó a cabo análisis del estado del arte del origen de este procedimiento y de las críticas que se le han realizado a lo largo de casi sesenta años de uso en los Estados Unidos. Se hicieron tres experimentos (0, 1 y 2) que consistían en el examen de bloques de acero ASTM A709 Gr. 50W, empleado en puentes, a los que se introdujeron dos tipos de reflectores artificiales planares (NTH y FBH) y un tipo de reflector volumétrico (SDH) ubicado en dos posiciones del espesor, de cuatro tamaños (0.5 mm, 1.0 mm, 3.0 mm y 5 mm). Los bloques fueron examinados con un equipo de ultrasonido pulso-eco, de forma manual, siguiendo la técnica prescriptiva del procedimiento de la AWS (Experimento 0) y alterando dos características que podrían influir en la capacidad de detección del procedimiento: el tamaño del cristal (experimento 1) y la frecuencia (Experimento 2). Los datos también se obtuvieron con variaciones en el ángulo de incidencia (45°, 60° y 70°). Se hicieron ocho mediciones (dos distancias del sonido, dos niveles de escaneo y dos ensayos) por cada tipo y tamaño de reflector dando como resultado 1224 datos. Entre los resultados más importantes se encuentra que, aunque el procedimiento prescriptivo de la AWS tiene una buena capacidad de detección que se mantiene con las modificaciones de frecuencia y tamaño del cristal; el procedimiento presenta una mala capacidad de evaluación de los reflectores (sin importar su tamaño o tipo), que se evidencia en su incapacidad de generar respuestas (índice de la indicación) diferenciales por tamaño de reflector y en su tendencia a que todos los tipos de reflectores se clasifiquen como inocuos para la estructura (Clase D). (texto tomado de la fuente)spa
dc.description.abstractThis study was focused on determining, quantitatively, the capacity of detection and evaluation of the ultrasonic methodology (with an echo amplitude approach) of the American Welding Society for the examination of welded bridges and buildings. Before approaching the experimental part, was carried out an analysis of the state of the art of the origin of this ultrasonic procedure, that includes the criticisms that have been made, over almost sixty years of use in the United States. Three experiments (0, 1 and 2) were performed, consisting of the examination of ASTM A709 Gr. 50W steel blocks, used in bridges, to which two types of planar artificial reflectors (NTH and FBH) and one type of volumetric reflector (SDH) located at two positions through thickness were fabricated in four sizes (0.5 mm, 1.0 mm, 3.0 mm, and 5 mm). The blocks were manually examined with pulse-echo ultrasound equipment following the prescribed method of the AWS procedure (Experiment 0) and altering two characteristics that could influence the detection capability of the procedure: crystal size (Experiment 1) and frequency (Experiment 2). Data were also obtained with variations in the angle of incidence (45°, 60° and 70°). Eight measurements (two sound distances, two scanning levels and two trials) were made for each type and size of the reflector resulting in 1224 data. Among the most important results is that, although the prescriptive procedure has a good detection capability and this isn´t altered (in a big way) with changes in frequency and crystal size. But nevertheless, the procedure has a poor ability to evaluate the reflectors (regardless of its size or type). This is exposed for example in that it is unable to generate differential responses (indication rating) by size; and also presents a high tendency for reflectors to be classified as harmless to the structure or not severe (Class D) without an increase in the size or a change in the shape of the reflector to avoid it.eng
dc.description.curricularareaÁrea Curricular de Ingeniería Mecánicaspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería Mecánicaspa
dc.description.researchareaDetección de discontinuidades en puentes mediante ultrasonido pulso-ecospa
dc.format.extent165 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81477
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Ingeniería Mecánicaspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería Mecánicaspa
dc.relation.referencesObraz, J. (1978). Dynamic evaluation of flaw size in ultrasonic testing of steel plates. Ultrasonics, 218-222.spa
dc.relation.referencesOgilvy, J. (1989). Model for the ultrasonic inspection of rough defects. Ultrasonics, 69-79.spa
dc.relation.referencesOgilvy, J. (1993). Model for predicting ultrasonic pulse-echo probability of detection. NDT&E International, 19-29.spa
dc.relation.referencesOlav Forli, K. O. (1999). NT TECHN REPORT 427 GUIDELINES FOR DEVELOPMENT OF NDE ACCEPTANCE CRITERIA. Oslo: Nordic Innovation Centre.spa
dc.relation.referencesOlsson, D. A. (1966). Ultrasonic Testing of Structural Welds. 48th Annual Meeting (págs. 46-52). Highway Research Board.spa
dc.relation.referencesOlympus. (9 de Enero de 2020). https://www.olympus-ims.com/en/resources/white-papers/ultrasonic-transducer-technical-notes/. Obtenido de https://www.olympus-ims.com/en/resources/white-papers/ultrasonic-transducer-technical-notes/: https://www.olympus-ims.com/en/resources/white-papers/ultrasonic-transducer-technical-notes/spa
dc.relation.referencesOno, K. (2020). A Comprehensive Report on Ultrasonic Attenuation of Engineering Materials, Including Metals, Ceramics, Polymers, Fiber-Reinforced Composites, Wood, and Rocks. Appl. Sci. 2020.spa
dc.relation.referencesÖsterberg, H. W. (2000). Study of defect characteristics essential for NDT Testing Methods ET, UT and RT. Sweden: SKI.spa
dc.relation.referencesPaul Holloway, A. C. (2017). Adapting CSA W59 ultrasonic inspections for use with distance-amplitude techniques. NDT in Canada 2017 Conference. Quebecspa
dc.relation.referencesPaul Holloway, A. C. (2018). Distance-Amplitude Techniques and their Adaptation to Structural Steel Weld Inspection. WELDING JOURNAL, 38-47.spa
dc.relation.referencesPietro Burrascano, S. C. (2015). Ultrasonic Nondestructive Evaluation Systems Industrial Application Issues. Springer.spa
dc.relation.referencesPosakony, G. J. (1986). Experimental Analysis of ultrasonic Responses from Artificial Defects. Materials Evaluation 44, 1567-1572.spa
dc.relation.referencesPunjani, L. B. (1984). Review of some recent advances in quantitative ultrasonic NDT. IEE PROCEEDINGS, 265-274spa
dc.relation.referencesR.L. Hockey, E. G. (1991). The Effect of equipment bandwith and center frequency changes on ultrasonic realiability: are models too conservative? review of progress in Quantitative Nondestructuve Evaluation Vol 10B, 2251-2258spa
dc.relation.referencesRaphaella H. F. Murta, F. d. (2018). Welding Defect Classification from Simulated Ultrasonic Signals. Journal of Nondestructive Evaluation, 1-10.spa
dc.relation.referencesRipling, P. B. (1990). Acceptance criteria for steel bridge welds. Washington D. C: National cooperative Highway Research programspa
dc.relation.referencesRobert E. Shaw Jr., P. M. (2002). Ultrasonic Testing Procedures, Technician Skills, and Qualifications. JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 62-67spa
dc.relation.referencesRobert J. Connor, C. J. (2019). Acceptance Criteria of Complete Joint Penetration Steel Bridge Welds Evaluated Using Enhanced Ultrasonic Methods. Washington D. C: NATIONAL COOPERATIVE HIGHWAY RESEARCH PROGRAMspa
dc.relation.referencesRumsey, J. C. (1960). Interpretation of ultrasonic echo amplitude. BRITISH JOURNAL OF APPLIED PHYSICS, 25-29spa
dc.relation.referencesRyan, R. M. (2017). Is That Flaw Really There? Ultrasonics for Nondestructive Testing 2017spa
dc.relation.referencesS. V. Ranganayakulu, S. G. (2017). Characterization of Weldments Defects through Non Destructive Evaluation Techniques. Indian Journal of Science and Technology, 1-9.spa
dc.relation.referencesS. Williams, P. M. (1985). Statistical aspects of defect evaluation using ultrasonics. NDT INTERNATIONAL, 123-131spa
dc.relation.referencesSchlengermann, U. (1996). Characterization of Reflectors by Ultrasonic Methods. The Echo, 33-35spa
dc.relation.referencesShenefelt, G. A. (1971). Ultrasonic Testing Requirements of the AWS 1969 Building Code and Bridge Specifications. Welding Journal, 342-349spa
dc.relation.referencesSong, S.-J. (1991). Ultrasonic flaw classification and sizing. Iowa State University Digital Repositoryspa
dc.relation.referencesT. J. Jessop, P. J. (1981). Report 242 - Ultrasonic Measurement of weld flaw Size. Washington D.C: Transportation research Boardspa
dc.relation.referencesTennakoon, T. (2010). Analysis software to interpret defects in ultrasonic testing. International Journal of Structural integrity, 85-93spa
dc.relation.referencesTennakoon, T. (15 de marzo de 2010). Characterization of weld defects in single V-butt welded mild steel plates using ultrasonic A-scan technique. Tesis de Mestria. Sri Lanka: University of Moratuwaspa
dc.relation.referencesThe British Institute of Nondestructive Testing. (s.f.). Obtenido de https://www.bindt.org/What-is-NDT/Ultrasonic-advanced-methods/spa
dc.relation.referencesThompson, R. B. (1983). Quantitative Ultrasonic Nondestructive evaluation Methods. Journal of Applied Mechanics 50, 1191-1201spa
dc.relation.referencesTomonori Kimura, S. W. (2010). Simulation of Ultrasonic Fields and Echoes Obtained Using Angle Beam Transducer by Hybrid FDTD Method. E-Journal of Advanced Maintenance Vol.# (2010).spa
dc.relation.referencesTutzschky, G. (1987). Detection of defects in ultrasonic weld testing. WELDING INTERNATIONAL, 380-382.spa
dc.relation.referencesVEQTER. (27 de Agosto de 2021). The Ultrasound stress measurement technique is the only portable, non-destructive, through-thickness stress measurement technique and it is applicable to a wide range of materials. Obtenido de https://www.veqter.co.uk/residual-stress-measurement/ultrasoundspa
dc.relation.referencesVirkkunen, M. K. (2011). Crack Characteristics and Their Importance to NDE. J Nondestruct Eval, 143–157.spa
dc.relation.referencesVisser Consultancy Limited. (2002). POD/POS curves for non-destructive examination. weybridge: HSE BOOKS.spa
dc.relation.referencesW.W. Sanders, J. a. (1966). Study of inspection methos and quality control for welded highway structures. Urbana, Illinois: University of Illinois.spa
dc.relation.referencesWolf KLEINERT, Y. O. (2010). http://www.ndt.net/forum/thread.php?forenID=1&rootID=8596#. Obtenido de http://www.ndt.net/forum/thread.php?forenID=1&rootID=8596#spa
dc.relation.referencesWoo, D. J. (s.f.). History of Ultrasound in Obstetrics and Gynecology. Obtenido de http://www.ob-ultrasound.net/sperry.htmlspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::621 - Física aplicadaspa
dc.subject.lembPresión del sonido
dc.subject.lembPuentes
dc.subject.lembOndas ultrasónicas-Aplicaciones industriales
dc.subject.lembSoldadura ultrasónica
dc.subject.proposalUltrasonidospa
dc.subject.proposalPulso-ecospa
dc.subject.proposalPuentesspa
dc.subject.proposalReflectores artificialesspa
dc.subject.proposalÍndice de la indicaciónspa
dc.subject.proposalAltura del ecospa
dc.subject.proposalSoldaduraspa
dc.subject.proposalPulse-echospa
dc.subject.proposalIndication ratingeng
dc.subject.proposalEcho heighteng
dc.subject.proposalArtificial reflectorseng
dc.titleEvaluación de la capacidad de detección del procedimiento de ultrasonido del código AWS D1.5 para examinar puentes vehiculares mediante reflectores artificialesspa
dc.title.translatedEvaluation of the detection capability of the ultrasound procedure of the AWS D1.5 code to examine highway bridges using artificial reflectorseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1037596394_2021.pdf
Tamaño:
14.13 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería Mecánica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: