Modelo de epistasis basado en aprendizaje automático para pacientes con discapacidad intelectual y retraso del neurodesarrollo

dc.contributor.advisorNiño Vásquez, Luis Fernandospa
dc.contributor.advisorLópez Rivera, Juan Javierspa
dc.contributor.authorMurcia Triviño, Jossie Estebanspa
dc.contributor.researchgrouplaboratorio de Investigación en Sistemas Inteligentes Lisispa
dc.date.accessioned2024-05-16T19:38:59Z
dc.date.available2024-05-16T19:38:59Z
dc.date.issued2024-04-29
dc.descriptionilustraciones, diagramasspa
dc.description.abstractLos estudios de asociación como epistasis representan un factor importante en la comprensión de la expresión de enfermedades complejas, como lo son los trastornos del neurodesarrollo (TND), que presentan un desafío en el entendimiento de su etiología. Aunque varios estudios han revelado diferentes hallazgos de mutaciones, los efectos de asociación entre polimorfismos de un solo nucleótido (SNP) siguen siendo desconocidos. La reducción de dimensionalidad multifactorial (MDR) es un método de minería de datos por inducción constructiva empleado para detectar interacciones complejas. Este estudio comprendió una cohorte retrospectiva de pacientes pediátricos con prueba de exoma trio por sospecha de alteraciones genéticas para TND. Después de los controles de calidad sobre genotipos, se desarrolló el método MDR bajo la Prueba de desequilibrio de pedigrí (MDR-PDT). Además, se identificaron variantes asociadas individualmente con la enfermad a partir de la prueba de desequilibrio de transmisión (TDT). Se encontró que la variante rs6843524 (SEC24D) significativa por TDT (valor-P=0.003135) evidenció asociaciones con SNP; rs6843524-rs895952 (MDR-PDT valor-P=0.0084) y rs6843524-rs1168666 (MDR-PDT valor-P=0.0079). Aunque las variantes rs1168666 (SETD1B) y rs4974081 (QRICH1) no fueron significativas en MDR, si se identificaron en varios modelos y sus genes destacaron en el análisis de enriquecimiento (FDR 1.11e-05 y 6.55e-05). A pesar de la baja significancia de los modelos MDR-PDT, se lograron validar asociaciones importantes por medio de las otras pruebas y la interpretación biológica. Estos modelos pueden ser muy útiles en el descubrimiento de nuevas variantes, especialmente cuando son desarrollados sobre poblaciones grandes y con un análisis completo desde la secuenciación. (Texto tomado de la fuente).spa
dc.description.abstractAssociation studies such as epistasis studies represent an important factor in understanding the expression of complex diseases, such as neurodevelopmental disorders (NDD). These disorders exhibit a challenge around their etiology. Even though certain studies have revealed several mutation findings, the association effects between Single Nucleotide Polymorphisms (SNPs) remain unknown. Multifactor dimensionality reduction (MDR) is a constructive induction data mining approach that can be used to identify those effects. In this work, a retrospective cohort study based on pediatric patients with trio exome analysis due to suspected genetic alterations for NDD was carried out. After developing genotype quality controls, MDR method was performed under Pedigree Imbalance Test (MDR-PDT). In addition, variants individually associated to disease were identified with Transmission Disequilibrium Test (TDT). We found that variant rs6843524 (SEC24D) is TDT significant (P-value=0.003135) and evidenced SNP interactions; rs6843524-rs895952 (MDR-PDT P-value=0.0084) and rs6843524-rs1168666 (MDR-PDT P-value=0.0079). Although variants rs1168666 (SETD1B) and rs4974081 (QRICH1) were not significant by MDR they were identified by several models and their genes were outstanding in enrichment analysis (FDR 1.11e-05 y 6.55e-05). Despite the low significance of MDR-PDT models, important associations were validated through other tests and biological interpretation. These models can be very useful in discovering new variants, especially when they are developed on larger populations and performing a complete analysis beginning from sequencing.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Bioinformáticaspa
dc.description.researchareaBioinformática funcional y estructuralspa
dc.format.extentxv, 103 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86100
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Bioinformáticaspa
dc.relation.indexedBiremespa
dc.relation.referencesAbay-Nørgaard, S., Attianese, B., Boreggio, L., & Salcini, A. E. (2020). Regulators of H3K4 methylation mutated in neurodevelopmental disorders control axon guidance in Caenorhabditis elegans. Development (Cambridge, England), 147(15). https://doi.org/10.1242/dev.190637spa
dc.relation.referencesAdams, D. R., & Eng, C. M. (2018). Next-Generation Sequencing to Diagnose Suspected Genetic Disorders. New England Journal of Medicine, 379(14), 1353–1362. https://doi.org/10.1056/nejmra1711801spa
dc.relation.referencesAlazami, A. M., Patel, N., Shamseldin, H. E., Anazi, S., Al-Dosari, M. S., Alzahrani, F., Hijazi, H., Alshammari, M., Aldahmesh, M. A., Salih, M. A., Faqeih, E., Alhashem, A., Bashiri, F. A., Al-Owain, M., Kentab, A. Y., Sogaty, S., Al Tala, S., Temsah, M.-H., Tulbah, M., … Alkuraya, F. S. (2015). Accelerating novel candidate gene discovery in neurogenetic disorders via whole-exome sequencing of prescreened multiplex consanguineous families. Cell Reports, 10(2), 148–161. https://doi.org/10.1016/j.celrep.2014.12.015spa
dc.relation.referencesAmerican Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). https://doi.org/10.1176/appi.books.9780890425596spa
dc.relation.referencesAnsarifar, J., Wang, L., & Hancock, J. (2019). New algorithms for detecting multi-effect and multi-way epistatic interactions. Bioinformatics, 35(24), 5078–5085. https://doi.org/10.1093/bioinformatics/btz463spa
dc.relation.referencesBallif, B. C., Hornor, S. A., Jenkins, E., Madan-Khetarpal, S., Surti, U., Jackson, K. E., Asamoah, A., Brock, P. L., Gowans, G. C., Conway, R. L., Graham, J. M. J., Medne, L., Zackai, E. H., Shaikh, T. H., Geoghegan, J., Selzer, R. R., Eis, P. S., Bejjani, B. A., & Shaffer, L. G. (2007). Discovery of a previously unrecognized microdeletion syndrome of 16p11.2-p12.2. Nature Genetics, 39(9), 1071–1073. https://doi.org/10.1038/ng2107spa
dc.relation.referencesBaruch, Y., Horn-Saban, S., Plotsky, Y., Bercovich, D., & Gershoni-Baruch, R. (2021). A case of Ververi-Brady syndrome due to QRICH1 loss of function and the literature review. In American journal of medical genetics. Part A (Vol. 185, Issue 6, pp. 1913–1917). https://doi.org/10.1002/ajmg.a.62184spa
dc.relation.referencesBateson, W., & Mendel, G. (2013). Mendel’s principles of heredity. Courier Corporation.spa
dc.relation.referencesBausela-Herreras, E., Tirapu-Ustárroz, J., & Cordero-Andrés, P. (2019). Deficits and neurodevelopmental disorders in childhood and adolescence. Revista de Neurologia, 69(11), 461–469. https://doi.org/10.33588/RN.6911.2019133spa
dc.relation.referencesBiancotti, J.-C., & Benvenisty, N. (2011). Aneuploid human embryonic stem cells: origins and potential for modeling chromosomal disorders. Regenerative Medicine, 6(4), 493–503. https://doi.org/10.2217/rme.11.27spa
dc.relation.referencesBitta, M., Kariuki, S. M., Abubakar, A., & Newton, C. R. J. C. (2018). Burden of neurodevelopmental disorders in low and middle-income countries: A systematic review and meta-analysis [version 3; referees: 1 approved, 2 approved with reservations]. Wellcome Open Research, 2. https://doi.org/10.12688/wellcomeopenres.13540.3spa
dc.relation.referencesBrandenburg, J.-T., Clark, L., Botha, G., Panji, S., Baichoo, S., Fields, C., & Hazelhurst, S. (2022). H3AGWAS : A portable workflow for Genome Wide Association Studies. BioRxiv, 2022.05.02.490206. https://doi.org/10.1101/2022.05.02.490206spa
dc.relation.referencesBrownstein, C. A., Beggs, A. H., Homer, N., Merriman, B., Yu, T. W., Flannery, K. C., DeChene, E. T., Towne, M. C., Savage, S. K., Price, E. N., Holm, I. A., Luquette, L. J., Lyon, E., Majzoub, J., Neupert, P., McCallie, D. J., Szolovits, P., Willard, H. F., Mendelsohn, N. J., … Margulies, D. M. (2014). An international effort towards developing standards for best practices in analysis, interpretation and reporting of clinical genome sequencing results in the CLARITY Challenge. Genome Biology, 15(3), R53. https://doi.org/10.1186/gb-2014-15-3-r53spa
dc.relation.referencesCarayol, J., Schellenberg, G. D., Dombroski, B., Amiet, C., Génin, B., Fontaine, K., Rousseau, F., Vazart, C., Cohen, D., Frazier, T. W., Hardan, A. Y., Dawson, G., & Frio, T. R. (2014). A scoring strategy combining statistics and functional genomics supports a possible role for common polygenic variation in autism. Frontiers in Genetics, 5(FEB). https://doi.org/10.3389/fgene.2014.00033spa
dc.relation.referencesCardoso, A. R., Lopes-Marques, M., Silva, R. M., Serrano, C., Amorim, A., Prata, M. J., & Azevedo, L. (2019). Essential genetic findings in neurodevelopmental disorders. Human Genomics, 13(1), 31. https://doi.org/10.1186/s40246-019-0216-4spa
dc.relation.referencesCattaert, T., Urrea, V., Naj, A. C., De Lobel, L., De Wit, V., Fu, M., Mahachie John, J. M., Shen, H., Calle, M. L., Ritchie, M. D., Edwards, T. L., & Van Steen, K. (2010). FAM-MDR: a flexible family-based multifactor dimensionality reduction technique to detect epistasis using related individuals. PloS One, 5(4), e10304. https://doi.org/10.1371/journal.pone.0010304spa
dc.relation.referencesCattaert, T., Urrea, V., Naj, A. C., De Lobel, L., De Wit, V., Fu, M., Mahachie John, J. M., Shen, H., Calle, M. L., Ritchie, M. D., Edwards, T. L., & Van Steen, K. (2010). FAM-MDR: a flexible family-based multifactor dimensionality reduction technique to detect epistasis using related individuals. PloS One, 5(4), e10304. https://doi.org/10.1371/journal.pone.0010304spa
dc.relation.referencesChang, Y. C., Wu, J. T., Hong, M. Y., Tung, Y. A., Hsieh, P. H., Yee, S. W., Giacomini, K. M., Oyang, Y. J., & Chen, C. Y. (2020). GenEpi: Gene-based epistasis discovery using machine learning. BMC Bioinformatics, 21(1). https://doi.org/10.1186/s12859-020-3368-2spa
dc.relation.referencesChapman, P. (2000). CRISP-DM 1.0: Step-by-step data mining guide. https://api.semanticscholar.org/CorpusID:59777418spa
dc.relation.referencesChen, X., Li, H., Chen, C., Zhou, L., Xu, X., Xiang, Y., & Tang, S. (2018). Genome-Wide Array Analysis Reveals Novel Genomic Regions and Candidate Gene for Intellectual Disability. Molecular Diagnosis & Therapy, 22(6), 749–757. https://doi.org/10.1007/s40291-018-0358-4spa
dc.relation.referencesClinical utility of genetic and genomic services: a position statement of the American College of Medical Genetics and Genomics. (2015). Genetics in Medicine : Official Journal of the American College of Medical Genetics, 17(6), 505–507. https://doi.org/10.1038/gim.2015.41spa
dc.relation.referencesCole, B. S., Hall, M. A., Urbanowicz, R. J., Gilbert-Diamond, D., & Moore, J. H. (2017). Analysis of Gene-Gene Interactions. Current Protocols in Human Genetics, 95(1), 1.14.1-1.14.10. https://doi.org/10.1002/cphg.45spa
dc.relation.referencesCordell, H. (2002). Epistasis: What it means, what it doesn’t mean, and statistical methods to detect it in humans. Human Molecular Genetics, 11, 2463–2468. https://doi.org/10.1093/hmg/11.20.2463spa
dc.relation.referencesCordell, H. (2009). Detecting gene-gene interactions that underlie human diseases. Nature Reviews. Genetics, 10, 392–404. https://doi.org/10.1038/nrg2579spa
dc.relation.referencesDanecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., DePristo, M. A., Handsaker, R. E., Lunter, G., Marth, G. T., Sherry, S. T., McVean, G., Durbin, R., & Group, 1000 Genomes Project Analysis. (2011). The variant call format and VCFtools. Bioinformatics, 27(15), 2156–2158. https://doi.org/10.1093/bioinformatics/btr330spa
dc.relation.referencesDanecek, P., Bonfield, J. K., Liddle, J., Marshall, J., Ohan, V., Pollard, M. O., Whitwham, A., Keane, T., McCarthy, S. A., Davies, R. M., & Li, H. (2021). Twelve years of SAMtools and BCFtools. GigaScience, 10(2), giab008. https://doi.org/10.1093/gigascience/giab008spa
dc.relation.referencesde Ligt, J., Willemsen, M. H., van Bon, B. W. M., Kleefstra, T., Yntema, H. G., Kroes, T., Vulto-van Silfhout, A. T., Koolen, D. A., de Vries, P., Gilissen, C., del Rosario, M., Hoischen, A., Scheffer, H., de Vries, B. B. A., Brunner, H. G., Veltman, J. A., & Vissers, L. E. L. M. (2012). Diagnostic exome sequencing in persons with severe intellectual disability. The New England Journal of Medicine, 367(20), 1921–1929. https://doi.org/10.1056/NEJMoa1206524spa
dc.relation.referencesDias, R., & Torkamani, A. (2019). Artificial intelligence in clinical and genomic diagnostics. Genome Medicine, 11(1), 70. https://doi.org/10.1186/s13073-019-0689-8spa
dc.relation.referencesDillon, O. J., Lunke, S., Stark, Z., Yeung, A., Thorne, N., Gaff, C., White, S. M., & Tan, T. Y. (2018). Exome sequencing has higher diagnostic yield compared to simulated disease-specific panels in children with suspected monogenic disorders. European Journal of Human Genetics, 26(5), 644–651. https://doi.org/10.1038/s41431-018-0099-1spa
dc.relation.referencesEdwards, T. L., Wang, X., Chen, Q., Wormly, B., Riley, B., O’Neill, F. A., Walsh, D., Ritchie, M. D., Kendler, K. S., & Chen, X. (2008). Interaction between interleukin 3 and dystrobrevin-binding protein 1 in schizophrenia. Schizophrenia Research, 106(2), 208–217. https://doi.org/https://doi.org/10.1016/j.schres.2008.07.022spa
dc.relation.referencesEmily, M. (2016). AGGrEGATOr: A Gene-based GEne-Gene interActTiOn test for case-control association studies. Statistical Applications in Genetics and Molecular Biology, 15(2), 151–171. https://doi.org/10.1515/sagmb-2015-0074spa
dc.relation.referencesFisher, R. A. (1919). XV.—The Correlation between Relatives on the Supposition of Mendelian Inheritance. Transactions of the Royal Society of Edinburgh, 52(2), 399–433. https://doi.org/10.1017/S0080456800012163spa
dc.relation.referencesFroukh, T. J. (2017). Next Generation Sequencing and Genome-Wide Genotyping Identify the Genetic Causes of Intellectual Disability in Ten Consanguineous Families from Jordan. The Tohoku Journal of Experimental Medicine, 243(4), 297–309. https://doi.org/10.1620/tjem.243.297spa
dc.relation.referencesGall, K., Izzo, E., Seppälä, E. H., Alakurtti, K., Koskinen, L., Saarinen, I., Singh, A., Myllykangas, S., Koskenvuo, J., & Alastalo, T.-P. (2021). Next-generation sequencing in childhood-onset epilepsies: Diagnostic yield and impact on neuronal ceroid lipofuscinosis type 2 (CLN2) disease diagnosis. PloS One, 16(9), e0255933. https://doi.org/10.1371/journal.pone.0255933spa
dc.relation.referencesGhanem, S. I., Ghanem, N. M., & Ismail, M. A. (2019). Noisy Epistasis Using Deep Learning. 165–168. https://doi.org/10.1109/JEC-ECC.2018.8679568spa
dc.relation.referencesGonzález Alvaredo, S., Sanz Rojo, R., García Santiago, J., Gaztañaga Expósito, R., Bengoa, A., & Pérez-Yarza, E. G. (2008). [Genetic diagnostic criteria in cases of mental retardation and development of idiopathic origin]. Anales de pediatria (Barcelona, Spain : 2003), 69(5), 446–453. https://doi.org/10.1157/13128001spa
dc.relation.referencesGoodwin, S., McPherson, J. D., & McCombie, W. R. (2016). Coming of age: Ten years of next-generation sequencing technologies. Nature Reviews Genetics, 17(6), 333–351. https://doi.org/10.1038/nrg.2016.49spa
dc.relation.referencesGriffin, D. K. (1996). The incidence, origin, and etiology of aneuploidy. International Review of Cytology, 167, 263–296. https://doi.org/10.1016/s0074-7696(08)61349-2spa
dc.relation.referencesGusareva, E. S., & Van Steen, K. (2014). Practical aspects of genome-wide association interaction analysis. Human Genetics, 133(11), 1343–1358. https://doi.org/10.1007/s00439-014-1480-yspa
dc.relation.referencesHamdan, F. F., Gauthier, J., Araki, Y., Lin, D.-T., Yoshizawa, Y., Higashi, K., Park, A.-R., Spiegelman, D., Dobrzeniecka, S., Piton, A., Tomitori, H., Daoud, H., Massicotte, C., Henrion, E., Diallo, O., Shekarabi, M., Marineau, C., Shevell, M., Maranda, B., … Michaud, J. L. (2011). Excess of de novo deleterious mutations in genes associated with glutamatergic systems in nonsyndromic intellectual disability. American Journal of Human Genetics, 88(3), 306–316. https://doi.org/10.1016/j.ajhg.2011.02.001spa
dc.relation.referencesHieter, P., & Boguski, M. (1997). Functional genomics: it’s all how you read it. Science (New York, N.Y.), 278(5338), 601–602. https://doi.org/10.1126/science.278.5338.601spa
dc.relation.referencesHu, T., Chen, Y., Kiralis, J. W., & Moore, J. H. (2013). ViSEN: methodology and software for visualization of statistical epistasis networks. Genetic Epidemiology, 37(3), 283–285. https://doi.org/10.1002/gepi.21718spa
dc.relation.referencesHu, T., Sinnott-Armstrong, N. A., Kiralis, J. W., Andrew, A. S., Karagas, M. R., & Moore, J. H. (2011). Characterizing genetic interactions in human disease association studies using statistical epistasis networks. BMC Bioinformatics, 12, 364. https://doi.org/10.1186/1471-2105-12-364spa
dc.relation.referencesIossifov, I., O’Roak, B. J., Sanders, S. J., Ronemus, M., Krumm, N., Levy, D., Stessman, H. A., Witherspoon, K. T., Vives, L., Patterson, K. E., Smith, J. D., Paeper, B., Nickerson, D. A., Dea, J., Dong, S., Gonzalez, L. E., Mandell, J. D., Mane, S. M., Murtha, M. T., … Wigler, M. (2014). The contribution of de novo coding mutations to autism spectrum disorder. Nature, 515(7526), 216–221. https://doi.org/10.1038/nature13908spa
dc.relation.referencesKafaie, S., Chen, Y., & Hu, T. (2019). A network approach to prioritizing susceptibility genes for genome-wide association studies. Genetic Epidemiology, 43(5), 477–491. https://doi.org/10.1002/gepi.22198spa
dc.relation.referencesKessi, M., Chen, B., Pang, N., Yang, L., Peng, J., He, F., & Yin, F. (2023). The genotype-phenotype correlations of the CACNA1A-related neurodevelopmental disorders: a small case series and literature reviews. Frontiers in Molecular Neuroscience, 16, 1222321. https://doi.org/10.3389/fnmol.2023.1222321spa
dc.relation.referencesKhoury, M. J., Gwinn, M. L., Glasgow, R. E., & Kramer, B. S. (2012). A population approach to precision medicine. American Journal of Preventive Medicine, 42(6), 639–645. https://doi.org/10.1016/j.amepre.2012.02.012spa
dc.relation.referencesKim, N. C., Andrews, P. C., Asselbergs, F. W., Frost, H. R., Williams, S. M., Harris, B. T., Read, C., Askland, K. D., & Moore, J. H. (2012). Gene ontology analysis of pairwise genetic associations in two genome-wide studies of sporadic ALS. BioData Mining, 5(1), 9. https://doi.org/10.1186/1756-0381-5-9spa
dc.relation.referencesKoolen, D. A., Vissers, L. E. L. M., Pfundt, R., de Leeuw, N., Knight, S. J. L., Regan, R., Kooy, R. F., Reyniers, E., Romano, C., Fichera, M., Schinzel, A., Baumer, A., Anderlid, B.-M., Schoumans, J., Knoers, N. V, van Kessel, A. G., Sistermans, E. A., Veltman, J. A., Brunner, H. G., & de Vries, B. B. A. (2006). A new chromosome 17q21.31 microdeletion syndrome associated with a common inversion polymorphism. Nature Genetics, 38(9), 999–1001. https://doi.org/10.1038/ng1853spa
dc.relation.referencesKumble, S., Levy, A. M., Punetha, J., Gao, H., Ah Mew, N., Anyane-Yeboa, K., Benke, P. J., Berger, S. M., Bjerglund, L., Campos-Xavier, B., Ciliberto, M., Cohen, J. S., Comi, A. M., Curry, C., Damaj, L., Denommé-Pichon, A.-S., Emrick, L., Faivre, L., Fasano, M. B., … Tümer, Z. (2022). The clinical and molecular spectrum of QRICH1 associated neurodevelopmental disorder. Human Mutation, 43(2), 266–282. https://doi.org/10.1002/humu.24308spa
dc.relation.referencesLarge-scale discovery of novel genetic causes of developmental disorders. (2015). Nature, 519(7542), 223–228. https://doi.org/10.1038/nature14135spa
dc.relation.referencesLarranaga, P. (2006). Machine learning in bioinformatics. Briefings in Bioinformatics, 7, 86–112. https://doi.org/10.1093/bib/bbk007spa
dc.relation.referencesLeem, S., & Park, T. (2017). An empirical fuzzy multifactor dimensionality reduction method for detecting gene-gene interactions. BMC Genomics, 18. https://doi.org/10.1186/s12864-017-3496-xspa
dc.relation.referencesLeonard, H., & Wen, X. (2002). The epidemiology of mental retardation: Challenges and opportunities in the new millennium. Mental Retardation and Developmental Disabilities Research Reviews, 8(3), 117–134. https://doi.org/https://doi.org/10.1002/mrdd.10031spa
dc.relation.referencesLi, J., Malley, J. D., Andrew, A. S., Karagas, M. R., & Moore, J. H. (2016). Detecting gene-gene interactions using a permutation-based random forest method. BioData Mining, 9(1). https://doi.org/10.1186/s13040-016-0093-5spa
dc.relation.referencesLi, Q., Fallin, M. D., Louis, T. A., Lasseter, V. K., McGrath, J. A., Avramopoulos, D., Wolyniec, P. S., Valle, D., Liang, K.-Y., Pulver, A. E., & Ruczinski, I. (2010). Detection of SNP-SNP interactions in trios of parents with schizophrenic children. Genetic Epidemiology, 34(5), 396–406. https://doi.org/10.1002/gepi.20488spa
dc.relation.referencesLipkin, P. H., & Macias, M. M. (2020). Promoting Optimal Development: Identifying Infants and Young Children With Developmental Disorders Through Developmental Surveillance and Screening. Pediatrics, 145(1). https://doi.org/10.1542/peds.2019-3449spa
dc.relation.referencesLiu, D., Wang, M., Yuan, Y., Schwender, H., Wang, H., Wang, P., Zhou, Z., Li, J., Wu, T., Zhu, H., & Beaty, T. H. (2019). Gene-gene interaction among cell adhesion genes and risk of nonsyndromic cleft lip with or without cleft palate in Chinese case-parent trios. Molecular Genetics & Genomic Medicine, 7(10), e00872. https://doi.org/10.1002/mgg3.872spa
dc.relation.referencesLord, C., Elsabbagh, M., Baird, G., & Veenstra-Vanderweele, J. (2018). Autism spectrum disorder. The Lancet, 392(10146), 508–520. https://doi.org/10.1016/S0140-6736(18)31129-2spa
dc.relation.referencesLou, X.-Y., Chen, G.-B., Yan, L., Ma, J. Z., Mangold, J. E., Zhu, J., Elston, R. C., & Li, M. D. (2008). A combinatorial approach to detecting gene-gene and gene-environment interactions in family studies. American Journal of Human Genetics, 83(4), 457–467. https://doi.org/10.1016/j.ajhg.2008.09.001spa
dc.relation.referencesManavalan, R., & Priya, S. (2020). Epistasis effects of complex diseases from simulated models through computational approaches: A review. International Journal of Scientific and Technology Research, 9(3), 5444–5462. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85082683196&partnerID=40&md5=5bf6555bd63be58e53cb6939d425e8fbspa
dc.relation.referencesManolio, T. A., Collins, F. S., Cox, N. J., Goldstein, D. B., Hindorff, L. A., Hunter, D. J., McCarthy, M. I., Ramos, E. M., Cardon, L. R., Chakravarti, A., Cho, J. H., Guttmacher, A. E., Kong, A., Kruglyak, L., Mardis, E., Rotimi, C. N., Slatkin, M., Valle, D., Whittemore, A. S., … Visscher, P. M. (2009). Finding the missing heritability of complex diseases. Nature, 461(7265), 747–753. https://doi.org/10.1038/nature08494spa
dc.relation.referencesManzoni, C., Kia, D. A., Vandrovcova, J., Hardy, J., Wood, N. W., Lewis, P. A., & Ferrari, R. (2018). Genome, transcriptome and proteome: The rise of omics data and their integration in biomedical sciences. Briefings in Bioinformatics, 19(2), 286–302. https://doi.org/10.1093/BIB/BBW114spa
dc.relation.referencesMarees, A. T., de Kluiver, H., Stringer, S., Vorspan, F., Curis, E., Marie-Claire, C., & Derks, E. M. (2018). A tutorial on conducting genome-wide association studies: Quality control and statistical analysis. International Journal of Methods in Psychiatric Research, 27(2), e1608. https://doi.org/10.1002/mpr.1608spa
dc.relation.referencesMartin, E. R., Bass, M. P., Gilbert, J. R., Pericak-Vance, M. A., & Hauser, E. R. (2003). Genotype-based association test for general pedigrees: the genotype-PDT. Genetic Epidemiology, 25(3), 203–213. https://doi.org/10.1002/gepi.10258spa
dc.relation.referencesMartin, E. R., Ritchie, M. D., Hahn, L., Kang, S., & Moore, J. H. (2006). A novel method to identify gene-gene effects in nuclear families: the MDR-PDT. Genetic Epidemiology, 30(2), 111–123. https://doi.org/10.1002/gepi.20128spa
dc.relation.referencesMascheretti, S., Bureau, A., Trezzi, V., Giorda, R., & Marino, C. (2015). An assessment of gene-by-gene interactions as a tool to unfold missing heritability in dyslexia. Human Genetics, 134(7), 749–760. https://doi.org/10.1007/s00439-015-1555-4spa
dc.relation.referencesMason, H., & Wiggins, C. (2010). A taxonomy of data science. Http://Www.Dataists.Com/2010/09/a-Taxonomy-of-Data-Science/.spa
dc.relation.referencesMathé, C., Sagot, M., Schiex, T., & Rouzé, P. (2002). Current methods of gene prediction, their strengths and weaknesses. Nucleic Acids Research, 30(19), 4103–4117. https://doi.org/10.1093/nar/gkf543spa
dc.relation.referencesMoeschler, J. B., & Shevell, M. (2014). Comprehensive evaluation of the child with intellectual disability or global developmental delays. Pediatrics, 134(3), e903-18. https://doi.org/10.1542/peds.2014-1839spa
dc.relation.referencesMontojo, J., Zuberi, K., Rodriguez, H., Kazi, F., Wright, G., Donaldson, S. L., Morris, Q., & Bader, G. D. (2010). GeneMANIA Cytoscape plugin: fast gene function predictions on the desktop. Bioinformatics (Oxford, England), 26(22), 2927–2928. https://doi.org/10.1093/bioinformatics/btq562spa
dc.relation.referencesMoore, J. H. (2003). The ubiquitous nature of epistasis in determining susceptibility to common human diseases. Human Heredity, 56(1–3), 73–82. https://doi.org/10.1159/000073735spa
dc.relation.referencesMoore, J. H., Hahn, L. W., Ritchie, M. D., Thornton, T. A., & White, B. C. (2004). Routine discovery of complex genetic models using genetic algorithms. Applied Soft Computing Journal, 4(1), 79–86. https://doi.org/10.1016/j.asoc.2003.08.003spa
dc.relation.referencesMorgan, A., Gandin, I., Belcaro, C., Palumbo, P., Palumbo, O., Biamino, E., Dal Col, V., Laurini, E., Pricl, S., Bosco, P., Carella, M., Ferrero, G. B., Romano, C., d’Adamo, A. P., Faletra, F., & Vozzi, D. (2015). Target sequencing approach intended to discover new mutations in non-syndromic intellectual disability. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 781, 32–36. https://doi.org/https://doi.org/10.1016/j.mrfmmm.2015.09.002spa
dc.relation.referencesMorris-Rosendahl, D. J., & Crocq, M. A. (2020). Neurodevelopmental disorders-the history and future of a diagnostic concept. Dialogues in Clinical Neuroscience, 22(1), 65–72. https://doi.org/10.31887/DCNS.2020.22.1/macrocqspa
dc.relation.referencesNewman, J. R. B., Concannon, P., & Ge, Y. (2023). UBASH3A Interacts with PTPN22 to Regulate IL2 Expression and Risk for Type 1 Diabetes. International Journal of Molecular Sciences, 24(10). https://doi.org/10.3390/ijms24108671spa
dc.relation.referencesNodzenski, M., Shi, M., Krahn, J. M., Wise, A. S., Li, Y., Li, L., Umbach, D. M., & Weinberg, C. R. (2022). GADGETS: a genetic algorithm for detecting epistasis using nuclear families. Bioinformatics (Oxford, England), 38(4), 1052–1058. https://doi.org/10.1093/bioinformatics/btab766spa
dc.relation.referencesOhi, K., Hashimoto, R., Yasuda, Y., Fukumoto, M., Yamamori, H., Umeda-Yano, S., Fujimoto, M., Iwase, M., Kazui, H., & Takeda, M. (2013). Influence of the NRGN gene on intellectual ability in schizophrenia. Journal of Human Genetics, 58(10), 700–705. https://doi.org/10.1038/jhg.2013.82spa
dc.relation.referencesOrfao, A., Benítez, J., Corrales, F., Martín-Subero, I., Ordovás, J. M., Carracedo, Á., & Lapunzina, P. (2019). Ciencias ónicas. 32. www.institutoroche.esspa
dc.relation.referencesPalsson, B. (2002). In silico biology through “omics.” Nature Biotechnology, 20(7), 649–650. https://doi.org/10.1038/nbt0702-649spa
dc.relation.referencesPark, C., Kim, J., Kim, J., & Park, S. (2018). Machine learning-based identification of genetic interactions from heterogeneous gene expression profiles. PLoS ONE, 13(7). https://doi.org/10.1371/journal.pone.0201056spa
dc.relation.referencesPark, M., Lee, J. W., Park, T., & Lee, S. (2020). Gene-Gene Interaction Analysis for the Survival Phenotype Based on the Kaplan-Meier Median Estimate. BioMed Research International, 2020. https://doi.org/10.1155/2020/5282345spa
dc.relation.referencesPaschou, P., Yu, D., Gerber, G., Evans, P., Tsetsos, F., Davis, L. K., Karagiannidis, I., Chaponis, J., Gamazon, E., Mueller-Vahl, K., Stuhrmann, M., Schloegelhofer, M., Stamenkovic, M., Hebebrand, J., Noethen, M., Nagy, P., Barta, C., Tarnok, Z., Rizzo, R., … Scharf, J. M. (2014). Genetic association signal near NTN4 in Tourette syndrome. Annals of Neurology, 76(2), 310–315. https://doi.org/10.1002/ana.24215spa
dc.relation.referencesPattin, K. A., White, B. C., Barney, N., Gui, J., Nelson, H. H., Kelsey, K. T., Andrew, A. S., Karagas, M. R., & Moore, J. H. (2009). A computationally efficient hypothesis testing method for epistasis analysis using multifactor dimensionality reduction. Genetic Epidemiology, 33(1), 87–94. https://doi.org/10.1002/gepi.20360spa
dc.relation.referencesPerakakis, N., Yazdani, A., Karniadakis, G. E., & Mantzoros, C. (2018). Omics, big data and machine learning as tools to propel understanding of biological mechanisms and to discover novel diagnostics and therapeutics. In Metabolism: clinical and experimental (Vol. 87, pp. A1--A9). https://doi.org/10.1016/j.metabol.2018.08.002spa
dc.relation.referencesPineda-Cirera, L., Shivalikanjli, A., Cabana-Domínguez, J., Demontis, D., Rajagopal, V. M., Børglum, A. D., Faraone, S. V, Cormand, B., & Fernàndez-Castillo, N. (2019). Exploring genetic variation that influences brain methylation in attention-deficit/hyperactivity disorder. Translational Psychiatry, 9(1). https://doi.org/10.1038/s41398-019-0574-7spa
dc.relation.referencesPiriyapongsa, J., Ngamphiw, C., Intarapanich, A., Kulawonganunchai, S., Assawamakin, A., Bootchai, C., Shaw, P. J., & Tongsima, S. (2012). iLOCi: a SNP interaction prioritization technique for detecting epistasis in genome-wide association studies. BMC Genomics, 13 Suppl 7. https://doi.org/10.1186/1471-2164-13-s7-s2spa
dc.relation.referencesPosar, A., & Visconti, P. (2017). Neurodevelopmental Disorders between Past and Future. Journal of Pediatric Neurosciences, 12(3), 301–302. https://doi.org/10.4103/jpn.JPN_95_17spa
dc.relation.referencesPrice, K. M., Wigg, K. G., Feng, Y., Blokland, K., Wilkinson, M., He, G., Kerr, E. N., Carter, T.-C., Guger, S. L., Lovett, M. W., Strug, L. J., & Barr, C. L. (2020). Genome-wide association study of word reading: Overlap with risk genes for neurodevelopmental disorders. Genes, Brain and Behavior, 19(6). https://doi.org/10.1111/gbb.12648spa
dc.relation.referencesQin, D. (2019). Next-generation sequencing and its clinical application. Cancer Biology and Medicine, 16(1), 4–10. https://doi.org/10.20892/j.issn.2095-3941.2018.0055spa
dc.relation.referencesRauch, A., Hoyer, J., Guth, S., Zweier, C., Kraus, C., Becker, C., Zenker, M., Hüffmeier, U., Thiel, C., Rüschendorf, F., Nürnberg, P., Reis, A., & Trautmann, U. (2006). Diagnostic yield of various genetic approaches in patients with unexplained developmental delay or mental retardation. American Journal of Medical Genetics. Part A, 140(19), 2063–2074. https://doi.org/10.1002/ajmg.a.31416spa
dc.relation.referencesRedon, R., Ishikawa, S., Fitch, K. R., Feuk, L., Perry, G. H., Andrews, T. D., Fiegler, H., Shapero, M. H., Carson, A. R., Chen, W., Cho, E. K., Dallaire, S., Freeman, J. L., González, J. R., Gratacòs, M., Huang, J., Kalaitzopoulos, D., Komura, D., MacDonald, J. R., … Hurles, M. E. (2006). Global variation in copy number in the human genome. Nature, 444(7118), 444–454. https://doi.org/10.1038/nature05329spa
dc.relation.referencesRitchie, M D, Hahn, L. W., Roodi, N., Bailey, L. R., Dupont, W. D., Parl, F. F., & Moore, J. H. (2001). Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. American Journal of Human Genetics, 69(1), 138–147. https://doi.org/10.1086/321276spa
dc.relation.referencesRitchie, Marylyn D., & Van Steen, K. (2018). The search for gene-gene interactions in genome-wide association studies: challenges in abundance of methods, practical considerations, and biological interpretation. Annals of Translational Medicine, 6(8), 157–157. https://doi.org/10.21037/atm.2018.04.05spa
dc.relation.referencesRoston, A., Evans, D., Gill, H., McKinnon, M., Isidor, B., Cogné, B., Mwenifumbo, J., van Karnebeek, C., An, J., Jones, S. J. M., Farrer, M., Demos, M., Connolly, M., & Gibson, W. T. (2021). SETD1B-associated neurodevelopmental disorder. Journal of Medical Genetics, 58(3), 196–204. https://doi.org/10.1136/jmedgenet-2019-106756spa
dc.relation.referencesSaldarriaga, W., Forero-Forero, J. V., González-Teshima, L. Y., Fandiño-Losada, A., Isaza, C., Tovar-Cuevas, J. R., Silva, M., Choudhary, N. S., Tang, H.-T., Aguilar-Gaxiola, S., Hagerman, R. J., & Tassone, F. (2018). Genetic cluster of fragile X syndrome in a Colombian district. Journal of Human Genetics, 63(4), 509–516. https://doi.org/10.1038/s10038-017-0407-6spa
dc.relation.referencesSaldarriaga, W., Tassone, F., González-Teshima, L. Y., Forero-Forero, J. V., Ayala-Zapata, S., & Hagerman, R. (2014). Fragile X syndrome. Colombia Medica (Cali, Colombia), 45(4), 190–198.spa
dc.relation.referencesSavatt, J. M., & Myers, S. M. (2021). Genetic Testing in Neurodevelopmental Disorders. Frontiers in Pediatrics, 9, 526779. https://doi.org/10.3389/fped.2021.526779spa
dc.relation.referencesShaffer, L. G., Bejjani, B. A., Torchia, B., Kirkpatrick, S., Coppinger, J., & Ballif, B. C. (2007). The identification of microdeletion syndromes and other chromosome abnormalities: cytogenetic methods of the past, new technologies for the future. American Journal of Medical Genetics. Part C, Seminars in Medical Genetics, 145C(4), 335–345. https://doi.org/10.1002/ajmg.c.30152spa
dc.relation.referencesSharp, A. J., Mefford, H. C., Li, K., Baker, C., Skinner, C., Stevenson, R. E., Schroer, R. J., Novara, F., De Gregori, M., Ciccone, R., Broomer, A., Casuga, I., Wang, Y., Xiao, C., Barbacioru, C., Gimelli, G., Bernardina, B. D., Torniero, C., Giorda, R., … Eichler, E. E. (2008). A recurrent 15q13.3 microdeletion syndrome associated with mental retardation and seizures. Nature Genetics, 40(3), 322–328. https://doi.org/10.1038/ng.93spa
dc.relation.referencesShaw-Smith, C., Pittman, A. M., Willatt, L., Martin, H., Rickman, L., Gribble, S., Curley, R., Cumming, S., Dunn, C., Kalaitzopoulos, D., Porter, K., Prigmore, E., Krepischi-Santos, A. C. V, Varela, M. C., Koiffmann, C. P., Lees, A. J., Rosenberg, C., Firth, H. V, de Silva, R., & Carter, N. P. (2006). Microdeletion encompassing MAPT at chromosome 17q21.3 is associated with developmental delay and learning disability. Nature Genetics, 38(9), 1032–1037. https://doi.org/10.1038/ng1858spa
dc.relation.referencesSinoquet, C., & Niel, C. (2019). Ant colony optimization for markov blanket-based feature selection. Application for precision medicine: Vol. 11331 LNCS (pp. 217–230). https://doi.org/10.1007/978-3-030-13709-0_18spa
dc.relation.referencesSlavotinek, A. M. (2008). Novel microdeletion syndromes detected by chromosome microarrays. Human Genetics, 124(1), 1–17. https://doi.org/10.1007/s00439-008-0513-9spa
dc.relation.referencesSlim Lotfi AND Chatelain, C. A. N. D. A. C.-A. A. N. D. V. J.-P. (2020). Novel methods for epistasis detection in genome-wide association studies. PLOS ONE, 15(11), 1–18. https://doi.org/10.1371/journal.pone.0242927spa
dc.relation.referencesSpielman, R. S., McGinnis, R. E., & Ewens, W. J. (1993). Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). American Journal of Human Genetics, 52(3), 506–516.spa
dc.relation.referencesSrivastava, S., Love-Nichols, J. A., Dies, K. A., Ledbetter, D. H., Martin, C. L., Chung, W. K., Firth, H. V, Frazier, T., Hansen, R. L., Prock, L., Brunner, H., Hoang, N., Scherer, S. W., Sahin, M., & Miller, D. T. (2019). Meta-analysis and multidisciplinary consensus statement: exome sequencing is a first-tier clinical diagnostic test for individuals with neurodevelopmental disorders. Genetics in Medicine : Official Journal of the American College of Medical Genetics, 21(11), 2413–2421. https://doi.org/10.1038/s41436-019-0554-6spa
dc.relation.referencesStessman, H. A. F., Willemsen, M. H., Fenckova, M., Penn, O., Hoischen, A., Xiong, B., Wang, T., Hoekzema, K., Vives, L., Vogel, I., Brunner, H. G., van der Burgt, I., Ockeloen, C. W., Schuurs-Hoeijmakers, J. H., Klein Wassink-Ruiter, J. S., Stumpel, C., Stevens, S. J. C., Vles, H. S., Marcelis, C. M., … Kleefstra, T. (2016). Disruption of POGZ Is Associated with Intellectual Disability and Autism Spectrum Disorders. The American Journal of Human Genetics, 98(3), 541–552. https://doi.org/https://doi.org/10.1016/j.ajhg.2016.02.004spa
dc.relation.referencesSun, Y., Wang, X., Shang, J., Liu, J., Zheng, C., & Lei, X. (2018). Introducing Heuristic Information into Ant Colony Optimization Algorithm for Identifying Epistasis. In IEEE/ACM Transactions on Computational Biology and Bioinformatics. https://doi.org/10.1109/TCBB.2018.2879673spa
dc.relation.referencesSung, P.-Y., Wang, Y.-T., Yu, Y.-W., & Chung, R.-H. (2016). An efficient gene-gene interaction test for genome-wide association studies in trio families. Bioinformatics, 32(12), 1848–1855. https://doi.org/10.1093/bioinformatics/btw077spa
dc.relation.referencesSzklarczyk, D., Kirsch, R., Koutrouli, M., Nastou, K., Mehryary, F., Hachilif, R., Gable, A. L., Fang, T., Doncheva, N. T., Pyysalo, S., Bork, P., Jensen, L. J., & von Mering, C. (2023). The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Research, 51(D1), D638–D646. https://doi.org/10.1093/nar/gkac1000spa
dc.relation.referencesTărlungeanu, D. C., & Novarino, G. (2018). Genomics in neurodevelopmental disorders: an avenue to personalized medicine. Experimental and Molecular Medicine, 50(8), 100. https://doi.org/10.1038/s12276-018-0129-7spa
dc.relation.referencesThapar, A., Cooper, M., & Rutter, M. (2017). Neurodevelopmental disorders. The Lancet Psychiatry, 4(4), 339–346. https://doi.org/10.1016/S2215-0366(16)30376-5spa
dc.relation.referencesThornton-Wells, T. A., Moore, J. H., Martin, E. R., Pericak-Vance, M. A., & Haines, J. L. (2008). Confronting complexity in late-onset Alzheimer disease: application of two-stage analysis approach addressing heterogeneity and epistasis. Genetic Epidemiology, 32(3), 187–203. https://doi.org/https://doi.org/10.1002/gepi.20294spa
dc.relation.referencesTurner, S. D., Dudek, S. M., & Ritchie, M. D. (2010). ATHENA: A knowledge-based hybrid backpropagation-grammatical evolution neural network algorithm for discovering epistasis among quantitative trait Loci. BioData Mining, 3(1). https://doi.org/10.1186/1756-0381-3-5spa
dc.relation.referencesVan steen, K. (2012). Travelling the world of gene-gene interactions. Briefings in Bioinformatics, 13(1), 1–19. https://doi.org/10.1093/bib/bbr012spa
dc.relation.referencesVanderweele, T. J. (2010). Epistatic interactions. Statistical Applications in Genetics and Molecular Biology, 9(1). https://doi.org/10.2202/1544-6115.1517spa
dc.relation.referencesVantaggiato, C., Clementi, E., & Bassi, M. T. (2014). ZFYVE26/SPASTIZIN: a close link between complicated hereditary spastic paraparesis and autophagy. Autophagy, 10(2), 374–375. https://doi.org/10.4161/auto.27173spa
dc.relation.referencesVissers, L. E. L. M., Gilissen, C., & Veltman, J. A. (2016). Genetic studies in intellectual disability and related disorders. Nature Reviews. Genetics, 17(1), 9–18. https://doi.org/10.1038/nrg3999spa
dc.relation.referencesVissers, L. E. L. M., & Stankiewicz, P. (2012). Microdeletion and microduplication syndromes. Methods in Molecular Biology (Clifton, N.J.), 838, 29–75. https://doi.org/10.1007/978-1-61779-507-7_2spa
dc.relation.referencesWang, K., Li, M., & Hakonarson, H. (2010). ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Research, 38(16), e164. https://doi.org/10.1093/nar/gkq603spa
dc.relation.referencesWebber, C. (2017). Epistasis in Neuropsychiatric Disorders. Trends in Genetics : TIG, 33(4), 256–265. https://doi.org/10.1016/j.tig.2017.01.009spa
dc.relation.referencesWinston, P. H. (1992). Artificial Intelligence (3rd Ed.). Addison-Wesley Longman Publishing Co., Inc.spa
dc.relation.referencesWong, A. K., Park, C. Y., Greene, C. S., Bongo, L. A., Guan, Y., & Troyanskaya, O. G. (2012). IMP: a multi-species functional genomics portal for integration, visualization and prediction of protein functions and networks. Nucleic Acids Research, 40(Web Server issue), W484-90. https://doi.org/10.1093/nar/gks458spa
dc.relation.referencesWorld Health Organization. (2021). Autism spectrum disorders. https://www.who.int/news-room/fact-sheets/detail/autism-spectrum-disordersspa
dc.relation.referencesWright, C. F., FitzPatrick, D. R., & Firth, H. V. (2018). Paediatric genomics: Diagnosing rare disease in children. Nature Reviews Genetics, 19(5), 253–268. https://doi.org/10.1038/nrg.2017.116spa
dc.relation.referencesXiang, X., Wang, S., Liu, T., Wang, M., Li, J., Jiang, J., Wu, T., & Hu, Y. (2020). Exploring gene–gene interaction in family-based data with an unsupervised machine learning method: EPISFA. Genetic Epidemiology. https://doi.org/10.1002/gepi.22342spa
dc.relation.referencesXuan, J., Yu, Y., Qing, T., Guo, L., & Shi, L. (2013). Next-generation sequencing in the clinic: Promises and challenges. Cancer Letters, 340(2), 284–295. https://doi.org/10.1016/j.canlet.2012.11.025spa
dc.relation.referencesYang, C.-H., Chuang, L.-Y., & Lin, Y.-D. (2017). Multiobjective differential evolution-based multifactor dimensionality reduction for detecting gene-gene interactions. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-12773-xspa
dc.relation.referencesZhang, X., Huang, S., Zou, F., & Wang, W. (2010). TEAM: Efficient two-locus epistasis tests in human genome-wide association study. Bioinformatics, 26(12), i217–i227. https://doi.org/10.1093/bioinformatics/btq186spa
dc.relation.referencesZhang, Y., Chen, Y., & Hu, T. (2020). PANDA: Prioritization of autism-genes using network-based deep-learning approach. Genetic Epidemiology, 44(4), 382–394. https://doi.org/10.1002/gepi.22282spa
dc.relation.referencesZhao, J., Zhu, Y., & Xiong, M. (2016). Genome-wide gene-gene interaction analysis for next-generation sequencing. European Journal of Human Genetics, 24(3), 421–428. https://doi.org/10.1038/ejhg.2015.147spa
dc.relation.referencesZhou, Z. H., Liu, G. X., Su, L. T., Han, L., & Yan, L. (2014). Detecting epistasis by LASSO-penalized-model search algorithm in human Genome-Wide Association Studies (Vols. 989–994, pp. 2426–2430). https://doi.org/10.4028/www.scientific.net/AMR.989-994.2426spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadoresspa
dc.subject.ddc610 - Medicina y salud::616 - Enfermedadesspa
dc.subject.decsEpistasis Genéticaspa
dc.subject.decsEpistasis, Geneticeng
dc.subject.decsPersonas con Discapacidades Mentalesspa
dc.subject.decsPersons with Mental Disabilitieseng
dc.subject.proposalEpistasisspa
dc.subject.proposalAprendizaje de máquinasspa
dc.subject.proposalPolimorfismo de un solo nucleótidospa
dc.subject.proposalTrastornos del neurodesarrollospa
dc.subject.proposalDiscapacidad intelectualspa
dc.subject.proposalEpistasiseng
dc.subject.proposalMachine learningeng
dc.subject.proposalSingle nucleotide polymorphismeng
dc.subject.proposalNeurodevelopmental disorderseng
dc.subject.proposalIntellectual disabilityeng
dc.subject.wikidataaprendizaje automático
dc.subject.wikidatamachine learning
dc.titleModelo de epistasis basado en aprendizaje automático para pacientes con discapacidad intelectual y retraso del neurodesarrollospa
dc.title.translatedMachine learning-based epistasis model for intellectual disability and neurodevelopmental delayeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMedios de comunicaciónspa
dcterms.audience.professionaldevelopmentPadres y familiasspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1075680777.2024.pdf
Tamaño:
14.14 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Bioinformática

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: