Modelo para la atenuación de la velocidad de flujo dentro de pastos marinos

dc.contributor.advisorOsorio Arias, Andrés Fernandospa
dc.contributor.advisorToro Botero, Francisco Mauriciospa
dc.contributor.authorDelgado Gallego, Johann Khamilspa
dc.contributor.corporatenameUniversidad Nacional de Colombia - Sede Medellínspa
dc.contributor.researchgroupOCEANICOS - Grupo de Oceanografía e Ingeniería Costera de la Universidad Nacionalspa
dc.date.accessioned2020-06-11T19:35:57Zspa
dc.date.available2020-06-11T19:35:57Zspa
dc.date.issued2019-12-17spa
dc.description.abstractA model is developed for the dissipation of wave energy in the presence of seagrasses with intermediate flexibility that present Cantilever beam’s movements. The model results show significant improvements compared to the results obtained considering the vegetation as rigid. The attenuation coefficients of the flow velocity inside the grassland were calculated.spa
dc.description.abstractSe desarrolla un modelo para la disipación de la energía del oleaje en presencia de pastos marinos con flexibilidad inetrmedia que presenten movimientos tipo ‘viga Cantilever’. Los resultados del modelo muestran mejoras significativas en comparación a los resultados obtenidos considerando la vegetación como rigida. Se calcularon los coeficientes de atenuación de la velocidad del flujo al interior del pastizal.spa
dc.description.degreelevelMaestríaspa
dc.description.project49spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77648
dc.language.isoengspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Geociencias y Medo Ambientespa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Recursos Hidráulicosspa
dc.relation.referencesAbdolahpour, Maryam, Magnus Hambleton y Marco Ghisalberti (2017a). “The wave-driven current in coastal canopies”. En: Journal of Geophysical Research: Oceans.spa
dc.relation.referencesAbdolahpour, Maryam, Marco Ghisalberti, Paul Lavery y Kathryn McMahon (2017b). “Vertical mixing in coastal canopies”. En: Limnology and Oceanography 62.1, pags. 26-42.spa
dc.relation.referencesAbdolahpour, Maryam, Marco Ghisalberti, Kathryn McMahon y Paul S Lavery (2018). “The impact of flexibility on flow, turbulence, and vertical mixing in coastal canopies”. En: Limnology and Oceanography 63.6, p´ags. 2777-2792.spa
dc.relation.referencesAsano, Toshiyuki, Hiroshi Deguchi y Nobuhisa Kobayashi (1992). “Interaction Between Water Waves and Vegetation”. En: Proceedings of 23rd Conference on Coastal Engineering. Venice, Italy: Coastal Engineering Research Council, p´ags. 2709-2723.spa
dc.relation.referencesBradley, Kevin y Chris Houser (2009). “Relative velocity of seagrass blades: Implications for wave attenuation in low-energy environments”. En: Journal of Geophysical Research: Earth Surface 114.1, p´ags. 1-13.spa
dc.relation.referencesChakrabarti, S.K. (1987). Hydrodynamics of Offshore Structures. Southampton, UK: Press, WITspa
dc.relation.referencesChen, Hui et al. (2018). “Deriving vegetation drag coefficients in combined wave-current flows by calibration and direct measurement methods”. En: Advances in Water Resources 122.135, p´ags. 217-227.spa
dc.relation.referencesCoceal, O y S E Belcher (2004). “A canopy model of mean winds through urban areas”. En: Quarterly Journal of the Royal Meteorological Society 130.599, p´ags. 1349-1372.spa
dc.relation.referencesDalrymple, Robert A, James T Kirby y Paul A Hwang (1984). “Wave Diffraction Due to Areas of Energy Dissipation”. En: Journal of Waterway, Port, Coastal and Ocean Engineering 10.1.spa
dc.relation.referencesDean, R. G. y R. a. Dalrymple (1989). Water Wave Mechanics for Engineers and Scientists, p´ag. 353.spa
dc.relation.referencesDupont, S., F. Gosselin, C. Py, E. De Langre, P. Hemon e Y. Brunet (2010). “Modelling waving crops using large-eddy simulation: Comparison with experiments and a linear stability analysis”. En: Journal of Fluid Mechanics 652, p´ags. 5-44.spa
dc.relation.referencesEtminan, Vahid, Ryan J. Lowe y Marco Ghisalberti (2019). “Canopy resistance on oscillatory flows”. En: Coastal Engineering.spa
dc.relation.referencesGhisalberti, Marco y Heidi Nepf (2006). “The Structure of the Shear Layer in Flows over Rigid and Flexible Canopies”. En: Environmental Fluid Mechanics 6.3, p´ags. 277-301spa
dc.relation.referencesGruber, Renee K, Deborah C Hinkle y W Michael Kemp (2011). “Spatial Patterns in Water Quality Associated with Submersed Plant Beds”. En: Estuaries and Coasts 34.5, p´ags. 961-972.spa
dc.relation.referencesHouser, Chris, Sarah Trimble y Bradley Morales (2014). “Influence of Blade Flexibility on the Drag Coefficient of Aquatic Vegetation”. En: Estuaries and Coasts 38.2, p´ags. 569-577.spa
dc.relation.referencesIkeda, Syunsuke, Tomohiro Yamada y Yuji Toda (2001). “Numerical study on turbulent flow and honami in and above flexible plant canopy”. En: International Journal of Heat and Fluid Flow 22.3, p´ags. 252-258.spa
dc.relation.referencesJonsson, I (1966). “Wave boundary layers and friction factors”. En: Coastal Engineering Proceedings, p´ags. 127-148.spa
dc.relation.referencesKeulegan, G.H. y L.H. Carpenter (1958). “Forces on cylinders and plates in an oscillating fluid”. En: Journal of Research of the National Bureau of Standards 60.5, p´ag. 423.spa
dc.relation.referencesLaya, Enrique, Jerome Connor y Shyam Sunder (1984). “Hydrodynamic Forces on Flexible Offshore Structures”. En: Journal of Engineering Mechanics 110.3, p´ags. 433-448.spa
dc.relation.referencesLei, Jiarui y Heidi Nepf (2019). “Wave damping by flexible vegetation: Connecting individual blade dynamics to the meadow scale”. En: Coastal Engineering 147.February 2018, p´ags. 138-148.spa
dc.relation.referencesLowe, Ryan J., Jeffrey R. Koseff y Stephen G. Monismith (2005). “Oscillatory flow through submerged canopies: 1. Velocity structure”. En: Journal of Geophysical Research C: Oceans 110.10, p´ags. 1-17.spa
dc.relation.referencesLowe, Ryan J., James L. Falter, Jeffrey R. Koseff, Stephen G. Monismith y Marlin J. Atkinson (2007). “Spectral wave flow attenuation within submerged canopies: Implications for wave energy dissipation”. En: Journal of Geophysical Research: Oceans.spa
dc.relation.referencesLuhar, M y H M Nepf (2016). “Wave-induced dynamics of flexible blades”. En: Journal of Fluids and Structures 61, p´ags. 20-41.spa
dc.relation.referencesLuhar, M., E. Infantes y H. Nepf (2017). “Seagrass blade motion under waves and its impact on wave decay”. En: Journal of Geophysical Research: Oceans.spa
dc.relation.referencesLuhar, Mitul, Sylvain Coutu, Eduardo Infantes, Samantha Fox y Heidi Nepf (2010). “Waveinduced velocities inside a model seagrass bed”. En: Journal of Geophysical Research: Oceans.spa
dc.relation.referencesMaza, Maria, Javier L. Lara e Inigo J. Losada (2013). “A coupled model of submerged vegetation under oscillatory flow using Navier-Stokes equations”. En: Coastal Engineering.spa
dc.relation.referencesM´endez, F e I Losada (1999). “Hydrodynamics induced by wind waves in vegetation field”. En: Journal of Geophysical Research 104.C8, p´ags. 18383-18396.spa
dc.relation.referencesMendez, Fernando J. e Inigo J. Losada (2004). “An empirical model to estimate the propagation of random breaking and nonbreaking waves over vegetation fields”. En: Coastal Engineering 51.2, p´ags. 103-118.spa
dc.relation.referencesMirfenderesk, Hamid y Ian R Young (2003). “Direct measurements of the bottom friction factor beneath surface gravity waves”. En: Applied Ocean Research 25, p´ags. 269-287spa
dc.relation.referencesMoberg, Fredrik Frededrik y Carl Folke (1999). “Ecological goods and services of coral reef ecosystems”. En: Ecological Economics 29.2, p´ags. 215-233.spa
dc.relation.referencesMorison, J R, J W Johnson y S A Schaaf (1950). “The Force Exerted by Surface Waves on Piles”. En: Journal of Petroleum Technology 2.05, p´ags. 149-154.spa
dc.relation.referencesNielsen, Peter (1992). Coastal Bottom Boundary Layers and Sediment Transport. Vol. Volume 4. WORLD SCIENTIFIC, p´ag. 340.spa
dc.relation.referencesPedocchi, Francisco y Marcelo H. Garcia (2009). “Friction coefficient for oscillatory flow: the rough–smooth turbulent transition”. En: Journal of Hydraulic Research 47.4, p´ags. 438-444.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-CompartirIgual 4.0 Internacionalspa
dc.rights.licenseAtribución-CompartirIgual 4.0 Internacionalspa
dc.rights.licenseAtribución-CompartirIgual 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulicaspa
dc.subject.proposalOleajespa
dc.subject.proposalpastos marinosspa
dc.subject.proposalprotección costeraspa
dc.titleModelo para la atenuación de la velocidad de flujo dentro de pastos marinosspa
dc.title.alternativeIn-canopy Velocity Attenuation in a Model of Submerged Vegetationspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1037606329.2019.pdf
Tamaño:
2.21 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Recursos Hidráulicos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.9 KB
Formato:
Item-specific license agreed upon to submission
Descripción: