Índices radiométricos, multiespectrales y SAR, para la evaluación a gran escala de la calidad de hábitat en bosque húmedo tropical en zonas del Magdalena Medio, Colombia

dc.contributor.advisorFagua González, Jose Camilo
dc.contributor.advisorRodríguez Buriticá, Susana
dc.contributor.authorRomero Jiménez, Luis Hernando
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000131287spa
dc.contributor.orcidhttps://orcid.org/0000-0002-1977-0545spa
dc.contributor.researchgroupBiodiversidad, Biotecnología y Conservación de Ecosistemasspa
dc.coverage.countryColombia
dc.coverage.regionMagdalena Medio
dc.date.accessioned2024-01-31T19:41:11Z
dc.date.available2024-01-31T19:41:11Z
dc.date.issued2024-01-30
dc.descriptionilustraciones, diagramas, mapas, planosspa
dc.description.abstractEl uso de información espacial para el estudio de fenómenos ecológicos que involucran múltiples especies, es fundamental para el planteamiento de estrategias para la conservación, planeación y monitoreo de la biodiversidad. El hábitat, definido en este trabajo como las condiciones biofísicas que permiten la persistencia de la población de una especie en el espacio y en el tiempo, ha sido analizado tradicionalmente por medio de diferentes productos derivados de sensores remotos (SR), con la desventaja de que muchos de estos carecen de validación en campo, o tienen resoluciones espaciales o temáticas insuficientes para la planeación y el monitoreo de acciones de conservación. Para superar estas limitaciones, integramos información espectral de datos SAR (Radar de Apertura Sintética como Sentinel-1 y PALSAR), datos multiespectrales (Sentinel-2 y MODIS), y registros de especies tomados en campo y consultados en bases de datos nacionales e internacionales. Utilizando cinco algoritmos de aprendizaje (Machine Learning), proponemos un índice de calidad de hábitat específico para ecosistemas de bosque húmedo tropical, en una zona de estudio ubicada en el Magdalena Medio, entre los municipios de Puerto Berrío, Yondó, Cantagallo y Puerto Wilches. Como aproximación a la medida de calidad de bosques se utilizó el Índice de Condición Estructural de Hansen (SCI), que evalúa la estructura de los bosques, aunque no considera otros elementos relacionados con la integridad de este ecosistema, como su composición y función. Por esta razón, se modificó el SCI con datos de registros biológicos, ajustados para representar la dependencia que las especies tienen del bosque, y se construyó un índice de calidad de hábitat integral con datos de sensores remotos e información de campo. El algoritmo de Random Forest fue el que mostró el error más bajo de estimación del SCI (Accuracy = 0.675 y Kappa = 0.532); mientras que para la estimación de la dependencia de las especies hacia el bosque, fue el algoritmo de Máquinas de Soporte Vectorial (Accuracy = 0.643 y Kappa= 0.397). Se encontró que las variables que aportan mayor información para la estimación del SCI son Red edge 1, Red, SWIR_2, Green, el índice PSRI de Sentinel-2A y los índices de Radar HV, VHdivVV y VHdivHH. Se comprobó que los valores de exactitud temática son más bajos al utilizar las 18 categorías de SCI, por lo que se simplificó a cinco categorías. De manera similar, para la estimación de la calidad del bosque se encontró que las variables que aportan mayor información son HVdivHH y HV de Sentinel-1A y el Tasseled cap wetness, el índice MNDWI y la banda SWIR_1. Finalmente, el modelo que integra el SCI con la calidad de los bosques resultó con la mayor exactitud temática, desarrollado con el algoritmo de Potenciación del Gradiente (Accuracy= 0.724 y Kappa= 0.493), permitiendo identificar áreas de incongruencia entre estos dos componentes. La exactitud de los modelos evidencia que las variables predictoras derivadas de SR, presentan relaciones que no son capturadas por las variables originales del SCI y que pueden contribuir a su mejoramiento, mientras que la estimación de dependencia de las especies al bosque refleja un sesgo en el muestreo. No obstante, el modelo final incorpora la incertidumbre de los dos primeros modelos, lo que fortalece los resultados encontrados en los modelos 1 y 2, pero así mismo con la capacidad de retroalimentarse con una mayor disponibilidad de registros biológicos curados. (Texto tomado de la fuente)spa
dc.description.abstractThe use of spatial information for the study of ecological phenomena that involve multiple species, is fundamental for the approach of strategies for the conservation, planning and monitoring of biodiversity. The habitat, defined in this work as the biophysical conditions that allow the persistence of the population of a species in space and time, has traditionally been analyzed by means of different products derived from remote sensing (RS), with the disadvantage of that many of these lack validation in the field, or have insufficient spatial or thematic resolution for planning and monitoring conservation actions. To overcome these limitations, we integrate spectral information from SAR data (Synthetic Aperture Radar such as Sentinel-1 and PALSAR), multispectral data (Sentinel-2 and MODIS), and records of species taken in the field and consulted in national and international databases. Using five learning algorithms (Machine Learning), we propose a specific habitat quality index for tropical humid forest ecosystems, in a study area located in Magdalena Medio, between the municipalities of Puerto Berrío, Yondó, Cantagallo and Puerto Wilches. As an approximation to measure forest quality, we use the Hansen Structural Condition Index (SCI), which evaluates the structure of forests, although it does not consider other elements related to the integrity of this ecosystem, such as its composition and function. For this reason, the SCI was modified with biological records, adjusted to represent the dependence that species have on the forest, and a comprehensive habitat quality index was constructed with data from remote sensors and field information. The Random Forest algorithm was the one that showed the lowest SCI estimation error (Accuracy = 0.675 and Kappa = 0.532); while for the estimation of the dependence of the species on the forest, it was the Support Vector Machines algorithm (Accuracy = 0.643 and Kappa = 0.397). It was found that the variables that provide the most information for estimating the SCI are Red edge 1, Red, SWIR_2, Green, the PSRI index of Sentinel-2A and the Radar HV, VHdivVV and VHdivHH indices. It was found that the thematic accuracy values are lower when using the 18 SCI categories, so it was simplified to five categories. Similarly, for the estimation of forest quality it was found that the variables that provide the most information are HVdivHH and HV of Sentinel-1A and the Tasseled cap wetness, the MNDWI index and the SWIR_1 band. Finally, the model that integrates the SCI with the quality of the forests resulted with the greatest thematic accuracy, developed with the Gradient Boosting algorithm (Accuracy= 0.724 and Kappa= 0.493), allowing the identification of areas of incongruence between these two components. The accuracy of the models shows that the predictor variables derived from SR present relationships that are not captured by the original variables of the SCI and that can contribute to their improvement, while the estimate of dependence of the species on the forest reflects a bias in the sampling. However, the final model incorporates the uncertainty of the first two models, which strengthens the results found in models 1 and 2, but also with the ability to feed back with a greater availability of curated biological records.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Geomáticaspa
dc.description.researchareaGeoinformación para el uso sostenible de los recursos naturalesspa
dc.format.extent132 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85570
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias Agrarias - Maestría en Geomáticaspa
dc.relation.referencesAbdelkareem, M., Bamousa, A. O., Hamimi, Z., & Kamal El-Din, G. M. (2020). Multispectral and RADAR images integration for geologic, geomorphic, and structural investigation in southwestern Arabian Shield, Al Qunfudhah area, Saudi Arabia. Journal of Taibah University for Science, 14(1), 383-401. https://doi.org/10.1080/16583655.2020.1741957spa
dc.relation.referencesAbdulkareem, N. M., & Abdulazeez, A. M. (2021). Machine Learning Classification Based on Radom Forest Algorithm: A Review. https://doi.org/10.5281/ZENODO.4471118spa
dc.relation.referencesAbramovich, F., & Pensky, M. (2015). Classification with many classes: Challenges and pluses. https://doi.org/10.48550/ARXIV.1506.01567spa
dc.relation.referencesAcharya, T., Subedi, A., & Lee, D. (2018). Evaluation of Water Indices for Surface Water Extraction in a Landsat 8 Scene of Nepal. Sensors, 18(8), 2580. https://doi.org/10.3390/s18082580spa
dc.relation.referencesAchury, R., & Suarez, A. V. (2018). Richness and Composition of Ground-dwelling Ants in Tropical Rainforest and Surrounding Landscapes in the Colombian Inter-Andean Valley. Neotropical Entomology, 47(6), 731-741. https://doi.org/10.1007/s13744-017-0565-4spa
dc.relation.referencesAghaKouchak, A., Farahmand, A., Melton, F. S., Teixeira, J., Anderson, M. C., Wardlow, B. D., & Hain, C. R. (2015). Remote sensing of drought: Progress, challenges and opportunities: REMOTE SENSING OF DROUGHT. Reviews of Geophysics, 53(2), 452-480. https://doi.org/10.1002/2014RG000456spa
dc.relation.referencesAiello-Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B., & Anderson, R. P. (2015). spThin: An R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography, 38(5), 541-545. https://doi.org/10.1111/ecog.01132spa
dc.relation.referencesAlam, A., Bhat, M. S., & Maheen, M. (2020). Using Landsat satellite data for assessing the land use and land cover change in Kashmir valley. GeoJournal, 85(6), 1529-1543. https://doi.org/10.1007/s10708-019-10037-xspa
dc.relation.referencesAlaniz, A. J., Carvajal, M. A., Fierro, A., Vergara-Rodríguez, V., Toledo, G., Ansaldo, D., Moreira-Arce, D., Rojas-Osorio, A., & Vergara, P. M. (2021). Remote-sensing estimates of forest structure and dynamics as indicators of habitat quality for Magellanic woodpeckers. Ecological Indicators, 126, 107634. https://doi.org/10.1016/j.ecolind.2021.107634spa
dc.relation.referencesAllam, M., Bakr, N., & Elbably, W. (2019). Multi-temporal assessment of land use/land cover change in arid region based on landsat satellite imagery: Case study in Fayoum Region, Egypt. Remote Sensing Applications: Society and Environment, 14, 8-19. https://doi.org/10.1016/j.rsase.2019.02.002spa
dc.relation.referencesAlton, P. B. (2018). Decadal trends in photosynthetic capacity and leaf area index inferred from satellite remote sensing for global vegetation types. Agricultural and Forest Meteorology, 250-251, 361-375. https://doi.org/10.1016/j.agrformet.2017.11.020spa
dc.relation.referencesAndrew, M. E., Wulder, M. A., & Nelson, T. A. (2014). Potential contributions of remote sensing to ecosystem service assessments. Progress in Physical Geography: Earth and Environment, 38(3), 328-353. https://doi.org/10.1177/0309133314528942spa
dc.relation.referencesAniah, P., Bawakyillenuo, S., Codjoe, S. N. A., & Dzanku, F. M. (2023). Land use and land cover change detection and prediction based on CA-Markov chain in the savannah ecological zone of Ghana. Environmental Challenges, 10, 100664. https://doi.org/10.1016/j.envc.2022.100664spa
dc.relation.referencesAnsaldo, D., Vergara, P. M., Carvajal, M. A., Alaniz, A. J., Fierro, A., ReinaldoVargas-Castillo, Quiroz, M., Moreira-Arce, D., & Pizarro, J. (2021). Tree decay modulates the functional response of lichen communities in Patagonian temperate forests. Science of The Total Environment, 771, 145360. https://doi.org/10.1016/j.scitotenv.2021.145360spa
dc.relation.referencesAraújo, M. B., & Guisan, A. (2006). Five (or so) challenges for species distribution modelling. Journal of Biogeography, 33(10), 1677-1688. https://doi.org/10.1111/j.1365-2699.2006.01584.xspa
dc.relation.referencesArshad, M., Eid, E. M., & Hasan, M. (2020). Mangrove health along the hyper-arid southern Red Sea coast of Saudi Arabia. Environmental Monitoring and Assessment, 192(3), 189. https://doi.org/10.1007/s10661-020-8140-6spa
dc.relation.referencesAstola, H., Häme, T., Sirro, L., Molinier, M., & Kilpi, J. (2019). Comparison of Sentinel-2 and Landsat 8 imagery for forest variable prediction in boreal region. Remote Sensing of Environment, 223, 257-273. https://doi.org/10.1016/j.rse.2019.01.019spa
dc.relation.referencesaba, K. A., Lal, D., & Bello, A. (2019). Application of Remote sensing and GIS Techniques in Urban Planning, Development and Management. (A case study of Allahabad District, India). 10(6).spa
dc.relation.referencesBechara, F. C., Dickens, S. J., Farrer, E. C., Larios, L., Spotswood, E. N., Mariotte, P., & Suding, K. N. (2016). Neotropical rainforest restoration: Comparing passive, plantation and nucleation approaches. Biodiversity and Conservation, 25(11), 2021-2034. https://doi.org/10.1007/s10531-016-1186-7spa
dc.relation.referencesBeck, J., Böller, M., Erhardt, A., & Schwanghart, W. (2014). Spatial bias in the GBIF database and its effect on modeling species’ geographic distributions. Ecological Informatics, 19, 10-15. https://doi.org/10.1016/j.ecoinf.2013.11.002spa
dc.relation.referencesBodart, C., Brink, A. B., Donnay, F., Lupi, A., Mayaux, P., & Achard, F. (2013). Continental estimates of forest cover and forest cover changes in the dry ecosystems of Africa between 1990 and 2000. Journal of Biogeography, 40(6), 1036-1047. https://doi.org/10.1111/jbi.12084spa
dc.relation.referencesBolyn, C., Michez, A., Gaucher, P., Lejeune, P., & Bonnet, S. (2018). Forest mapping and species composition using supervised per pixel classification of Sentinel-2 imagery. BASE, 172-187. https://doi.org/10.25518/1780-4507.16524spa
dc.relation.referencesBooth, T. H. (2018). Why understanding the pioneering and continuing contributions of BIOCLIM to species distribution modelling is important. Austral Ecology, 43(8), 852-860. https://doi.org/10.1111/aec.12628spa
dc.relation.referencesBorja, A., Bricker, S. B., Dauer, D. M., Demetriades, N. T., Ferreira, J. G., Forbes, A. T., Hutchings, P., Jia, X., Kenchington, R., Marques, J. C., & Zhu, C. (2008). Overview of integrative tools and methods in assessing ecological integrity in estuarine and coastal systems worldwide. Marine Pollution Bulletin, 56(9), 1519-1537. https://doi.org/10.1016/j.marpolbul.2008.07.005spa
dc.relation.referencesBowler, D. E., Callaghan, C. T., Bhandari, N., Henle, K., Benjamin Barth, M., Koppitz, C., Klenke, R., Winter, M., Jansen, F., Bruelheide, H., & Bonn, A. (2022). Temporal trends in the spatial bias of species occurrence records. Ecography, 2022(8). https://doi.org/10.1111/ecog.06219spa
dc.relation.referencesBrennan, A., Beytell, P., Aschenborn, O., Du Preez, P., Funston, P. J., Hanssen, L., Kilian, J. W., Stuart‐Hill, G., Taylor, R. D., & Naidoo, R. (2020). Characterizing multispecies connectivity across a transfrontier conservation landscape. Journal of Applied Ecology, 57(9), 1700-1710. https://doi.org/10.1111/1365-2664.13716spa
dc.relation.referencesCallaghan, C. T., Major, R. E., Lyons, M. B., Martin, J. M., & Kingsford, R. T. (2018). The effects of local and landscape habitat attributes on bird diversity in urban greenspaces. Ecosphere, 9(7), e02347. https://doi.org/10.1002/ecs2.2347spa
dc.relation.referencesCaradima, B., Schuwirth, N., & Reichert, P. (2019). From individual to joint species distribution models: A comparison of model complexity and predictive performance. Journal of Biogeography, 46(10), 2260-2274. https://doi.org/10.1111/jbi.13668spa
dc.relation.referencesCarella, E., Orusa, T., Viani, A., Meloni, D., Borgogno-Mondino, E., & Orusa, R. (2022). An Integrated, Tentative Remote-Sensing Approach Based on NDVI Entropy to Model Canine Distemper Virus in Wildlife and to Prompt Science-Based Management Policies. Animals, 12(8), 1049. https://doi.org/10.3390/ani12081049spa
dc.relation.referencesCasal, R., Costa, J., & Oviedo, M. (2021). Aprendizaje Estadístico. https://rubenfcasal.github.io/aprendizaje_estadistico/index.htmlspa
dc.relation.referencesChamberlain, S. A., & Boettiger, C. (2017). R Python, and Ruby clients for GBIF species occurrence data [Preprint]. PeerJ Preprints. https://doi.org/10.7287/peerj.preprints.3304v1spa
dc.relation.referencesChen, R.-C., Dewi, C., Huang, S.-W., & Caraka, R. E. (2020). Selecting critical features for data classification based on machine learning methods. Journal of Big Data, 7(1), 52. https://doi.org/10.1186/s40537-020-00327-4spa
dc.relation.referencesCheng, J., Song, C., Liu, K., Fan, C., Ke, L., Chen, T., Zhan, P., & Yao, J. (2022). Satellite and UAV-based remote sensing for assessing the flooding risk from Tibetan lake expansion and optimizing the village relocation site. Science of The Total Environment, 802, 149928. https://doi.org/10.1016/j.scitotenv.2021.149928spa
dc.relation.referencesChuvieco, E. (2020). Fundamentals of satellite remote sensing: An environmental approach (Third edition). CRC Press.spa
dc.relation.referencesCismondi, F., Fialho, A. S., Vieira, S. M., Reti, S. R., Sousa, J. M. C., & Finkelstein, S. N. (2013). Missing data in medical databases: Impute, delete or classify? Artificial Intelligence in Medicine, 58(1), 63-72. https://doi.org/10.1016/j.artmed.2013.01.003spa
dc.relation.referencesCorrea Ayram, C. A., Etter, A., Díaz-Timoté, J., Rodríguez Buriticá, S., Ramírez, W., & Corzo, G. (2020). Spatiotemporal evaluation of the human footprint in Colombia: Four decades of anthropic impact in highly biodiverse ecosystems. Ecological Indicators, 117, 106630. https://doi.org/10.1016/j.ecolind.2020.106630spa
dc.relation.referencesCurd, A., Chevalier, M., Vasquez, M., Boyé, A., Firth, L. B., Marzloff, M. P., Bricheno, L. M., Burrows, M. T., Bush, L. E., Cordier, C., Davies, A. J., Green, J. A. M., Hawkins, S. J., Lima, F. P., Meneghesso, C., Mieszkowska, N., Seabra, R., & Dubois, S. F. (2023). Applying landscape metrics to species distribution model predictions to characterize internal range structure and associated changes. Global Change Biology, 29(3), 631-647. https://doi.org/10.1111/gcb.16496spa
dc.relation.referencesDantas De Paula, M., Groeneveld, J., & Huth, A. (2016). The extent of edge effects in fragmented landscapes: Insights from satellite measurements of tree cover. Ecological Indicators, 69, 196-204. https://doi.org/10.1016/j.ecolind.2016.04.018spa
dc.relation.referencesDe Araujo Barbosa, C. C., Atkinson, P. M., & Dearing, J. A. (2015). Remote sensing of ecosystem services: A systematic review. Ecological Indicators, 52, 430-443. https://doi.org/10.1016/j.ecolind.2015.01.007spa
dc.relation.referencesDelegido, J., Verrelst, J., Alonso, L., & Moreno, J. (2011). Evaluation of Sentinel-2 Red-Edge Bands for Empirical Estimation of Green LAI and Chlorophyll Content. Sensors, 11(7), 7063-7081. https://doi.org/10.3390/s110707063spa
dc.relation.referencesDhingra, S., & Kumar, D. (2019). A review of remotely sensed satellite image classification. International Journal of Electrical and Computer Engineering (IJECE), 9(3), 1720. https://doi.org/10.11591/ijece.v9i3.pp1720-1731spa
dc.relation.referencesDi Febbraro, M., Sallustio, L., Vizzarri, M., De Rosa, D., De Lisio, L., Loy, A., Eichelberger, B. A., & Marchetti, M. (2018). Expert-based and correlative models to map habitat quality: Which gives better support to conservation planning? Global Ecology and Conservation, 16, e00513. https://doi.org/10.1016/j.gecco.2018.e00513spa
dc.relation.referencesDiMiceli, C., Townshend, J., Carroll, M., & Sohlberg, R. (2021). Evolution of the representation of global vegetation by vegetation continuous fields. Remote Sensing of Environment, 254, 112271. https://doi.org/10.1016/j.rse.2020.112271spa
dc.relation.referencesDronova, I., Taddeo, S., Hemes, K. S., Knox, S. H., Valach, A., Oikawa, P. Y., Kasak, K., & Baldocchi, D. D. (2021). Remotely sensed phenological heterogeneity of restored wetlands: Linking vegetation structure and function. Agricultural and Forest Meteorology, 296, 108215. https://doi.org/10.1016/j.agrformet.2020.108215spa
dc.relation.referencesDubertret, F., Le Tourneau, F.-M., Villarreal, M. L., & Norman, L. M. (2022). Monitoring Annual Land Use/Land Cover Change in the Tucson Metropolitan Area with Google Earth Engine (1986–2020). Remote Sensing, 14(9), 2127. https://doi.org/10.3390/rs14092127spa
dc.relation.referencesDubovik, O., Schuster, G. L., Xu, F., Hu, Y., Bösch, H., Landgraf, J., & Li, Z. (2021). Grand Challenges in Satellite Remote Sensing. Frontiers in Remote Sensing, 2, 619818. https://doi.org/10.3389/frsen.2021.619818spa
dc.relation.referencesElbeih, S. F. (2021). Evaluation of agricultural expansion areas in the Egyptian deserts: A review using remote sensing and GIS. The Egyptian Journal of Remote Sensing and Space Science, 24(3), 889-906. https://doi.org/10.1016/j.ejrs.2021.10.004spa
dc.relation.referencesFachinetti, R., & Grilli, M. P. (2023). The quality matters: Assessing the roles of patch quality and configuration on the abundance of an invading cerambycid species through a multi‐model inference approach. Ecological Entomology, 48(5), 557-567. https://doi.org/10.1111/een.13247spa
dc.relation.referencesFagua, J. C., Jantz, P., Rodriguez-Buritica, S., Duncanson, L., & Goetz, S. J. (2019). Integrating LiDAR, Multispectral and SAR Data to Estimate and Map Canopy Height in Tropical Forests. Remote Sensing, 11(22), 2697. https://doi.org/10.3390/rs11222697spa
dc.relation.referencesFagua, J. C., Rodríguez-Buriticá, S., & Jantz, P. (2023). Advancing High-Resolution Land Cover Mapping in Colombia: The Importance of a Locally Appropriate Legend. Remote Sensing, 15(10), 2522. https://doi.org/10.3390/rs15102522spa
dc.relation.referencesFan, X., Song, Y., Zhu, C., Balzter, H., & Bai, Z. (2021). Estimating Ecological Responses to Climatic Variability on Reclaimed and Unmined Lands Using Enhanced Vegetation Index. Remote Sensing, 13(6), 1100. https://doi.org/10.3390/rs13061100spa
dc.relation.referencesFatehi, P., Damm, A., Schaepman, M., & Kneubühler, M. (2015). Estimation of Alpine Forest Structural Variables from Imaging Spectrometer Data. Remote Sensing, 7(12), 16315-16338. https://doi.org/10.3390/rs71215830spa
dc.relation.referencesFeranec, J. (Ed.). (2016). European landscape dynamics: Corine land cover data. CRC Press.spa
dc.relation.referencesFraga, H., Amraoui, M., Malheiro, A. C., Moutinho-Pereira, J., Eiras-Dias, J., Silvestre, J., & Santos, J. A. (2014). Examining the relationship between the Enhanced Vegetation Index and grapevine phenology. European Journal of Remote Sensing, 47(1), 753-771. https://doi.org/10.5721/EuJRS20144743spa
dc.relation.referencesGao, W., Zheng, C., Liu, X., Lu, Y., Chen, Y., Wei, Y., & Ma, Y. (2022). NDVI-based vegetation dynamics and their responses to climate change and human activities from 1982 to 2020: A case study in the Mu Us Sandy Land, China. Ecological Indicators, 137, 108745. https://doi.org/10.1016/j.ecolind.2022.108745spa
dc.relation.referencesGibson, R., Danaher, T., Hehir, W., & Collins, L. (2020). A remote sensing approach to mapping fire severity in south-eastern Australia using sentinel 2 and random forest. Remote Sensing of Environment, 240, 111702. https://doi.org/10.1016/j.rse.2020.111702spa
dc.relation.referencesGómez-Lora, J. W., Gallo-Ramos, V. H., & Camacho-Zorogastúa, K. D. C. (2021). Evaluación del bosque húmedo tropical mediante el análisis de la cobertura fraccional y técnicas SIG en la subcuenca del río Yuracyacu, Amazonía peruana. Madera y Bosques, 27(2). https://doi.org/10.21829/myb.2021.2722109spa
dc.relation.referencesGoswami, S., Gamon, J., Vargas, S., & Tweedie, C. (2015). Relationships of NDVI, Biomass, and Leaf Area Index (LAI) for six key plant species in Barrow, Alaska [Preprint]. PeerJ PrePrints. https://doi.org/10.7287/peerj.preprints.913v1spa
dc.relation.referencesGrabska, E., Hostert, P., Pflugmacher, D., & Ostapowicz, K. (2019). Forest Stand Species Mapping Using the Sentinel-2 Time Series. Remote Sensing, 11(10), 1197. https://doi.org/10.3390/rs11101197spa
dc.relation.referencesGrantham, H. S., Duncan, A., Evans, T. D., Jones, K. R., Beyer, H. L., Schuster, R., Walston, J., Ray, J. C., Robinson, J. G., Callow, M., Clements, T., Costa, H. M., DeGemmis, A., Elsen, P. R., Ervin, J., Franco, P., Goldman, E., Goetz, S., Hansen, A., … Watson, J. E. M. (2020). Anthropogenic modification of forests means only 40% of remaining forests have high ecosystem integrity. Nature Communications, 11(1), 5978. https://doi.org/10.1038/s41467-020-19493-3spa
dc.relation.referencesGreenwell, B. M., Boehmke, B. C., & McCarthy, A. J. (2018). A Simple and Effective Model-Based Variable Importance Measure. https://doi.org/10.48550/ARXIV.1805.04755spa
dc.relation.referencesHalder, B., Bandyopadhyay, J., & Banik, P. (2021). Monitoring the effect of urban development on urban heat island based on remote sensing and geo-spatial approach in Kolkata and adjacent areas, India. Sustainable Cities and Society, 74, 103186. https://doi.org/10.1016/j.scs.2021.103186spa
dc.relation.referencesHank, T. B., Berger, K., Bach, H., Clevers, J. G. P. W., Gitelson, A., Zarco-Tejada, P., & Mauser, W. (2019). Spaceborne Imaging Spectroscopy for Sustainable Agriculture: Contributions and Challenges. Surveys in Geophysics, 40(3), 515-551. https://doi.org/10.1007/s10712-018-9492-0spa
dc.relation.referencesHansen, A., Barnett, K., Jantz, P., Phillips, L., Goetz, S. J., Hansen, M., Venter, O., Watson, J. E. M., Burns, P., Atkinson, S., Rodríguez-Buritica, S., Ervin, J., Virnig, A., Supples, C., & De Camargo, R. (2019). Global humid tropics forest structural condition and forest structural integrity maps. Scientific Data, 6(1), 232. https://doi.org/10.1038/s41597-019-0214-3spa
dc.relation.referencesHansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., Thau, D., Stehman, S. V., Goetz, S. J., Loveland, T. R., Kommareddy, A., Egorov, A., Chini, L., Justice, C. O., & Townshend, J. R. G. (2013). High-Resolution Global Maps of 21st-Century Forest Cover Change. Science, 342(6160), 850-853. https://doi.org/10.1126/science.1244693spa
dc.relation.referencesHasanah, A., Supriatna, & Indrawan, M. (2020). Assessment of tropical forest degradation on a small island using the enhanced vegetation index. IOP Conference Series: Earth and Environmental Science, 481(1), 012061. https://doi.org/10.1088/1755-1315/481/1/012061spa
dc.relation.referencesHe, C., Gao, B., Huang, Q., Ma, Q., & Dou, Y. (2017). Environmental degradation in the urban areas of China: Evidence from multi-source remote sensing data. Remote Sensing of Environment, 193, 65-75. https://doi.org/10.1016/j.rse.2017.02.027spa
dc.relation.referencesHe, K. S., Bradley, B. A., Cord, A. F., Rocchini, D., Tuanmu, M., Schmidtlein, S., Turner, W., Wegmann, M., & Pettorelli, N. (2015). Will remote sensing shape the next generation of species distribution models? Remote Sensing in Ecology and Conservation, 1(1), 4-18. https://doi.org/10.1002/rse2.7spa
dc.relation.referencesHong Han, Xiaoling Guo, & Hua Yu. (2016). Variable selection using Mean Decrease Accuracy and Mean Decrease Gini based on Random Forest. 2016 7th IEEE International Conference on Software Engineering and Service Science (ICSESS), 219-224. https://doi.org/10.1109/ICSESS.2016.7883053spa
dc.relation.referencesHuang, S., Tang, L., Hupy, J. P., Wang, Y., & Shao, G. (2021). A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing. Journal of Forestry Research, 32(1), 1-6. https://doi.org/10.1007/s11676-020-01155-1spa
dc.relation.referencesHuete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., & Ferreira, L. G. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83(1-2), 195-213. https://doi.org/10.1016/S0034-4257(02)00096-2spa
dc.relation.referencesHuo, L., Persson, H. J., & Lindberg, E. (2021). Early detection of forest stress from European spruce bark beetle attack, and a new vegetation index: Normalized distance red & SWIR (NDRS). Remote Sensing of Environment, 255, 112240. https://doi.org/10.1016/j.rse.2020.112240spa
dc.relation.referencesHussain, S., & Karuppannan, S. (2023). Land use/land cover changes and their impact on land surface temperature using remote sensing technique in district Khanewal, Punjab Pakistan. Geology, Ecology, and Landscapes, 7(1), 46-58. https://doi.org/10.1080/24749508.2021.1923272spa
dc.relation.referencesIge, S. O., Ajayi, V. O., Adeyeri, O. E., & Oyekan, K. S. A. (2017). Assessing remotely sensed temperature humidity index as human comfort indicator relative to landuse landcover change in Abuja, Nigeria. Spatial Information Research, 25(4), 523-533. https://doi.org/10.1007/s41324-017-0118-2spa
dc.relation.referencesIshwaran, H., & Lu, M. (2019). Standard errors and confidence intervals for variable importance in random forest regression, classification, and survival. Statistics in Medicine, 38(4), 558-582. https://doi.org/10.1002/sim.7803spa
dc.relation.referencesJarchow, C., Didan, K., Barreto-Muñoz, A., Nagler, P., & Glenn, E. (2018). Application and Comparison of the MODIS-Derived Enhanced Vegetation Index to VIIRS, Landsat 5 TM and Landsat 8 OLI Platforms: A Case Study in the Arid Colorado River Delta, Mexico. Sensors, 18(5), 1546. https://doi.org/10.3390/s18051546spa
dc.relation.referencesJaybhay, J., & Shastri, R. (2015). A Study of Speckle Noise Reduction Filters. Signal & Image Processing : An International Journal, 6(3), 71-80. https://doi.org/10.5121/sipij.2015.6306spa
dc.relation.referencesJindo, K., Kozan, O., Iseki, K., Maestrini, B., Van Evert, F. K., Wubengeda, Y., Arai, E., Shimabukuro, Y. E., Sawada, Y., & Kempenaar, C. (2021). Potential utilization of satellite remote sensing for field-based agricultural studies. Chemical and Biological Technologies in Agriculture, 8(1), 58. https://doi.org/10.1186/s40538-021-00253-4spa
dc.relation.referencesJog, S., & Dixit, M. (2016). Supervised classification of satellite images. 2016 Conference on Advances in Signal Processing (CASP), 93-98. https://doi.org/10.1109/CASP.2016.7746144spa
dc.relation.referencesJoshi, N., Baumann, M., Ehammer, A., Fensholt, R., Grogan, K., Hostert, P., Jepsen, M., Kuemmerle, T., Meyfroidt, P., Mitchard, E., Reiche, J., Ryan, C., & Waske, B. (2016). A Review of the Application of Optical and Radar Remote Sensing Data Fusion to Land Use Mapping and Monitoring. Remote Sensing, 8(1), 70. https://doi.org/10.3390/rs8010070spa
dc.relation.referencesJung, M., Dahal, P. R., Butchart, S. H. M., Donald, P. F., De Lamo, X., Lesiv, M., Kapos, V., Rondinini, C., & Visconti, P. (2020). A global map of terrestrial habitat types. Scientific Data, 7(1), 256. https://doi.org/10.1038/s41597-020-00599-8spa
dc.relation.referencesKalacska, M. (2004). Leaf area index measurements in a tropical moist forest: A case study from Costa Rica. Remote Sensing of Environment, 91(2), 134-152. https://doi.org/10.1016/j.rse.2004.02.011spa
dc.relation.referencesKanniah, K. D., Kang, C. S., Sharma, S., & Amir, A. A. (2021). Remote Sensing to Study Mangrove Fragmentation and Its Impacts on Leaf Area Index and Gross Primary Productivity in the South of Peninsular Malaysia. Remote Sensing, 13(8), 1427. https://doi.org/10.3390/rs13081427spa
dc.relation.referencesKarr, J. R., Larson, E. R., & Chu, E. W. (2022). Ecological integrity is both real and valuable. Conservation Science and Practice, 4(2). https://doi.org/10.1111/csp2.583spa
dc.relation.referencesKganyago, M., Mhangara, P., Alexandridis, T., Laneve, G., Ovakoglou, G., & Mashiyi, N. (2020). Validation of sentinel-2 leaf area index (LAI) product derived from SNAP toolbox and its comparison with global LAI products in an African semi-arid agricultural landscape. Remote Sensing Letters, 11(10), 883-892. https://doi.org/10.1080/2150704X.2020.1767823spa
dc.relation.referencesKlimes, P., Idigel, C., Rimandai, M., Fayle, T. M., Janda, M., Weiblen, G. D., & Novotny, V. (2012). Why are there more arboreal ant species in primary than in secondary tropical forests?: Why are there more arboreal ants in primary forests? Journal of Animal Ecology, 81(5), 1103-1112. https://doi.org/10.1111/j.1365-2656.2012.02002.xspa
dc.relation.referencesKohzuma, K., Sonoike, K., & Hikosaka, K. (2021). Imaging, screening and remote sensing of photosynthetic activity and stress responses. Journal of Plant Research, 134(4), 649-651. https://doi.org/10.1007/s10265-021-01324-1spa
dc.relation.referencesKupfer, J. A. (2006). National assessments of forest fragmentation in the US. Global Environmental Change, 16(1), 73-82. https://doi.org/10.1016/j.gloenvcha.2005.10.003spa
dc.relation.referencesKursa, M. B., & Rudnicki, W. R. (2010). Feature Selection with the Boruta Package. Journal of Statistical Software, 36(11). https://doi.org/10.18637/jss.v036.i11spa
dc.relation.referencesLastovicka, J., Svec, P., Paluba, D., Kobliuk, N., Svoboda, J., Hladky, R., & Stych, P. (2020). Sentinel-2 Data in an Evaluation of the Impact of the Disturbances on Forest Vegetation. Remote Sensing, 12(12), 1914. https://doi.org/10.3390/rs12121914spa
dc.relation.referencesLawrence, R. (2004). Classification of remotely sensed imagery using stochastic gradient boosting as a refinement of classification tree analysis. Remote Sensing of Environment, 90(3), 331-336. https://doi.org/10.1016/j.rse.2004.01.007spa
dc.relation.referencesLazic, S. E., Mellor, J. R., Ashby, M. C., & Munafo, M. R. (2020). A Bayesian predictive approach for dealing with pseudoreplication. Scientific Reports, 10(1), 2366. https://doi.org/10.1038/s41598-020-59384-7spa
dc.relation.referencesLechner, A. M., Foody, G. M., & Boyd, D. S. (2020). Applications in Remote Sensing to Forest Ecology and Management. One Earth, 2(5), 405-412. https://doi.org/10.1016/j.oneear.2020.05.001spa
dc.relation.referencesLeitão, P. J., & Santos, M. J. (2019). Improving Models of Species Ecological Niches: A Remote Sensing Overview. Frontiers in Ecology and Evolution, 7, 9. https://doi.org/10.3389/fevo.2019.00009spa
dc.relation.referencesLembrechts, J. J., Nijs, I., & Lenoir, J. (2019). Incorporating microclimate into species distribution models. Ecography, 42(7), 1267-1279. https://doi.org/10.1111/ecog.03947spa
dc.relation.referencesLeta, M. K., Demissie, T. A., & Tränckner, J. (2021). Modeling and Prediction of Land Use Land Cover Change Dynamics Based on Land Change Modeler (LCM) in Nashe Watershed, Upper Blue Nile Basin, Ethiopia. Sustainability, 13(7), 3740. https://doi.org/10.3390/su13073740spa
dc.relation.referencesLi, P., Wang, J., Liu, M., Xue, Z., Bagherzadeh, A., & Liu, M. (2021). Spatio-temporal variation characteristics of NDVI and its response to climate on the Loess Plateau from 1985 to 2015. CATENA, 203, 105331. https://doi.org/10.1016/j.catena.2021.105331spa
dc.relation.referencesLi, Q., Lu, X., Wang, Y., Huang, X., Cox, P. M., & Luo, Y. (2018). Leaf area index identified as a major source of variability in modeled CO<sub>2</sub> fertilization. Biogeosciences, 15(22), 6909-6925. https://doi.org/10.5194/bg-15-6909-2018spa
dc.relation.referencesLi, S., Xu, L., Jing, Y., Yin, H., Li, X., & Guan, X. (2021). High-quality vegetation index product generation: A review of NDVI time series reconstruction techniques. International Journal of Applied Earth Observation and Geoinformation, 105, 102640. https://doi.org/10.1016/j.jag.2021.102640spa
dc.relation.referencesLiao, J., Li, Z., Hiebeler, D. E., Iwasa, Y., Bogaert, J., & Nijs, I. (2013). Species persistence in landscapes with spatial variation in habitat quality: A pair approximation model. Journal of Theoretical Biology, 335, 22-30. https://doi.org/10.1016/j.jtbi.2013.06.015spa
dc.relation.referencesLiu, T., & Yang, X. (2015). Monitoring land changes in an urban area using satellite imagery, GIS and landscape metrics. Applied Geography, 56, 42-54. https://doi.org/10.1016/j.apgeog.2014.10.002spa
dc.relation.referencesLouw, A. S., Fu, J., Raut, A., Zulhilmi, A., Yao, S., McAlinn, M., Fujikawa, A., Siddique, M. T., Wang, X., Yu, X., Mandvikar, K., & Avtar, R. (2022). The role of remote sensing during a global disaster: COVID-19 pandemic as case study. Remote Sensing Applications: Society and Environment, 27, 100789. https://doi.org/10.1016/j.rsase.2022.100789spa
dc.relation.referencesLu, Y., Zhao, J., Qi, J., Rong, T., Wang, Z., Yang, Z., & Han, F. (2022). Monitoring the Spatiotemporal Dynamics of Habitat Quality and Its Driving Factors Based on the Coupled NDVI-InVEST Model: A Case Study from the Tianshan Mountains in Xinjiang, China. Land, 11(10), 1805. https://doi.org/10.3390/land11101805spa
dc.relation.referencesLuque, A., Carrasco, A., Martín, A., & De Las Heras, A. (2019). The impact of class imbalance in classification performance metrics based on the binary confusion matrix. Pattern Recognition, 91, 216-231. https://doi.org/10.1016/j.patcog.2019.02.023spa
dc.relation.referencesMa, H., & Liang, S. (2022). Development of the GLASS 250-m leaf area index product (version 6) from MODIS data using the bidirectional LSTM deep learning model. Remote Sensing of Environment, 273, 112985. https://doi.org/10.1016/j.rse.2022.112985spa
dc.relation.referencesMaalouf, M. (2011). Logistic regression in data analysis: An overview. International Journal of Data Analysis Techniques and Strategies, 3(3), 281. https://doi.org/10.1504/IJDATS.2011.041335spa
dc.relation.referencesMaimaitijiang, M., Sagan, V., Sidike, P., Daloye, A. M., Erkbol, H., & Fritschi, F. B. (2020). Crop Monitoring Using Satellite/UAV Data Fusion and Machine Learning. Remote Sensing, 12(9), 1357. https://doi.org/10.3390/rs12091357spa
dc.relation.referencesMairota, P., Cafarelli, B., Labadessa, R., Lovergine, F. P., Tarantino, C., Nagendra, H., & Didham, R. K. (2015). Very high resolution Earth Observation features for testing the direct and indirect effects of landscape structure on local habitat quality. International Journal of Applied Earth Observation and Geoinformation, 34, 96-102. https://doi.org/10.1016/j.jag.2014.07.003spa
dc.relation.referencesMallegowda, P., Rengaian, G., Krishnan, J., & Niphadkar, M. (2015). Assessing Habitat Quality of Forest-Corridors through NDVI Analysis in Dry Tropical Forests of South India: Implications for Conservation. Remote Sensing, 7(2), 1619-1639. https://doi.org/10.3390/rs70201619spa
dc.relation.referencesMancera, R. (2019). Evaluación de imágenes de radar Sentinel-1ª e imágenes multiespectrales Sentinel-2ª en la clasificación de cobertura del suelo en diferentes niveles de detalle. [Tesis de maestría no publicada]. Universidad Nacional de Colombia.spa
dc.relation.referencesMartos, V., Ahmad, A., Cartujo, P., & Ordoñez, J. (2021). Ensuring Agricultural Sustainability through Remote Sensing in the Era of Agriculture 5.0. Applied Sciences, 11(13), 5911. https://doi.org/10.3390/app11135911spa
dc.relation.referencesMasrur Ahmed, A. A., Deo, R. C., Feng, Q., Ghahramani, A., Raj, N., Yin, Z., & Yang, L. (2021). Deep learning hybrid model with Boruta-Random forest optimiser algorithm for streamflow forecasting with climate mode indices, rainfall, and periodicity. Journal of Hydrology, 599, 126350. https://doi.org/10.1016/j.jhydrol.2021.126350spa
dc.relation.referencesMcNairn, H., & Shang, J. (2016). A Review of Multitemporal Synthetic Aperture Radar (SAR) for Crop Monitoring. En Y. Ban (Ed.), Multitemporal Remote Sensing (Vol. 20, pp. 317-340). Springer International Publishing. https://doi.org/10.1007/978-3-319-47037-5_15spa
dc.relation.referencesMelo-Merino, S. M., Reyes-Bonilla, H., & Lira-Noriega, A. (2020). Ecological niche models and species distribution models in marine environments: A literature review and spatial analysis of evidence. Ecological Modelling, 415, 108837. https://doi.org/10.1016/j.ecolmodel.2019.108837spa
dc.relation.referencesMessier, A. (2023). Patterns of greenness (NDVI) in the Southern Great Plains and their influence on the habitat quality and reproduction of a declining prairie grouse [Thesis]. https://krex.k-state.edu/handle/2097/42970spa
dc.relation.referencesMinghelli, A., Vadakke-Chanat, S., Chami, M., Guillaume, M., & Peirache, M. (2021). Benefit of the Potential Future Hyperspectral Satellite Sensor (BIODIVERSITY) for Improving the Determination of Water Column and Seabed Features in Coastal Zones. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 1222-1232. https://doi.org/10.1109/JSTARS.2020.3031729spa
dc.relation.referencesMisra, G., Cawkwell, F., & Wingler, A. (2020). Status of Phenological Research Using Sentinel-2 Data: A Review. Remote Sensing, 12(17), 2760. https://doi.org/10.3390/rs12172760spa
dc.relation.referencesMondanaro, A., Di Febbraro, M., Castiglione, S., Melchionna, M., Serio, C., Girardi, G., Belfiore, A. M., & Raia, P. (2023). ENPHYLO : A new method to model the distribution of extremely rare species. Methods in Ecology and Evolution, 14(3), 911-922. https://doi.org/10.1111/2041-210X.14066spa
dc.relation.referencesMora, F. (2017). A structural equation modeling approach for formalizing and evaluating ecological integrity in terrestrial ecosystems. Ecological Informatics, 41, 74-90. https://doi.org/10.1016/j.ecoinf.2017.05.002spa
dc.relation.referencesMora, F. (2019). The use of ecological integrity indicators within the natural capital index framework: The ecological and economic value of the remnant natural capital of México. Journal for Nature Conservation, 47, 77-92. https://doi.org/10.1016/j.jnc.2018.11.007spa
dc.relation.referencesMorcillo-Pallarés, P., Rivera-Caicedo, J. P., Belda, S., De Grave, C., Burriel, H., Moreno, J., & Verrelst, J. (2019). Quantifying the Robustness of Vegetation Indices through Global Sensitivity Analysis of Homogeneous and Forest Leaf-Canopy Radiative Transfer Models. Remote Sensing, 11(20), 2418. https://doi.org/10.3390/rs11202418spa
dc.relation.referencesMoreira, A., Prats-Iraola, P., Younis, M., Krieger, G., Hajnsek, I., & Papathanassiou, K. P. (2013). A tutorial on synthetic aperture radar. IEEE Geoscience and Remote Sensing Magazine, 1(1), 6-43. https://doi.org/10.1109/MGRS.2013.2248301spa
dc.relation.referencesMoudrý, V., Moudrá, L., Barták, V., Bejček, V., Gdulová, K., Hendrychová, M., Moravec, D., Musil, P., Rocchini, D., Šťastný, K., Volf, O., & Šálek, M. (2021). The role of the vegetation structure, primary productivity and senescence derived from airborne LiDAR and hyperspectral data for birds diversity and rarity on a restored site. Landscape and Urban Planning, 210, 104064. https://doi.org/10.1016/j.landurbplan.2021.104064spa
dc.relation.referencesMoumane, A., Al Karkouri, J., Benmansour, A., El Ghazali, F. E., Fico, J., Karmaoui, A., & Batchi, M. (2022). Monitoring long-term land use, land cover change, and desertification in the Ternata oasis, Middle Draa Valley, Morocco. Remote Sensing Applications: Society and Environment, 26, 100745. https://doi.org/10.1016/j.rsase.2022.100745spa
dc.relation.referencesMu, S., Yang, G., Xu, X., Wan, R., & Li, B. (2022). Assessing the inundation dynamics and its impacts on habitat suitability in Poyang Lake based on integrating Landsat and MODIS observations. Science of The Total Environment, 834, 154936. https://doi.org/10.1016/j.scitotenv.2022.154936spa
dc.relation.referencesMutanga, O., & Skidmore, A. K. (2007). Red edge shift and biochemical content in grass canopies. ISPRS Journal of Photogrammetry and Remote Sensing, 62(1), 34-42. https://doi.org/10.1016/j.isprsjprs.2007.02.001spa
dc.relation.referencesNagendra, H., Lucas, R., Honrado, J. P., Jongman, R. H. G., Tarantino, C., Adamo, M., & Mairota, P. (2013). Remote sensing for conservation monitoring: Assessing protected areas, habitat extent, habitat condition, species diversity, and threats. Ecological Indicators, 33, 45-59. https://doi.org/10.1016/j.ecolind.2012.09.014spa
dc.relation.referencesNasir, S. M., Kamran, K. V., Blaschke, T., & Karimzadeh, S. (2022). Change of land use / land cover in kurdistan region of Iraq: A semi-automated object-based approach. Remote Sensing Applications: Society and Environment, 26, 100713. https://doi.org/10.1016/j.rsase.2022.100713spa
dc.relation.referencesNemani, R., Pierce, L., Running, S., & Band, L. (1993). Forest ecosystem processes at the watershed scale: Sensitivity to remotely-sensed Leaf Area Index estimates. International Journal of Remote Sensing, 14(13), 2519-2534. https://doi.org/10.1080/01431169308904290spa
dc.relation.referencesOgilvie, A., Belaud, G., Massuel, S., Mulligan, M., Le Goulven, P., & Calvez, R. (2018). Surface water monitoring in small water bodies: Potential and limits of multi-sensor Landsat time series. Hydrology and Earth System Sciences, 22(8), 4349-4380. https://doi.org/10.5194/hess-22-4349-2018spa
dc.relation.referencesPal, S., Talukdar, S., & Ghosh, R. (2020). Damming effect on habitat quality of riparian corridor. Ecological Indicators, 114, 106300. https://doi.org/10.1016/j.ecolind.2020.106300spa
dc.relation.referencesPan, Z., He, J., Liu, D., Wang, J., & Guo, X. (2021). Ecosystem health assessment based on ecological integrity and ecosystem services demand in the Middle Reaches of the Yangtze River Economic Belt, China. Science of The Total Environment, 774, 144837. https://doi.org/10.1016/j.scitotenv.2020.144837spa
dc.relation.referencesPandey, P. C., Koutsias, N., Petropoulos, G. P., Srivastava, P. K., & Ben Dor, E. (2021). Land use/land cover in view of earth observation: Data sources, input dimensions, and classifiers—a review of the state of the art. Geocarto International, 36(9), 957-988. https://doi.org/10.1080/10106049.2019.1629647spa
dc.relation.referencesPandey, R., Goswami, S., Sarup, J., & Matin, S. (2021). The thermal–optical trapezoid model-based soil moisture estimation using Landsat-8 data. Modeling Earth Systems and Environment, 7(2), 1029-1037. https://doi.org/10.1007/s40808-020-00975-8spa
dc.relation.referencesParker, G. G. (2020). Tamm review: Leaf Area Index (LAI) is both a determinant and a consequence of important processes in vegetation canopies. Forest Ecology and Management, 477, 118496. https://doi.org/10.1016/j.foreco.2020.118496spa
dc.relation.referencesPeng, D., Zhang, H., Yu, L., Wu, M., Wang, F., Huang, W., Liu, L., Sun, R., Li, C., Wang, D., & Xu, F. (2018). Assessing spectral indices to estimate the fraction of photosynthetically active radiation absorbed by the vegetation canopy. International Journal of Remote Sensing, 39(22), 8022-8040. https://doi.org/10.1080/01431161.2018.1479795spa
dc.relation.referencesPerilla, G. A., & Mas, J.-F. (2020). Google Earth Engine (GEE): Una poderosa herramienta que vincula el potencial de los datos masivos y la eficacia del procesamiento en la nube. Investigaciones Geográficas, 101. https://doi.org/10.14350/rig.59929spa
dc.relation.referencesPerumal, K., & Bhaskaran, R. (2010). Supervised Classification Performance of Multispectral Images (arXiv:1002.4046). arXiv. http://arxiv.org/abs/1002.4046spa
dc.relation.referencesPettorelli, N., Schulte To Bühne, H., Tulloch, A., Dubois, G., Macinnis-Ng, C., Queirós, A. M., Keith, D. A., Wegmann, M., Schrodt, F., Stellmes, M., Sonnenschein, R., Geller, G. N., Roy, S., Somers, B., Murray, N., Bland, L., Geijzendorffer, I., Kerr, J. T., Broszeit, S., … Nicholson, E. (2018). Satellite remote sensing of ecosystem functions: Opportunities, challenges and way forward. Remote Sensing in Ecology and Conservation, 4(2), 71-93. https://doi.org/10.1002/rse2.59spa
dc.relation.referencesPires, M. M., & Galetti, M. (2023). Beyond the “empty forest”: The defaunation syndromes of Neotropical forests in the Anthropocene. Global Ecology and Conservation, 41, e02362. https://doi.org/10.1016/j.gecco.2022.e02362spa
dc.relation.referencesQiu, B., Chen, J. M., Ju, W., Zhang, Q., & Zhang, Y. (2019). Simulating emission and scattering of solar-induced chlorophyll fluorescence at far-red band in global vegetation with different canopy structures. Remote Sensing of Environment, 233, 111373. https://doi.org/10.1016/j.rse.2019.111373spa
dc.relation.referencesRahimi, L., Malekmohammadi, B., & Yavari, A. R. (2020). Assessing and Modeling the Impacts of Wetland Land Cover Changes on Water Provision and Habitat Quality Ecosystem Services. Natural Resources Research, 29(6), 3701-3718. https://doi.org/10.1007/s11053-020-09667-7spa
dc.relation.referencesRandin, C. F., Ashcroft, M. B., Bolliger, J., Cavender-Bares, J., Coops, N. C., Dullinger, S., Dirnböck, T., Eckert, S., Ellis, E., Fernández, N., Giuliani, G., Guisan, A., Jetz, W., Joost, S., Karger, D., Lembrechts, J., Lenoir, J., Luoto, M., Morin, X., … Payne, D. (2020). Monitoring biodiversity in the Anthropocene using remote sensing in species distribution models. Remote Sensing of Environment, 239, 111626. https://doi.org/10.1016/j.rse.2019.111626spa
dc.relation.referencesRaschka, S., Liu, Y. H. & Mirjalili, V. (2023). Machine Learning con PyTorch y Scikit-Learn: Cómo desarrollar modelos de Machine Learning y Deep Learning con Python. Alpha Editorial.spa
dc.relation.referencesRay, S. (2019). A Quick Review of Machine Learning Algorithms. 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon), 35-39. https://doi.org/10.1109/COMITCon.2019.8862451spa
dc.relation.referencesReddy, C. S. (2021). Remote sensing of biodiversity: What to measure and monitor from space to species? Biodiversity and Conservation, 30(10), 2617-2631. https://doi.org/10.1007/s10531-021-02216-5spa
dc.relation.referencesReich, P. B. (2012). Key canopy traits drive forest productivity. Proceedings of the Royal Society B: Biological Sciences, 279(1736), 2128-2134. https://doi.org/10.1098/rspb.2011.2270spa
dc.relation.referencesRequena-Mullor, J. M., López, E., Castro, A. J., Alcaraz-Segura, D., Castro, H., Reyes, A., & Cabello, J. (2017). Remote-sensing based approach to forecast habitat quality under climate change scenarios. PLOS ONE, 12(3), e0172107. https://doi.org/10.1371/journal.pone.0172107spa
dc.relation.referencesRequena-Mullor, J. M., López, E., Castro, A. J., Cabello, J., Virgós, E., González-Miras, E., & Castro, H. (2014). Modeling spatial distribution of European badger in arid landscapes: An ecosystem functioning approach. Landscape Ecology, 29(5), 843-855. https://doi.org/10.1007/s10980-014-0020-4spa
dc.relation.referencesRoques, L., & Stoica, R. S. (2007). Species persistence decreases with habitat fragmentation: An analysis in periodic stochastic environments. Journal of Mathematical Biology, 55(2), 189-205. https://doi.org/10.1007/s00285-007-0076-8spa
dc.relation.referencesRosa, I. M. D., Purves, D., Souza, C., & Ewers, R. M. (2013). Predictive Modelling of Contagious Deforestation in the Brazilian Amazon. PLoS ONE, 8(10), e77231. https://doi.org/10.1371/journal.pone.0077231spa
dc.relation.referencesRosenfield, M. F., Jakovac, C. C., Vieira, D. L. M., Poorter, L., Brancalion, P. H. S., Vieira, I. C. G., De Almeida, D. R. A., Massoca, P., Schietti, J., Albernaz, A. L. M., Ferreira, M. J., & Mesquita, R. C. G. (2023). Ecological integrity of tropical secondary forests: Concepts and indicators. Biological Reviews, 98(2), 662-676. https://doi.org/10.1111/brv.12924spa
dc.relation.referencesRoy, P. S., Behera, M. D., & Srivastav, S. K. (2017). Satellite Remote Sensing: Sensors, Applications and Techniques. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 87(4), 465-472. https://doi.org/10.1007/s40010-017-0428-8spa
dc.relation.referencesRuelland, D., Dezetter, A., Puech, C., & Ardoin‐Bardin, S. (2008). Long‐term monitoring of land cover changes based on Landsat imagery to improve hydrological modelling in West Africa. International Journal of Remote Sensing, 29(12), 3533-3551. https://doi.org/10.1080/01431160701758699spa
dc.relation.referencesRuggeri, S., Henao-Cespedes, V., Garcés-Gómez, Y. A., & Parra Uzcátegui, A. (2021). Optimized unsupervised CORINE Land Cover mapping using linear spectral mixture analysis and object-based image analysis. The Egyptian Journal of Remote Sensing and Space Science, 24(3), 1061-1069. https://doi.org/10.1016/j.ejrs.2021.10.009spa
dc.relation.referencesSajjad, H., & Kumar, P. (2019). Future Challenges and Perspective of Remote Sensing Technology. En P. Kumar, M. Rani, P. Chandra Pandey, H. Sajjad, & B. S. Chaudhary (Eds.), Applications and Challenges of Geospatial Technology (pp. 275-277). Springer International Publishing. https://doi.org/10.1007/978-3-319-99882-4_16spa
dc.relation.referencesSánchez-Giraldo, C., Correa Ayram, C., & Daza, J. M. (2021). Environmental sound as a mirror of landscape ecological integrity in monitoring programs. Perspectives in Ecology and Conservation, 19(3), 319-328. https://doi.org/10.1016/j.pecon.2021.04.003spa
dc.relation.referencesSangpradid, S., Uttaruk, Y., Rotjanakusol, T., & Laosuwan, T. (2021). FORECASTING TIME SERIES CHANGE OF THE AVERAGE ENHANCED VEGETATION INDEX TO MONITORING DROUGHT CONDITION BY USING TERRA/MODIS DATA. The Journal «Agriculture and Forestry», 67(4). https://doi.org/10.17707/AgricultForest.67.4.11spa
dc.relation.referencesSantin-Janin, H., Garel, M., Chapuis, J.-L., & Pontier, D. (2009). Assessing the performance of NDVI as a proxy for plant biomass using non-linear models: A case study on the Kerguelen archipelago. Polar Biology, 32(6), 861-871. https://doi.org/10.1007/s00300-009-0586-5spa
dc.relation.referencesSarker, I. H. (2021). Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Computer Science, 2(3), 160. https://doi.org/10.1007/s42979-021-00592-xspa
dc.relation.referencesSasmito, S. D., Taillardat, P., Clendenning, J. N., Cameron, C., Friess, D. A., Murdiyarso, D., & Hutley, L. B. (2019). Effect of land‐use and land‐cover change on mangrove blue carbon: A systematic review. Global Change Biology, 25(12), 4291-4302. https://doi.org/10.1111/gcb.14774spa
dc.relation.referencesSchipper, J. (s. f.). Magdalena-Urabá Moist Forests [Divulgativa]. https://www.oneearth.org/ecoregions/magdalena-uraba-moist-forests/spa
dc.relation.referencesSchulte To Bühne, H., & Pettorelli, N. (2018). Better together: Integrating and fusing multispectral and radar satellite imagery to inform biodiversity monitoring, ecological research and conservation science. Methods in Ecology and Evolution, 9(4), 849-865. https://doi.org/10.1111/2041-210X.12942spa
dc.relation.referencesSexton, J. O., Song, X.-P., Feng, M., Noojipady, P., Anand, A., Huang, C., Kim, D.-H., Collins, K. M., Channan, S., DiMiceli, C., & Townshend, J. R. (2013). Global, 30-m resolution continuous fields of tree cover: Landsat-based rescaling of MODIS vegetation continuous fields with lidar-based estimates of error. International Journal of Digital Earth, 6(5), 427-448. https://doi.org/10.1080/17538947.2013.786146spa
dc.relation.referencesShahzaman, M., Zhu, W., Bilal, M., Habtemicheal, B. A., Mustafa, F., Arshad, M., Ullah, I., Ishfaq, S., & Iqbal, R. (2021). Remote Sensing Indices for Spatial Monitoring of Agricultural Drought in South Asian Countries. Remote Sensing, 13(11), 2059. https://doi.org/10.3390/rs13112059spa
dc.relation.referencesShao, Z., Sumari, N. S., Portnov, A., Ujoh, F., Musakwa, W., & Mandela, P. J. (2021). Urban sprawl and its impact on sustainable urban development: A combination of remote sensing and social media data. Geo-Spatial Information Science, 24(2), 241-255. https://doi.org/10.1080/10095020.2020.1787800spa
dc.relation.referencesSheykhmousa, M., Mahdianpari, M., Ghanbari, H., Mohammadimanesh, F., Ghamisi, P., & Homayouni, S. (2020). Support Vector Machine Versus Random Forest for Remote Sensing Image Classification: A Meta-Analysis and Systematic Review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 6308-6325. https://doi.org/10.1109/JSTARS.2020.3026724spa
dc.relation.referencesSims, D., Rahman, A., Cordova, V., Elmasri, B., Baldocchi, D., Bolstad, P., Flanagan, L., Goldstein, A., Hollinger, D., & Misson, L. (2008). A new model of gross primary productivity for North American ecosystems based solely on the enhanced vegetation index and land surface temperature from MODIS. Remote Sensing of Environment, 112(4), 1633-1646. https://doi.org/10.1016/j.rse.2007.08.004spa
dc.relation.referencesSkowno, A. L., Jewitt, D., & Slingsby, J. A. (2021). Rates and patterns of habitat loss across South Africa’s vegetation biomes. South African Journal of Science, 117(1/2). https://doi.org/10.17159/sajs.2021/8182spa
dc.relation.referencesSong, C. (2013). Optical remote sensing of forest leaf area index and biomass. Progress in Physical Geography: Earth and Environment, 37(1), 98-113. https://doi.org/10.1177/0309133312471367spa
dc.relation.referencesSong, J., Lu, X., Liu, M., & Wu, X. (2011). A new LogitBoost algorithm for multiclass unbalanced data classification. 2011 Eighth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), 974-977. https://doi.org/10.1109/FSKD.2011.6019654spa
dc.relation.referencesSong, Z., Li, X., Su, X., & Li, C. (2023). Analyzing the recovery mechanisms of patchy degradation and its response to mowing and plateau pika disturbances in alpine meadow. Ecological Indicators, 154, 110565. https://doi.org/10.1016/j.ecolind.2023.110565spa
dc.relation.referencesSoto, G. E., Pérez-Hernández, C. G., Hahn, I. J., Rodewald, A. D., & Vergara, P. M. (2017). Tree senescence as a direct measure of habitat quality: Linking red-edge Vegetation Indices to space use by Magellanic woodpeckers. Remote Sensing of Environment, 193, 1-10. https://doi.org/10.1016/j.rse.2017.02.018spa
dc.relation.referencesSoubry, I., Doan, T., Chu, T., & Guo, X. (2021). A Systematic Review on the Integration of Remote Sensing and GIS to Forest and Grassland Ecosystem Health Attributes, Indicators, and Measures. Remote Sensing, 13(16), 3262. https://doi.org/10.3390/rs13163262spa
dc.relation.referencesSouza, C. M., Z. Shimbo, J., Rosa, M. R., Parente, L. L., A. Alencar, A., Rudorff, B. F. T., Hasenack, H., Matsumoto, M., G. Ferreira, L., Souza-Filho, P. W. M., De Oliveira, S. W., Rocha, W. F., Fonseca, A. V., Marques, C. B., Diniz, C. G., Costa, D., Monteiro, D., Rosa, E. R., Vélez-Martin, E., … Azevedo, T. (2020). Reconstructing Three Decades of Land Use and Land Cover Changes in Brazilian Biomes with Landsat Archive and Earth Engine. Remote Sensing, 12(17), 2735. https://doi.org/10.3390/rs12172735spa
dc.relation.referencesSrivastava, V., Lafond, V., & Griess, V. C. (2019). Species distribution models (SDM): Applications, benefits and challenges in invasive species management. CABI Reviews, 2019, 1-13. https://doi.org/10.1079/PAVSNNR201914020spa
dc.relation.referencesStenberg, P., Mõttus, M., & Rautiainen, M. (2008). Modeling the Spectral Signature of Forests: Application of Remote Sensing Models to Coniferous Canopies. En S. Liang (Ed.), Advances in Land Remote Sensing (pp. 147-171). Springer Netherlands. https://doi.org/10.1007/978-1-4020-6450-0_6spa
dc.relation.referencesStrobl, C., Malley, J., & Tutz, G. (2009). An introduction to recursive partitioning: Rationale, application, and characteristics of classification and regression trees, bagging, and random forests. Psychological Methods, 14(4), 323-348. https://doi.org/10.1037/a0016973spa
dc.relation.referencesSun, Y., Liu, H., & Guo, Z. (2021). Capsule network-based approach for estimating grassland coverage using time series data from enhanced vegetation index. Artificial Intelligence in Geosciences, 2, 26-34. https://doi.org/10.1016/j.aiig.2021.08.001spa
dc.relation.referencesSzpakowski, D., & Jensen, J. (2019). A Review of the Applications of Remote Sensing in Fire Ecology. Remote Sensing, 11(22), 2638. https://doi.org/10.3390/rs11222638spa
dc.relation.referencesTaiwo, B. E., Kafy, A.-A., Samuel, A. A., Rahaman, Z. A., Ayowole, O. E., Shahrier, M., Duti, B. M., Rahman, M. T., Peter, O. T., & Abosede, O. O. (2023). Monitoring and predicting the influences of land use/land cover change on cropland characteristics and drought severity using remote sensing techniques. Environmental and Sustainability Indicators, 18, 100248. https://doi.org/10.1016/j.indic.2023.100248spa
dc.relation.referencesTemitope Yekeen, S., & Balogun, A.-L. (2020). Advances in Remote Sensing Technology, Machine Learning and Deep Learning for Marine Oil Spill Detection, Prediction and Vulnerability Assessment. Remote Sensing, 12(20), 3416. https://doi.org/10.3390/rs12203416spa
dc.relation.referencesThamaga, K. H., Dube, T., & Shoko, C. (2022). Advances in satellite remote sensing of the wetland ecosystems in Sub-Saharan Africa. Geocarto International, 37(20), 5891-5913. https://doi.org/10.1080/10106049.2021.1926552spa
dc.relation.referencesTierney, G. L., Faber-Langendoen, D., Mitchell, B. R., Shriver, W. G., & Gibbs, J. P. (2009). Monitoring and evaluating the ecological integrity of forest ecosystems. Frontiers in Ecology and the Environment, 7(6), 308-316. https://doi.org/10.1890/070176spa
dc.relation.referencesUl Din, S., & Mak, H. W. L. (2021). Retrieval of Land-Use/Land Cover Change (LUCC) Maps and Urban Expansion Dynamics of Hyderabad, Pakistan via Landsat Datasets and Support Vector Machine Framework. Remote Sensing, 13(16), 3337. https://doi.org/10.3390/rs13163337spa
dc.relation.referencesUllo, S. L., & Sinha, G. R. (2021). Advances in IoT and Smart Sensors for Remote Sensing and Agriculture Applications. Remote Sensing, 13(13), 2585. https://doi.org/10.3390/rs13132585spa
dc.relation.referencesVergara, P. M., Fierro, A., Alaniz, A. J., Carvajal, M. A., Lizama, M., & Llanos, J. L. (2021). Landscape-scale effects of forest degradation on insectivorous birds and invertebrates in austral temperate forests. Landscape Ecology, 36(1), 191-208. https://doi.org/10.1007/s10980-020-01133-2spa
dc.relation.referencesVergara, P. M., Soto, G. E., Rodewald, A. D., & Quiroz, M. (2019). Behavioral switching in Magellanic woodpeckers reveals perception of habitat quality at different spatial scales. Landscape Ecology, 34(1), 79-92. https://doi.org/10.1007/s10980-018-0746-5spa
dc.relation.referencesVihervaara, P., Auvinen, A.-P., Mononen, L., Törmä, M., Ahlroth, P., Anttila, S., Böttcher, K., Forsius, M., Heino, J., Heliölä, J., Koskelainen, M., Kuussaari, M., Meissner, K., Ojala, O., Tuominen, S., Viitasalo, M., & Virkkala, R. (2017). How Essential Biodiversity Variables and remote sensing can help national biodiversity monitoring. Global Ecology and Conservation, 10, 43-59. https://doi.org/10.1016/j.gecco.2017.01.007spa
dc.relation.referencesVillard, M.-A., & Metzger, J. P. (2014). REVIEW: Beyond the fragmentation debate: a conceptual model to predict when habitat configuration really matters. Journal of Applied Ecology, 51(2), 309-318. https://doi.org/10.1111/1365-2664.12190spa
dc.relation.referencesViña, A., Gitelson, A. A., Nguy-Robertson, A. L., & Peng, Y. (2011). Comparison of different vegetation indices for the remote assessment of green leaf area index of crops. Remote Sensing of Environment, 115(12), 3468-3478. https://doi.org/10.1016/j.rse.2011.08.010spa
dc.relation.referencesVishnu, C. L., Sajinkumar, K. S., Oommen, T., Coffman, R. A., Thrivikramji, K. P., Rani, V. R., & Keerthy, S. (2019). Satellite-based assessment of the August 2018 flood in parts of Kerala, India. Geomatics, Natural Hazards and Risk, 10(1), 758-767. https://doi.org/10.1080/19475705.2018.1543212spa
dc.relation.referencesVogeler, J. C., & Cohen, W. B. (2016). A review of the role of active remote sensing and data fusion for characterizing forest in wildlife habitat models. Revista de Teledetección, 45, 1. https://doi.org/10.4995/raet.2016.3981spa
dc.relation.referencesVollrath, A., Mullissa, A., & Reiche, J. (2020). Angular-Based Radiometric Slope Correction for Sentinel-1 on Google Earth Engine. Remote Sensing, 12(11), 1867. https://doi.org/10.3390/rs12111867spa
dc.relation.referencesWaltari, E., Schroeder, R., McDonald, K., Anderson, R. P., & Carnaval, A. (2014). Bioclimatic variables derived from remote sensing: Assessment and application for species distribution modelling. Methods in Ecology and Evolution, 5(10), 1033-1042. https://doi.org/10.1111/2041-210X.12264spa
dc.relation.referencesWang, H., Tang, L., Qiu, Q., & Chen, H. (2020). Assessing the Impacts of Urban Expansion on Habitat Quality by Combining the Concepts of Land Use, Landscape, and Habitat in Two Urban Agglomerations in China. Sustainability, 12(11), 4346. https://doi.org/10.3390/su12114346spa
dc.relation.referencesWang, R., & Gamon, J. A. (2019). Remote sensing of terrestrial plant biodiversity. Remote Sensing of Environment, 231, 111218. https://doi.org/10.1016/j.rse.2019.111218spa
dc.relation.referencesWang, X., Liu, C., Lv, G., Xu, J., & Cui, G. (2022). Integrating Multi-Source Remote Sensing to Assess Forest Aboveground Biomass in the Khingan Mountains of North-Eastern China Using Machine-Learning Algorithms. Remote Sensing, 14(4), 1039. https://doi.org/10.3390/rs14041039spa
dc.relation.referencesWiegand, T., Naves, J., Garbulsky, M. F., & Fernández, N. (2008). ANIMAL HABITAT QUALITY AND ECOSYSTEM FUNCTIONING: EXPLORING SEASONAL PATTERNS USING NDVI. Ecological Monographs, 78(1), 87-103. https://doi.org/10.1890/06-1870.1spa
dc.relation.referencesWisz, M. S., Hijmans, R. J., Li, J., Peterson, A. T., Graham, C. H., Guisan, A., & NCEAS Predicting Species Distributions Working Group†. (2008). Effects of sample size on the performance of species distribution models. Diversity and Distributions, 14(5), 763-773. https://doi.org/10.1111/j.1472-4642.2008.00482.xspa
dc.relation.referencesWulder, M. A., Loveland, T. R., Roy, D. P., Crawford, C. J., Masek, J. G., Woodcock, C. E., Allen, R. G., Anderson, M. C., Belward, A. S., Cohen, W. B., Dwyer, J., Erb, A., Gao, F., Griffiths, P., Helder, D., Hermosilla, T., Hipple, J. D., Hostert, P., Hughes, M. J., … Zhu, Z. (2019). Current status of Landsat program, science, and applications. Remote Sensing of Environment, 225, 127-147. https://doi.org/10.1016/j.rse.2019.02.015spa
dc.relation.referencesXu, H. (2006). Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing, 27(14), 3025-3033. https://doi.org/10.1080/01431160600589179spa
dc.relation.referencesXu, Y., Yang, Y., Chen, X., & Liu, Y. (2022). Bibliometric Analysis of Global NDVI Research Trends from 1985 to 2021. Remote Sensing, 14(16), 3967. https://doi.org/10.3390/rs14163967spa
dc.relation.referencesYin, J., Dong, J., Hamm, N. A. S., Li, Z., Wang, J., Xing, H., & Fu, P. (2021). Integrating remote sensing and geospatial big data for urban land use mapping: A review. International Journal of Applied Earth Observation and Geoinformation, 103, 102514. https://doi.org/10.1016/j.jag.2021.102514spa
dc.relation.referencesYohannes, H., Soromessa, T., Argaw, M., & Dewan, A. (2021). Spatio-temporal changes in habitat quality and linkage with landscape characteristics in the Beressa watershed, Blue Nile basin of Ethiopian highlands. Journal of Environmental Management, 281, 111885. https://doi.org/10.1016/j.jenvman.2020.111885spa
dc.relation.referencesYu, T., Liu, P., Zhang, Q., Ren, Y., & Yao, J. (2021). Detecting Forest Degradation in the Three-North Forest Shelterbelt in China from Multi-Scale Satellite Images. Remote Sensing, 13(6), 1131. https://doi.org/10.3390/rs13061131spa
dc.relation.referencesZattara, E. E., & Aizen, M. A. (2021). Worldwide occurrence records suggest a global decline in bee species richness. One Earth, 4(1), 114-123. https://doi.org/10.1016/j.oneear.2020.12.005spa
dc.relation.referencesZelený, J., Mercado-Bettín, D., & Müller, F. (2021). Towards the evaluation of regional ecosystem integrity using NDVI, brightness temperature and surface heterogeneity. Science of The Total Environment, 796, 148994. https://doi.org/10.1016/j.scitotenv.2021.148994spa
dc.relation.referencesZhang, Y., Liu, J., & Shen, W. (2022). A Review of Ensemble Learning Algorithms Used in Remote Sensing Applications. Applied Sciences, 12(17), 8654. https://doi.org/10.3390/app12178654spa
dc.relation.referencesZhang, Y., Zhao, L., Zhao, H., & Gao, X. (2021). Urban development trend analysis and spatial simulation based on time series remote sensing data: A case study of Jinan, China. PLOS ONE, 16(10), e0257776. https://doi.org/10.1371/journal.pone.0257776spa
dc.relation.referencesZheng, G., & Moskal, L. M. (2009). Retrieving Leaf Area Index (LAI) Using Remote Sensing: Theories, Methods and Sensors. Sensors, 9(4), 2719-2745. https://doi.org/10.3390/s90402719spa
dc.relation.referencesZheng, Y., Xiao, Z., Li, J., Yang, H., & Song, J. (2022). Evaluation of Global Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) Products at 500 m Spatial Resolution. Remote Sensing, 14(14), 3304. https://doi.org/10.3390/rs14143304spa
dc.relation.referencesZhong, R., Wang, P., Mao, G., Chen, A., & Liu, J. (2021). Spatiotemporal variation of enhanced vegetation index in the Amazon Basin and its response to climate change. Physics and Chemistry of the Earth, Parts A/B/C, 123, 103024. https://doi.org/10.1016/j.pce.2021.103024spa
dc.relation.referencesZielewska-Büttner, K., Heurich, M., Müller, J., & Braunisch, V. (2018). Remotely Sensed Single Tree Data Enable the Determination of Habitat Thresholds for the Three-Toed Woodpecker (Picoides tridactylus). Remote Sensing, 10(12), 1972. https://doi.org/10.3390/rs10121972spa
dc.relation.referencesZipkin, E. F., Zylstra, E. R., Wright, A. D., Saunders, S. P., Finley, A. O., Dietze, M. C., Itter, M. S., & Tingley, M. W. (2021). Addressing data integration challenges to link ecological processes across scales. Frontiers in Ecology and the Environment, 19(1), 30-38. https://doi.org/10.1002/fee.2290spa
dc.relation.referencesZizka, A., Antunes Carvalho, F., Calvente, A., Rocio Baez-Lizarazo, M., Cabral, A., Coelho, J. F. R., Colli-Silva, M., Fantinati, M. R., Fernandes, M. F., Ferreira-Araújo, T., Gondim Lambert Moreira, F., Santos, N. M. C., Santos, T. A. B., Dos Santos-Costa, R. C., Serrano, F. C., Alves Da Silva, A. P., De Souza Soares, A., Cavalcante De Souza, P. G., Calisto Tomaz, E., … Antonelli, A. (2020). No one-size-fits-all solution to clean GBIF. PeerJ, 8, e9916. https://doi.org/10.7717/peerj.9916spa
dc.relation.referencesZizka, A., Silvestro, D., Andermann, T., Azevedo, J., Duarte Ritter, C., Edler, D., Farooq, H., Herdean, A., Ariza, M., Scharn, R., Svantesson, S., Wengström, N., Zizka, V., & Antonelli, A. (2019). COORDINATECLEANER: Standardized cleaning of occurrence records from biological collection databases. Methods in Ecology and Evolution, 10(5), 744-751. https://doi.org/10.1111/2041-210X.13152spa
dc.relation.referencesZurell, D., Franklin, J., König, C., Bouchet, P. J., Dormann, C. F., Elith, J., Fandos, G., Feng, X., Guillera‐Arroita, G., Guisan, A., Lahoz‐Monfort, J. J., Leitão, P. J., Park, D. S., Peterson, A. T., Rapacciuolo, G., Schmatz, D. R., Schröder, B., Serra‐Diaz, J. M., Thuiller, W., … Merow, C. (2020). A standard protocol for reporting species distribution models. Ecography, 43(9), 1261-1277. https://doi.org/10.1111/ecog.04960spa
dc.relation.referencesZwinkels, J. (2015). Light, Electromagnetic Spectrum. En R. Luo (Ed.), Encyclopedia of Color Science and Technology (pp. 1-8). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-27851-8_204-1spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.agrovocRecursos naturalesspa
dc.subject.agrovocNatural resourceseng
dc.subject.agrovocHabitatspa
dc.subject.ddc500 - Ciencias naturales y matemáticas::507 - Educación, investigación, temas relacionadosspa
dc.subject.decsEcosistemaspa
dc.subject.decsEcosystemeng
dc.subject.proposalMultispectraleng
dc.subject.proposalSynthetic Aperture Radareng
dc.subject.proposalSupervised Learningeng
dc.subject.proposalMachine Learningeng
dc.subject.proposalEcological Integrityeng
dc.subject.proposalHabitat Qualityeng
dc.titleÍndices radiométricos, multiespectrales y SAR, para la evaluación a gran escala de la calidad de hábitat en bosque húmedo tropical en zonas del Magdalena Medio, Colombiaspa
dc.title.translatedRadiometric, multispectral and SAR indices, for the large-scale evaluation of habitat quality in tropical humid forest in areas of Magdalena Medio, Colombiaeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_dc82b40f9837b551spa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameInstituto de Investigación de Recursos Biológicos Alexander von Humboldtspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1013646905.2023.pdf
Tamaño:
3.89 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Geomática

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: