Modelo de epistasis basado en aprendizaje automático para pacientes con discapacidad intelectual y retraso del neurodesarrollo
dc.contributor.advisor | Niño Vásquez, Luis Fernando | spa |
dc.contributor.advisor | López Rivera, Juan Javier | spa |
dc.contributor.author | Murcia Triviño, Jossie Esteban | spa |
dc.contributor.researchgroup | laboratorio de Investigación en Sistemas Inteligentes Lisi | spa |
dc.date.accessioned | 2024-05-16T19:38:59Z | |
dc.date.available | 2024-05-16T19:38:59Z | |
dc.date.issued | 2024-04-29 | |
dc.description | ilustraciones, diagramas | spa |
dc.description.abstract | Los estudios de asociación como epistasis representan un factor importante en la comprensión de la expresión de enfermedades complejas, como lo son los trastornos del neurodesarrollo (TND), que presentan un desafío en el entendimiento de su etiología. Aunque varios estudios han revelado diferentes hallazgos de mutaciones, los efectos de asociación entre polimorfismos de un solo nucleótido (SNP) siguen siendo desconocidos. La reducción de dimensionalidad multifactorial (MDR) es un método de minería de datos por inducción constructiva empleado para detectar interacciones complejas. Este estudio comprendió una cohorte retrospectiva de pacientes pediátricos con prueba de exoma trio por sospecha de alteraciones genéticas para TND. Después de los controles de calidad sobre genotipos, se desarrolló el método MDR bajo la Prueba de desequilibrio de pedigrí (MDR-PDT). Además, se identificaron variantes asociadas individualmente con la enfermad a partir de la prueba de desequilibrio de transmisión (TDT). Se encontró que la variante rs6843524 (SEC24D) significativa por TDT (valor-P=0.003135) evidenció asociaciones con SNP; rs6843524-rs895952 (MDR-PDT valor-P=0.0084) y rs6843524-rs1168666 (MDR-PDT valor-P=0.0079). Aunque las variantes rs1168666 (SETD1B) y rs4974081 (QRICH1) no fueron significativas en MDR, si se identificaron en varios modelos y sus genes destacaron en el análisis de enriquecimiento (FDR 1.11e-05 y 6.55e-05). A pesar de la baja significancia de los modelos MDR-PDT, se lograron validar asociaciones importantes por medio de las otras pruebas y la interpretación biológica. Estos modelos pueden ser muy útiles en el descubrimiento de nuevas variantes, especialmente cuando son desarrollados sobre poblaciones grandes y con un análisis completo desde la secuenciación. (Texto tomado de la fuente). | spa |
dc.description.abstract | Association studies such as epistasis studies represent an important factor in understanding the expression of complex diseases, such as neurodevelopmental disorders (NDD). These disorders exhibit a challenge around their etiology. Even though certain studies have revealed several mutation findings, the association effects between Single Nucleotide Polymorphisms (SNPs) remain unknown. Multifactor dimensionality reduction (MDR) is a constructive induction data mining approach that can be used to identify those effects. In this work, a retrospective cohort study based on pediatric patients with trio exome analysis due to suspected genetic alterations for NDD was carried out. After developing genotype quality controls, MDR method was performed under Pedigree Imbalance Test (MDR-PDT). In addition, variants individually associated to disease were identified with Transmission Disequilibrium Test (TDT). We found that variant rs6843524 (SEC24D) is TDT significant (P-value=0.003135) and evidenced SNP interactions; rs6843524-rs895952 (MDR-PDT P-value=0.0084) and rs6843524-rs1168666 (MDR-PDT P-value=0.0079). Although variants rs1168666 (SETD1B) and rs4974081 (QRICH1) were not significant by MDR they were identified by several models and their genes were outstanding in enrichment analysis (FDR 1.11e-05 y 6.55e-05). Despite the low significance of MDR-PDT models, important associations were validated through other tests and biological interpretation. These models can be very useful in discovering new variants, especially when they are developed on larger populations and performing a complete analysis beginning from sequencing. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Bioinformática | spa |
dc.description.researcharea | Bioinformática funcional y estructural | spa |
dc.format.extent | xv, 103 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/86100 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ingeniería - Maestría en Bioinformática | spa |
dc.relation.indexed | Bireme | spa |
dc.relation.references | Abay-Nørgaard, S., Attianese, B., Boreggio, L., & Salcini, A. E. (2020). Regulators of H3K4 methylation mutated in neurodevelopmental disorders control axon guidance in Caenorhabditis elegans. Development (Cambridge, England), 147(15). https://doi.org/10.1242/dev.190637 | spa |
dc.relation.references | Adams, D. R., & Eng, C. M. (2018). Next-Generation Sequencing to Diagnose Suspected Genetic Disorders. New England Journal of Medicine, 379(14), 1353–1362. https://doi.org/10.1056/nejmra1711801 | spa |
dc.relation.references | Alazami, A. M., Patel, N., Shamseldin, H. E., Anazi, S., Al-Dosari, M. S., Alzahrani, F., Hijazi, H., Alshammari, M., Aldahmesh, M. A., Salih, M. A., Faqeih, E., Alhashem, A., Bashiri, F. A., Al-Owain, M., Kentab, A. Y., Sogaty, S., Al Tala, S., Temsah, M.-H., Tulbah, M., … Alkuraya, F. S. (2015). Accelerating novel candidate gene discovery in neurogenetic disorders via whole-exome sequencing of prescreened multiplex consanguineous families. Cell Reports, 10(2), 148–161. https://doi.org/10.1016/j.celrep.2014.12.015 | spa |
dc.relation.references | American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). https://doi.org/10.1176/appi.books.9780890425596 | spa |
dc.relation.references | Ansarifar, J., Wang, L., & Hancock, J. (2019). New algorithms for detecting multi-effect and multi-way epistatic interactions. Bioinformatics, 35(24), 5078–5085. https://doi.org/10.1093/bioinformatics/btz463 | spa |
dc.relation.references | Ballif, B. C., Hornor, S. A., Jenkins, E., Madan-Khetarpal, S., Surti, U., Jackson, K. E., Asamoah, A., Brock, P. L., Gowans, G. C., Conway, R. L., Graham, J. M. J., Medne, L., Zackai, E. H., Shaikh, T. H., Geoghegan, J., Selzer, R. R., Eis, P. S., Bejjani, B. A., & Shaffer, L. G. (2007). Discovery of a previously unrecognized microdeletion syndrome of 16p11.2-p12.2. Nature Genetics, 39(9), 1071–1073. https://doi.org/10.1038/ng2107 | spa |
dc.relation.references | Baruch, Y., Horn-Saban, S., Plotsky, Y., Bercovich, D., & Gershoni-Baruch, R. (2021). A case of Ververi-Brady syndrome due to QRICH1 loss of function and the literature review. In American journal of medical genetics. Part A (Vol. 185, Issue 6, pp. 1913–1917). https://doi.org/10.1002/ajmg.a.62184 | spa |
dc.relation.references | Bateson, W., & Mendel, G. (2013). Mendel’s principles of heredity. Courier Corporation. | spa |
dc.relation.references | Bausela-Herreras, E., Tirapu-Ustárroz, J., & Cordero-Andrés, P. (2019). Deficits and neurodevelopmental disorders in childhood and adolescence. Revista de Neurologia, 69(11), 461–469. https://doi.org/10.33588/RN.6911.2019133 | spa |
dc.relation.references | Biancotti, J.-C., & Benvenisty, N. (2011). Aneuploid human embryonic stem cells: origins and potential for modeling chromosomal disorders. Regenerative Medicine, 6(4), 493–503. https://doi.org/10.2217/rme.11.27 | spa |
dc.relation.references | Bitta, M., Kariuki, S. M., Abubakar, A., & Newton, C. R. J. C. (2018). Burden of neurodevelopmental disorders in low and middle-income countries: A systematic review and meta-analysis [version 3; referees: 1 approved, 2 approved with reservations]. Wellcome Open Research, 2. https://doi.org/10.12688/wellcomeopenres.13540.3 | spa |
dc.relation.references | Brandenburg, J.-T., Clark, L., Botha, G., Panji, S., Baichoo, S., Fields, C., & Hazelhurst, S. (2022). H3AGWAS : A portable workflow for Genome Wide Association Studies. BioRxiv, 2022.05.02.490206. https://doi.org/10.1101/2022.05.02.490206 | spa |
dc.relation.references | Brownstein, C. A., Beggs, A. H., Homer, N., Merriman, B., Yu, T. W., Flannery, K. C., DeChene, E. T., Towne, M. C., Savage, S. K., Price, E. N., Holm, I. A., Luquette, L. J., Lyon, E., Majzoub, J., Neupert, P., McCallie, D. J., Szolovits, P., Willard, H. F., Mendelsohn, N. J., … Margulies, D. M. (2014). An international effort towards developing standards for best practices in analysis, interpretation and reporting of clinical genome sequencing results in the CLARITY Challenge. Genome Biology, 15(3), R53. https://doi.org/10.1186/gb-2014-15-3-r53 | spa |
dc.relation.references | Carayol, J., Schellenberg, G. D., Dombroski, B., Amiet, C., Génin, B., Fontaine, K., Rousseau, F., Vazart, C., Cohen, D., Frazier, T. W., Hardan, A. Y., Dawson, G., & Frio, T. R. (2014). A scoring strategy combining statistics and functional genomics supports a possible role for common polygenic variation in autism. Frontiers in Genetics, 5(FEB). https://doi.org/10.3389/fgene.2014.00033 | spa |
dc.relation.references | Cardoso, A. R., Lopes-Marques, M., Silva, R. M., Serrano, C., Amorim, A., Prata, M. J., & Azevedo, L. (2019). Essential genetic findings in neurodevelopmental disorders. Human Genomics, 13(1), 31. https://doi.org/10.1186/s40246-019-0216-4 | spa |
dc.relation.references | Cattaert, T., Urrea, V., Naj, A. C., De Lobel, L., De Wit, V., Fu, M., Mahachie John, J. M., Shen, H., Calle, M. L., Ritchie, M. D., Edwards, T. L., & Van Steen, K. (2010). FAM-MDR: a flexible family-based multifactor dimensionality reduction technique to detect epistasis using related individuals. PloS One, 5(4), e10304. https://doi.org/10.1371/journal.pone.0010304 | spa |
dc.relation.references | Cattaert, T., Urrea, V., Naj, A. C., De Lobel, L., De Wit, V., Fu, M., Mahachie John, J. M., Shen, H., Calle, M. L., Ritchie, M. D., Edwards, T. L., & Van Steen, K. (2010). FAM-MDR: a flexible family-based multifactor dimensionality reduction technique to detect epistasis using related individuals. PloS One, 5(4), e10304. https://doi.org/10.1371/journal.pone.0010304 | spa |
dc.relation.references | Chang, Y. C., Wu, J. T., Hong, M. Y., Tung, Y. A., Hsieh, P. H., Yee, S. W., Giacomini, K. M., Oyang, Y. J., & Chen, C. Y. (2020). GenEpi: Gene-based epistasis discovery using machine learning. BMC Bioinformatics, 21(1). https://doi.org/10.1186/s12859-020-3368-2 | spa |
dc.relation.references | Chapman, P. (2000). CRISP-DM 1.0: Step-by-step data mining guide. https://api.semanticscholar.org/CorpusID:59777418 | spa |
dc.relation.references | Chen, X., Li, H., Chen, C., Zhou, L., Xu, X., Xiang, Y., & Tang, S. (2018). Genome-Wide Array Analysis Reveals Novel Genomic Regions and Candidate Gene for Intellectual Disability. Molecular Diagnosis & Therapy, 22(6), 749–757. https://doi.org/10.1007/s40291-018-0358-4 | spa |
dc.relation.references | Clinical utility of genetic and genomic services: a position statement of the American College of Medical Genetics and Genomics. (2015). Genetics in Medicine : Official Journal of the American College of Medical Genetics, 17(6), 505–507. https://doi.org/10.1038/gim.2015.41 | spa |
dc.relation.references | Cole, B. S., Hall, M. A., Urbanowicz, R. J., Gilbert-Diamond, D., & Moore, J. H. (2017). Analysis of Gene-Gene Interactions. Current Protocols in Human Genetics, 95(1), 1.14.1-1.14.10. https://doi.org/10.1002/cphg.45 | spa |
dc.relation.references | Cordell, H. (2002). Epistasis: What it means, what it doesn’t mean, and statistical methods to detect it in humans. Human Molecular Genetics, 11, 2463–2468. https://doi.org/10.1093/hmg/11.20.2463 | spa |
dc.relation.references | Cordell, H. (2009). Detecting gene-gene interactions that underlie human diseases. Nature Reviews. Genetics, 10, 392–404. https://doi.org/10.1038/nrg2579 | spa |
dc.relation.references | Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., DePristo, M. A., Handsaker, R. E., Lunter, G., Marth, G. T., Sherry, S. T., McVean, G., Durbin, R., & Group, 1000 Genomes Project Analysis. (2011). The variant call format and VCFtools. Bioinformatics, 27(15), 2156–2158. https://doi.org/10.1093/bioinformatics/btr330 | spa |
dc.relation.references | Danecek, P., Bonfield, J. K., Liddle, J., Marshall, J., Ohan, V., Pollard, M. O., Whitwham, A., Keane, T., McCarthy, S. A., Davies, R. M., & Li, H. (2021). Twelve years of SAMtools and BCFtools. GigaScience, 10(2), giab008. https://doi.org/10.1093/gigascience/giab008 | spa |
dc.relation.references | de Ligt, J., Willemsen, M. H., van Bon, B. W. M., Kleefstra, T., Yntema, H. G., Kroes, T., Vulto-van Silfhout, A. T., Koolen, D. A., de Vries, P., Gilissen, C., del Rosario, M., Hoischen, A., Scheffer, H., de Vries, B. B. A., Brunner, H. G., Veltman, J. A., & Vissers, L. E. L. M. (2012). Diagnostic exome sequencing in persons with severe intellectual disability. The New England Journal of Medicine, 367(20), 1921–1929. https://doi.org/10.1056/NEJMoa1206524 | spa |
dc.relation.references | Dias, R., & Torkamani, A. (2019). Artificial intelligence in clinical and genomic diagnostics. Genome Medicine, 11(1), 70. https://doi.org/10.1186/s13073-019-0689-8 | spa |
dc.relation.references | Dillon, O. J., Lunke, S., Stark, Z., Yeung, A., Thorne, N., Gaff, C., White, S. M., & Tan, T. Y. (2018). Exome sequencing has higher diagnostic yield compared to simulated disease-specific panels in children with suspected monogenic disorders. European Journal of Human Genetics, 26(5), 644–651. https://doi.org/10.1038/s41431-018-0099-1 | spa |
dc.relation.references | Edwards, T. L., Wang, X., Chen, Q., Wormly, B., Riley, B., O’Neill, F. A., Walsh, D., Ritchie, M. D., Kendler, K. S., & Chen, X. (2008). Interaction between interleukin 3 and dystrobrevin-binding protein 1 in schizophrenia. Schizophrenia Research, 106(2), 208–217. https://doi.org/https://doi.org/10.1016/j.schres.2008.07.022 | spa |
dc.relation.references | Emily, M. (2016). AGGrEGATOr: A Gene-based GEne-Gene interActTiOn test for case-control association studies. Statistical Applications in Genetics and Molecular Biology, 15(2), 151–171. https://doi.org/10.1515/sagmb-2015-0074 | spa |
dc.relation.references | Fisher, R. A. (1919). XV.—The Correlation between Relatives on the Supposition of Mendelian Inheritance. Transactions of the Royal Society of Edinburgh, 52(2), 399–433. https://doi.org/10.1017/S0080456800012163 | spa |
dc.relation.references | Froukh, T. J. (2017). Next Generation Sequencing and Genome-Wide Genotyping Identify the Genetic Causes of Intellectual Disability in Ten Consanguineous Families from Jordan. The Tohoku Journal of Experimental Medicine, 243(4), 297–309. https://doi.org/10.1620/tjem.243.297 | spa |
dc.relation.references | Gall, K., Izzo, E., Seppälä, E. H., Alakurtti, K., Koskinen, L., Saarinen, I., Singh, A., Myllykangas, S., Koskenvuo, J., & Alastalo, T.-P. (2021). Next-generation sequencing in childhood-onset epilepsies: Diagnostic yield and impact on neuronal ceroid lipofuscinosis type 2 (CLN2) disease diagnosis. PloS One, 16(9), e0255933. https://doi.org/10.1371/journal.pone.0255933 | spa |
dc.relation.references | Ghanem, S. I., Ghanem, N. M., & Ismail, M. A. (2019). Noisy Epistasis Using Deep Learning. 165–168. https://doi.org/10.1109/JEC-ECC.2018.8679568 | spa |
dc.relation.references | González Alvaredo, S., Sanz Rojo, R., García Santiago, J., Gaztañaga Expósito, R., Bengoa, A., & Pérez-Yarza, E. G. (2008). [Genetic diagnostic criteria in cases of mental retardation and development of idiopathic origin]. Anales de pediatria (Barcelona, Spain : 2003), 69(5), 446–453. https://doi.org/10.1157/13128001 | spa |
dc.relation.references | Goodwin, S., McPherson, J. D., & McCombie, W. R. (2016). Coming of age: Ten years of next-generation sequencing technologies. Nature Reviews Genetics, 17(6), 333–351. https://doi.org/10.1038/nrg.2016.49 | spa |
dc.relation.references | Griffin, D. K. (1996). The incidence, origin, and etiology of aneuploidy. International Review of Cytology, 167, 263–296. https://doi.org/10.1016/s0074-7696(08)61349-2 | spa |
dc.relation.references | Gusareva, E. S., & Van Steen, K. (2014). Practical aspects of genome-wide association interaction analysis. Human Genetics, 133(11), 1343–1358. https://doi.org/10.1007/s00439-014-1480-y | spa |
dc.relation.references | Hamdan, F. F., Gauthier, J., Araki, Y., Lin, D.-T., Yoshizawa, Y., Higashi, K., Park, A.-R., Spiegelman, D., Dobrzeniecka, S., Piton, A., Tomitori, H., Daoud, H., Massicotte, C., Henrion, E., Diallo, O., Shekarabi, M., Marineau, C., Shevell, M., Maranda, B., … Michaud, J. L. (2011). Excess of de novo deleterious mutations in genes associated with glutamatergic systems in nonsyndromic intellectual disability. American Journal of Human Genetics, 88(3), 306–316. https://doi.org/10.1016/j.ajhg.2011.02.001 | spa |
dc.relation.references | Hieter, P., & Boguski, M. (1997). Functional genomics: it’s all how you read it. Science (New York, N.Y.), 278(5338), 601–602. https://doi.org/10.1126/science.278.5338.601 | spa |
dc.relation.references | Hu, T., Chen, Y., Kiralis, J. W., & Moore, J. H. (2013). ViSEN: methodology and software for visualization of statistical epistasis networks. Genetic Epidemiology, 37(3), 283–285. https://doi.org/10.1002/gepi.21718 | spa |
dc.relation.references | Hu, T., Sinnott-Armstrong, N. A., Kiralis, J. W., Andrew, A. S., Karagas, M. R., & Moore, J. H. (2011). Characterizing genetic interactions in human disease association studies using statistical epistasis networks. BMC Bioinformatics, 12, 364. https://doi.org/10.1186/1471-2105-12-364 | spa |
dc.relation.references | Iossifov, I., O’Roak, B. J., Sanders, S. J., Ronemus, M., Krumm, N., Levy, D., Stessman, H. A., Witherspoon, K. T., Vives, L., Patterson, K. E., Smith, J. D., Paeper, B., Nickerson, D. A., Dea, J., Dong, S., Gonzalez, L. E., Mandell, J. D., Mane, S. M., Murtha, M. T., … Wigler, M. (2014). The contribution of de novo coding mutations to autism spectrum disorder. Nature, 515(7526), 216–221. https://doi.org/10.1038/nature13908 | spa |
dc.relation.references | Kafaie, S., Chen, Y., & Hu, T. (2019). A network approach to prioritizing susceptibility genes for genome-wide association studies. Genetic Epidemiology, 43(5), 477–491. https://doi.org/10.1002/gepi.22198 | spa |
dc.relation.references | Kessi, M., Chen, B., Pang, N., Yang, L., Peng, J., He, F., & Yin, F. (2023). The genotype-phenotype correlations of the CACNA1A-related neurodevelopmental disorders: a small case series and literature reviews. Frontiers in Molecular Neuroscience, 16, 1222321. https://doi.org/10.3389/fnmol.2023.1222321 | spa |
dc.relation.references | Khoury, M. J., Gwinn, M. L., Glasgow, R. E., & Kramer, B. S. (2012). A population approach to precision medicine. American Journal of Preventive Medicine, 42(6), 639–645. https://doi.org/10.1016/j.amepre.2012.02.012 | spa |
dc.relation.references | Kim, N. C., Andrews, P. C., Asselbergs, F. W., Frost, H. R., Williams, S. M., Harris, B. T., Read, C., Askland, K. D., & Moore, J. H. (2012). Gene ontology analysis of pairwise genetic associations in two genome-wide studies of sporadic ALS. BioData Mining, 5(1), 9. https://doi.org/10.1186/1756-0381-5-9 | spa |
dc.relation.references | Koolen, D. A., Vissers, L. E. L. M., Pfundt, R., de Leeuw, N., Knight, S. J. L., Regan, R., Kooy, R. F., Reyniers, E., Romano, C., Fichera, M., Schinzel, A., Baumer, A., Anderlid, B.-M., Schoumans, J., Knoers, N. V, van Kessel, A. G., Sistermans, E. A., Veltman, J. A., Brunner, H. G., & de Vries, B. B. A. (2006). A new chromosome 17q21.31 microdeletion syndrome associated with a common inversion polymorphism. Nature Genetics, 38(9), 999–1001. https://doi.org/10.1038/ng1853 | spa |
dc.relation.references | Kumble, S., Levy, A. M., Punetha, J., Gao, H., Ah Mew, N., Anyane-Yeboa, K., Benke, P. J., Berger, S. M., Bjerglund, L., Campos-Xavier, B., Ciliberto, M., Cohen, J. S., Comi, A. M., Curry, C., Damaj, L., Denommé-Pichon, A.-S., Emrick, L., Faivre, L., Fasano, M. B., … Tümer, Z. (2022). The clinical and molecular spectrum of QRICH1 associated neurodevelopmental disorder. Human Mutation, 43(2), 266–282. https://doi.org/10.1002/humu.24308 | spa |
dc.relation.references | Large-scale discovery of novel genetic causes of developmental disorders. (2015). Nature, 519(7542), 223–228. https://doi.org/10.1038/nature14135 | spa |
dc.relation.references | Larranaga, P. (2006). Machine learning in bioinformatics. Briefings in Bioinformatics, 7, 86–112. https://doi.org/10.1093/bib/bbk007 | spa |
dc.relation.references | Leem, S., & Park, T. (2017). An empirical fuzzy multifactor dimensionality reduction method for detecting gene-gene interactions. BMC Genomics, 18. https://doi.org/10.1186/s12864-017-3496-x | spa |
dc.relation.references | Leonard, H., & Wen, X. (2002). The epidemiology of mental retardation: Challenges and opportunities in the new millennium. Mental Retardation and Developmental Disabilities Research Reviews, 8(3), 117–134. https://doi.org/https://doi.org/10.1002/mrdd.10031 | spa |
dc.relation.references | Li, J., Malley, J. D., Andrew, A. S., Karagas, M. R., & Moore, J. H. (2016). Detecting gene-gene interactions using a permutation-based random forest method. BioData Mining, 9(1). https://doi.org/10.1186/s13040-016-0093-5 | spa |
dc.relation.references | Li, Q., Fallin, M. D., Louis, T. A., Lasseter, V. K., McGrath, J. A., Avramopoulos, D., Wolyniec, P. S., Valle, D., Liang, K.-Y., Pulver, A. E., & Ruczinski, I. (2010). Detection of SNP-SNP interactions in trios of parents with schizophrenic children. Genetic Epidemiology, 34(5), 396–406. https://doi.org/10.1002/gepi.20488 | spa |
dc.relation.references | Lipkin, P. H., & Macias, M. M. (2020). Promoting Optimal Development: Identifying Infants and Young Children With Developmental Disorders Through Developmental Surveillance and Screening. Pediatrics, 145(1). https://doi.org/10.1542/peds.2019-3449 | spa |
dc.relation.references | Liu, D., Wang, M., Yuan, Y., Schwender, H., Wang, H., Wang, P., Zhou, Z., Li, J., Wu, T., Zhu, H., & Beaty, T. H. (2019). Gene-gene interaction among cell adhesion genes and risk of nonsyndromic cleft lip with or without cleft palate in Chinese case-parent trios. Molecular Genetics & Genomic Medicine, 7(10), e00872. https://doi.org/10.1002/mgg3.872 | spa |
dc.relation.references | Lord, C., Elsabbagh, M., Baird, G., & Veenstra-Vanderweele, J. (2018). Autism spectrum disorder. The Lancet, 392(10146), 508–520. https://doi.org/10.1016/S0140-6736(18)31129-2 | spa |
dc.relation.references | Lou, X.-Y., Chen, G.-B., Yan, L., Ma, J. Z., Mangold, J. E., Zhu, J., Elston, R. C., & Li, M. D. (2008). A combinatorial approach to detecting gene-gene and gene-environment interactions in family studies. American Journal of Human Genetics, 83(4), 457–467. https://doi.org/10.1016/j.ajhg.2008.09.001 | spa |
dc.relation.references | Manavalan, R., & Priya, S. (2020). Epistasis effects of complex diseases from simulated models through computational approaches: A review. International Journal of Scientific and Technology Research, 9(3), 5444–5462. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85082683196&partnerID=40&md5=5bf6555bd63be58e53cb6939d425e8fb | spa |
dc.relation.references | Manolio, T. A., Collins, F. S., Cox, N. J., Goldstein, D. B., Hindorff, L. A., Hunter, D. J., McCarthy, M. I., Ramos, E. M., Cardon, L. R., Chakravarti, A., Cho, J. H., Guttmacher, A. E., Kong, A., Kruglyak, L., Mardis, E., Rotimi, C. N., Slatkin, M., Valle, D., Whittemore, A. S., … Visscher, P. M. (2009). Finding the missing heritability of complex diseases. Nature, 461(7265), 747–753. https://doi.org/10.1038/nature08494 | spa |
dc.relation.references | Manzoni, C., Kia, D. A., Vandrovcova, J., Hardy, J., Wood, N. W., Lewis, P. A., & Ferrari, R. (2018). Genome, transcriptome and proteome: The rise of omics data and their integration in biomedical sciences. Briefings in Bioinformatics, 19(2), 286–302. https://doi.org/10.1093/BIB/BBW114 | spa |
dc.relation.references | Marees, A. T., de Kluiver, H., Stringer, S., Vorspan, F., Curis, E., Marie-Claire, C., & Derks, E. M. (2018). A tutorial on conducting genome-wide association studies: Quality control and statistical analysis. International Journal of Methods in Psychiatric Research, 27(2), e1608. https://doi.org/10.1002/mpr.1608 | spa |
dc.relation.references | Martin, E. R., Bass, M. P., Gilbert, J. R., Pericak-Vance, M. A., & Hauser, E. R. (2003). Genotype-based association test for general pedigrees: the genotype-PDT. Genetic Epidemiology, 25(3), 203–213. https://doi.org/10.1002/gepi.10258 | spa |
dc.relation.references | Martin, E. R., Ritchie, M. D., Hahn, L., Kang, S., & Moore, J. H. (2006). A novel method to identify gene-gene effects in nuclear families: the MDR-PDT. Genetic Epidemiology, 30(2), 111–123. https://doi.org/10.1002/gepi.20128 | spa |
dc.relation.references | Mascheretti, S., Bureau, A., Trezzi, V., Giorda, R., & Marino, C. (2015). An assessment of gene-by-gene interactions as a tool to unfold missing heritability in dyslexia. Human Genetics, 134(7), 749–760. https://doi.org/10.1007/s00439-015-1555-4 | spa |
dc.relation.references | Mason, H., & Wiggins, C. (2010). A taxonomy of data science. Http://Www.Dataists.Com/2010/09/a-Taxonomy-of-Data-Science/. | spa |
dc.relation.references | Mathé, C., Sagot, M., Schiex, T., & Rouzé, P. (2002). Current methods of gene prediction, their strengths and weaknesses. Nucleic Acids Research, 30(19), 4103–4117. https://doi.org/10.1093/nar/gkf543 | spa |
dc.relation.references | Moeschler, J. B., & Shevell, M. (2014). Comprehensive evaluation of the child with intellectual disability or global developmental delays. Pediatrics, 134(3), e903-18. https://doi.org/10.1542/peds.2014-1839 | spa |
dc.relation.references | Montojo, J., Zuberi, K., Rodriguez, H., Kazi, F., Wright, G., Donaldson, S. L., Morris, Q., & Bader, G. D. (2010). GeneMANIA Cytoscape plugin: fast gene function predictions on the desktop. Bioinformatics (Oxford, England), 26(22), 2927–2928. https://doi.org/10.1093/bioinformatics/btq562 | spa |
dc.relation.references | Moore, J. H. (2003). The ubiquitous nature of epistasis in determining susceptibility to common human diseases. Human Heredity, 56(1–3), 73–82. https://doi.org/10.1159/000073735 | spa |
dc.relation.references | Moore, J. H., Hahn, L. W., Ritchie, M. D., Thornton, T. A., & White, B. C. (2004). Routine discovery of complex genetic models using genetic algorithms. Applied Soft Computing Journal, 4(1), 79–86. https://doi.org/10.1016/j.asoc.2003.08.003 | spa |
dc.relation.references | Morgan, A., Gandin, I., Belcaro, C., Palumbo, P., Palumbo, O., Biamino, E., Dal Col, V., Laurini, E., Pricl, S., Bosco, P., Carella, M., Ferrero, G. B., Romano, C., d’Adamo, A. P., Faletra, F., & Vozzi, D. (2015). Target sequencing approach intended to discover new mutations in non-syndromic intellectual disability. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 781, 32–36. https://doi.org/https://doi.org/10.1016/j.mrfmmm.2015.09.002 | spa |
dc.relation.references | Morris-Rosendahl, D. J., & Crocq, M. A. (2020). Neurodevelopmental disorders-the history and future of a diagnostic concept. Dialogues in Clinical Neuroscience, 22(1), 65–72. https://doi.org/10.31887/DCNS.2020.22.1/macrocq | spa |
dc.relation.references | Newman, J. R. B., Concannon, P., & Ge, Y. (2023). UBASH3A Interacts with PTPN22 to Regulate IL2 Expression and Risk for Type 1 Diabetes. International Journal of Molecular Sciences, 24(10). https://doi.org/10.3390/ijms24108671 | spa |
dc.relation.references | Nodzenski, M., Shi, M., Krahn, J. M., Wise, A. S., Li, Y., Li, L., Umbach, D. M., & Weinberg, C. R. (2022). GADGETS: a genetic algorithm for detecting epistasis using nuclear families. Bioinformatics (Oxford, England), 38(4), 1052–1058. https://doi.org/10.1093/bioinformatics/btab766 | spa |
dc.relation.references | Ohi, K., Hashimoto, R., Yasuda, Y., Fukumoto, M., Yamamori, H., Umeda-Yano, S., Fujimoto, M., Iwase, M., Kazui, H., & Takeda, M. (2013). Influence of the NRGN gene on intellectual ability in schizophrenia. Journal of Human Genetics, 58(10), 700–705. https://doi.org/10.1038/jhg.2013.82 | spa |
dc.relation.references | Orfao, A., Benítez, J., Corrales, F., Martín-Subero, I., Ordovás, J. M., Carracedo, Á., & Lapunzina, P. (2019). Ciencias ónicas. 32. www.institutoroche.es | spa |
dc.relation.references | Palsson, B. (2002). In silico biology through “omics.” Nature Biotechnology, 20(7), 649–650. https://doi.org/10.1038/nbt0702-649 | spa |
dc.relation.references | Park, C., Kim, J., Kim, J., & Park, S. (2018). Machine learning-based identification of genetic interactions from heterogeneous gene expression profiles. PLoS ONE, 13(7). https://doi.org/10.1371/journal.pone.0201056 | spa |
dc.relation.references | Park, M., Lee, J. W., Park, T., & Lee, S. (2020). Gene-Gene Interaction Analysis for the Survival Phenotype Based on the Kaplan-Meier Median Estimate. BioMed Research International, 2020. https://doi.org/10.1155/2020/5282345 | spa |
dc.relation.references | Paschou, P., Yu, D., Gerber, G., Evans, P., Tsetsos, F., Davis, L. K., Karagiannidis, I., Chaponis, J., Gamazon, E., Mueller-Vahl, K., Stuhrmann, M., Schloegelhofer, M., Stamenkovic, M., Hebebrand, J., Noethen, M., Nagy, P., Barta, C., Tarnok, Z., Rizzo, R., … Scharf, J. M. (2014). Genetic association signal near NTN4 in Tourette syndrome. Annals of Neurology, 76(2), 310–315. https://doi.org/10.1002/ana.24215 | spa |
dc.relation.references | Pattin, K. A., White, B. C., Barney, N., Gui, J., Nelson, H. H., Kelsey, K. T., Andrew, A. S., Karagas, M. R., & Moore, J. H. (2009). A computationally efficient hypothesis testing method for epistasis analysis using multifactor dimensionality reduction. Genetic Epidemiology, 33(1), 87–94. https://doi.org/10.1002/gepi.20360 | spa |
dc.relation.references | Perakakis, N., Yazdani, A., Karniadakis, G. E., & Mantzoros, C. (2018). Omics, big data and machine learning as tools to propel understanding of biological mechanisms and to discover novel diagnostics and therapeutics. In Metabolism: clinical and experimental (Vol. 87, pp. A1--A9). https://doi.org/10.1016/j.metabol.2018.08.002 | spa |
dc.relation.references | Pineda-Cirera, L., Shivalikanjli, A., Cabana-Domínguez, J., Demontis, D., Rajagopal, V. M., Børglum, A. D., Faraone, S. V, Cormand, B., & Fernàndez-Castillo, N. (2019). Exploring genetic variation that influences brain methylation in attention-deficit/hyperactivity disorder. Translational Psychiatry, 9(1). https://doi.org/10.1038/s41398-019-0574-7 | spa |
dc.relation.references | Piriyapongsa, J., Ngamphiw, C., Intarapanich, A., Kulawonganunchai, S., Assawamakin, A., Bootchai, C., Shaw, P. J., & Tongsima, S. (2012). iLOCi: a SNP interaction prioritization technique for detecting epistasis in genome-wide association studies. BMC Genomics, 13 Suppl 7. https://doi.org/10.1186/1471-2164-13-s7-s2 | spa |
dc.relation.references | Posar, A., & Visconti, P. (2017). Neurodevelopmental Disorders between Past and Future. Journal of Pediatric Neurosciences, 12(3), 301–302. https://doi.org/10.4103/jpn.JPN_95_17 | spa |
dc.relation.references | Price, K. M., Wigg, K. G., Feng, Y., Blokland, K., Wilkinson, M., He, G., Kerr, E. N., Carter, T.-C., Guger, S. L., Lovett, M. W., Strug, L. J., & Barr, C. L. (2020). Genome-wide association study of word reading: Overlap with risk genes for neurodevelopmental disorders. Genes, Brain and Behavior, 19(6). https://doi.org/10.1111/gbb.12648 | spa |
dc.relation.references | Qin, D. (2019). Next-generation sequencing and its clinical application. Cancer Biology and Medicine, 16(1), 4–10. https://doi.org/10.20892/j.issn.2095-3941.2018.0055 | spa |
dc.relation.references | Rauch, A., Hoyer, J., Guth, S., Zweier, C., Kraus, C., Becker, C., Zenker, M., Hüffmeier, U., Thiel, C., Rüschendorf, F., Nürnberg, P., Reis, A., & Trautmann, U. (2006). Diagnostic yield of various genetic approaches in patients with unexplained developmental delay or mental retardation. American Journal of Medical Genetics. Part A, 140(19), 2063–2074. https://doi.org/10.1002/ajmg.a.31416 | spa |
dc.relation.references | Redon, R., Ishikawa, S., Fitch, K. R., Feuk, L., Perry, G. H., Andrews, T. D., Fiegler, H., Shapero, M. H., Carson, A. R., Chen, W., Cho, E. K., Dallaire, S., Freeman, J. L., González, J. R., Gratacòs, M., Huang, J., Kalaitzopoulos, D., Komura, D., MacDonald, J. R., … Hurles, M. E. (2006). Global variation in copy number in the human genome. Nature, 444(7118), 444–454. https://doi.org/10.1038/nature05329 | spa |
dc.relation.references | Ritchie, M D, Hahn, L. W., Roodi, N., Bailey, L. R., Dupont, W. D., Parl, F. F., & Moore, J. H. (2001). Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. American Journal of Human Genetics, 69(1), 138–147. https://doi.org/10.1086/321276 | spa |
dc.relation.references | Ritchie, Marylyn D., & Van Steen, K. (2018). The search for gene-gene interactions in genome-wide association studies: challenges in abundance of methods, practical considerations, and biological interpretation. Annals of Translational Medicine, 6(8), 157–157. https://doi.org/10.21037/atm.2018.04.05 | spa |
dc.relation.references | Roston, A., Evans, D., Gill, H., McKinnon, M., Isidor, B., Cogné, B., Mwenifumbo, J., van Karnebeek, C., An, J., Jones, S. J. M., Farrer, M., Demos, M., Connolly, M., & Gibson, W. T. (2021). SETD1B-associated neurodevelopmental disorder. Journal of Medical Genetics, 58(3), 196–204. https://doi.org/10.1136/jmedgenet-2019-106756 | spa |
dc.relation.references | Saldarriaga, W., Forero-Forero, J. V., González-Teshima, L. Y., Fandiño-Losada, A., Isaza, C., Tovar-Cuevas, J. R., Silva, M., Choudhary, N. S., Tang, H.-T., Aguilar-Gaxiola, S., Hagerman, R. J., & Tassone, F. (2018). Genetic cluster of fragile X syndrome in a Colombian district. Journal of Human Genetics, 63(4), 509–516. https://doi.org/10.1038/s10038-017-0407-6 | spa |
dc.relation.references | Saldarriaga, W., Tassone, F., González-Teshima, L. Y., Forero-Forero, J. V., Ayala-Zapata, S., & Hagerman, R. (2014). Fragile X syndrome. Colombia Medica (Cali, Colombia), 45(4), 190–198. | spa |
dc.relation.references | Savatt, J. M., & Myers, S. M. (2021). Genetic Testing in Neurodevelopmental Disorders. Frontiers in Pediatrics, 9, 526779. https://doi.org/10.3389/fped.2021.526779 | spa |
dc.relation.references | Shaffer, L. G., Bejjani, B. A., Torchia, B., Kirkpatrick, S., Coppinger, J., & Ballif, B. C. (2007). The identification of microdeletion syndromes and other chromosome abnormalities: cytogenetic methods of the past, new technologies for the future. American Journal of Medical Genetics. Part C, Seminars in Medical Genetics, 145C(4), 335–345. https://doi.org/10.1002/ajmg.c.30152 | spa |
dc.relation.references | Sharp, A. J., Mefford, H. C., Li, K., Baker, C., Skinner, C., Stevenson, R. E., Schroer, R. J., Novara, F., De Gregori, M., Ciccone, R., Broomer, A., Casuga, I., Wang, Y., Xiao, C., Barbacioru, C., Gimelli, G., Bernardina, B. D., Torniero, C., Giorda, R., … Eichler, E. E. (2008). A recurrent 15q13.3 microdeletion syndrome associated with mental retardation and seizures. Nature Genetics, 40(3), 322–328. https://doi.org/10.1038/ng.93 | spa |
dc.relation.references | Shaw-Smith, C., Pittman, A. M., Willatt, L., Martin, H., Rickman, L., Gribble, S., Curley, R., Cumming, S., Dunn, C., Kalaitzopoulos, D., Porter, K., Prigmore, E., Krepischi-Santos, A. C. V, Varela, M. C., Koiffmann, C. P., Lees, A. J., Rosenberg, C., Firth, H. V, de Silva, R., & Carter, N. P. (2006). Microdeletion encompassing MAPT at chromosome 17q21.3 is associated with developmental delay and learning disability. Nature Genetics, 38(9), 1032–1037. https://doi.org/10.1038/ng1858 | spa |
dc.relation.references | Sinoquet, C., & Niel, C. (2019). Ant colony optimization for markov blanket-based feature selection. Application for precision medicine: Vol. 11331 LNCS (pp. 217–230). https://doi.org/10.1007/978-3-030-13709-0_18 | spa |
dc.relation.references | Slavotinek, A. M. (2008). Novel microdeletion syndromes detected by chromosome microarrays. Human Genetics, 124(1), 1–17. https://doi.org/10.1007/s00439-008-0513-9 | spa |
dc.relation.references | Slim Lotfi AND Chatelain, C. A. N. D. A. C.-A. A. N. D. V. J.-P. (2020). Novel methods for epistasis detection in genome-wide association studies. PLOS ONE, 15(11), 1–18. https://doi.org/10.1371/journal.pone.0242927 | spa |
dc.relation.references | Spielman, R. S., McGinnis, R. E., & Ewens, W. J. (1993). Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). American Journal of Human Genetics, 52(3), 506–516. | spa |
dc.relation.references | Srivastava, S., Love-Nichols, J. A., Dies, K. A., Ledbetter, D. H., Martin, C. L., Chung, W. K., Firth, H. V, Frazier, T., Hansen, R. L., Prock, L., Brunner, H., Hoang, N., Scherer, S. W., Sahin, M., & Miller, D. T. (2019). Meta-analysis and multidisciplinary consensus statement: exome sequencing is a first-tier clinical diagnostic test for individuals with neurodevelopmental disorders. Genetics in Medicine : Official Journal of the American College of Medical Genetics, 21(11), 2413–2421. https://doi.org/10.1038/s41436-019-0554-6 | spa |
dc.relation.references | Stessman, H. A. F., Willemsen, M. H., Fenckova, M., Penn, O., Hoischen, A., Xiong, B., Wang, T., Hoekzema, K., Vives, L., Vogel, I., Brunner, H. G., van der Burgt, I., Ockeloen, C. W., Schuurs-Hoeijmakers, J. H., Klein Wassink-Ruiter, J. S., Stumpel, C., Stevens, S. J. C., Vles, H. S., Marcelis, C. M., … Kleefstra, T. (2016). Disruption of POGZ Is Associated with Intellectual Disability and Autism Spectrum Disorders. The American Journal of Human Genetics, 98(3), 541–552. https://doi.org/https://doi.org/10.1016/j.ajhg.2016.02.004 | spa |
dc.relation.references | Sun, Y., Wang, X., Shang, J., Liu, J., Zheng, C., & Lei, X. (2018). Introducing Heuristic Information into Ant Colony Optimization Algorithm for Identifying Epistasis. In IEEE/ACM Transactions on Computational Biology and Bioinformatics. https://doi.org/10.1109/TCBB.2018.2879673 | spa |
dc.relation.references | Sung, P.-Y., Wang, Y.-T., Yu, Y.-W., & Chung, R.-H. (2016). An efficient gene-gene interaction test for genome-wide association studies in trio families. Bioinformatics, 32(12), 1848–1855. https://doi.org/10.1093/bioinformatics/btw077 | spa |
dc.relation.references | Szklarczyk, D., Kirsch, R., Koutrouli, M., Nastou, K., Mehryary, F., Hachilif, R., Gable, A. L., Fang, T., Doncheva, N. T., Pyysalo, S., Bork, P., Jensen, L. J., & von Mering, C. (2023). The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Research, 51(D1), D638–D646. https://doi.org/10.1093/nar/gkac1000 | spa |
dc.relation.references | Tărlungeanu, D. C., & Novarino, G. (2018). Genomics in neurodevelopmental disorders: an avenue to personalized medicine. Experimental and Molecular Medicine, 50(8), 100. https://doi.org/10.1038/s12276-018-0129-7 | spa |
dc.relation.references | Thapar, A., Cooper, M., & Rutter, M. (2017). Neurodevelopmental disorders. The Lancet Psychiatry, 4(4), 339–346. https://doi.org/10.1016/S2215-0366(16)30376-5 | spa |
dc.relation.references | Thornton-Wells, T. A., Moore, J. H., Martin, E. R., Pericak-Vance, M. A., & Haines, J. L. (2008). Confronting complexity in late-onset Alzheimer disease: application of two-stage analysis approach addressing heterogeneity and epistasis. Genetic Epidemiology, 32(3), 187–203. https://doi.org/https://doi.org/10.1002/gepi.20294 | spa |
dc.relation.references | Turner, S. D., Dudek, S. M., & Ritchie, M. D. (2010). ATHENA: A knowledge-based hybrid backpropagation-grammatical evolution neural network algorithm for discovering epistasis among quantitative trait Loci. BioData Mining, 3(1). https://doi.org/10.1186/1756-0381-3-5 | spa |
dc.relation.references | Van steen, K. (2012). Travelling the world of gene-gene interactions. Briefings in Bioinformatics, 13(1), 1–19. https://doi.org/10.1093/bib/bbr012 | spa |
dc.relation.references | Vanderweele, T. J. (2010). Epistatic interactions. Statistical Applications in Genetics and Molecular Biology, 9(1). https://doi.org/10.2202/1544-6115.1517 | spa |
dc.relation.references | Vantaggiato, C., Clementi, E., & Bassi, M. T. (2014). ZFYVE26/SPASTIZIN: a close link between complicated hereditary spastic paraparesis and autophagy. Autophagy, 10(2), 374–375. https://doi.org/10.4161/auto.27173 | spa |
dc.relation.references | Vissers, L. E. L. M., Gilissen, C., & Veltman, J. A. (2016). Genetic studies in intellectual disability and related disorders. Nature Reviews. Genetics, 17(1), 9–18. https://doi.org/10.1038/nrg3999 | spa |
dc.relation.references | Vissers, L. E. L. M., & Stankiewicz, P. (2012). Microdeletion and microduplication syndromes. Methods in Molecular Biology (Clifton, N.J.), 838, 29–75. https://doi.org/10.1007/978-1-61779-507-7_2 | spa |
dc.relation.references | Wang, K., Li, M., & Hakonarson, H. (2010). ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Research, 38(16), e164. https://doi.org/10.1093/nar/gkq603 | spa |
dc.relation.references | Webber, C. (2017). Epistasis in Neuropsychiatric Disorders. Trends in Genetics : TIG, 33(4), 256–265. https://doi.org/10.1016/j.tig.2017.01.009 | spa |
dc.relation.references | Winston, P. H. (1992). Artificial Intelligence (3rd Ed.). Addison-Wesley Longman Publishing Co., Inc. | spa |
dc.relation.references | Wong, A. K., Park, C. Y., Greene, C. S., Bongo, L. A., Guan, Y., & Troyanskaya, O. G. (2012). IMP: a multi-species functional genomics portal for integration, visualization and prediction of protein functions and networks. Nucleic Acids Research, 40(Web Server issue), W484-90. https://doi.org/10.1093/nar/gks458 | spa |
dc.relation.references | World Health Organization. (2021). Autism spectrum disorders. https://www.who.int/news-room/fact-sheets/detail/autism-spectrum-disorders | spa |
dc.relation.references | Wright, C. F., FitzPatrick, D. R., & Firth, H. V. (2018). Paediatric genomics: Diagnosing rare disease in children. Nature Reviews Genetics, 19(5), 253–268. https://doi.org/10.1038/nrg.2017.116 | spa |
dc.relation.references | Xiang, X., Wang, S., Liu, T., Wang, M., Li, J., Jiang, J., Wu, T., & Hu, Y. (2020). Exploring gene–gene interaction in family-based data with an unsupervised machine learning method: EPISFA. Genetic Epidemiology. https://doi.org/10.1002/gepi.22342 | spa |
dc.relation.references | Xuan, J., Yu, Y., Qing, T., Guo, L., & Shi, L. (2013). Next-generation sequencing in the clinic: Promises and challenges. Cancer Letters, 340(2), 284–295. https://doi.org/10.1016/j.canlet.2012.11.025 | spa |
dc.relation.references | Yang, C.-H., Chuang, L.-Y., & Lin, Y.-D. (2017). Multiobjective differential evolution-based multifactor dimensionality reduction for detecting gene-gene interactions. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-12773-x | spa |
dc.relation.references | Zhang, X., Huang, S., Zou, F., & Wang, W. (2010). TEAM: Efficient two-locus epistasis tests in human genome-wide association study. Bioinformatics, 26(12), i217–i227. https://doi.org/10.1093/bioinformatics/btq186 | spa |
dc.relation.references | Zhang, Y., Chen, Y., & Hu, T. (2020). PANDA: Prioritization of autism-genes using network-based deep-learning approach. Genetic Epidemiology, 44(4), 382–394. https://doi.org/10.1002/gepi.22282 | spa |
dc.relation.references | Zhao, J., Zhu, Y., & Xiong, M. (2016). Genome-wide gene-gene interaction analysis for next-generation sequencing. European Journal of Human Genetics, 24(3), 421–428. https://doi.org/10.1038/ejhg.2015.147 | spa |
dc.relation.references | Zhou, Z. H., Liu, G. X., Su, L. T., Han, L., & Yan, L. (2014). Detecting epistasis by LASSO-penalized-model search algorithm in human Genome-Wide Association Studies (Vols. 989–994, pp. 2426–2430). https://doi.org/10.4028/www.scientific.net/AMR.989-994.2426 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.ddc | 000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores | spa |
dc.subject.ddc | 610 - Medicina y salud::616 - Enfermedades | spa |
dc.subject.decs | Epistasis Genética | spa |
dc.subject.decs | Epistasis, Genetic | eng |
dc.subject.decs | Personas con Discapacidades Mentales | spa |
dc.subject.decs | Persons with Mental Disabilities | eng |
dc.subject.proposal | Epistasis | spa |
dc.subject.proposal | Aprendizaje de máquinas | spa |
dc.subject.proposal | Polimorfismo de un solo nucleótido | spa |
dc.subject.proposal | Trastornos del neurodesarrollo | spa |
dc.subject.proposal | Discapacidad intelectual | spa |
dc.subject.proposal | Epistasis | eng |
dc.subject.proposal | Machine learning | eng |
dc.subject.proposal | Single nucleotide polymorphism | eng |
dc.subject.proposal | Neurodevelopmental disorders | eng |
dc.subject.proposal | Intellectual disability | eng |
dc.subject.wikidata | aprendizaje automático | |
dc.subject.wikidata | machine learning | |
dc.title | Modelo de epistasis basado en aprendizaje automático para pacientes con discapacidad intelectual y retraso del neurodesarrollo | spa |
dc.title.translated | Machine learning-based epistasis model for intellectual disability and neurodevelopmental delay | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Medios de comunicación | spa |
dcterms.audience.professionaldevelopment | Padres y familias | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1075680777.2024.pdf
- Tamaño:
- 14.14 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Bioinformática
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: