Desarrollo de un modelo para cuantificar la intermitencia en procesos estocásticos

dc.contributor.advisorOchoa Jaramillo, Andrés
dc.contributor.advisorChavez-Demoulin, Valérie
dc.contributor.authorTuirán Ruiz, Melisa
dc.contributor.cvlacTUIRAN RUIZ, MELISAspa
dc.contributor.researchgroupPosgrado en Aprovechamiento de Recursos Hidráulicosspa
dc.date.accessioned2024-01-25T16:12:30Z
dc.date.available2024-01-25T16:12:30Z
dc.date.issued2023
dc.description.abstractUna de las características poco estudiadas de la precipitación es la intermitencia, entendida como la alternancia de periodos de intensa y reducida actividad. La intermitencia tiene consecuencias para la agricultura y la generación de energía hidroeléctrica y favorece la ocurrencia de sequías e inundaciones. El capítulo 1 de esta tesis plantea una metodología para cuantificar la intermitencia de conglomerados de extremos, equivalentes a las agrupaciones de valores que igualan o superan el P90 de la serie. Esta consiste en el uso de un coeficiente de dispersión, Burstiness, y de una medida de agrupación extremal, el índice Extremal. En el capítulo 2 se cuantifica la intermitencia de la lluvia en Colombia aplicando la metodología del capítulo 1 en series diarias de precipitación de CHIRPS de resolución espacial 0.05° entre 1981 y 2022. De acuerdo a los resultados, las regiones Amazonía y Caribe son las regiones con menor y mayor dispersión de los parámetros que cuantifican la intermitencia, respectivamente. El diagnostico que se presenta tiene el potencial de poderse incorporar a la planificación de actividades de aprovechamiento de recursos y a la gestión de riesgos de desastres naturales. (Texto tomado de la fuente)spa
dc.description.abstractOne of the little studied characteristics of precipitation is intermittency, understood as the alternation of periods of intense and reduced activity. Intermittency has consequences for agriculture and hydroelectric energy generation and favors the occurrence of droughts and floods. Chapter 1 of this thesis proposes a methodology to quantify the intermittency of clusters of extremes, equivalent to the groupings of values that equal or exceed the P90 of the series. This consists of the use of a dispersion coefficient, Burstiness, and an extreme grouping measure, the Extremal Index. Chapter 2 quantifies rainfall intermittency in Colombia by applying the methodology of Chapter 1 on daily CHIRPS precipitation series of 0.05° spatial resolution between 1981 and 2022. According to the results, the Amazon and the Caribbean are the regions with the lowest and greatest dispersion of the parameters that quantify intermittency, respectively. The diagnosis presented has the potential to be incorporated into the planning of resource use activities and natural disaster risk management.eng
dc.description.curricularareaÁrea Curricular de Medio Ambientespa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Recursos Hidráulicosspa
dc.description.sponsorshipEsta tesis se llevo a cabo gracias al apoyo financiero de Minciencias, la Universidad Nacional de Colombia, la Universidad EIA e Interconexión Eléctrica S.A. mediante el programa de investigación Valorando la variabilidad en el mercado eléctrico colombiano (contrato 80740-540-2020)spa
dc.format.extent41 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85445
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Recursos Hidráulicosspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesBotter, G., Porporato, A., Rodriguez-Iturbe, I., & Rinaldo, A. (2007). Basin-scale soil moisture dynamics and the probabilistic characterization of carrier hydrologic flows: Slow, leaching-prone components of the hydrologic response. Water Resources Research, 43. doi:10.1029/2006WR005043.spa
dc.relation.referencesChavez-Demoulin, V., & Davinson, A. (2012). Modeling Time Series Extremes. Revstat-statistical Journal, 10, 109–133.spa
dc.relation.referencesColes, S., Bawa, J., Trenner, L., & Dorazio, P. (2001). An Introduction to Statistical Modeling of Extreme Values. Springer, 208. doi:10.1198/jasa.2002.s232.spa
dc.relation.referencesDe Luca, D., & Galasso, L. (2018). Stationary and Non-Stationary Frameworks for Extreme Rainfall Time Series in Southern Italy. Water, 10, 1477. doi:10.3390/w10101477.spa
dc.relation.referencesDey, P. (2023). On the Structure of the Intermittency of Rainfall. Water Resources Management, 37, 1461–1472. doi:10.1007/s11269-023-03441-z.spa
dc.relation.referencesDíaz-Granados, M. A., Valdés, J. B., & Bras, R. L. (1983). A derived flood frequency distribution based on the geomorphoclimatic IUH and the density function of rainfall excess. Technical Report Massachusetts Institute of Technology.spa
dc.relation.referencesFernández, B., & Salas, J. D. (1999). Return Period and Risk of Hydrologic Events. I. Mathematical Formulation. Journal of Hydrologic Engineering, 4, 297–307. doi:10.1061/(ASCE)1084-0699(1999)4:4(297).spa
dc.relation.referencesGoh, K.-I., & Barabási, A.-L. (2008). Burstiness and memory in complex systems. EPL (Europhysics Letters), 81, 48002. doi:10.1209/0295-5075/81/48002.spa
dc.relation.referencesGregersen, I., Madsen, H., Rosbjerg, D., & Arnbjerg-Nielsen, K. (2017). A regional and nonstationary model for partial duration series of extreme rainfall. Water Resources Research, 53, 2659–2678. doi:10.1002/2016wr019554.spa
dc.relation.referencesGupta, V. K., & Waymire, E. (1990). Multiscaling properties of spatial rainfall and river flow distributions. Journal of Geophysical Research, 95, 1999. doi:10.1029/JD095iD03p01999.spa
dc.relation.referencesHu, G., & Franzke, C. (2020). Evaluation of Daily Precipitation Extremes in Reanalysis and Gridded Observation-Based Data Sets Over Germany. Geophysical Research Letters, 47, e2020GL089624. doi:10.1029/2020GL089624.spa
dc.relation.referencesKatz, W. R., Parlange, M. B., & Naveau, P. (2002). Statistics of extremes in hydrology. Advances in Water Resources, 25, 287–1304. doi:10.1016/S0309-1708(02)00056-8.spa
dc.relation.referencesKharin, V. V., & Zwiers, F. W. (2005). Estimating Extremes in Transient Climate Change Simulations. Journal of Climate, 18, 1156––1173. doi:10.1175/JCLI3320.1.spa
dc.relation.referencesLeadbetter, M. (1983). Extremes and local dependence in stationary sequences. Z. Wahrscheinlichkeitstheorie verw. Gebiete, 65, 291—-306. doi:10.1007/BF00532484.spa
dc.relation.referencesLiu, J., Liang, Y., Gao, G., Dunkerley, D., & Fu, B. (2022). Quantifying the effects of rainfall intensity fluctuation on runoff and soil loss: From indicators to models. Journal of Hydrology, 607, 127494. doi:10.1016/j.jhydrol.2022.127494.spa
dc.relation.referencesMielke, P., Benjamin, J., & Cornell, C. (1971). Probability, Statistics and Decision for Civil Engineers. Journal of the American Statistical Association, 66, 923. doi:10.2307/2284265.spa
dc.relation.referencesMoloney, N., Faranda, D., & Sato, Y. (2019). An overview of the extremal index. Chaos: An Interdisciplinary Journal of Nonlinear Science, 29, 022101. doi:10.1063/1.5079656.spa
dc.relation.referencesMontanari, A., & Koutsoyiannis, D. (2014). Modeling and mitigating natural hazards: Stationarity is immortal! Water Resources Research, 50, 9748–9756. doi:10.1002/2014WR016092.spa
dc.relation.referencesOuarda, T., Charron, C., & St-Hilaire, A. (2020). Uncertainty of stationary and nonstationary models for rainfall frequency analysis. International Journal of Climatology, 40, 2373–2392. doi:10.1002/joc.6339.spa
dc.relation.referencesRestrepo-Posada, P. J., & Eagleson, P. S. (1982). Identification of independent rainstorms. Journal of Hydrology, 55, 303–319. doi:10.1016/0022-1694(82)90136-6.spa
dc.relation.referencesRodríguez-Iturbe, I., & Eagleson, P. S. (1987). Mathematical models of rainstorm events in space and time. Water Resources Research, 23, 181–190. doi:10.1029/WR023i001p00181.spa
dc.relation.referencesSathish, S., & Khadar, S. (2017). Stochastic time series analysis of hydrology data for water resources. IOP Conf. Series: Materials Science and Engineering, 263, 042140. doi:10.1088/1757-899X/263/4/042140.spa
dc.relation.referencesSchertzer, D., & Lovejoy, S. (2011). Multifractals generalized scale invariance scaling geophysics. International Journal of Bifurcation and Chaos, 21, 3417–3456. doi:10.1142/S0218127411030647.spa
dc.relation.referencesSchleiss, M. (2017). Scaling and Distributional Properties of Precipitation Interamount Times. Journal of Hydrometeorology, 18. doi:10.1175/JHM-D-16-0221.1.spa
dc.relation.referencesSchleiss, M., Jaffrain, J., & Berne, A. (2011). Statistical analysis of rainfall intermittency at small spatial and temporal scales. Geophysical Research Letters, 38. doi:10.1029/2011GL049000.spa
dc.relation.referencesSchleiss, M., & Smith, J. A. (2016). Two Simple Metrics for Quantifying Rainfall Intermittency: The Burstiness and Memory of Interamount Times. Journal of Hydrometeorology, 17, 421–436. doi:10.1175/JHM-D-15-0078.1.spa
dc.relation.referencesShiau, J.-T., & Shen, H. W. (2001). Recurrence Analysis of Hydrologic Droughts of Differing Severity. Journal of Water Resources Planning and Management, 127, 30–40. doi:10.1061/(ASCE)0733-9496(2001)127:1(30).spa
dc.relation.referencesSippel, S., Mitchell, D., Black, M., Dittus, A., Harrington, L., Schaller, N., & Otto, F. (2015). Combining large model ensembles with extreme value statistics to improve attribution statements of rare events. Weather and Climate Extremes, 9, 25–35. doi:10.1016/j.wace.2015.06.004.spa
dc.relation.referencesSmith, J. A. (1987). Statistical modeling of daily rainfall occurrences. Water Resources Research, 23, 885–893. doi:10.1029/WR023i005p00885.spa
dc.relation.referencesTowler, E., Llewellyn, D., Prein, A., & Gilleland, E. (2020). Extreme-value analysis for the characterization of extremes in water resources: A generalized workflow and case study on New Mexico monsoon precipitation. Weather and Climate Extremes, 29, 100260. doi:10.1016/j.wace.2020.100260.spa
dc.relation.referencesTowler, E., Rajagopalan, B., Gilleland, E., Summers, R. S., Yates, D., & Katz, R. (2010). Modeling hydrologic and water quality extremes in a changing climate: A statistical approach based on extreme value theory. Water Resources Research, 46, W11504. doi:10.1029/2009WR008876.spa
dc.relation.referencesTrenberth, K., & Zhang, Y. (2018). How Often Does It Really Rain? Bulletin of the American Meteorological Society, 99, 289–298. doi:10.1175/BAMS-D-17-0107.1.spa
dc.relation.referencesten Veldhuis, M.-C., & Schleiss., M. (2017). Statistical analysis of hydrological response in urbanising catchments based on adaptive sampling using inter-Amount times. Hydrology and Earth System Sciences, 21. doi:10.5194/hess-21-1991-2017.spa
dc.relation.referencesWiuff, R. (2020). Analysis and Modeling of Precipitation Intermittency by Compound Markov-DARMA Models. Water Resources Research, 56. doi:10.1029/2019WR025522.spa
dc.relation.referencesYevjevich, V. (1974). Determinism and stochasticity in hydrology. Journal of Hydrology, 22, 225–238. doi:10.1016/0022-1694(74)90078-X.spa
dc.relation.referencesYevjevich, V. M. (1967). An objective approach to definitions and investigations of continental hydrologic droughts. Fort Colins, USA: Colorado State University. URL: https://mountainscholar.org/bitstream/handle/10217/61303/HydrologyPapers_n23.pdf.spa
dc.relation.referencesAdams, C., Murrieta, R., Neves, W., Sanches, R., & Harris, M. (2009). Amazon Peasant Societies in a Changing Environment. Political Ecology, Invisibility and Modernity in the Rainforest, (p. 281–305). doi:10.1007/978-1-4020-9283-1.spa
dc.relation.referencesAlarcón, J. C., & Pabón, J. D. (2013). El cambio climático y la distribución espacial de las formaciones vegetales en Colombia. Colombia Forestal, 16, 171–185. doi:10.14483/udistrital.jour.colomb.for.2013.2.a04.spa
dc.relation.referencesAlmudi, T., & Sinclair, A. (2022). Extreme hydroclimatic events in rural communities of the Brazilian Amazon: local perceptions of change, impacts, and adaptation. Regional Environmental Change, 22. doi:10.1007/s10113-021-01857-0.spa
dc.relation.referencesBacca-García, J., & Toro, J. (2021). Análisis de la vulnerabilidad de la hidroelectricidad en Colombia. Gestión y Ambiente, 24, 27—-45. doi:10.15446/ga.v24nSupl2.92923.spa
dc.relation.referencesCuatrecasas y Arumí, J. (1934). Observaciones geobotánicas en Colombia. Madrid: Museo Nacional de Ciencias Naturales. URL: http://bibdigital.rjb.csic.es/ing/Libro.php?Libro=566.spa
dc.relation.referencesEasterling, D., Groisman, P., T, K., Evans, J., Kunkel, K., & Ambenje, P. (2000). Observed variability and trends in extreme climate events: A brief review. Bulletin of the American Meteorological Society, 81, 417–425. doi:10.1175/1520-0477(2000)081<0417:OVATIE>2.3.CO;2.spa
dc.relation.referencesFunk, C., Verdin, A., Michaelsen, J., Peterson, P., Pedreros, D., & Husak, G. (2015). A global satellite-assisted precipitation climatology. Earth System Science Data, 7, 275–287. doi:10.5194/essd-7-275-2015.spa
dc.relation.referencesGoh, K.-I., & Barabási, A.-L. (2008). Burstiness and memory in complex systems. EPL (Europhysics Letters), 81, 48002. doi:10.1209/0295-5075/81/48002.spa
dc.relation.referencesHao, Z., Singh, V., & F., H. (2018). Compound Extremes in Hydroclimatology: A Review. Water, 10, 718. doi:10.3390/w10060718.spa
dc.relation.referencesJAXA (2020). ALOS Global Digital Surface Model ”ALOS World 3D - 30m” (AW3D30) version 2. URL: https://www.eorc.jaxa.jp/ALOS/en/dataset/aw3d30/aw3d30_e.htm.spa
dc.relation.referencesLee, J., Paz, I., Schertzer, D., Lee, D., & Tchiguirinskaia, I. (2020). Multifractal analysis of rainfall-rate datasets obtained by radar and numerical model: The case study of typhoon bolaven. Journal of Applied Meteorology and Climatology, 59, 819–840. doi:10.1175/JAMC-D-18-0209.1.spa
dc.relation.referencesLoaiza, W., Carvajal, Y., & Baquero, O. (2014). Sequías & adaptación. Principios para su evaluación en sistemas productivos agrícolas del Valle del Cauca, Colombia. Universidad del Valle.spa
dc.relation.referencesMadani, K., & Lund, J. R. (2009). Modeling California’s high-elevation hydropower systems in energy units. Water Resources Research, 45. doi:10.1029/2008wr007206.spa
dc.relation.referencesManfreda, S., Iacobellis, V., Gioia, A., Fiorentino, M., & Kochanek, K. (2018). The Impact of Climate on Hydrological Extremes. Water, 10, 802. doi:10.3390/w10060802.spa
dc.relation.referencesMesa, Ó., Urrea, V., & Ochoa, A. (2021). Trends of Hydroclimatic Intensity in Colombia. Climate, 9, 120. doi:10.3390/cli9070120.spa
dc.relation.referencesMolinie, G., Ceresetti, D., Anquetin, S., Creutin, J., & Boudevillain, B. (2012). Rainfall Regime of a Mountainous Mediterranean Region. Journal of Applied Meteorology and Climatology, 51, 429–448.spa
dc.relation.referencesPoveda, G. (2004). La hidroclimatología de Colombia: Una síntesis desde la escala inter-decadal hasta la escala diurna. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 28, 201–222.spa
dc.relation.referencesPoveda, G., Mesa, Ó., Agudelo, P., Álvarez, J., Arias, P., Moreno, H., Salazar, L., Toro, V., & Vieira, S. (2002). Análisis probabilístico de la intermitencia de las lluvias horarias en Colombia mediante funciones de distribucion de colas pesadas. Memorias VI Congreso Colombiano de Meteorología.spa
dc.relation.referencesRaynaud, D., Hingray, B., François, B., & Creutin, J. (2018). Energy droughts from variable renewable energy sources in European climates. Renewable Energy, 125, 578–589. doi:10.1016/j.renene.2018.02.130.spa
dc.relation.referencesSatz, H. (1989). Intermittency and critical behaviour. Nuclear Physics B, 326, 613–618. doi:10.1016/0550-3213(89)90546-4.spa
dc.relation.referencesSchleiss, M., Jaffrain, J., & Berne, A. (2011). Statistical analysis of rainfall intermittency at small spatial and temporal scales. Geophysical Research Letters, 38. doi:10.1029/2011GL049000.spa
dc.relation.referencesSchleiss, M., & Smith, J. A. (2016). Two Simple Metrics for Quantifying Rainfall Intermittency: The Burstiness and Memory of Interamount Times. Journal of Hydrometeorology, 17, 421–436. doi:10.1175/JHM-D-15-0078.1.spa
dc.relation.referencesSinergox (2022). Oferta y generación. generación real del sin. URL: https://sinergox.xm.com.co/oferta/Paginas/Informes/GeneracionSIN.aspx.spa
dc.relation.referencesTuirán, M., & Ochoa, A. (2021). Intermitencia de la precipitación diaria en Colombia. In XVIII Congreso Colombiano de Geología (p. 62). Medellín, Colombia: Sociedad Colombiana de Geología.spa
dc.relation.referencesUrrea, V., Ochoa, A., & Mesa, Ó. (2019). Seasonality of Rainfall in Colombia. Water Resources Research, 55, 4149–4162. doi:10.1029/2018WR023316.spa
dc.relation.referencesWestra, S., Alexander, L., & Zwiers, F. (2013). 2013: Global Increasing Trends in Annual Maximum Daily Precipitation. Journal of Climate, 26, 3904–3918. doi:10.1175/JCLI-D-12-00502.1.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afinesspa
dc.subject.lembHidrología estocástica
dc.subject.lembPrecipitación atmosférica
dc.subject.proposalHidrología estocásticaspa
dc.subject.proposalStochastic hydrologyeng
dc.subject.proposalRachasspa
dc.subject.proposalRunseng
dc.subject.proposalPrecipitaciónspa
dc.subject.proposalPrecipitationeng
dc.subject.proposalClimaspa
dc.subject.proposalClimateeng
dc.subject.proposalAnálisis de conglomeradosspa
dc.subject.proposalCluster analysiseng
dc.subject.wikidataLluvia
dc.titleDesarrollo de un modelo para cuantificar la intermitencia en procesos estocásticosspa
dc.title.translatedEvaluating Approaches for Quantifying Intermittency in Stochastic Processeseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameMinciencias, Universidad Nacional de Colombia, Universidad EIA e Interconexión Eléctrica S.Aspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1005438157.2023.pdf
Tamaño:
7.06 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Recursos Hidráulicos

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: