Valoración de flujos de pagos estocásticos utilizando simulación Monte Carlo con suavizadores y modelos para la estructura temporal de tasas

dc.contributor.advisorGiraldo Gómez, Norman Diego
dc.contributor.authorRangel Arciniegas, Diego Fernando
dc.date.accessioned2021-12-03T15:47:31Z
dc.date.available2021-12-03T15:47:31Z
dc.date.issued2021-12-01
dc.descriptionilustraciones, gráficas, tablasspa
dc.description.abstractLos métodos Monte Carlo son una alternativa utilizada para la valoración de productos financieros. Los productos financieros a los que se refiere este trabajo son las anualidades de las cuales hay varios tipos, que son las rentas vitalicias y los retiros programados y en ambas su expresión para el precio corresponde a una esperanza condicional que depende de dos procesos estocásticos en tiempo continuo: las tasas de interés variables denominadas spot y el rendimiento del fondo, asumidas ambas como proceso de difusión. Esta esperanza puede evaluarse mediante métodos Monte Carlo simulando los respectivos procesos, pero la forma especial del valor esperado permite valorarla también, con cierta restricción, mediante una ecuación diferencial parcial de tipo parabólico con condiciones iniciales y de frontera, conocida como ecuación Feynman-Kac. Esta restricción es que la tasa de interés sea determinística. (Texto tomado de la fuente)spa
dc.description.abstractMonte Carlo methods are widely used as an alternative for valuation of financial products. The financial products to which this work refers are annuities of which there are several types, which are life annuity and programmed retirement and in both their expression for the price corresponds to a conditional expectation of an expression that depends on two stochastic processes in continuous time: the variable interest rates called spot rate and the fund's performance, both assumed as a di usion process. This expectation can be valued through Monte Carlo methods by simulating the respective processes, but the special form from the expected value also allows to value it, with certain restriction, by a partial di erential equation of parabolic-type with initial and boundary conditions, known as the Feynman-Kac equation. This restriction needs the interest rate to be deterministic.eng
dc.description.curricularareaÁrea Curricular Estadísticaspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Estadísticaspa
dc.description.researchareaModelación Estocásticaspa
dc.format.extentxvi, 88 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80753
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentEscuela de estadísticaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias - Maestría en Ciencias - Estadísticaspa
dc.relation.referencesAase, K. K. & Persson, S.-A. (1994), 'Pricing of unit-linked life insurance policies', Scandinavian Actuarial Journal 1994(1), 26-52.spa
dc.relation.referencesAlexandrov, T., Bianconcini, S., Dagum, E. B., Maass, P. & McElroy, T. S. (2012), 'Areview of some modern approaches to the problem of trend extraction', Econometric Reviews 31(6), 593-624.spa
dc.relation.referencesBacinello, A. R., Millossovich, P., Olivieri, A. & Pitacco, E. (2011), `Variable annuities: Aunifying valuation approach', Insurance: Mathematics and Economics 49(3), 285-297.spa
dc.relation.referencesBerger, A. (1939), Mathematik der Lebensversicherung, Springer-Verlag Wien.spa
dc.relation.referencesBiffis, E. (2005), `Affine processes for dynamic mortality and actuarial valuations', Insurance: mathematics and economics 37(3), 443-468.spa
dc.relation.referencesBlake, D. (2006), Pension Finance, John Wiley and Sons., Chichester.spa
dc.relation.referencesBlake, D., Cairns, A., Coughlan, G., Dowd, K. & MacMinn, R. (2013), `The new life market', Journal of Risk and Insurance 80(3), 501-558.spa
dc.relation.referencesBlakey, P. (2006), `The false allure of equity indexed annuities', IEEE Microwave Magazine 7(2), 16-22.spa
dc.relation.referencesBoulier, J.-F., Huang, S.-J. & Taillard, G. (2001), `Optimal management under stochastic interest rates: the case of a protected de ned contribution pension fund', Insurance: Mathematics and Economics (28), 173-189.spa
dc.relation.referencesBrouste, A., Fukasawa, M., Hino, H., Iacus, S. M., Kamatani, K., Koike, Y., Masuda, H., Nomura, R., Ogihara, T., Shimuzu, Y., Uchida, M. & Yoshida, N. (2014), `The yuima project: A computational framework for simulation and inference of stochastic di erential equations', Journal of Statistical Software 57(4), 1-51. URL: http://www.jstatsoft.org/v57/i04/spa
dc.relation.referencesCarriere, J. F. (2004), `Martingale Valuation of Cash Flows for Insurance and Interest Models', North-americal Actuarial Journal 8(3), 150-210.spa
dc.relation.referencesChen, D.-f. & Xiang, G. (2003), `Time-risk discount valuation of life contracts', Acta Mathematicae Applicatae Sinica 19(4), 647-662.spa
dc.relation.referencesChen, R.-R. (1996), Understanding and managing interest rate risks, Vol. 1, World Scientific.spa
dc.relation.referencesChoe, G. H. (2016), Stochastic analysis for finance with simulations, Springer International Publishing Switzerland.spa
dc.relation.referencesCárdenas-Santamaría, M. (2015), Resolución 3099 de agosto 19 de 2015, Technical report, Ministerio de Hacienda y Crédito Público.spa
dc.relation.referencesDe Schepper, A. & Goovaerts, M. (1992), `Some further results on annuities certain with random interest', Insurance: Mathematics and Economics 11(4), 283-290.spa
dc.relation.referencesDeprez, E. & Schaetzle, T. (1964), `Variable Annuities', 17th International Congress of Actuaries 3(1), 108-120.spa
dc.relation.referencesDermoune, A., Djehiche, B. & Rahmania, N. (2008), `A consistent estimator of the smoothing parameter in the hodrick-prescott filter', Journal of the Japan Statistical Society 38(2), 225-241.spa
dc.relation.referencesDevolder, P. (2016), Finance stochastique, Editions de l'Université de Bruxelles.spa
dc.relation.referencesDietz, H. M. (1992), `A stochastic interest model with an application to insurance', Insurance: Mathematics and Economics 11(4), 301-310.spa
dc.relation.referencesDiGiacinto, M., Salvatore, F., Gozzi, F. & Vigna, E. (2014), `Income drawdown option with minimum guarantee', European Journal of Operational Research 234(3), 610-624.spa
dc.relation.referencesDjehiche, B. & L ofdahl, B. (2014), `Risk aggregation and stochastic claims reserving in disability insurance', Insurance: Mathematics and Economics 59, 100-108.spa
dc.relation.referencesDjehiche, B. & L ofdahl, B. (2016), `Nonlinear reserving in life insurance: Aggregation and mean- eld approximation', Insurance: Mathematics and Economics 69, 1-13.spa
dc.relation.referencesDjehiche, B. & Nassar, H. (2013), `A functional hodrick prescott filter', arXiv preprint arXiv:1312.4936 .spa
dc.relation.referencesDuffie, D. (2010), Dynamic asset pricing theory, Princeton University Press.spa
dc.relation.referencesDuffie, D., Schroder, M., Skiadas, C. et al. (1996), `Recursive valuation of defaultable securities and the timing of resolution of uncertainty', Annals of Applied Probability 6(4), 1075-1090.spa
dc.relation.referencesDufresne, D. (1990), `The distribution of a perpetuity, with applications to risk theory and pension funding', Scandinavian Actuarial Journal 1990(1), 39-79.spa
dc.relation.referencesEmms, P. & Haberman, S. (2008), `Income Drawdown Schemes for Defined-Contribution Pension Plan', The Journal of Risk and Insurance 75(3), 739-761.spa
dc.relation.referencesFeng, R. (2018), An introduction to computational risk management of equity-linked insurance, CRC Press, Boca Raton, FL, USA.spa
dc.relation.referencesFriedman, A. (1976), Stochastic Dfferential Equations and Applications, vol I, Academic Press, Inc. London.spa
dc.relation.referencesGallieri, M. (2016), Lasso-MPC-Predictive Control with L1-Regularised Least Squares, Springer.spa
dc.relation.referencesGatzert, N. & Schmeiser, H. (2013), New life insurance  financial products, in `Handbook of insurance', Springer, pp. 1061-1095.spa
dc.relation.referencesGibson, R., Lhabitant, F.-S. & Talay, D. (2010), `Modeling the term structure of interest rates: a review of the literature'.spa
dc.relation.referencesGiraldo, N. (2017), Actuaría de Contingencias de Vida, con R, Escuela de Estadística. Universidad Nacional de Colombia. URL: http://bdigital.unal.edu.co/74027spa
dc.relation.referencesGoldie, C. M. & Gr ubel, R. (1996), `Perpetuities with thin tails', Advances in Applied Probability pp. 463-480.spa
dc.relation.referencesGuidoum, A. C. & Boukhetala, K. (2020), `Performing parallel monte carlo and moment equations methods for ito and stratonovich stochastic differential systems: R package Sim.DiffProc', Journal of Statistical Software 96(2), 1-82.spa
dc.relation.referencesHan, N.-W. & Hung, M.-W. (2015), `The investment management for a downsideprotected equity-linked annuity under interest rate risk', Finance Research Letters pp. 113-124.spa
dc.relation.referencesHe, L. & Liang, Z. (2013), `Optimal dynamic asset allocation strategy for ela scheme of dc pension plan during the distribution phase', Insurance: Mathematics and Economics 52(2), 404-410.spa
dc.relation.referencesHilli, P., Koivu, M. & Pennanen, T. (2011a), `Cash-ow based valuation of pension liabilities', European Actuarial Journal 1(2), 329-343.spa
dc.relation.referencesHilli, P., Koivu, M. & Pennanen, T. (2011b), `Cash-flow based valuation of pension liabilities', European Actuarial Journal 1(2), 329.spa
dc.relation.referencesHuang, H., Milevsky, M. & Salisbury, T. (2009), `A different perspective on retirement income sustainability: The blueprint for a ruin contingent life annuity (RCLA)', Journal of Wealth Management (4), 89-96.spa
dc.relation.referencesHuang, H., Milevsky, M. & Salisbury, T. (2012), `Valuation and hedging of the ruincontingent life annuity (RCLA)', arXiv 1205.3686, 1-31.spa
dc.relation.referencesIacus, S. M. (2016), sde: Simulation and Inference for Stochastic Differential Equations. R package version 2.0.15. URL: https://CRAN.R-project.org/package=sdespa
dc.relation.referencesIacus, S. & Yoshida, N. (2018), `Simulation and inference for stochastic processes with yuima', A comprehensive R framework for SDEs and other stochastic processes. Use Rspa
dc.relation.referencesJedrzejewski, F. (2009), Modeles aleatoires et physique probabiliste, Springer Science & Business Media.spa
dc.relation.referencesKaratzas, I. & Shreve, S. E. (1991), Brownian Motion and Stochastic Calculus, Springer Verlag, New York.spa
dc.relation.referencesKim, S.-J., Koh, K., Boyd, S. & Gorinevsky, D. (2009), ``L1 trend filtering', SIAM review 51(2), 339{360.spa
dc.relation.referencesKorn, R., Korn, E. & Kroisandt, G. (2010), Monte Carlo methods and models in finance and insurance, CRC press.spa
dc.relation.referencesKunitomo, N. & Takahashi, A. (2001), `The asymptotic expansion approach to the valuation of interest rate contingent claims', Mathematical Finance 11(1), 117-151.spa
dc.relation.referencesLando, D. (1998), `On Cox processes and credit risky securities', Review of Derivatives research 2(2-3), 99-120.spa
dc.relation.referencesLin, X. S. (2006), Introductory stochastic analysis for finance and insurance, Vol. 557, John Wiley & Sons.spa
dc.relation.referencesMartin, V., Hurn, S. & Harris, D. (2013), Econometric modelling with time series: specification, estimation and testing, Cambridge University Press.spa
dc.relation.referencesMedvedev, G. A. (2019), Yield Curves and Forward Curves for Diffusion Models of Short Rates, Springer.spa
dc.relation.referencesMilevsky, M. A. (1997), `The present value of a stochastic perpetuity and the gamma distribution', Insurance: Mathematics and Economics 20(3), 243-250.spa
dc.relation.referencesMingari, G., Ritelli, D. & Spelta, D. (2006), `Actuarial values calculated using the incomplete gamma function', Statistica 66(1), 77-81.spa
dc.relation.referencesMoller, T. & Steffensen, M. (2007), Market-valuation methods in life and pension insurance, Cambridge University Press.spa
dc.relation.referencesNelson, C. R. & Siegel, A. F. (1987), `Parsimonious modeling of yield curves', Journal of business pp. 473-489.spa
dc.relation.referencesNorberg, R. (2005), `Interest Guarantees in Banking', Applied Mathematical Finance 12(4), 351-370.spa
dc.relation.referencesOsorno-Gómez, J. (2012), Análisis de solvencia en anualidades de vida con tasas de interés aleatorias, Master's thesis, Escuela de Estadística, Universidad Nacional de Colombia, Sede Medellín. https://repositorio.unal.edu.co/handle/unal/10143.spa
dc.relation.referencesPapanicolaou, A. (2019), `Introduction to stochastic differential equations (sdes) for finance', arXiv 1504.05309.spa
dc.relation.referencesParisi, F. (1998), `Tasas de interés nominal de corto plazo en Chile: Una comparación empírica de sus modelos', Cuadernos de Economía pp. 161-182.spa
dc.relation.referencesPersson, S.-A. (1993), `Valuation of a multistate life insurance contract with random benefits', Scandinavian Journal of Management 9, S73-S86.spa
dc.relation.referencesPersson, S.-A. & Aase, K. (1997), `Valuation of the Minimum Guaranteed Return Embedded in Life Insurance Products', The Journal of Risk and Insurance 64(4), 599-617.spa
dc.relation.referencesPienaar, E. A. D. & Varughese, M. M. (2015), Di usionRgqd: An R Package for Performing Inference and Analysis on Time-Inhomogeneous Quadratic Diffusion Processes. R package version 0.1.3. URL: https://CRAN.R-project.org/package=DiffusionRgqdspa
dc.relation.referencesPrivault, N. (2012), An elementary introduction to stochastic interest rate modeling,World Scientific.spa
dc.relation.referencesProietti, T., Luati, A. et al. (2008), `Real time estimation in local polynomial regression, with application to trend-cycle analysis', The Annals of Applied Statistics 2(4), 1523-1553.spa
dc.relation.referencesRamlau-Hansen, H. (1990), `Thiele's Differential Equation as a Tool in Product Development in Life Insurance', Scandinavian Actuarial Journal pp. 97-104.spa
dc.relation.referencesRemillard, B. (2013), SMFI5: R functions and data from Chapter 5 of 'Statistical Methods for Financial Engineering'. R package version 1.0. URL: https://CRAN.R-project.org/package=SMFI5spa
dc.relation.referencesSvensson, L. E. O. (1994), Estimating and interpreting forward interest rates: Sweden 1992-1994, Technical report, Technical Reports 4871, National bureau of economic research.spa
dc.relation.referencesTopa, G. (1999), La valoración de inversiones a precios de mercado en Colombia, Universidad Externado de Colombia.spa
dc.relation.referencesVasicek, O. (1977), `An equilibrium characterization of the term structure', Journal of financial economics 5(2), 177-188.spa
dc.relation.referencesXia, Z. & Huihui, L. (2013), `Actuarial present values of annuities under stochastic interest rate', Int. Journal of Math. Analysis 7(59), 2923-2929.spa
dc.relation.referencesYamada, H. & Jahra, F. T. (2018), `Explicit formulas for the smoother weights of the whittaker-henderson graduation of order 1', Communications in Statistics-Theory and Methods pp. 1-11.spa
dc.relation.referencesYan, J.-A. (2018), Introduction to Stochastic Finance, Springer International Publishing Switzerland.spa
dc.relation.referencesZoccolan, I. (2018), valuer: Pricing of Variable Annuities. R package version 1.1.2. URL: https://CRAN.R-project.org/package=valuerspa
dc.relation.referencesAsmussen, S. & Steffensen, M. (2020), Risk and Insurance, Springer.spa
dc.relation.referencesBalter, A. G. & Werker, B. J. (2020), `The effect of the assumed interest rate and smoothing on variable annuities', ASTIN Bulletin: The Journal of the IAA 50(1), 131-154.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc510 - Matemáticas::519 - Probabilidades y matemáticas aplicadasspa
dc.subject.lembEstadística
dc.subject.lembStatistics
dc.subject.lembMétodo de Montecarlo
dc.subject.lembModelos matemáticos
dc.subject.proposalAnualidades de vida dependientes de fondosspa
dc.subject.proposalModelos para estructura temporal de tasasspa
dc.subject.proposalNelson-Siegelspa
dc.subject.proposalModelo Vasicekspa
dc.subject.proposalProcesos de difusiónspa
dc.subject.proposalValores presentes de flujos de caja descontados con tasas variablesspa
dc.subject.proposalMétodo Monte Carlospa
dc.subject.proposalValoración de pólizas contingentes dependientes de trayectoriasspa
dc.subject.proposalFiltros linealesspa
dc.subject.proposalFund-dependent life annuitieseng
dc.subject.proposalModels for interest rates term structureeng
dc.subject.proposalNelson-Siegeleng
dc.subject.proposalVasicek modeleng
dc.subject.proposalDiffusion processeseng
dc.subject.proposalPresent values of discounted cash flows with variable rateseng
dc.subject.proposalMonte Carlo methodeng
dc.subject.proposalValuation of contingent policies dependent on trajectorieseng
dc.subject.proposalLinear filterseng
dc.titleValoración de flujos de pagos estocásticos utilizando simulación Monte Carlo con suavizadores y modelos para la estructura temporal de tasasspa
dc.title.translatedValuation of stochastic payment flows using Monte Carlo simulation with smoothing and models for the time structure of rateseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
71375862.2021.pdf
Tamaño:
2.19 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Estadística

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: