El problema de Cauchy asociado a una generalización de la ecuación Zakharov-Kuznetsov sobre el cilindro

dc.contributor.advisorRodríguez Blanco, Guillermo
dc.contributor.authorAlbarracin Hernandez, Carolina
dc.date.accessioned2021-09-17T17:28:13Z
dc.date.available2021-09-17T17:28:13Z
dc.date.issued2021-07
dc.description.abstractIn this work, we study questions related to the local well-posedness for the initial value problem associated to the partial differential equation, u_{t} − ∂_{x}(D_{x}^{α+1}u ± D_{y}^{β+1}u) + u^{p}u_{x} = 0, where 0 ≤ α, β ≤ 1 and p ∈ Z ^{+}, in the standard, anisotropic and weighted Sobolev spaces in R × T and T^{2}. For this purpose, we use parabolic regularization, localized Strichartz and energy estimates, together with a compactness argument, as well as, commutator estimates and remarkable properties of the Stein derivative. In addition, we show the existence of certain type of solitary wave in the cylinder.eng
dc.description.abstractEn el presente trabajo, estudiamos cuestiones relacionadas al buen planteamiento local, del problema de valor inicial asociado a la ecuación diferencial parcial, u_{t} − ∂_{x}(D_{x}^{α+1}u ± D_{y}^{β+1}u) + u^{p}u_{x} = 0, donde 0 ≤ α, β ≤ 1 y p ∈ Z^{+}, en los espacios de Sobolev estandar, anisotrópicos y con pesos en R×T y en T^{2}. Para dicho fin, usamos regularización parabólica, estimativas de Strichartz localizadas y de energía, junto con un argumento de compacidad, como también estimativas del conmutador y propiedades notables de la derivada de Stein. Además, probamos la existencia de cierto tipo de onda solitaria en el cilindro. (Texto tomado de la fuente).spa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ciencias - Matemáticasspa
dc.description.notesIncluye índice alfabéticospa
dc.format.extentvii, 120 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80230
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Matemáticasspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Matemáticasspa
dc.relation.references[1] G. P. Agrawal. Fiber-optic communication systems, volume 222. John Wiley & Sons, 2012.spa
dc.relation.references[2] C. Albarracin and G. Rodriguez-Blanco. The IVP for a certain dispersion generalized ZK equation in bi-periodic spaces, 2021.spa
dc.relation.references[3] J. P. Albert. Concentration compactness and the stability of solitary-wave solutions to nonlocal equa tions. Contemporary Mathematics, 221:1–30, 1999.spa
dc.relation.references[4] J. Angulo, J. Bona, F. Linares, and M. Scialom. Scaling, stability and singularities for nonlinear, dis persive wave equations: the critical case. Nonlinearity, 15(3):759, 2002.spa
dc.relation.references[5] T. Aubin. Nonlinear analysis on manifolds. Monge-Ampere equations, volume 252. Springer Science & Business Media, 1982.spa
dc.relation.references[6] T. B. Benjamin. Internal waves of permanent form in fluids of great depth. Journal of Fluid Mechanics, 29(3):559–592, 1967.spa
dc.relation.references[7] H. A. Biagioni and F. Linares. Well-posedness Results for the Modified Zakharov-Kuznetsov Equation, pages 181–189. Birkhäuser Basel, Basel, 2003.spa
dc.relation.references[8] J. F. Bolaños Méndez et al. El problema de Cauchy asociado a una generalización de la ecuación ZK BBM. PhD thesis, Universidad Nacional de Colombia-Sede Bogotá.spa
dc.relation.references[9] J. L. Bona and R. Smith. The initial-value problem for the Korteweg-de Vries equation. Philo sophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 278(1287):555–601, 1975spa
dc.relation.references[10] J. L. Bona and N. Tzvetkov. Sharp well-posedness results for the BBM equation. Discrete Contin. Dyn. Syst, 23(1241-1252):7, 2009.spa
dc.relation.references[11] E. Bustamante, J. J. Urrea, and J. Mejía. Periodic Cauchy problem for one two-dimensional generaliza tion of the Benjamin–Ono equation in Sobolev spaces of low regularity. Nonlinear Analysis, 188:50–69, 2019.spa
dc.relation.references[12] A. Cunha and A. Pastor. The IVP for the Benjamin–Ono–Zakharov–Kuznetsov equation in low regularity Sobolev spaces. Journal of Differential Equations, 261(3):2041–2067, 2016.spa
dc.relation.references[13] A. Cunha and A. Pastor. Persistence properties for the dispersion generalized BO-ZK equation in weighted anisotropic Sobolev spaces. Journal of Differential Equations, 274:1067–1114, 2021.spa
dc.relation.references[14] L. Dawson, H. McGahagan, and G. Ponce. On the decay properties of solutions to a class of Schrödinger equations. Proceedings of the American Mathematical Society, 136(6):2081–2090, 2008.spa
dc.relation.references[15] O. Duque. Sobre una versión bidimensional de la ecuación Benjamin-Ono generalizada. Tesis de doc torado, Universidad Nacional de Colombia, Bogotá, 2014.spa
dc.relation.references[16] A. V. Faminskii. The Cauchy problem for the Zakharov–Kuznetsov equation. Differentsial’nye Uravne niya, 31(6):1070–1081, 1995.spa
dc.relation.references[17] G. Fonseca, F. Linares, and G. Ponce. The IVP for the dispersion generalized Benjamin–Ono equation in weighted Sobolev spaces. In Annales de l’Institut Henri Poincare (C) Non Linear Analysis, volume 30, pages 763–790. Elsevier, 2013spa
dc.relation.references[18] G. Fonseca and G. Ponce. The IVP for the Benjamin–Ono equation in weighted Sobolev spaces. Journal of Functional Analysis, 260(2):436 – 459, 2011.spa
dc.relation.references[19] S. V. Francis Ribaud. Local and global well-posedness results for the Benjamin-Ono-Zakharov-Kuznetsov equation. Discrete and Continuous Dynamical Systems, 37(1):449–483, 2017.spa
dc.relation.references[20] L. Grafakos. Classical fourier analysis, volume 2. Springer, 2008.spa
dc.relation.references[21] A. Grünrock and S. Herr. The Fourier restriction norm method for the Zakharov-Kuznetsov equation. arXiv preprint arXiv:1302.2034, 2013.spa
dc.relation.references[22] E. Hille. Methods in classical and functional analysis. 1972.spa
dc.relation.references[23] A. D. Ionescu and C. E. Kenig. Local and global well-posedness of periodic KP-I equations. Mathema tical Aspects of Nonlinear Dispersive Equations. Ann. Math. Stud, 163:181–211, 2009.spa
dc.relation.references[24] J. R. J. Iorio and W. V. L. Nunes. Introducao as equacoes de evolucao nao lineares. Cnpq/Impa, Rio de Janeiro, 1991.spa
dc.relation.references[25] R. J. Iório. KdV, BO and friends in weighted Sobolev spaces. In Functional-analytic methods for partial differential equations, pages 104–121. Springer, 1990.spa
dc.relation.references[26] I. J. Iorio Jr, R. J. Iorio Jr, and V. de Magalhães Iorio. Fourier analysis and partial differential equations, volume 70. Cambridge University Press, 2001.spa
dc.relation.references[27] R. José Iório, Jr. On the Cauchy problem for the Benjamin-Ono equation. Communications in partial differential equations, 11(10):1031–1081, 1986.spa
dc.relation.references[28] T. Kato. Quasi-linear equations of evolution, with applications to partial differential equations. Spectral theory and differential equations, pages 25–70, 1975. 118 Bibliografíaspa
dc.relation.references[29] T. Kato. On the Cauchy problem for the (generalized) Korteweg-de Vries equation. Studies in applied mathematics, 8:93–128, 1983.spa
dc.relation.references[30] T. Kato and G. Ponce. Commutator estimates and the Euler and Navier-Stokes equations. Communi cations on Pure and Applied Mathematics, 41(7):891–907, 1988.spa
dc.relation.references[31] G. Keiser. Optical fiber communications. Wiley Online Library, 2003.spa
dc.relation.references[32] C. E. Kenig. On the local and global well-posedness theory for the KP-I equation. In Annales de l’Institut Henri Poincare (C) Non Linear Analysis, volume 21, pages 827–838. Elsevier, 2004.spa
dc.relation.references[33] C. E. Kenig, G. Ponce, and L. Vega. Well-posedness and scattering results for the generalized korteweg de vries equation via the contraction principle. Communications on Pure and Applied Mathematics, 46(4):527–620, 1993.spa
dc.relation.references[34] C. E. Kenig, G. Ponce, and L. Vega. A bilinear estimate with applications to the KdV equation. Journal of the American Mathematical Society, 9(2):573–603, 1996.spa
dc.relation.references[35] C. E. Kenig, G. Ponce, and L. Vega. On the unique continuation of solutions to the generalized KdV equation. Mathematical Research Letters, 10(5/6):833–846, 2003.spa
dc.relation.references[36] S. Kinoshita and R. Schippa. Loomis-Whitney-type inequalities and low regularity well-posedness of the periodic Zakharov-Kuznetsov equation. Journal of Functional Analysis, 280(6):108904, 2021.spa
dc.relation.references[37] H. Koch and N. Tzvetkov. On the local well-posedness of the Benjamin-Ono equation in Hs(R). In ternational Mathematics Research Notices, 2003(26):1449–1464, 2003.spa
dc.relation.references[38] D. Korteweg and G. de Vries. On the change of long waves advancing in a rectangular canal and a new type of long stationary wave. Philosophical Magazine, 39:422–443, 1835.spa
dc.relation.references[39] E. W. Laedke and K.-H. Spatschek. Nonlinear ion-acoustic waves in weak magnetic fields. The Physics of Fluids, 25(6):985–989, 1982.spa
dc.relation.references[40] D. Lannes, F. Linares, and J.-C. Saut. The Cauchy problem for the Euler–Poisson system and derivation of the Zakharov–Kuznetsov equation. In Studies in phase space analysis with applications to PDEs, pages 181–213. Springer, 2013spa
dc.relation.references[41] F. Linares, M. Panthee, T. Robert, and N. Tzvetkov. On the periodic Zakharov-Kuznetsov equation. arXiv preprint arXiv:1809.02027, 2018.spa
dc.relation.references[42] F. Linares and A. Pastor. Well-posedness for the two-dimensional modified Zakharov–Kuznetsov equa tion. SIAM Journal on Mathematical Analysis, 41(4):1323–1339, 2009.spa
dc.relation.references[43] F. Linares and A. Pastor. local and global well-posedness for the 2d generalized zakharov-kuznetsov equation. Journal of Functional Analysis, 260 (4):1060–1085, 2010. Bibliografía 119spa
dc.relation.references[44] F. Linares and A. Pastor. Local and global well-posedness for the 2D generalized Zakharov–Kuznetsov equation. Journal of Functional Analysis, 260(4):1060–1085, 2011.spa
dc.relation.references[45] F. Linares, A. Pastor, and J.-C. Saut. Well-posedness for the ZK equation in a cylinder and on the background of a KdV soliton. Communications in Partial Differential Equations, 35(9):1674–1689, 2010.spa
dc.relation.references[46] F. Linares and G. Ponce. Introduction to nonlinear dispersive equations. Springer, 2014.spa
dc.relation.references[47] F. Linares and J.-C. Saut. The Cauchy problem for the 3D Zakharov-Kuznetsov equation. RN, 1:2, 2009.spa
dc.relation.references[48] P.-L. Lions. The concentration-compactness principle in the calculus of variations. The locally compact case, part 2. In Annales de l’Institut Henri Poincare (C) Non Linear Analysis, volume 1, pages 223–283. Elsevier, 1984.spa
dc.relation.references[49] P.-L. Lions. The concentration-compactness principle in the calculus of variations. The limit case, part 1. Revista matemática iberoamericana, 1(1):145–201, 1985.spa
dc.relation.references[50] P.-L. Lions. Mathematical Topics in Fluid Mechanics: Volume 2: Compressible Models, volume 2. Ox ford University Press on Demand, 1996.spa
dc.relation.references[51] J. d. C. Lizarazo Osorio et al. El problema de Cauchy de la clase de ecuaciones de dispersión generalizada de Benjamin-Ono bidimensionales. PhD thesis, Universidad Nacional de Colombia-Sede Bogotá.spa
dc.relation.references[52] L. Molinet and D. Pilod. Bilinear Strichartz estimates for the Zakharov–Kuznetsov equation and appli cations. Annales de l’Institut Henri Poincaré (C) Non Linear Analysis, 32(2):347–371, 2015.spa
dc.relation.references[53] L. Molinet, J.-C. Saut, and N. Tzvetkov. Global well-posedness for the KP-I equation on the background of a non-localized solution. Communications in mathematical physics, 272(3):775–810, 2007.spa
dc.relation.references[54] A. Moliton. Solid-State physics for electronics. John Wiley & Sons, 2013.spa
dc.relation.references[55] J. Nahas and G. Ponce. On the persistent properties of solutions to semi-linear Schrödinger equation. Communications in Partial Differential Equations, 34(10):1208–1227, 2009.spa
dc.relation.references[56] M. B. Nathanson. Additive Number Theory The Classical Bases, volume 164. Springer Science & Business Media, 2013.spa
dc.relation.references[57] H. Ono. Algebraic solitary waves in stratified fluids. Journal of the Physical Society of Japan, 39(4):1082–1091, 1975.spa
dc.relation.references[58] J. A. Pava. Nonlinear dispersive equations: existence and stability of solitary and periodic travelling wave solutions. Number 156. American Mathematical Soc., 2009.spa
dc.relation.references[59] Y. Qin and P. Kaloni. Steady convection in a porous medium based upon the Brinkman model. IMA journal of applied mathematics, 48(1):85–95, 1992.spa
dc.relation.references[60] G. Rodríguez-Blanco. On the Cauchy problem for the Camassa-Holm equation. Nonlinear Anal., 46:309–327, 2001.spa
dc.relation.references[61] F. Sánchez Salazar et al. El problema de Cauchy asociado a una ecuación del tipo rBO-ZK. PhD thesis, Universidad Nacional de Colombia.spa
dc.relation.references[62] R. Schippa. On the Cauchy problem for higher dimensional Benjamin-Ono and Zakharov-Kuznetsov equations. arXiv preprint arXiv:1903.02027, 2019.spa
dc.relation.references[63] T. Tao. Global well-posedness of the Benjamin–Ono equation in H1(R). Journal of Hyperbolic Differen tial Equations, 1(01):27–49, 2004.spa
dc.relation.references[64] T. Tao. Nonlinear dispersive equations: local and global analysis. Number 106. American Mathema tical Soc., 2006.spa
dc.relation.references[65] V. Zakharov and E. kuznetsov. On three dimensional soliton. Sov.Phys-JETP Anal., 39(2):285–286, 1974spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc510 - Matemáticas:515 - Análisisspa
dc.subject.lembCauchy problemeng
dc.subject.lembProblema de Cauchyspa
dc.subject.lembFunction spaceseng
dc.subject.lembEspacios funcionalesspa
dc.subject.lembFunctional analysiseng
dc.subject.lembAnálisis funcionalspa
dc.subject.proposalEDPspa
dc.subject.proposalEspacios de Sobolevspa
dc.subject.proposalBuen planteamiento localspa
dc.subject.proposalPDEeng
dc.subject.proposalSobolev’s spaceseng
dc.subject.proposalLocal well possedneseng
dc.titleEl problema de Cauchy asociado a una generalización de la ecuación Zakharov-Kuznetsov sobre el cilindrospa
dc.title.translatedThe Cauchy problem associated with a generalization of the Zakharov-Kuznetsov equation on the cylindereng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1030546628.2021.pdf
Tamaño:
638.61 KB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ciencias - Matemáticas

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: